Statistics
| Branch: | Revision:

ffmpeg / libavcodec / h264.c @ a4dae92b

History | View | Annotate | Download (226 KB)

1
/*
2
 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3
 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4
 *
5
 * This library is free software; you can redistribute it and/or
6
 * modify it under the terms of the GNU Lesser General Public
7
 * License as published by the Free Software Foundation; either
8
 * version 2 of the License, or (at your option) any later version.
9
 *
10
 * This library is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13
 * Lesser General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU Lesser General Public
16
 * License along with this library; if not, write to the Free Software
17
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18
 *
19
 */
20
 
21
/**
22
 * @file h264.c
23
 * H.264 / AVC / MPEG4 part10 codec.
24
 * @author Michael Niedermayer <michaelni@gmx.at>
25
 */
26

    
27
#include "common.h"
28
#include "dsputil.h"
29
#include "avcodec.h"
30
#include "mpegvideo.h"
31
#include "h264data.h"
32
#include "golomb.h"
33

    
34
#include "cabac.h"
35

    
36
#undef NDEBUG
37
#include <assert.h>
38

    
39
#define interlaced_dct interlaced_dct_is_a_bad_name
40
#define mb_intra mb_intra_isnt_initalized_see_mb_type
41

    
42
#define LUMA_DC_BLOCK_INDEX   25
43
#define CHROMA_DC_BLOCK_INDEX 26
44

    
45
#define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
46
#define COEFF_TOKEN_VLC_BITS           8
47
#define TOTAL_ZEROS_VLC_BITS           9
48
#define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
49
#define RUN_VLC_BITS                   3
50
#define RUN7_VLC_BITS                  6
51

    
52
#define MAX_SPS_COUNT 32
53
#define MAX_PPS_COUNT 256
54

    
55
#define MAX_MMCO_COUNT 66
56

    
57
/**
58
 * Sequence parameter set
59
 */
60
typedef struct SPS{
61
    
62
    int profile_idc;
63
    int level_idc;
64
    int log2_max_frame_num;            ///< log2_max_frame_num_minus4 + 4
65
    int poc_type;                      ///< pic_order_cnt_type
66
    int log2_max_poc_lsb;              ///< log2_max_pic_order_cnt_lsb_minus4
67
    int delta_pic_order_always_zero_flag;
68
    int offset_for_non_ref_pic;
69
    int offset_for_top_to_bottom_field;
70
    int poc_cycle_length;              ///< num_ref_frames_in_pic_order_cnt_cycle
71
    int ref_frame_count;               ///< num_ref_frames
72
    int gaps_in_frame_num_allowed_flag;
73
    int mb_width;                      ///< frame_width_in_mbs_minus1 + 1
74
    int mb_height;                     ///< frame_height_in_mbs_minus1 + 1
75
    int frame_mbs_only_flag;
76
    int mb_aff;                        ///<mb_adaptive_frame_field_flag
77
    int direct_8x8_inference_flag;
78
    int crop;                   ///< frame_cropping_flag
79
    int crop_left;              ///< frame_cropping_rect_left_offset
80
    int crop_right;             ///< frame_cropping_rect_right_offset
81
    int crop_top;               ///< frame_cropping_rect_top_offset
82
    int crop_bottom;            ///< frame_cropping_rect_bottom_offset
83
    int vui_parameters_present_flag;
84
    AVRational sar;
85
    int timing_info_present_flag;
86
    uint32_t num_units_in_tick;
87
    uint32_t time_scale;
88
    int fixed_frame_rate_flag;
89
    short offset_for_ref_frame[256]; //FIXME dyn aloc?
90
}SPS;
91

    
92
/**
93
 * Picture parameter set
94
 */
95
typedef struct PPS{
96
    int sps_id;
97
    int cabac;                  ///< entropy_coding_mode_flag
98
    int pic_order_present;      ///< pic_order_present_flag
99
    int slice_group_count;      ///< num_slice_groups_minus1 + 1
100
    int mb_slice_group_map_type;
101
    int ref_count[2];           ///< num_ref_idx_l0/1_active_minus1 + 1
102
    int weighted_pred;          ///< weighted_pred_flag
103
    int weighted_bipred_idc;
104
    int init_qp;                ///< pic_init_qp_minus26 + 26
105
    int init_qs;                ///< pic_init_qs_minus26 + 26
106
    int chroma_qp_index_offset;
107
    int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
108
    int constrained_intra_pred; ///< constrained_intra_pred_flag
109
    int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
110
}PPS;
111

    
112
/**
113
 * Memory management control operation opcode.
114
 */
115
typedef enum MMCOOpcode{
116
    MMCO_END=0,
117
    MMCO_SHORT2UNUSED,
118
    MMCO_LONG2UNUSED,
119
    MMCO_SHORT2LONG,
120
    MMCO_SET_MAX_LONG,
121
    MMCO_RESET, 
122
    MMCO_LONG,
123
} MMCOOpcode;
124

    
125
/**
126
 * Memory management control operation.
127
 */
128
typedef struct MMCO{
129
    MMCOOpcode opcode;
130
    int short_frame_num;
131
    int long_index;
132
} MMCO;
133

    
134
/**
135
 * H264Context
136
 */
137
typedef struct H264Context{
138
    MpegEncContext s;
139
    int nal_ref_idc;        
140
    int nal_unit_type;
141
#define NAL_SLICE                1
142
#define NAL_DPA                        2
143
#define NAL_DPB                        3
144
#define NAL_DPC                        4
145
#define NAL_IDR_SLICE                5
146
#define NAL_SEI                        6
147
#define NAL_SPS                        7
148
#define NAL_PPS                        8
149
#define NAL_PICTURE_DELIMITER        9
150
#define NAL_FILTER_DATA                10
151
    uint8_t *rbsp_buffer;
152
    int rbsp_buffer_size;
153

    
154
    /**
155
      * Used to parse AVC variant of h264
156
      */
157
    int is_avc; ///< this flag is != 0 if codec is avc1
158
    int got_avcC; ///< flag used to parse avcC data only once
159
    int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
160

    
161
    int chroma_qp; //QPc
162

    
163
    int prev_mb_skiped; //FIXME remove (IMHO not used)
164

    
165
    //prediction stuff
166
    int chroma_pred_mode;
167
    int intra16x16_pred_mode;
168
    
169
    int8_t intra4x4_pred_mode_cache[5*8];
170
    int8_t (*intra4x4_pred_mode)[8];
171
    void (*pred4x4  [9+3])(uint8_t *src, uint8_t *topright, int stride);//FIXME move to dsp?
172
    void (*pred8x8  [4+3])(uint8_t *src, int stride);
173
    void (*pred16x16[4+3])(uint8_t *src, int stride);
174
    unsigned int topleft_samples_available;
175
    unsigned int top_samples_available;
176
    unsigned int topright_samples_available;
177
    unsigned int left_samples_available;
178
    uint8_t (*top_border)[16+2*8];
179
    uint8_t left_border[17+2*9];
180

    
181
    /**
182
     * non zero coeff count cache.
183
     * is 64 if not available.
184
     */
185
    uint8_t non_zero_count_cache[6*8];
186
    uint8_t (*non_zero_count)[16];
187

    
188
    /**
189
     * Motion vector cache.
190
     */
191
    int16_t mv_cache[2][5*8][2];
192
    int8_t ref_cache[2][5*8];
193
#define LIST_NOT_USED -1 //FIXME rename?
194
#define PART_NOT_AVAILABLE -2
195
    
196
    /**
197
     * is 1 if the specific list MV&references are set to 0,0,-2.
198
     */
199
    int mv_cache_clean[2];
200

    
201
    int block_offset[16+8];
202
    int chroma_subblock_offset[16]; //FIXME remove
203
    
204
    uint16_t *mb2b_xy; //FIXME are these 4 a good idea?
205
    uint16_t *mb2b8_xy;
206
    int b_stride; //FIXME use s->b4_stride
207
    int b8_stride;
208

    
209
    int halfpel_flag;
210
    int thirdpel_flag;
211

    
212
    int unknown_svq3_flag;
213
    int next_slice_index;
214

    
215
    SPS sps_buffer[MAX_SPS_COUNT];
216
    SPS sps; ///< current sps
217
    
218
    PPS pps_buffer[MAX_PPS_COUNT];
219
    /**
220
     * current pps
221
     */
222
    PPS pps; //FIXME move tp Picture perhaps? (->no) do we need that?
223

    
224
    int slice_num;
225
    uint8_t *slice_table_base;
226
    uint8_t *slice_table;      ///< slice_table_base + mb_stride + 1
227
    int slice_type;
228
    int slice_type_fixed;
229
    
230
    //interlacing specific flags
231
    int mb_field_decoding_flag;
232
    
233
    int sub_mb_type[4];
234
    
235
    //POC stuff
236
    int poc_lsb;
237
    int poc_msb;
238
    int delta_poc_bottom;
239
    int delta_poc[2];
240
    int frame_num;
241
    int prev_poc_msb;             ///< poc_msb of the last reference pic for POC type 0
242
    int prev_poc_lsb;             ///< poc_lsb of the last reference pic for POC type 0
243
    int frame_num_offset;         ///< for POC type 2
244
    int prev_frame_num_offset;    ///< for POC type 2
245
    int prev_frame_num;           ///< frame_num of the last pic for POC type 1/2
246

    
247
    /**
248
     * frame_num for frames or 2*frame_num for field pics.
249
     */
250
    int curr_pic_num;
251
    
252
    /**
253
     * max_frame_num or 2*max_frame_num for field pics.
254
     */
255
    int max_pic_num;
256

    
257
    //Weighted pred stuff
258
    int luma_log2_weight_denom;
259
    int chroma_log2_weight_denom;
260
    int luma_weight[2][16];
261
    int luma_offset[2][16];
262
    int chroma_weight[2][16][2];
263
    int chroma_offset[2][16][2];
264
   
265
    //deblock
266
    int deblocking_filter;         ///< disable_deblocking_filter_idc with 1<->0 
267
    int slice_alpha_c0_offset;
268
    int slice_beta_offset;
269
     
270
    int redundant_pic_count;
271
    
272
    int direct_spatial_mv_pred;
273
    int dist_scale_factor[16];
274

    
275
    /**
276
     * num_ref_idx_l0/1_active_minus1 + 1
277
     */
278
    int ref_count[2];// FIXME split for AFF
279
    Picture *short_ref[16];
280
    Picture *long_ref[16];
281
    Picture default_ref_list[2][32];
282
    Picture ref_list[2][32]; //FIXME size?
283
    Picture field_ref_list[2][32]; //FIXME size?
284
    Picture *delayed_pic[16]; //FIXME size?
285
    
286
    /**
287
     * memory management control operations buffer.
288
     */
289
    MMCO mmco[MAX_MMCO_COUNT];
290
    int mmco_index;
291
    
292
    int long_ref_count;  ///< number of actual long term references
293
    int short_ref_count; ///< number of actual short term references
294
    
295
    //data partitioning
296
    GetBitContext intra_gb;
297
    GetBitContext inter_gb;
298
    GetBitContext *intra_gb_ptr;
299
    GetBitContext *inter_gb_ptr;
300
    
301
    DCTELEM mb[16*24] __align8;
302

    
303
    /**
304
     * Cabac
305
     */
306
    CABACContext cabac;
307
    uint8_t      cabac_state[399];
308
    int          cabac_init_idc;
309

    
310
    /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
311
    uint16_t     *cbp_table;
312
    int top_cbp;
313
    int left_cbp;
314
    /* chroma_pred_mode for i4x4 or i16x16, else 0 */
315
    uint8_t     *chroma_pred_mode_table;
316
    int         last_qscale_diff;
317
    int16_t     (*mvd_table[2])[2];
318
    int16_t     mvd_cache[2][5*8][2];
319
    uint8_t     *direct_table;
320
    uint8_t     direct_cache[5*8];
321

    
322
}H264Context;
323

    
324
static VLC coeff_token_vlc[4];
325
static VLC chroma_dc_coeff_token_vlc;
326

    
327
static VLC total_zeros_vlc[15];
328
static VLC chroma_dc_total_zeros_vlc[3];
329

    
330
static VLC run_vlc[6];
331
static VLC run7_vlc;
332

    
333
static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
334
static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
335
static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr);
336

    
337
static inline uint32_t pack16to32(int a, int b){
338
#ifdef WORDS_BIGENDIAN
339
   return (b&0xFFFF) + (a<<16);
340
#else
341
   return (a&0xFFFF) + (b<<16);
342
#endif
343
}
344

    
345
/**
346
 * fill a rectangle.
347
 * @param h height of the rectangle, should be a constant
348
 * @param w width of the rectangle, should be a constant
349
 * @param size the size of val (1 or 4), should be a constant
350
 */
351
static inline void fill_rectangle(void *vp, int w, int h, int stride, uint32_t val, int size){ //FIXME ensure this IS inlined
352
    uint8_t *p= (uint8_t*)vp;
353
    assert(size==1 || size==4);
354
    
355
    w      *= size;
356
    stride *= size;
357
    
358
//FIXME check what gcc generates for 64 bit on x86 and possible write a 32 bit ver of it
359
    if(w==2 && h==2){
360
        *(uint16_t*)(p + 0)=
361
        *(uint16_t*)(p + stride)= size==4 ? val : val*0x0101;
362
    }else if(w==2 && h==4){
363
        *(uint16_t*)(p + 0*stride)=
364
        *(uint16_t*)(p + 1*stride)=
365
        *(uint16_t*)(p + 2*stride)=
366
        *(uint16_t*)(p + 3*stride)= size==4 ? val : val*0x0101;
367
    }else if(w==4 && h==1){
368
        *(uint32_t*)(p + 0*stride)= size==4 ? val : val*0x01010101;
369
    }else if(w==4 && h==2){
370
        *(uint32_t*)(p + 0*stride)=
371
        *(uint32_t*)(p + 1*stride)= size==4 ? val : val*0x01010101;
372
    }else if(w==4 && h==4){
373
        *(uint32_t*)(p + 0*stride)=
374
        *(uint32_t*)(p + 1*stride)=
375
        *(uint32_t*)(p + 2*stride)=
376
        *(uint32_t*)(p + 3*stride)= size==4 ? val : val*0x01010101;
377
    }else if(w==8 && h==1){
378
        *(uint32_t*)(p + 0)=
379
        *(uint32_t*)(p + 4)= size==4 ? val : val*0x01010101;
380
    }else if(w==8 && h==2){
381
        *(uint32_t*)(p + 0 + 0*stride)=
382
        *(uint32_t*)(p + 4 + 0*stride)=
383
        *(uint32_t*)(p + 0 + 1*stride)=
384
        *(uint32_t*)(p + 4 + 1*stride)=  size==4 ? val : val*0x01010101;
385
    }else if(w==8 && h==4){
386
        *(uint64_t*)(p + 0*stride)=
387
        *(uint64_t*)(p + 1*stride)=
388
        *(uint64_t*)(p + 2*stride)=
389
        *(uint64_t*)(p + 3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
390
    }else if(w==16 && h==2){
391
        *(uint64_t*)(p + 0+0*stride)=
392
        *(uint64_t*)(p + 8+0*stride)=
393
        *(uint64_t*)(p + 0+1*stride)=
394
        *(uint64_t*)(p + 8+1*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
395
    }else if(w==16 && h==4){
396
        *(uint64_t*)(p + 0+0*stride)=
397
        *(uint64_t*)(p + 8+0*stride)=
398
        *(uint64_t*)(p + 0+1*stride)=
399
        *(uint64_t*)(p + 8+1*stride)=
400
        *(uint64_t*)(p + 0+2*stride)=
401
        *(uint64_t*)(p + 8+2*stride)=
402
        *(uint64_t*)(p + 0+3*stride)=
403
        *(uint64_t*)(p + 8+3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
404
    }else
405
        assert(0);
406
}
407

    
408
static inline void fill_caches(H264Context *h, int mb_type){
409
    MpegEncContext * const s = &h->s;
410
    const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
411
    int topleft_xy, top_xy, topright_xy, left_xy[2];
412
    int topleft_type, top_type, topright_type, left_type[2];
413
    int left_block[4];
414
    int i;
415

    
416
    //wow what a mess, why didnt they simplify the interlacing&intra stuff, i cant imagine that these complex rules are worth it 
417
    
418
    if(h->sps.mb_aff){
419
    //FIXME
420
        topleft_xy = 0; /* avoid warning */
421
        top_xy = 0; /* avoid warning */
422
        topright_xy = 0; /* avoid warning */
423
    }else{
424
        topleft_xy = mb_xy-1 - s->mb_stride;
425
        top_xy     = mb_xy   - s->mb_stride;
426
        topright_xy= mb_xy+1 - s->mb_stride;
427
        left_xy[0]   = mb_xy-1;
428
        left_xy[1]   = mb_xy-1;
429
        left_block[0]= 0;
430
        left_block[1]= 1;
431
        left_block[2]= 2;
432
        left_block[3]= 3;
433
    }
434

    
435
    topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
436
    top_type     = h->slice_table[top_xy     ] == h->slice_num ? s->current_picture.mb_type[top_xy]     : 0;
437
    topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
438
    left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
439
    left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
440

    
441
    if(IS_INTRA(mb_type)){
442
        h->topleft_samples_available= 
443
        h->top_samples_available= 
444
        h->left_samples_available= 0xFFFF;
445
        h->topright_samples_available= 0xEEEA;
446

    
447
        if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
448
            h->topleft_samples_available= 0xB3FF;
449
            h->top_samples_available= 0x33FF;
450
            h->topright_samples_available= 0x26EA;
451
        }
452
        for(i=0; i<2; i++){
453
            if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
454
                h->topleft_samples_available&= 0xDF5F;
455
                h->left_samples_available&= 0x5F5F;
456
            }
457
        }
458
        
459
        if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
460
            h->topleft_samples_available&= 0x7FFF;
461
        
462
        if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
463
            h->topright_samples_available&= 0xFBFF;
464
    
465
        if(IS_INTRA4x4(mb_type)){
466
            if(IS_INTRA4x4(top_type)){
467
                h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
468
                h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
469
                h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
470
                h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
471
            }else{
472
                int pred;
473
                if(IS_INTRA16x16(top_type) || (IS_INTER(top_type) && !h->pps.constrained_intra_pred))
474
                    pred= 2;
475
                else{
476
                    pred= -1;
477
                }
478
                h->intra4x4_pred_mode_cache[4+8*0]=
479
                h->intra4x4_pred_mode_cache[5+8*0]=
480
                h->intra4x4_pred_mode_cache[6+8*0]=
481
                h->intra4x4_pred_mode_cache[7+8*0]= pred;
482
            }
483
            for(i=0; i<2; i++){
484
                if(IS_INTRA4x4(left_type[i])){
485
                    h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
486
                    h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
487
                }else{
488
                    int pred;
489
                    if(IS_INTRA16x16(left_type[i]) || (IS_INTER(left_type[i]) && !h->pps.constrained_intra_pred))
490
                        pred= 2;
491
                    else{
492
                        pred= -1;
493
                    }
494
                    h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
495
                    h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
496
                }
497
            }
498
        }
499
    }
500
    
501
    
502
/*
503
0 . T T. T T T T 
504
1 L . .L . . . . 
505
2 L . .L . . . . 
506
3 . T TL . . . . 
507
4 L . .L . . . . 
508
5 L . .. . . . . 
509
*/
510
//FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
511
    if(top_type){
512
        h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][0];
513
        h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][1];
514
        h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][2];
515
        h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
516
    
517
        h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][7];
518
        h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
519
    
520
        h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][10];
521
        h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
522
        
523
        h->top_cbp= h->cbp_table[top_xy];
524
    }else{
525
        h->non_zero_count_cache[4+8*0]=      
526
        h->non_zero_count_cache[5+8*0]=
527
        h->non_zero_count_cache[6+8*0]=
528
        h->non_zero_count_cache[7+8*0]=
529
    
530
        h->non_zero_count_cache[1+8*0]=
531
        h->non_zero_count_cache[2+8*0]=
532
    
533
        h->non_zero_count_cache[1+8*3]=
534
        h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
535
        
536
        if(IS_INTRA(mb_type)) h->top_cbp= 0x1C0;
537
        else                  h->top_cbp= 0;
538
    }
539
    
540
    if(left_type[0]){
541
        h->non_zero_count_cache[3+8*1]= h->non_zero_count[left_xy[0]][6];
542
        h->non_zero_count_cache[3+8*2]= h->non_zero_count[left_xy[0]][5];
543
        h->non_zero_count_cache[0+8*1]= h->non_zero_count[left_xy[0]][9]; //FIXME left_block
544
        h->non_zero_count_cache[0+8*4]= h->non_zero_count[left_xy[0]][12];
545
        h->left_cbp= h->cbp_table[left_xy[0]]; //FIXME interlacing
546
    }else{
547
        h->non_zero_count_cache[3+8*1]= 
548
        h->non_zero_count_cache[3+8*2]= 
549
        h->non_zero_count_cache[0+8*1]= 
550
        h->non_zero_count_cache[0+8*4]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
551
        
552
        if(IS_INTRA(mb_type)) h->left_cbp= 0x1C0;//FIXME interlacing
553
        else                  h->left_cbp= 0;
554
    }
555
    
556
    if(left_type[1]){
557
        h->non_zero_count_cache[3+8*3]= h->non_zero_count[left_xy[1]][4];
558
        h->non_zero_count_cache[3+8*4]= h->non_zero_count[left_xy[1]][3];
559
        h->non_zero_count_cache[0+8*2]= h->non_zero_count[left_xy[1]][8];
560
        h->non_zero_count_cache[0+8*5]= h->non_zero_count[left_xy[1]][11];
561
    }else{
562
        h->non_zero_count_cache[3+8*3]= 
563
        h->non_zero_count_cache[3+8*4]= 
564
        h->non_zero_count_cache[0+8*2]= 
565
        h->non_zero_count_cache[0+8*5]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
566
    }
567
    
568
#if 1
569
    //FIXME direct mb can skip much of this
570
    if(IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)){
571
        int list;
572
        for(list=0; list<2; list++){
573
            if((!IS_8X8(mb_type)) && !USES_LIST(mb_type, list) && !IS_DIRECT(mb_type)){
574
                /*if(!h->mv_cache_clean[list]){
575
                    memset(h->mv_cache [list],  0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
576
                    memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
577
                    h->mv_cache_clean[list]= 1;
578
                }*/
579
                continue;
580
            }
581
            h->mv_cache_clean[list]= 0;
582
            
583
            if(IS_INTER(topleft_type)){
584
                const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
585
                const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + h->b8_stride;
586
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
587
                h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
588
            }else{
589
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
590
                h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
591
            }
592
            
593
            if(IS_INTER(top_type)){
594
                const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
595
                const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
596
                *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
597
                *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
598
                *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
599
                *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
600
                h->ref_cache[list][scan8[0] + 0 - 1*8]=
601
                h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
602
                h->ref_cache[list][scan8[0] + 2 - 1*8]=
603
                h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
604
            }else{
605
                *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]= 
606
                *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]= 
607
                *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]= 
608
                *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
609
                *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
610
            }
611

    
612
            if(IS_INTER(topright_type)){
613
                const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
614
                const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
615
                *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
616
                h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
617
            }else{
618
                *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
619
                h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
620
            }
621
            
622
            //FIXME unify cleanup or sth
623
            if(IS_INTER(left_type[0])){
624
                const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
625
                const int b8_xy= h->mb2b8_xy[left_xy[0]] + 1;
626
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]];
627
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1]];
628
                h->ref_cache[list][scan8[0] - 1 + 0*8]= 
629
                h->ref_cache[list][scan8[0] - 1 + 1*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0]>>1)];
630
            }else{
631
                *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 0*8]=
632
                *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 1*8]= 0;
633
                h->ref_cache[list][scan8[0] - 1 + 0*8]=
634
                h->ref_cache[list][scan8[0] - 1 + 1*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
635
            }
636
            
637
            if(IS_INTER(left_type[1])){
638
                const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
639
                const int b8_xy= h->mb2b8_xy[left_xy[1]] + 1;
640
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[2]];
641
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[3]];
642
                h->ref_cache[list][scan8[0] - 1 + 2*8]= 
643
                h->ref_cache[list][scan8[0] - 1 + 3*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[2]>>1)];
644
            }else{
645
                *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 2*8]=
646
                *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 3*8]= 0;
647
                h->ref_cache[list][scan8[0] - 1 + 2*8]=
648
                h->ref_cache[list][scan8[0] - 1 + 3*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
649
            }
650

    
651
            h->ref_cache[list][scan8[5 ]+1] = 
652
            h->ref_cache[list][scan8[7 ]+1] = 
653
            h->ref_cache[list][scan8[13]+1] =  //FIXME remove past 3 (init somewher else)
654
            h->ref_cache[list][scan8[4 ]] = 
655
            h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
656
            *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
657
            *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
658
            *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewher else)
659
            *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
660
            *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
661

    
662
            if( h->pps.cabac ) {
663
                /* XXX beurk, Load mvd */
664
                if(IS_INTER(topleft_type)){
665
                    const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
666
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy];
667
                }else{
668
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 - 1*8]= 0;
669
                }
670

    
671
                if(IS_INTER(top_type)){
672
                    const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
673
                    *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
674
                    *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
675
                    *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
676
                    *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
677
                }else{
678
                    *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]= 
679
                    *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]= 
680
                    *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]= 
681
                    *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
682
                }
683
                if(IS_INTER(left_type[0])){
684
                    const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
685
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
686
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
687
                }else{
688
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
689
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
690
                }
691
                if(IS_INTER(left_type[1])){
692
                    const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
693
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
694
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
695
                }else{
696
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
697
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
698
                }
699
                *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
700
                *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
701
                *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewher else)
702
                *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
703
                *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
704

    
705
                if(h->slice_type == B_TYPE){
706
                    fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
707

    
708
                    if(IS_DIRECT(top_type)){
709
                        *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
710
                    }else if(IS_8X8(top_type)){
711
                        int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
712
                        h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
713
                        h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
714
                    }else{
715
                        *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
716
                    }
717
                    
718
                    //FIXME interlacing
719
                    if(IS_DIRECT(left_type[0])){
720
                        h->direct_cache[scan8[0] - 1 + 0*8]=
721
                        h->direct_cache[scan8[0] - 1 + 2*8]= 1;
722
                    }else if(IS_8X8(left_type[0])){
723
                        int b8_xy = h->mb2b8_xy[left_xy[0]] + 1;
724
                        h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[b8_xy];
725
                        h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[b8_xy + h->b8_stride];
726
                    }else{
727
                        h->direct_cache[scan8[0] - 1 + 0*8]=
728
                        h->direct_cache[scan8[0] - 1 + 2*8]= 0;
729
                    }
730
                }
731
            }
732
        }
733
    }
734
#endif
735
}
736

    
737
static inline void write_back_intra_pred_mode(H264Context *h){
738
    MpegEncContext * const s = &h->s;
739
    const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
740

    
741
    h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
742
    h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
743
    h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
744
    h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
745
    h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
746
    h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
747
    h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
748
}
749

    
750
/**
751
 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
752
 */
753
static inline int check_intra4x4_pred_mode(H264Context *h){
754
    MpegEncContext * const s = &h->s;
755
    static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
756
    static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
757
    int i;
758
    
759
    if(!(h->top_samples_available&0x8000)){
760
        for(i=0; i<4; i++){
761
            int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
762
            if(status<0){
763
                av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
764
                return -1;
765
            } else if(status){
766
                h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
767
            }
768
        }
769
    }
770
    
771
    if(!(h->left_samples_available&0x8000)){
772
        for(i=0; i<4; i++){
773
            int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
774
            if(status<0){
775
                av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
776
                return -1;
777
            } else if(status){
778
                h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
779
            }
780
        }
781
    }
782

    
783
    return 0;
784
} //FIXME cleanup like next
785

    
786
/**
787
 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
788
 */
789
static inline int check_intra_pred_mode(H264Context *h, int mode){
790
    MpegEncContext * const s = &h->s;
791
    static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
792
    static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
793
    
794
    if(mode < 0 || mode > 6) {
795
        av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
796
        return -1;
797
    }
798
    
799
    if(!(h->top_samples_available&0x8000)){
800
        mode= top[ mode ];
801
        if(mode<0){
802
            av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
803
            return -1;
804
        }
805
    }
806
    
807
    if(!(h->left_samples_available&0x8000)){
808
        mode= left[ mode ];
809
        if(mode<0){
810
            av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
811
            return -1;
812
        } 
813
    }
814

    
815
    return mode;
816
}
817

    
818
/**
819
 * gets the predicted intra4x4 prediction mode.
820
 */
821
static inline int pred_intra_mode(H264Context *h, int n){
822
    const int index8= scan8[n];
823
    const int left= h->intra4x4_pred_mode_cache[index8 - 1];
824
    const int top = h->intra4x4_pred_mode_cache[index8 - 8];
825
    const int min= FFMIN(left, top);
826

    
827
    tprintf("mode:%d %d min:%d\n", left ,top, min);
828

    
829
    if(min<0) return DC_PRED;
830
    else      return min;
831
}
832

    
833
static inline void write_back_non_zero_count(H264Context *h){
834
    MpegEncContext * const s = &h->s;
835
    const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
836

    
837
    h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[4+8*4];
838
    h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[5+8*4];
839
    h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[6+8*4];
840
    h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
841
    h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[7+8*3];
842
    h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[7+8*2];
843
    h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[7+8*1];
844
    
845
    h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[1+8*2];
846
    h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
847
    h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[2+8*1];
848

    
849
    h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[1+8*5];
850
    h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
851
    h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[2+8*4];
852
}
853

    
854
/**
855
 * gets the predicted number of non zero coefficients.
856
 * @param n block index
857
 */
858
static inline int pred_non_zero_count(H264Context *h, int n){
859
    const int index8= scan8[n];
860
    const int left= h->non_zero_count_cache[index8 - 1];
861
    const int top = h->non_zero_count_cache[index8 - 8];
862
    int i= left + top;
863
    
864
    if(i<64) i= (i+1)>>1;
865

    
866
    tprintf("pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
867

    
868
    return i&31;
869
}
870

    
871
static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
872
    const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
873

    
874
    if(topright_ref != PART_NOT_AVAILABLE){
875
        *C= h->mv_cache[list][ i - 8 + part_width ];
876
        return topright_ref;
877
    }else{
878
        tprintf("topright MV not available\n");
879

    
880
        *C= h->mv_cache[list][ i - 8 - 1 ];
881
        return h->ref_cache[list][ i - 8 - 1 ];
882
    }
883
}
884

    
885
/**
886
 * gets the predicted MV.
887
 * @param n the block index
888
 * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
889
 * @param mx the x component of the predicted motion vector
890
 * @param my the y component of the predicted motion vector
891
 */
892
static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
893
    const int index8= scan8[n];
894
    const int top_ref=      h->ref_cache[list][ index8 - 8 ];
895
    const int left_ref=     h->ref_cache[list][ index8 - 1 ];
896
    const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
897
    const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
898
    const int16_t * C;
899
    int diagonal_ref, match_count;
900

    
901
    assert(part_width==1 || part_width==2 || part_width==4);
902

    
903
/* mv_cache
904
  B . . A T T T T 
905
  U . . L . . , .
906
  U . . L . . . .
907
  U . . L . . , .
908
  . . . L . . . .
909
*/
910

    
911
    diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
912
    match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
913
    if(match_count > 1){ //most common
914
        *mx= mid_pred(A[0], B[0], C[0]);
915
        *my= mid_pred(A[1], B[1], C[1]);
916
    }else if(match_count==1){
917
        if(left_ref==ref){
918
            *mx= A[0];
919
            *my= A[1];        
920
        }else if(top_ref==ref){
921
            *mx= B[0];
922
            *my= B[1];        
923
        }else{
924
            *mx= C[0];
925
            *my= C[1];        
926
        }
927
    }else{
928
        if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
929
            *mx= A[0];
930
            *my= A[1];        
931
        }else{
932
            *mx= mid_pred(A[0], B[0], C[0]);
933
            *my= mid_pred(A[1], B[1], C[1]);
934
        }
935
    }
936
        
937
    tprintf("pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1],                    diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
938
}
939

    
940
/**
941
 * gets the directionally predicted 16x8 MV.
942
 * @param n the block index
943
 * @param mx the x component of the predicted motion vector
944
 * @param my the y component of the predicted motion vector
945
 */
946
static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
947
    if(n==0){
948
        const int top_ref=      h->ref_cache[list][ scan8[0] - 8 ];
949
        const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
950

    
951
        tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
952
        
953
        if(top_ref == ref){
954
            *mx= B[0];
955
            *my= B[1];
956
            return;
957
        }
958
    }else{
959
        const int left_ref=     h->ref_cache[list][ scan8[8] - 1 ];
960
        const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
961
        
962
        tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
963

    
964
        if(left_ref == ref){
965
            *mx= A[0];
966
            *my= A[1];
967
            return;
968
        }
969
    }
970

    
971
    //RARE
972
    pred_motion(h, n, 4, list, ref, mx, my);
973
}
974

    
975
/**
976
 * gets the directionally predicted 8x16 MV.
977
 * @param n the block index
978
 * @param mx the x component of the predicted motion vector
979
 * @param my the y component of the predicted motion vector
980
 */
981
static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
982
    if(n==0){
983
        const int left_ref=      h->ref_cache[list][ scan8[0] - 1 ];
984
        const int16_t * const A=  h->mv_cache[list][ scan8[0] - 1 ];
985
        
986
        tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
987

    
988
        if(left_ref == ref){
989
            *mx= A[0];
990
            *my= A[1];
991
            return;
992
        }
993
    }else{
994
        const int16_t * C;
995
        int diagonal_ref;
996

    
997
        diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
998
        
999
        tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
1000

    
1001
        if(diagonal_ref == ref){ 
1002
            *mx= C[0];
1003
            *my= C[1];
1004
            return;
1005
        }
1006
    }
1007

    
1008
    //RARE
1009
    pred_motion(h, n, 2, list, ref, mx, my);
1010
}
1011

    
1012
static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
1013
    const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
1014
    const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
1015

    
1016
    tprintf("pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
1017

    
1018
    if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
1019
       || (top_ref == 0  && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
1020
       || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
1021
       
1022
        *mx = *my = 0;
1023
        return;
1024
    }
1025
        
1026
    pred_motion(h, 0, 4, 0, 0, mx, my);
1027

    
1028
    return;
1029
}
1030

    
1031
static inline void direct_dist_scale_factor(H264Context * const h){
1032
    const int poc = h->s.current_picture_ptr->poc;
1033
    const int poc1 = h->ref_list[1][0].poc;
1034
    int i;
1035
    for(i=0; i<h->ref_count[0]; i++){
1036
        int poc0 = h->ref_list[0][i].poc;
1037
        int td = clip(poc1 - poc0, -128, 127);
1038
        if(td == 0 /* FIXME || pic0 is a long-term ref */){
1039
            h->dist_scale_factor[i] = 256;
1040
        }else{
1041
            int tb = clip(poc - poc0, -128, 127);
1042
            int tx = (16384 + (ABS(td) >> 1)) / td;
1043
            h->dist_scale_factor[i] = clip((tb*tx + 32) >> 6, -1024, 1023);
1044
        }
1045
    }
1046
}
1047

    
1048
static inline void pred_direct_motion(H264Context * const h, int *mb_type){
1049
    MpegEncContext * const s = &h->s;
1050
    const int mb_xy =   s->mb_x +   s->mb_y*s->mb_stride;
1051
    const int b8_xy = 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1052
    const int b4_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1053
    const int mb_type_col = h->ref_list[1][0].mb_type[mb_xy];
1054
    const int16_t (*l1mv0)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[0][b4_xy];
1055
    const int8_t *l1ref0 = &h->ref_list[1][0].ref_index[0][b8_xy];
1056
    const int is_b8x8 = IS_8X8(*mb_type);
1057
    int sub_mb_type;
1058
    int i8, i4;
1059

    
1060
    if(IS_8X8(mb_type_col) && !h->sps.direct_8x8_inference_flag){
1061
        /* FIXME save sub mb types from previous frames (or derive from MVs)
1062
         * so we know exactly what block size to use */
1063
        sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
1064
        *mb_type =    MB_TYPE_8x8;
1065
    }else if(!is_b8x8 && (IS_16X16(mb_type_col) || IS_INTRA(mb_type_col))){
1066
        sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1067
        *mb_type =    MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
1068
    }else{
1069
        sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1070
        *mb_type =    MB_TYPE_8x8;
1071
    }
1072
    if(!is_b8x8)
1073
        *mb_type |= MB_TYPE_DIRECT2;
1074

    
1075
    if(h->direct_spatial_mv_pred){
1076
        int ref[2];
1077
        int mv[2][2];
1078
        int list;
1079

    
1080
        /* ref = min(neighbors) */
1081
        for(list=0; list<2; list++){
1082
            int refa = h->ref_cache[list][scan8[0] - 1];
1083
            int refb = h->ref_cache[list][scan8[0] - 8];
1084
            int refc = h->ref_cache[list][scan8[0] - 8 + 4];
1085
            if(refc == -2)
1086
                refc = h->ref_cache[list][scan8[0] - 8 - 1];
1087
            ref[list] = refa;
1088
            if(ref[list] < 0 || (refb < ref[list] && refb >= 0))
1089
                ref[list] = refb;
1090
            if(ref[list] < 0 || (refc < ref[list] && refc >= 0))
1091
                ref[list] = refc;
1092
            if(ref[list] < 0)
1093
                ref[list] = -1;
1094
        }
1095

    
1096
        if(ref[0] < 0 && ref[1] < 0){
1097
            ref[0] = ref[1] = 0;
1098
            mv[0][0] = mv[0][1] =
1099
            mv[1][0] = mv[1][1] = 0;
1100
        }else{
1101
            for(list=0; list<2; list++){
1102
                if(ref[list] >= 0)
1103
                    pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]);
1104
                else
1105
                    mv[list][0] = mv[list][1] = 0;
1106
            }
1107
        }
1108

    
1109
        if(ref[1] < 0){
1110
            *mb_type &= ~MB_TYPE_P0L1;
1111
            sub_mb_type &= ~MB_TYPE_P0L1;
1112
        }else if(ref[0] < 0){
1113
            *mb_type &= ~MB_TYPE_P0L0;
1114
            sub_mb_type &= ~MB_TYPE_P0L0;
1115
        }
1116

    
1117
        if(IS_16X16(*mb_type)){
1118
            fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref[0], 1);
1119
            fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, ref[1], 1);
1120
            if(!IS_INTRA(mb_type_col) && l1ref0[0] == 0 &&
1121
                ABS(l1mv0[0][0]) <= 1 && ABS(l1mv0[0][1]) <= 1){
1122
                if(ref[0] > 0)
1123
                    fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1124
                else
1125
                    fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
1126
                if(ref[1] > 0)
1127
                    fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1128
                else
1129
                    fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, 0, 4);
1130
            }else{
1131
                fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1132
                fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1133
            }
1134
        }else{
1135
            for(i8=0; i8<4; i8++){
1136
                const int x8 = i8&1;
1137
                const int y8 = i8>>1;
1138
    
1139
                if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1140
                    continue;
1141
                h->sub_mb_type[i8] = sub_mb_type;
1142
    
1143
                fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1144
                fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1145
                fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref[0], 1);
1146
                fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, ref[1], 1);
1147
    
1148
                /* col_zero_flag */
1149
                if(!IS_INTRA(mb_type_col) && l1ref0[x8 + y8*h->b8_stride] == 0){
1150
                    for(i4=0; i4<4; i4++){
1151
                        const int16_t *mv_col = l1mv0[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
1152
                        if(ABS(mv_col[0]) <= 1 && ABS(mv_col[1]) <= 1){
1153
                            if(ref[0] == 0)
1154
                                *(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0;
1155
                            if(ref[1] == 0)
1156
                                *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0;
1157
                        }
1158
                    }
1159
                }
1160
            }
1161
        }
1162
    }else{ /* direct temporal mv pred */
1163
        /* FIXME assumes that L1ref0 used the same ref lists as current frame */
1164
        if(IS_16X16(*mb_type)){
1165
            fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
1166
            if(IS_INTRA(mb_type_col)){
1167
                fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
1168
                fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
1169
                fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, 0, 4);
1170
            }else{
1171
                const int ref0 = l1ref0[0];
1172
                const int dist_scale_factor = h->dist_scale_factor[ref0];
1173
                const int16_t *mv_col = l1mv0[0];
1174
                int mv_l0[2];
1175
                mv_l0[0] = (dist_scale_factor * mv_col[0] + 128) >> 8;
1176
                mv_l0[1] = (dist_scale_factor * mv_col[1] + 128) >> 8;
1177
                fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref0, 1);
1178
                fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv_l0[0],mv_l0[1]), 4);
1179
                fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]), 4);
1180
            }
1181
        }else{
1182
            for(i8=0; i8<4; i8++){
1183
                const int x8 = i8&1;
1184
                const int y8 = i8>>1;
1185
                int ref0, dist_scale_factor;
1186
    
1187
                if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1188
                    continue;
1189
                h->sub_mb_type[i8] = sub_mb_type;
1190
                if(IS_INTRA(mb_type_col)){
1191
                    fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
1192
                    fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1193
                    fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1194
                    fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1195
                    continue;
1196
                }
1197
    
1198
                ref0 = l1ref0[x8 + y8*h->b8_stride];
1199
                dist_scale_factor = h->dist_scale_factor[ref0];
1200
    
1201
                fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
1202
                fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1203
                for(i4=0; i4<4; i4++){
1204
                    const int16_t *mv_col = l1mv0[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
1205
                    int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
1206
                    mv_l0[0] = (dist_scale_factor * mv_col[0] + 128) >> 8;
1207
                    mv_l0[1] = (dist_scale_factor * mv_col[1] + 128) >> 8;
1208
                    *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] =
1209
                        pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
1210
                }
1211
            }
1212
        }
1213
    }
1214
}
1215

    
1216
static inline void write_back_motion(H264Context *h, int mb_type){
1217
    MpegEncContext * const s = &h->s;
1218
    const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1219
    const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1220
    int list;
1221

    
1222
    for(list=0; list<2; list++){
1223
        int y;
1224
        if((!IS_8X8(mb_type)) && !USES_LIST(mb_type, list)){
1225
            if(1){ //FIXME skip or never read if mb_type doesnt use it
1226
                for(y=0; y<4; y++){
1227
                    *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]=
1228
                    *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= 0;
1229
                }
1230
                if( h->pps.cabac ) {
1231
                    /* FIXME needed ? */
1232
                    for(y=0; y<4; y++){
1233
                        *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]=
1234
                        *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= 0;
1235
                    }
1236
                }
1237
                for(y=0; y<2; y++){
1238
                    *(uint16_t*)&s->current_picture.ref_index[list][b8_xy + y*h->b8_stride]= (LIST_NOT_USED&0xFF)*0x0101;
1239
                }
1240
            }
1241
            continue;
1242
        }
1243
        
1244
        for(y=0; y<4; y++){
1245
            *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
1246
            *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
1247
        }
1248
        if( h->pps.cabac ) {
1249
            for(y=0; y<4; y++){
1250
                *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
1251
                *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
1252
            }
1253
        }
1254
        for(y=0; y<2; y++){
1255
            s->current_picture.ref_index[list][b8_xy + 0 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+0 + 16*y];
1256
            s->current_picture.ref_index[list][b8_xy + 1 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+2 + 16*y];
1257
        }
1258
    }
1259
    
1260
    if(h->slice_type == B_TYPE && h->pps.cabac){
1261
        if(IS_8X8(mb_type)){
1262
            h->direct_table[b8_xy+1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
1263
            h->direct_table[b8_xy+0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
1264
            h->direct_table[b8_xy+1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
1265
        }
1266
    }
1267
}
1268

    
1269
/**
1270
 * Decodes a network abstraction layer unit.
1271
 * @param consumed is the number of bytes used as input
1272
 * @param length is the length of the array
1273
 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp ttailing?
1274
 * @returns decoded bytes, might be src+1 if no escapes 
1275
 */
1276
static uint8_t *decode_nal(H264Context *h, uint8_t *src, int *dst_length, int *consumed, int length){
1277
    int i, si, di;
1278
    uint8_t *dst;
1279

    
1280
//    src[0]&0x80;                //forbidden bit
1281
    h->nal_ref_idc= src[0]>>5;
1282
    h->nal_unit_type= src[0]&0x1F;
1283

    
1284
    src++; length--;
1285
#if 0    
1286
    for(i=0; i<length; i++)
1287
        printf("%2X ", src[i]);
1288
#endif
1289
    for(i=0; i+1<length; i+=2){
1290
        if(src[i]) continue;
1291
        if(i>0 && src[i-1]==0) i--;
1292
        if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1293
            if(src[i+2]!=3){
1294
                /* startcode, so we must be past the end */
1295
                length=i;
1296
            }
1297
            break;
1298
        }
1299
    }
1300

    
1301
    if(i>=length-1){ //no escaped 0
1302
        *dst_length= length;
1303
        *consumed= length+1; //+1 for the header
1304
        return src; 
1305
    }
1306

    
1307
    h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length);
1308
    dst= h->rbsp_buffer;
1309

    
1310
//printf("deoding esc\n");
1311
    si=di=0;
1312
    while(si<length){ 
1313
        //remove escapes (very rare 1:2^22)
1314
        if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
1315
            if(src[si+2]==3){ //escape
1316
                dst[di++]= 0;
1317
                dst[di++]= 0;
1318
                si+=3;
1319
                continue;
1320
            }else //next start code
1321
                break;
1322
        }
1323

    
1324
        dst[di++]= src[si++];
1325
    }
1326

    
1327
    *dst_length= di;
1328
    *consumed= si + 1;//+1 for the header
1329
//FIXME store exact number of bits in the getbitcontext (its needed for decoding)
1330
    return dst;
1331
}
1332

    
1333
#if 0
1334
/**
1335
 * @param src the data which should be escaped
1336
 * @param dst the target buffer, dst+1 == src is allowed as a special case
1337
 * @param length the length of the src data
1338
 * @param dst_length the length of the dst array
1339
 * @returns length of escaped data in bytes or -1 if an error occured
1340
 */
1341
static int encode_nal(H264Context *h, uint8_t *dst, uint8_t *src, int length, int dst_length){
1342
    int i, escape_count, si, di;
1343
    uint8_t *temp;
1344
    
1345
    assert(length>=0);
1346
    assert(dst_length>0);
1347
    
1348
    dst[0]= (h->nal_ref_idc<<5) + h->nal_unit_type;
1349

1350
    if(length==0) return 1;
1351

1352
    escape_count= 0;
1353
    for(i=0; i<length; i+=2){
1354
        if(src[i]) continue;
1355
        if(i>0 && src[i-1]==0) 
1356
            i--;
1357
        if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1358
            escape_count++;
1359
            i+=2;
1360
        }
1361
    }
1362
    
1363
    if(escape_count==0){ 
1364
        if(dst+1 != src)
1365
            memcpy(dst+1, src, length);
1366
        return length + 1;
1367
    }
1368
    
1369
    if(length + escape_count + 1> dst_length)
1370
        return -1;
1371

1372
    //this should be damn rare (hopefully)
1373

1374
    h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length + escape_count);
1375
    temp= h->rbsp_buffer;
1376
//printf("encoding esc\n");
1377
    
1378
    si= 0;
1379
    di= 0;
1380
    while(si < length){
1381
        if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
1382
            temp[di++]= 0; si++;
1383
            temp[di++]= 0; si++;
1384
            temp[di++]= 3; 
1385
            temp[di++]= src[si++];
1386
        }
1387
        else
1388
            temp[di++]= src[si++];
1389
    }
1390
    memcpy(dst+1, temp, length+escape_count);
1391
    
1392
    assert(di == length+escape_count);
1393
    
1394
    return di + 1;
1395
}
1396

1397
/**
1398
 * write 1,10,100,1000,... for alignment, yes its exactly inverse to mpeg4
1399
 */
1400
static void encode_rbsp_trailing(PutBitContext *pb){
1401
    int length;
1402
    put_bits(pb, 1, 1);
1403
    length= (-put_bits_count(pb))&7;
1404
    if(length) put_bits(pb, length, 0);
1405
}
1406
#endif
1407

    
1408
/**
1409
 * identifies the exact end of the bitstream
1410
 * @return the length of the trailing, or 0 if damaged
1411
 */
1412
static int decode_rbsp_trailing(uint8_t *src){
1413
    int v= *src;
1414
    int r;
1415

    
1416
    tprintf("rbsp trailing %X\n", v);
1417

    
1418
    for(r=1; r<9; r++){
1419
        if(v&1) return r;
1420
        v>>=1;
1421
    }
1422
    return 0;
1423
}
1424

    
1425
/**
1426
 * idct tranforms the 16 dc values and dequantize them.
1427
 * @param qp quantization parameter
1428
 */
1429
static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp){
1430
    const int qmul= dequant_coeff[qp][0];
1431
#define stride 16
1432
    int i;
1433
    int temp[16]; //FIXME check if this is a good idea
1434
    static const int x_offset[4]={0, 1*stride, 4* stride,  5*stride};
1435
    static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1436

    
1437
//memset(block, 64, 2*256);
1438
//return;
1439
    for(i=0; i<4; i++){
1440
        const int offset= y_offset[i];
1441
        const int z0= block[offset+stride*0] + block[offset+stride*4];
1442
        const int z1= block[offset+stride*0] - block[offset+stride*4];
1443
        const int z2= block[offset+stride*1] - block[offset+stride*5];
1444
        const int z3= block[offset+stride*1] + block[offset+stride*5];
1445

    
1446
        temp[4*i+0]= z0+z3;
1447
        temp[4*i+1]= z1+z2;
1448
        temp[4*i+2]= z1-z2;
1449
        temp[4*i+3]= z0-z3;
1450
    }
1451

    
1452
    for(i=0; i<4; i++){
1453
        const int offset= x_offset[i];
1454
        const int z0= temp[4*0+i] + temp[4*2+i];
1455
        const int z1= temp[4*0+i] - temp[4*2+i];
1456
        const int z2= temp[4*1+i] - temp[4*3+i];
1457
        const int z3= temp[4*1+i] + temp[4*3+i];
1458

    
1459
        block[stride*0 +offset]= ((z0 + z3)*qmul + 2)>>2; //FIXME think about merging this into decode_resdual
1460
        block[stride*2 +offset]= ((z1 + z2)*qmul + 2)>>2;
1461
        block[stride*8 +offset]= ((z1 - z2)*qmul + 2)>>2;
1462
        block[stride*10+offset]= ((z0 - z3)*qmul + 2)>>2;
1463
    }
1464
}
1465

    
1466
#if 0
1467
/**
1468
 * dct tranforms the 16 dc values.
1469
 * @param qp quantization parameter ??? FIXME
1470
 */
1471
static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
1472
//    const int qmul= dequant_coeff[qp][0];
1473
    int i;
1474
    int temp[16]; //FIXME check if this is a good idea
1475
    static const int x_offset[4]={0, 1*stride, 4* stride,  5*stride};
1476
    static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1477

1478
    for(i=0; i<4; i++){
1479
        const int offset= y_offset[i];
1480
        const int z0= block[offset+stride*0] + block[offset+stride*4];
1481
        const int z1= block[offset+stride*0] - block[offset+stride*4];
1482
        const int z2= block[offset+stride*1] - block[offset+stride*5];
1483
        const int z3= block[offset+stride*1] + block[offset+stride*5];
1484

1485
        temp[4*i+0]= z0+z3;
1486
        temp[4*i+1]= z1+z2;
1487
        temp[4*i+2]= z1-z2;
1488
        temp[4*i+3]= z0-z3;
1489
    }
1490

1491
    for(i=0; i<4; i++){
1492
        const int offset= x_offset[i];
1493
        const int z0= temp[4*0+i] + temp[4*2+i];
1494
        const int z1= temp[4*0+i] - temp[4*2+i];
1495
        const int z2= temp[4*1+i] - temp[4*3+i];
1496
        const int z3= temp[4*1+i] + temp[4*3+i];
1497

1498
        block[stride*0 +offset]= (z0 + z3)>>1;
1499
        block[stride*2 +offset]= (z1 + z2)>>1;
1500
        block[stride*8 +offset]= (z1 - z2)>>1;
1501
        block[stride*10+offset]= (z0 - z3)>>1;
1502
    }
1503
}
1504
#endif
1505

    
1506
#undef xStride
1507
#undef stride
1508

    
1509
static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp){
1510
    const int qmul= dequant_coeff[qp][0];
1511
    const int stride= 16*2;
1512
    const int xStride= 16;
1513
    int a,b,c,d,e;
1514

    
1515
    a= block[stride*0 + xStride*0];
1516
    b= block[stride*0 + xStride*1];
1517
    c= block[stride*1 + xStride*0];
1518
    d= block[stride*1 + xStride*1];
1519

    
1520
    e= a-b;
1521
    a= a+b;
1522
    b= c-d;
1523
    c= c+d;
1524

    
1525
    block[stride*0 + xStride*0]= ((a+c)*qmul + 0)>>1;
1526
    block[stride*0 + xStride*1]= ((e+b)*qmul + 0)>>1;
1527
    block[stride*1 + xStride*0]= ((a-c)*qmul + 0)>>1;
1528
    block[stride*1 + xStride*1]= ((e-b)*qmul + 0)>>1;
1529
}
1530

    
1531
#if 0
1532
static void chroma_dc_dct_c(DCTELEM *block){
1533
    const int stride= 16*2;
1534
    const int xStride= 16;
1535
    int a,b,c,d,e;
1536

1537
    a= block[stride*0 + xStride*0];
1538
    b= block[stride*0 + xStride*1];
1539
    c= block[stride*1 + xStride*0];
1540
    d= block[stride*1 + xStride*1];
1541

1542
    e= a-b;
1543
    a= a+b;
1544
    b= c-d;
1545
    c= c+d;
1546

1547
    block[stride*0 + xStride*0]= (a+c);
1548
    block[stride*0 + xStride*1]= (e+b);
1549
    block[stride*1 + xStride*0]= (a-c);
1550
    block[stride*1 + xStride*1]= (e-b);
1551
}
1552
#endif
1553

    
1554
/**
1555
 * gets the chroma qp.
1556
 */
1557
static inline int get_chroma_qp(H264Context *h, int qscale){
1558
    
1559
    return chroma_qp[clip(qscale + h->pps.chroma_qp_index_offset, 0, 51)];
1560
}
1561

    
1562

    
1563
#if 0
1564
static void h264_diff_dct_c(DCTELEM *block, uint8_t *src1, uint8_t *src2, int stride){
1565
    int i;
1566
    //FIXME try int temp instead of block
1567
    
1568
    for(i=0; i<4; i++){
1569
        const int d0= src1[0 + i*stride] - src2[0 + i*stride];
1570
        const int d1= src1[1 + i*stride] - src2[1 + i*stride];
1571
        const int d2= src1[2 + i*stride] - src2[2 + i*stride];
1572
        const int d3= src1[3 + i*stride] - src2[3 + i*stride];
1573
        const int z0= d0 + d3;
1574
        const int z3= d0 - d3;
1575
        const int z1= d1 + d2;
1576
        const int z2= d1 - d2;
1577
        
1578
        block[0 + 4*i]=   z0 +   z1;
1579
        block[1 + 4*i]= 2*z3 +   z2;
1580
        block[2 + 4*i]=   z0 -   z1;
1581
        block[3 + 4*i]=   z3 - 2*z2;
1582
    }    
1583

1584
    for(i=0; i<4; i++){
1585
        const int z0= block[0*4 + i] + block[3*4 + i];
1586
        const int z3= block[0*4 + i] - block[3*4 + i];
1587
        const int z1= block[1*4 + i] + block[2*4 + i];
1588
        const int z2= block[1*4 + i] - block[2*4 + i];
1589
        
1590
        block[0*4 + i]=   z0 +   z1;
1591
        block[1*4 + i]= 2*z3 +   z2;
1592
        block[2*4 + i]=   z0 -   z1;
1593
        block[3*4 + i]=   z3 - 2*z2;
1594
    }
1595
}
1596
#endif
1597

    
1598
//FIXME need to check that this doesnt overflow signed 32 bit for low qp, iam not sure, its very close
1599
//FIXME check that gcc inlines this (and optimizes intra & seperate_dc stuff away)
1600
static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int seperate_dc){
1601
    int i;
1602
    const int * const quant_table= quant_coeff[qscale];
1603
    const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
1604
    const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
1605
    const unsigned int threshold2= (threshold1<<1);
1606
    int last_non_zero;
1607

    
1608
    if(seperate_dc){
1609
        if(qscale<=18){
1610
            //avoid overflows
1611
            const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
1612
            const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
1613
            const unsigned int dc_threshold2= (dc_threshold1<<1);
1614

    
1615
            int level= block[0]*quant_coeff[qscale+18][0];
1616
            if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1617
                if(level>0){
1618
                    level= (dc_bias + level)>>(QUANT_SHIFT-2);
1619
                    block[0]= level;
1620
                }else{
1621
                    level= (dc_bias - level)>>(QUANT_SHIFT-2);
1622
                    block[0]= -level;
1623
                }
1624
//                last_non_zero = i;
1625
            }else{
1626
                block[0]=0;
1627
            }
1628
        }else{
1629
            const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
1630
            const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
1631
            const unsigned int dc_threshold2= (dc_threshold1<<1);
1632

    
1633
            int level= block[0]*quant_table[0];
1634
            if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1635
                if(level>0){
1636
                    level= (dc_bias + level)>>(QUANT_SHIFT+1);
1637
                    block[0]= level;
1638
                }else{
1639
                    level= (dc_bias - level)>>(QUANT_SHIFT+1);
1640
                    block[0]= -level;
1641
                }
1642
//                last_non_zero = i;
1643
            }else{
1644
                block[0]=0;
1645
            }
1646
        }
1647
        last_non_zero= 0;
1648
        i=1;
1649
    }else{
1650
        last_non_zero= -1;
1651
        i=0;
1652
    }
1653

    
1654
    for(; i<16; i++){
1655
        const int j= scantable[i];
1656
        int level= block[j]*quant_table[j];
1657

    
1658
//        if(   bias+level >= (1<<(QMAT_SHIFT - 3))
1659
//           || bias-level >= (1<<(QMAT_SHIFT - 3))){
1660
        if(((unsigned)(level+threshold1))>threshold2){
1661
            if(level>0){
1662
                level= (bias + level)>>QUANT_SHIFT;
1663
                block[j]= level;
1664
            }else{
1665
                level= (bias - level)>>QUANT_SHIFT;
1666
                block[j]= -level;
1667
            }
1668
            last_non_zero = i;
1669
        }else{
1670
            block[j]=0;
1671
        }
1672
    }
1673

    
1674
    return last_non_zero;
1675
}
1676

    
1677
static void pred4x4_vertical_c(uint8_t *src, uint8_t *topright, int stride){
1678
    const uint32_t a= ((uint32_t*)(src-stride))[0];
1679
    ((uint32_t*)(src+0*stride))[0]= a;
1680
    ((uint32_t*)(src+1*stride))[0]= a;
1681
    ((uint32_t*)(src+2*stride))[0]= a;
1682
    ((uint32_t*)(src+3*stride))[0]= a;
1683
}
1684

    
1685
static void pred4x4_horizontal_c(uint8_t *src, uint8_t *topright, int stride){
1686
    ((uint32_t*)(src+0*stride))[0]= src[-1+0*stride]*0x01010101;
1687
    ((uint32_t*)(src+1*stride))[0]= src[-1+1*stride]*0x01010101;
1688
    ((uint32_t*)(src+2*stride))[0]= src[-1+2*stride]*0x01010101;
1689
    ((uint32_t*)(src+3*stride))[0]= src[-1+3*stride]*0x01010101;
1690
}
1691

    
1692
static void pred4x4_dc_c(uint8_t *src, uint8_t *topright, int stride){
1693
    const int dc= (  src[-stride] + src[1-stride] + src[2-stride] + src[3-stride]
1694
                   + src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 4) >>3;
1695
    
1696
    ((uint32_t*)(src+0*stride))[0]= 
1697
    ((uint32_t*)(src+1*stride))[0]= 
1698
    ((uint32_t*)(src+2*stride))[0]= 
1699
    ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101; 
1700
}
1701

    
1702
static void pred4x4_left_dc_c(uint8_t *src, uint8_t *topright, int stride){
1703
    const int dc= (  src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 2) >>2;
1704
    
1705
    ((uint32_t*)(src+0*stride))[0]= 
1706
    ((uint32_t*)(src+1*stride))[0]= 
1707
    ((uint32_t*)(src+2*stride))[0]= 
1708
    ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101; 
1709
}
1710

    
1711
static void pred4x4_top_dc_c(uint8_t *src, uint8_t *topright, int stride){
1712
    const int dc= (  src[-stride] + src[1-stride] + src[2-stride] + src[3-stride] + 2) >>2;
1713
    
1714
    ((uint32_t*)(src+0*stride))[0]= 
1715
    ((uint32_t*)(src+1*stride))[0]= 
1716
    ((uint32_t*)(src+2*stride))[0]= 
1717
    ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101; 
1718
}
1719

    
1720
static void pred4x4_128_dc_c(uint8_t *src, uint8_t *topright, int stride){
1721
    ((uint32_t*)(src+0*stride))[0]= 
1722
    ((uint32_t*)(src+1*stride))[0]= 
1723
    ((uint32_t*)(src+2*stride))[0]= 
1724
    ((uint32_t*)(src+3*stride))[0]= 128U*0x01010101U;
1725
}
1726

    
1727

    
1728
#define LOAD_TOP_RIGHT_EDGE\
1729
    const int t4= topright[0];\
1730
    const int t5= topright[1];\
1731
    const int t6= topright[2];\
1732
    const int t7= topright[3];\
1733

    
1734
#define LOAD_LEFT_EDGE\
1735
    const int l0= src[-1+0*stride];\
1736
    const int l1= src[-1+1*stride];\
1737
    const int l2= src[-1+2*stride];\
1738
    const int l3= src[-1+3*stride];\
1739

    
1740
#define LOAD_TOP_EDGE\
1741
    const int t0= src[ 0-1*stride];\
1742
    const int t1= src[ 1-1*stride];\
1743
    const int t2= src[ 2-1*stride];\
1744
    const int t3= src[ 3-1*stride];\
1745

    
1746
static void pred4x4_down_right_c(uint8_t *src, uint8_t *topright, int stride){
1747
    const int lt= src[-1-1*stride];
1748
    LOAD_TOP_EDGE
1749
    LOAD_LEFT_EDGE
1750

    
1751
    src[0+3*stride]=(l3 + 2*l2 + l1 + 2)>>2; 
1752
    src[0+2*stride]=
1753
    src[1+3*stride]=(l2 + 2*l1 + l0 + 2)>>2; 
1754
    src[0+1*stride]=
1755
    src[1+2*stride]=
1756
    src[2+3*stride]=(l1 + 2*l0 + lt + 2)>>2; 
1757
    src[0+0*stride]=
1758
    src[1+1*stride]=
1759
    src[2+2*stride]=
1760
    src[3+3*stride]=(l0 + 2*lt + t0 + 2)>>2; 
1761
    src[1+0*stride]=
1762
    src[2+1*stride]=
1763
    src[3+2*stride]=(lt + 2*t0 + t1 + 2)>>2;
1764
    src[2+0*stride]=
1765
    src[3+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1766
    src[3+0*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1767
}
1768

    
1769
static void pred4x4_down_left_c(uint8_t *src, uint8_t *topright, int stride){
1770
    LOAD_TOP_EDGE    
1771
    LOAD_TOP_RIGHT_EDGE    
1772
//    LOAD_LEFT_EDGE    
1773

    
1774
    src[0+0*stride]=(t0 + t2 + 2*t1 + 2)>>2;
1775
    src[1+0*stride]=
1776
    src[0+1*stride]=(t1 + t3 + 2*t2 + 2)>>2;
1777
    src[2+0*stride]=
1778
    src[1+1*stride]=
1779
    src[0+2*stride]=(t2 + t4 + 2*t3 + 2)>>2;
1780
    src[3+0*stride]=
1781
    src[2+1*stride]=
1782
    src[1+2*stride]=
1783
    src[0+3*stride]=(t3 + t5 + 2*t4 + 2)>>2;
1784
    src[3+1*stride]=
1785
    src[2+2*stride]=
1786
    src[1+3*stride]=(t4 + t6 + 2*t5 + 2)>>2;
1787
    src[3+2*stride]=
1788
    src[2+3*stride]=(t5 + t7 + 2*t6 + 2)>>2;
1789
    src[3+3*stride]=(t6 + 3*t7 + 2)>>2;
1790
}
1791

    
1792
static void pred4x4_vertical_right_c(uint8_t *src, uint8_t *topright, int stride){
1793
    const int lt= src[-1-1*stride];
1794
    LOAD_TOP_EDGE    
1795
    LOAD_LEFT_EDGE    
1796
    const __attribute__((unused)) int unu= l3;
1797

    
1798
    src[0+0*stride]=
1799
    src[1+2*stride]=(lt + t0 + 1)>>1;
1800
    src[1+0*stride]=
1801
    src[2+2*stride]=(t0 + t1 + 1)>>1;
1802
    src[2+0*stride]=
1803
    src[3+2*stride]=(t1 + t2 + 1)>>1;
1804
    src[3+0*stride]=(t2 + t3 + 1)>>1;
1805
    src[0+1*stride]=
1806
    src[1+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
1807
    src[1+1*stride]=
1808
    src[2+3*stride]=(lt + 2*t0 + t1 + 2)>>2;
1809
    src[2+1*stride]=
1810
    src[3+3*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1811
    src[3+1*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1812
    src[0+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
1813
    src[0+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
1814
}
1815

    
1816
static void pred4x4_vertical_left_c(uint8_t *src, uint8_t *topright, int stride){
1817
    LOAD_TOP_EDGE    
1818
    LOAD_TOP_RIGHT_EDGE    
1819
    const __attribute__((unused)) int unu= t7;
1820

    
1821
    src[0+0*stride]=(t0 + t1 + 1)>>1;
1822
    src[1+0*stride]=
1823
    src[0+2*stride]=(t1 + t2 + 1)>>1;
1824
    src[2+0*stride]=
1825
    src[1+2*stride]=(t2 + t3 + 1)>>1;
1826
    src[3+0*stride]=
1827
    src[2+2*stride]=(t3 + t4+ 1)>>1;
1828
    src[3+2*stride]=(t4 + t5+ 1)>>1;
1829
    src[0+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1830
    src[1+1*stride]=
1831
    src[0+3*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1832
    src[2+1*stride]=
1833
    src[1+3*stride]=(t2 + 2*t3 + t4 + 2)>>2;
1834
    src[3+1*stride]=
1835
    src[2+3*stride]=(t3 + 2*t4 + t5 + 2)>>2;
1836
    src[3+3*stride]=(t4 + 2*t5 + t6 + 2)>>2;
1837
}
1838

    
1839
static void pred4x4_horizontal_up_c(uint8_t *src, uint8_t *topright, int stride){
1840
    LOAD_LEFT_EDGE    
1841

    
1842
    src[0+0*stride]=(l0 + l1 + 1)>>1;
1843
    src[1+0*stride]=(l0 + 2*l1 + l2 + 2)>>2;
1844
    src[2+0*stride]=
1845
    src[0+1*stride]=(l1 + l2 + 1)>>1;
1846
    src[3+0*stride]=
1847
    src[1+1*stride]=(l1 + 2*l2 + l3 + 2)>>2;
1848
    src[2+1*stride]=
1849
    src[0+2*stride]=(l2 + l3 + 1)>>1;
1850
    src[3+1*stride]=
1851
    src[1+2*stride]=(l2 + 2*l3 + l3 + 2)>>2;
1852
    src[3+2*stride]=
1853
    src[1+3*stride]=
1854
    src[0+3*stride]=
1855
    src[2+2*stride]=
1856
    src[2+3*stride]=
1857
    src[3+3*stride]=l3;
1858
}
1859
    
1860
static void pred4x4_horizontal_down_c(uint8_t *src, uint8_t *topright, int stride){
1861
    const int lt= src[-1-1*stride];
1862
    LOAD_TOP_EDGE    
1863
    LOAD_LEFT_EDGE    
1864
    const __attribute__((unused)) int unu= t3;
1865

    
1866
    src[0+0*stride]=
1867
    src[2+1*stride]=(lt + l0 + 1)>>1;
1868
    src[1+0*stride]=
1869
    src[3+1*stride]=(l0 + 2*lt + t0 + 2)>>2;
1870
    src[2+0*stride]=(lt + 2*t0 + t1 + 2)>>2;
1871
    src[3+0*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1872
    src[0+1*stride]=
1873
    src[2+2*stride]=(l0 + l1 + 1)>>1;
1874
    src[1+1*stride]=
1875
    src[3+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
1876
    src[0+2*stride]=
1877
    src[2+3*stride]=(l1 + l2+ 1)>>1;
1878
    src[1+2*stride]=
1879
    src[3+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
1880
    src[0+3*stride]=(l2 + l3 + 1)>>1;
1881
    src[1+3*stride]=(l1 + 2*l2 + l3 + 2)>>2;
1882
}
1883

    
1884
static void pred16x16_vertical_c(uint8_t *src, int stride){
1885
    int i;
1886
    const uint32_t a= ((uint32_t*)(src-stride))[0];
1887
    const uint32_t b= ((uint32_t*)(src-stride))[1];
1888
    const uint32_t c= ((uint32_t*)(src-stride))[2];
1889
    const uint32_t d= ((uint32_t*)(src-stride))[3];
1890
    
1891
    for(i=0; i<16; i++){
1892
        ((uint32_t*)(src+i*stride))[0]= a;
1893
        ((uint32_t*)(src+i*stride))[1]= b;
1894
        ((uint32_t*)(src+i*stride))[2]= c;
1895
        ((uint32_t*)(src+i*stride))[3]= d;
1896
    }
1897
}
1898

    
1899
static void pred16x16_horizontal_c(uint8_t *src, int stride){
1900
    int i;
1901

    
1902
    for(i=0; i<16; i++){
1903
        ((uint32_t*)(src+i*stride))[0]=
1904
        ((uint32_t*)(src+i*stride))[1]=
1905
        ((uint32_t*)(src+i*stride))[2]=
1906
        ((uint32_t*)(src+i*stride))[3]= src[-1+i*stride]*0x01010101;
1907
    }
1908
}
1909

    
1910
static void pred16x16_dc_c(uint8_t *src, int stride){
1911
    int i, dc=0;
1912

    
1913
    for(i=0;i<16; i++){
1914
        dc+= src[-1+i*stride];
1915
    }
1916
    
1917
    for(i=0;i<16; i++){
1918
        dc+= src[i-stride];
1919
    }
1920

    
1921
    dc= 0x01010101*((dc + 16)>>5);
1922

    
1923
    for(i=0; i<16; i++){
1924
        ((uint32_t*)(src+i*stride))[0]=
1925
        ((uint32_t*)(src+i*stride))[1]=
1926
        ((uint32_t*)(src+i*stride))[2]=
1927
        ((uint32_t*)(src+i*stride))[3]= dc;
1928
    }
1929
}
1930

    
1931
static void pred16x16_left_dc_c(uint8_t *src, int stride){
1932
    int i, dc=0;
1933

    
1934
    for(i=0;i<16; i++){
1935
        dc+= src[-1+i*stride];
1936
    }
1937
    
1938
    dc= 0x01010101*((dc + 8)>>4);
1939

    
1940
    for(i=0; i<16; i++){
1941
        ((uint32_t*)(src+i*stride))[0]=
1942
        ((uint32_t*)(src+i*stride))[1]=
1943
        ((uint32_t*)(src+i*stride))[2]=
1944
        ((uint32_t*)(src+i*stride))[3]= dc;
1945
    }
1946
}
1947

    
1948
static void pred16x16_top_dc_c(uint8_t *src, int stride){
1949
    int i, dc=0;
1950

    
1951
    for(i=0;i<16; i++){
1952
        dc+= src[i-stride];
1953
    }
1954
    dc= 0x01010101*((dc + 8)>>4);
1955

    
1956
    for(i=0; i<16; i++){
1957
        ((uint32_t*)(src+i*stride))[0]=
1958
        ((uint32_t*)(src+i*stride))[1]=
1959
        ((uint32_t*)(src+i*stride))[2]=
1960
        ((uint32_t*)(src+i*stride))[3]= dc;
1961
    }
1962
}
1963

    
1964
static void pred16x16_128_dc_c(uint8_t *src, int stride){
1965
    int i;
1966

    
1967
    for(i=0; i<16; i++){
1968
        ((uint32_t*)(src+i*stride))[0]=
1969
        ((uint32_t*)(src+i*stride))[1]=
1970
        ((uint32_t*)(src+i*stride))[2]=
1971
        ((uint32_t*)(src+i*stride))[3]= 0x01010101U*128U;
1972
    }
1973
}
1974

    
1975
static inline void pred16x16_plane_compat_c(uint8_t *src, int stride, const int svq3){
1976
  int i, j, k;
1977
  int a;
1978
  uint8_t *cm = cropTbl + MAX_NEG_CROP;
1979
  const uint8_t * const src0 = src+7-stride;
1980
  const uint8_t *src1 = src+8*stride-1;
1981
  const uint8_t *src2 = src1-2*stride;      // == src+6*stride-1;
1982
  int H = src0[1] - src0[-1];
1983
  int V = src1[0] - src2[ 0];
1984
  for(k=2; k<=8; ++k) {
1985
    src1 += stride; src2 -= stride;
1986
    H += k*(src0[k] - src0[-k]);
1987
    V += k*(src1[0] - src2[ 0]);
1988
  }
1989
  if(svq3){
1990
    H = ( 5*(H/4) ) / 16;
1991
    V = ( 5*(V/4) ) / 16;
1992

    
1993
    /* required for 100% accuracy */
1994
    i = H; H = V; V = i;
1995
  }else{
1996
    H = ( 5*H+32 ) >> 6;
1997
    V = ( 5*V+32 ) >> 6;
1998
  }
1999

    
2000
  a = 16*(src1[0] + src2[16] + 1) - 7*(V+H);
2001
  for(j=16; j>0; --j) {
2002
    int b = a;
2003
    a += V;
2004
    for(i=-16; i<0; i+=4) {
2005
      src[16+i] = cm[ (b    ) >> 5 ];
2006
      src[17+i] = cm[ (b+  H) >> 5 ];
2007
      src[18+i] = cm[ (b+2*H) >> 5 ];
2008
      src[19+i] = cm[ (b+3*H) >> 5 ];
2009
      b += 4*H;
2010
    }
2011
    src += stride;
2012
  }
2013
}
2014

    
2015
static void pred16x16_plane_c(uint8_t *src, int stride){
2016
    pred16x16_plane_compat_c(src, stride, 0);
2017
}
2018

    
2019
static void pred8x8_vertical_c(uint8_t *src, int stride){
2020
    int i;
2021
    const uint32_t a= ((uint32_t*)(src-stride))[0];
2022
    const uint32_t b= ((uint32_t*)(src-stride))[1];
2023
    
2024
    for(i=0; i<8; i++){
2025
        ((uint32_t*)(src+i*stride))[0]= a;
2026
        ((uint32_t*)(src+i*stride))[1]= b;
2027
    }
2028
}
2029

    
2030
static void pred8x8_horizontal_c(uint8_t *src, int stride){
2031
    int i;
2032

    
2033
    for(i=0; i<8; i++){
2034
        ((uint32_t*)(src+i*stride))[0]=
2035
        ((uint32_t*)(src+i*stride))[1]= src[-1+i*stride]*0x01010101;
2036
    }
2037
}
2038

    
2039
static void pred8x8_128_dc_c(uint8_t *src, int stride){
2040
    int i;
2041

    
2042
    for(i=0; i<4; i++){
2043
        ((uint32_t*)(src+i*stride))[0]= 
2044
        ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
2045
    }
2046
    for(i=4; i<8; i++){
2047
        ((uint32_t*)(src+i*stride))[0]= 
2048
        ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
2049
    }
2050
}
2051

    
2052
static void pred8x8_left_dc_c(uint8_t *src, int stride){
2053
    int i;
2054
    int dc0, dc2;
2055

    
2056
    dc0=dc2=0;
2057
    for(i=0;i<4; i++){
2058
        dc0+= src[-1+i*stride];
2059
        dc2+= src[-1+(i+4)*stride];
2060
    }
2061
    dc0= 0x01010101*((dc0 + 2)>>2);
2062
    dc2= 0x01010101*((dc2 + 2)>>2);
2063

    
2064
    for(i=0; i<4; i++){
2065
        ((uint32_t*)(src+i*stride))[0]=
2066
        ((uint32_t*)(src+i*stride))[1]= dc0;
2067
    }
2068
    for(i=4; i<8; i++){
2069
        ((uint32_t*)(src+i*stride))[0]=
2070
        ((uint32_t*)(src+i*stride))[1]= dc2;
2071
    }
2072
}
2073

    
2074
static void pred8x8_top_dc_c(uint8_t *src, int stride){
2075
    int i;
2076
    int dc0, dc1;
2077

    
2078
    dc0=dc1=0;
2079
    for(i=0;i<4; i++){
2080
        dc0+= src[i-stride];
2081
        dc1+= src[4+i-stride];
2082
    }
2083
    dc0= 0x01010101*((dc0 + 2)>>2);
2084
    dc1= 0x01010101*((dc1 + 2)>>2);
2085

    
2086
    for(i=0; i<4; i++){
2087
        ((uint32_t*)(src+i*stride))[0]= dc0;
2088
        ((uint32_t*)(src+i*stride))[1]= dc1;
2089
    }
2090
    for(i=4; i<8; i++){
2091
        ((uint32_t*)(src+i*stride))[0]= dc0;
2092
        ((uint32_t*)(src+i*stride))[1]= dc1;
2093
    }
2094
}
2095

    
2096

    
2097
static void pred8x8_dc_c(uint8_t *src, int stride){
2098
    int i;
2099
    int dc0, dc1, dc2, dc3;
2100

    
2101
    dc0=dc1=dc2=0;
2102
    for(i=0;i<4; i++){
2103
        dc0+= src[-1+i*stride] + src[i-stride];
2104
        dc1+= src[4+i-stride];
2105
        dc2+= src[-1+(i+4)*stride];
2106
    }
2107
    dc3= 0x01010101*((dc1 + dc2 + 4)>>3);
2108
    dc0= 0x01010101*((dc0 + 4)>>3);
2109
    dc1= 0x01010101*((dc1 + 2)>>2);
2110
    dc2= 0x01010101*((dc2 + 2)>>2);
2111

    
2112
    for(i=0; i<4; i++){
2113
        ((uint32_t*)(src+i*stride))[0]= dc0;
2114
        ((uint32_t*)(src+i*stride))[1]= dc1;
2115
    }
2116
    for(i=4; i<8; i++){
2117
        ((uint32_t*)(src+i*stride))[0]= dc2;
2118
        ((uint32_t*)(src+i*stride))[1]= dc3;
2119
    }
2120
}
2121

    
2122
static void pred8x8_plane_c(uint8_t *src, int stride){
2123
  int j, k;
2124
  int a;
2125
  uint8_t *cm = cropTbl + MAX_NEG_CROP;
2126
  const uint8_t * const src0 = src+3-stride;
2127
  const uint8_t *src1 = src+4*stride-1;
2128
  const uint8_t *src2 = src1-2*stride;      // == src+2*stride-1;
2129
  int H = src0[1] - src0[-1];
2130
  int V = src1[0] - src2[ 0];
2131
  for(k=2; k<=4; ++k) {
2132
    src1 += stride; src2 -= stride;
2133
    H += k*(src0[k] - src0[-k]);
2134
    V += k*(src1[0] - src2[ 0]);
2135
  }
2136
  H = ( 17*H+16 ) >> 5;
2137
  V = ( 17*V+16 ) >> 5;
2138

    
2139
  a = 16*(src1[0] + src2[8]+1) - 3*(V+H);
2140
  for(j=8; j>0; --j) {
2141
    int b = a;
2142
    a += V;
2143
    src[0] = cm[ (b    ) >> 5 ];
2144
    src[1] = cm[ (b+  H) >> 5 ];
2145
    src[2] = cm[ (b+2*H) >> 5 ];
2146
    src[3] = cm[ (b+3*H) >> 5 ];
2147
    src[4] = cm[ (b+4*H) >> 5 ];
2148
    src[5] = cm[ (b+5*H) >> 5 ];
2149
    src[6] = cm[ (b+6*H) >> 5 ];
2150
    src[7] = cm[ (b+7*H) >> 5 ];
2151
    src += stride;
2152
  }
2153
}
2154

    
2155
static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
2156
                           uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2157
                           int src_x_offset, int src_y_offset,
2158
                           qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
2159
    MpegEncContext * const s = &h->s;
2160
    const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
2161
    const int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
2162
    const int luma_xy= (mx&3) + ((my&3)<<2);
2163
    uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*s->linesize;
2164
    uint8_t * src_cb= pic->data[1] + (mx>>3) + (my>>3)*s->uvlinesize;
2165
    uint8_t * src_cr= pic->data[2] + (mx>>3) + (my>>3)*s->uvlinesize;
2166
    int extra_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16; //FIXME increase edge?, IMHO not worth it
2167
    int extra_height= extra_width;
2168
    int emu=0;
2169
    const int full_mx= mx>>2;
2170
    const int full_my= my>>2;
2171
    
2172
    assert(pic->data[0]);
2173
    
2174
    if(mx&7) extra_width -= 3;
2175
    if(my&7) extra_height -= 3;
2176
    
2177
    if(   full_mx < 0-extra_width 
2178
       || full_my < 0-extra_height 
2179
       || full_mx + 16/*FIXME*/ > s->width + extra_width 
2180
       || full_my + 16/*FIXME*/ > s->height + extra_height){
2181
        ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*s->linesize, s->linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, s->width, s->height);
2182
            src_y= s->edge_emu_buffer + 2 + 2*s->linesize;
2183
        emu=1;
2184
    }
2185
    
2186
    qpix_op[luma_xy](dest_y, src_y, s->linesize); //FIXME try variable height perhaps?
2187
    if(!square){
2188
        qpix_op[luma_xy](dest_y + delta, src_y + delta, s->linesize);
2189
    }
2190
    
2191
    if(s->flags&CODEC_FLAG_GRAY) return;
2192
    
2193
    if(emu){
2194
        ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), s->width>>1, s->height>>1);
2195
            src_cb= s->edge_emu_buffer;
2196
    }
2197
    chroma_op(dest_cb, src_cb, s->uvlinesize, chroma_height, mx&7, my&7);
2198

    
2199
    if(emu){
2200
        ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), s->width>>1, s->height>>1);
2201
            src_cr= s->edge_emu_buffer;
2202
    }
2203
    chroma_op(dest_cr, src_cr, s->uvlinesize, chroma_height, mx&7, my&7);
2204
}
2205

    
2206
static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
2207
                           uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2208
                           int x_offset, int y_offset,
2209
                           qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
2210
                           qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
2211
                           int list0, int list1){
2212
    MpegEncContext * const s = &h->s;
2213
    qpel_mc_func *qpix_op=  qpix_put;
2214
    h264_chroma_mc_func chroma_op= chroma_put;
2215
    
2216
    dest_y  += 2*x_offset + 2*y_offset*s->  linesize;
2217
    dest_cb +=   x_offset +   y_offset*s->uvlinesize;
2218
    dest_cr +=   x_offset +   y_offset*s->uvlinesize;
2219
    x_offset += 8*s->mb_x;
2220
    y_offset += 8*s->mb_y;
2221
    
2222
    if(list0){
2223
        Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
2224
        mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
2225
                           dest_y, dest_cb, dest_cr, x_offset, y_offset,
2226
                           qpix_op, chroma_op);
2227

    
2228
        qpix_op=  qpix_avg;
2229
        chroma_op= chroma_avg;
2230
    }
2231

    
2232
    if(list1){
2233
        Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
2234
        mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
2235
                           dest_y, dest_cb, dest_cr, x_offset, y_offset,
2236
                           qpix_op, chroma_op);
2237
    }
2238
}
2239

    
2240
static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2241
                      qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
2242
                      qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg)){
2243
    MpegEncContext * const s = &h->s;
2244
    const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
2245
    const int mb_type= s->current_picture.mb_type[mb_xy];
2246
    
2247
    assert(IS_INTER(mb_type));
2248
    
2249
    if(IS_16X16(mb_type)){
2250
        mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
2251
                qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
2252
                IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
2253
    }else if(IS_16X8(mb_type)){
2254
        mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
2255
                qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
2256
                IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
2257
        mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
2258
                qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
2259
                IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
2260
    }else if(IS_8X16(mb_type)){
2261
        mc_part(h, 0, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 0, 0,
2262
                qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
2263
                IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
2264
        mc_part(h, 4, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 4, 0,
2265
                qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
2266
                IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
2267
    }else{
2268
        int i;
2269
        
2270
        assert(IS_8X8(mb_type));
2271

    
2272
        for(i=0; i<4; i++){
2273
            const int sub_mb_type= h->sub_mb_type[i];
2274
            const int n= 4*i;
2275
            int x_offset= (i&1)<<2;
2276
            int y_offset= (i&2)<<1;
2277

    
2278
            if(IS_SUB_8X8(sub_mb_type)){
2279
                mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
2280
                    qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
2281
                    IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2282
            }else if(IS_SUB_8X4(sub_mb_type)){
2283
                mc_part(h, n  , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
2284
                    qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
2285
                    IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2286
                mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
2287
                    qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
2288
                    IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2289
            }else if(IS_SUB_4X8(sub_mb_type)){
2290
                mc_part(h, n  , 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
2291
                    qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2292
                    IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2293
                mc_part(h, n+1, 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
2294
                    qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2295
                    IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2296
            }else{
2297
                int j;
2298
                assert(IS_SUB_4X4(sub_mb_type));
2299
                for(j=0; j<4; j++){
2300
                    int sub_x_offset= x_offset + 2*(j&1);
2301
                    int sub_y_offset= y_offset +   (j&2);
2302
                    mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
2303
                        qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2304
                        IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2305
                }
2306
            }
2307
        }
2308
    }
2309
}
2310

    
2311
static void decode_init_vlc(H264Context *h){
2312
    static int done = 0;
2313

    
2314
    if (!done) {
2315
        int i;
2316
        done = 1;
2317

    
2318
        init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5, 
2319
                 &chroma_dc_coeff_token_len [0], 1, 1,
2320
                 &chroma_dc_coeff_token_bits[0], 1, 1, 1);
2321

    
2322
        for(i=0; i<4; i++){
2323
            init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17, 
2324
                     &coeff_token_len [i][0], 1, 1,
2325
                     &coeff_token_bits[i][0], 1, 1, 1);
2326
        }
2327

    
2328
        for(i=0; i<3; i++){
2329
            init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
2330
                     &chroma_dc_total_zeros_len [i][0], 1, 1,
2331
                     &chroma_dc_total_zeros_bits[i][0], 1, 1, 1);
2332
        }
2333
        for(i=0; i<15; i++){
2334
            init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16, 
2335
                     &total_zeros_len [i][0], 1, 1,
2336
                     &total_zeros_bits[i][0], 1, 1, 1);
2337
        }
2338

    
2339
        for(i=0; i<6; i++){
2340
            init_vlc(&run_vlc[i], RUN_VLC_BITS, 7, 
2341
                     &run_len [i][0], 1, 1,
2342
                     &run_bits[i][0], 1, 1, 1);
2343
        }
2344
        init_vlc(&run7_vlc, RUN7_VLC_BITS, 16, 
2345
                 &run_len [6][0], 1, 1,
2346
                 &run_bits[6][0], 1, 1, 1);
2347
    }
2348
}
2349

    
2350
/**
2351
 * Sets the intra prediction function pointers.
2352
 */
2353
static void init_pred_ptrs(H264Context *h){
2354
//    MpegEncContext * const s = &h->s;
2355

    
2356
    h->pred4x4[VERT_PRED           ]= pred4x4_vertical_c;
2357
    h->pred4x4[HOR_PRED            ]= pred4x4_horizontal_c;
2358
    h->pred4x4[DC_PRED             ]= pred4x4_dc_c;
2359
    h->pred4x4[DIAG_DOWN_LEFT_PRED ]= pred4x4_down_left_c;
2360
    h->pred4x4[DIAG_DOWN_RIGHT_PRED]= pred4x4_down_right_c;
2361
    h->pred4x4[VERT_RIGHT_PRED     ]= pred4x4_vertical_right_c;
2362
    h->pred4x4[HOR_DOWN_PRED       ]= pred4x4_horizontal_down_c;
2363
    h->pred4x4[VERT_LEFT_PRED      ]= pred4x4_vertical_left_c;
2364
    h->pred4x4[HOR_UP_PRED         ]= pred4x4_horizontal_up_c;
2365
    h->pred4x4[LEFT_DC_PRED        ]= pred4x4_left_dc_c;
2366
    h->pred4x4[TOP_DC_PRED         ]= pred4x4_top_dc_c;
2367
    h->pred4x4[DC_128_PRED         ]= pred4x4_128_dc_c;
2368

    
2369
    h->pred8x8[DC_PRED8x8     ]= pred8x8_dc_c;
2370
    h->pred8x8[VERT_PRED8x8   ]= pred8x8_vertical_c;
2371
    h->pred8x8[HOR_PRED8x8    ]= pred8x8_horizontal_c;
2372
    h->pred8x8[PLANE_PRED8x8  ]= pred8x8_plane_c;
2373
    h->pred8x8[LEFT_DC_PRED8x8]= pred8x8_left_dc_c;
2374
    h->pred8x8[TOP_DC_PRED8x8 ]= pred8x8_top_dc_c;
2375
    h->pred8x8[DC_128_PRED8x8 ]= pred8x8_128_dc_c;
2376

    
2377
    h->pred16x16[DC_PRED8x8     ]= pred16x16_dc_c;
2378
    h->pred16x16[VERT_PRED8x8   ]= pred16x16_vertical_c;
2379
    h->pred16x16[HOR_PRED8x8    ]= pred16x16_horizontal_c;
2380
    h->pred16x16[PLANE_PRED8x8  ]= pred16x16_plane_c;
2381
    h->pred16x16[LEFT_DC_PRED8x8]= pred16x16_left_dc_c;
2382
    h->pred16x16[TOP_DC_PRED8x8 ]= pred16x16_top_dc_c;
2383
    h->pred16x16[DC_128_PRED8x8 ]= pred16x16_128_dc_c;
2384
}
2385

    
2386
static void free_tables(H264Context *h){
2387
    av_freep(&h->intra4x4_pred_mode);
2388
    av_freep(&h->chroma_pred_mode_table);
2389
    av_freep(&h->cbp_table);
2390
    av_freep(&h->mvd_table[0]);
2391
    av_freep(&h->mvd_table[1]);
2392
    av_freep(&h->direct_table);
2393
    av_freep(&h->non_zero_count);
2394
    av_freep(&h->slice_table_base);
2395
    av_freep(&h->top_border);
2396
    h->slice_table= NULL;
2397

    
2398
    av_freep(&h->mb2b_xy);
2399
    av_freep(&h->mb2b8_xy);
2400
}
2401

    
2402
/**
2403
 * allocates tables.
2404
 * needs widzh/height
2405
 */
2406
static int alloc_tables(H264Context *h){
2407
    MpegEncContext * const s = &h->s;
2408
    const int big_mb_num= s->mb_stride * (s->mb_height+1);
2409
    int x,y;
2410

    
2411
    CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8  * sizeof(uint8_t))
2412

    
2413
    CHECKED_ALLOCZ(h->non_zero_count    , big_mb_num * 16 * sizeof(uint8_t))
2414
    CHECKED_ALLOCZ(h->slice_table_base  , big_mb_num * sizeof(uint8_t))
2415
    CHECKED_ALLOCZ(h->top_border       , s->mb_width * (16+8+8) * sizeof(uint8_t))
2416
    CHECKED_ALLOCZ(h->cbp_table, big_mb_num * sizeof(uint16_t))
2417

    
2418
    if( h->pps.cabac ) {
2419
        CHECKED_ALLOCZ(h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t))
2420
        CHECKED_ALLOCZ(h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t));
2421
        CHECKED_ALLOCZ(h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t));
2422
        CHECKED_ALLOCZ(h->direct_table, 32*big_mb_num * sizeof(uint8_t));
2423
    }
2424

    
2425
    memset(h->slice_table_base, -1, big_mb_num  * sizeof(uint8_t));
2426
    h->slice_table= h->slice_table_base + s->mb_stride + 1;
2427

    
2428
    CHECKED_ALLOCZ(h->mb2b_xy  , big_mb_num * sizeof(uint16_t));
2429
    CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint16_t));
2430
    for(y=0; y<s->mb_height; y++){
2431
        for(x=0; x<s->mb_width; x++){
2432
            const int mb_xy= x + y*s->mb_stride;
2433
            const int b_xy = 4*x + 4*y*h->b_stride;
2434
            const int b8_xy= 2*x + 2*y*h->b8_stride;
2435
        
2436
            h->mb2b_xy [mb_xy]= b_xy;
2437
            h->mb2b8_xy[mb_xy]= b8_xy;
2438
        }
2439
    }
2440
    
2441
    return 0;
2442
fail:
2443
    free_tables(h);
2444
    return -1;
2445
}
2446

    
2447
static void common_init(H264Context *h){
2448
    MpegEncContext * const s = &h->s;
2449

    
2450
    s->width = s->avctx->width;
2451
    s->height = s->avctx->height;
2452
    s->codec_id= s->avctx->codec->id;
2453
    
2454
    init_pred_ptrs(h);
2455

    
2456
    s->unrestricted_mv=1;
2457
    s->decode=1; //FIXME
2458
}
2459

    
2460
static int decode_init(AVCodecContext *avctx){
2461
    H264Context *h= avctx->priv_data;
2462
    MpegEncContext * const s = &h->s;
2463

    
2464
    MPV_decode_defaults(s);
2465
    
2466
    s->avctx = avctx;
2467
    common_init(h);
2468

    
2469
    s->out_format = FMT_H264;
2470
    s->workaround_bugs= avctx->workaround_bugs;
2471

    
2472
    // set defaults
2473
//    s->decode_mb= ff_h263_decode_mb;
2474
    s->low_delay= 1;
2475
    avctx->pix_fmt= PIX_FMT_YUV420P;
2476

    
2477
    decode_init_vlc(h);
2478
    
2479
    if(avctx->codec_tag != 0x31637661 && avctx->codec_tag != 0x31435641) // avc1
2480
        h->is_avc = 0;
2481
    else {
2482
        if((avctx->extradata_size == 0) || (avctx->extradata == NULL)) {
2483
            av_log(avctx, AV_LOG_ERROR, "AVC codec requires avcC data\n");
2484
            return -1;
2485
        }
2486
        h->is_avc = 1;
2487
        h->got_avcC = 0;
2488
    }
2489

    
2490
    return 0;
2491
}
2492

    
2493
static void frame_start(H264Context *h){
2494
    MpegEncContext * const s = &h->s;
2495
    int i;
2496

    
2497
    MPV_frame_start(s, s->avctx);
2498
    ff_er_frame_start(s);
2499
    h->mmco_index=0;
2500

    
2501
    assert(s->linesize && s->uvlinesize);
2502

    
2503
    for(i=0; i<16; i++){
2504
        h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
2505
        h->chroma_subblock_offset[i]= 2*((scan8[i] - scan8[0])&7) + 2*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2506
    }
2507
    for(i=0; i<4; i++){
2508
        h->block_offset[16+i]=
2509
        h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2510
    }
2511

    
2512
//    s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
2513
}
2514

    
2515
static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
2516
    MpegEncContext * const s = &h->s;
2517
    int i;
2518
    
2519
    src_y  -=   linesize;
2520
    src_cb -= uvlinesize;
2521
    src_cr -= uvlinesize;
2522

    
2523
    h->left_border[0]= h->top_border[s->mb_x][15];
2524
    for(i=1; i<17; i++){
2525
        h->left_border[i]= src_y[15+i*  linesize];
2526
    }
2527
    
2528
    *(uint64_t*)(h->top_border[s->mb_x]+0)= *(uint64_t*)(src_y +  16*linesize);
2529
    *(uint64_t*)(h->top_border[s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
2530

    
2531
    if(!(s->flags&CODEC_FLAG_GRAY)){
2532
        h->left_border[17  ]= h->top_border[s->mb_x][16+7];
2533
        h->left_border[17+9]= h->top_border[s->mb_x][24+7];
2534
        for(i=1; i<9; i++){
2535
            h->left_border[i+17  ]= src_cb[7+i*uvlinesize];
2536
            h->left_border[i+17+9]= src_cr[7+i*uvlinesize];
2537
        }
2538
        *(uint64_t*)(h->top_border[s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
2539
        *(uint64_t*)(h->top_border[s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
2540
    }
2541
}
2542

    
2543
static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
2544
    MpegEncContext * const s = &h->s;
2545
    int temp8, i;
2546
    uint64_t temp64;
2547
    int deblock_left = (s->mb_x > 0);
2548
    int deblock_top  = (s->mb_y > 0);
2549

    
2550
    src_y  -=   linesize + 1;
2551
    src_cb -= uvlinesize + 1;
2552
    src_cr -= uvlinesize + 1;
2553

    
2554
#define XCHG(a,b,t,xchg)\
2555
t= a;\
2556
if(xchg)\
2557
    a= b;\
2558
b= t;
2559

    
2560
    if(deblock_left){
2561
        for(i = !deblock_top; i<17; i++){
2562
            XCHG(h->left_border[i     ], src_y [i*  linesize], temp8, xchg);
2563
        }
2564
    }
2565

    
2566
    if(deblock_top){
2567
        XCHG(*(uint64_t*)(h->top_border[s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
2568
        XCHG(*(uint64_t*)(h->top_border[s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
2569
    }
2570

    
2571
    if(!(s->flags&CODEC_FLAG_GRAY)){
2572
        if(deblock_left){
2573
            for(i = !deblock_top; i<9; i++){
2574
                XCHG(h->left_border[i+17  ], src_cb[i*uvlinesize], temp8, xchg);
2575
                XCHG(h->left_border[i+17+9], src_cr[i*uvlinesize], temp8, xchg);
2576
            }
2577
        }
2578
        if(deblock_top){
2579
            XCHG(*(uint64_t*)(h->top_border[s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
2580
            XCHG(*(uint64_t*)(h->top_border[s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
2581
        }
2582
    }
2583
}
2584

    
2585
static void hl_decode_mb(H264Context *h){
2586
    MpegEncContext * const s = &h->s;
2587
    const int mb_x= s->mb_x;
2588
    const int mb_y= s->mb_y;
2589
    const int mb_xy= mb_x + mb_y*s->mb_stride;
2590
    const int mb_type= s->current_picture.mb_type[mb_xy];
2591
    uint8_t  *dest_y, *dest_cb, *dest_cr;
2592
    int linesize, uvlinesize /*dct_offset*/;
2593
    int i;
2594

    
2595
    if(!s->decode)
2596
        return;
2597

    
2598
    if(s->mb_skiped){
2599
    }
2600

    
2601
    dest_y  = s->current_picture.data[0] + (mb_y * 16* s->linesize  ) + mb_x * 16;
2602
    dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2603
    dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2604

    
2605
    if (h->mb_field_decoding_flag) {
2606
        linesize = s->linesize * 2;
2607
        uvlinesize = s->uvlinesize * 2;
2608
        if(mb_y&1){ //FIXME move out of this func?
2609
            dest_y -= s->linesize*15;
2610
            dest_cb-= s->linesize*7;
2611
            dest_cr-= s->linesize*7;
2612
        }
2613
    } else {
2614
        linesize = s->linesize;
2615
        uvlinesize = s->uvlinesize;
2616
//        dct_offset = s->linesize * 16;
2617
    }
2618

    
2619
    if(IS_INTRA(mb_type)){
2620
        if(h->deblocking_filter)
2621
            xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1);
2622

    
2623
        if(!(s->flags&CODEC_FLAG_GRAY)){
2624
            h->pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
2625
            h->pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
2626
        }
2627

    
2628
        if(IS_INTRA4x4(mb_type)){
2629
            if(!s->encoding){
2630
                for(i=0; i<16; i++){
2631
                    uint8_t * const ptr= dest_y + h->block_offset[i];
2632
                    uint8_t *topright;
2633
                    const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
2634
                    int tr;
2635

    
2636
                    if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
2637
                        const int topright_avail= (h->topright_samples_available<<i)&0x8000;
2638
                        assert(mb_y || linesize <= h->block_offset[i]);
2639
                        if(!topright_avail){
2640
                            tr= ptr[3 - linesize]*0x01010101;
2641
                            topright= (uint8_t*) &tr;
2642
                        }else if(i==5 && h->deblocking_filter){
2643
                            tr= *(uint32_t*)h->top_border[mb_x+1];
2644
                            topright= (uint8_t*) &tr;
2645
                        }else
2646
                            topright= ptr + 4 - linesize;
2647
                    }else
2648
                        topright= NULL;
2649

    
2650
                    h->pred4x4[ dir ](ptr, topright, linesize);
2651
                    if(h->non_zero_count_cache[ scan8[i] ]){
2652
                        if(s->codec_id == CODEC_ID_H264)
2653
                            s->dsp.h264_idct_add(ptr, h->mb + i*16, linesize);
2654
                        else
2655
                            svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
2656
                    }
2657
                }
2658
            }
2659
        }else{
2660
            h->pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
2661
            if(s->codec_id == CODEC_ID_H264)
2662
                h264_luma_dc_dequant_idct_c(h->mb, s->qscale);
2663
            else
2664
                svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
2665
        }
2666
        if(h->deblocking_filter)
2667
            xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0);
2668
    }else if(s->codec_id == CODEC_ID_H264){
2669
        hl_motion(h, dest_y, dest_cb, dest_cr,
2670
                  s->dsp.put_h264_qpel_pixels_tab, s->dsp.put_h264_chroma_pixels_tab, 
2671
                  s->dsp.avg_h264_qpel_pixels_tab, s->dsp.avg_h264_chroma_pixels_tab);
2672
    }
2673

    
2674

    
2675
    if(!IS_INTRA4x4(mb_type)){
2676
        if(s->codec_id == CODEC_ID_H264){
2677
            for(i=0; i<16; i++){
2678
                if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
2679
                    uint8_t * const ptr= dest_y + h->block_offset[i];
2680
                    s->dsp.h264_idct_add(ptr, h->mb + i*16, linesize);
2681
                }
2682
            }
2683
        }else{
2684
            for(i=0; i<16; i++){
2685
                if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
2686
                    uint8_t * const ptr= dest_y + h->block_offset[i];
2687
                    svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
2688
                }
2689
            }
2690
        }
2691
    }
2692

    
2693
    if(!(s->flags&CODEC_FLAG_GRAY)){
2694
        chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp);
2695
        chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp);
2696
        if(s->codec_id == CODEC_ID_H264){
2697
            for(i=16; i<16+4; i++){
2698
                if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2699
                    uint8_t * const ptr= dest_cb + h->block_offset[i];
2700
                    s->dsp.h264_idct_add(ptr, h->mb + i*16, uvlinesize);
2701
                }
2702
            }
2703
            for(i=20; i<20+4; i++){
2704
                if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2705
                    uint8_t * const ptr= dest_cr + h->block_offset[i];
2706
                    s->dsp.h264_idct_add(ptr, h->mb + i*16, uvlinesize);
2707
                }
2708
            }
2709
        }else{
2710
            for(i=16; i<16+4; i++){
2711
                if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2712
                    uint8_t * const ptr= dest_cb + h->block_offset[i];
2713
                    svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
2714
                }
2715
            }
2716
            for(i=20; i<20+4; i++){
2717
                if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2718
                    uint8_t * const ptr= dest_cr + h->block_offset[i];
2719
                    svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
2720
                }
2721
            }
2722
        }
2723
    }
2724
    if(h->deblocking_filter) {
2725
        backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
2726
        filter_mb(h, mb_x, mb_y, dest_y, dest_cb, dest_cr);
2727
    }
2728
}
2729

    
2730
/**
2731
 * fills the default_ref_list.
2732
 */
2733
static int fill_default_ref_list(H264Context *h){
2734
    MpegEncContext * const s = &h->s;
2735
    int i;
2736
    Picture sorted_short_ref[16];
2737
    
2738
    if(h->slice_type==B_TYPE){
2739
        int out_i;
2740
        int limit= -1;
2741

    
2742
        for(out_i=0; out_i<h->short_ref_count; out_i++){
2743
            int best_i=-1;
2744
            int best_poc=INT_MAX;
2745

    
2746
            for(i=0; i<h->short_ref_count; i++){
2747
                const int poc= h->short_ref[i]->poc;
2748
                if(poc > limit && poc < best_poc){
2749
                    best_poc= poc;
2750
                    best_i= i;
2751
                }
2752
            }
2753
            
2754
            assert(best_i != -1);
2755
            
2756
            limit= best_poc;
2757
            sorted_short_ref[out_i]= *h->short_ref[best_i];
2758
        }
2759
    }
2760

    
2761
    if(s->picture_structure == PICT_FRAME){
2762
        if(h->slice_type==B_TYPE){
2763
            const int current_poc= s->current_picture_ptr->poc;
2764
            int list;
2765

    
2766
            for(list=0; list<2; list++){
2767
                int index=0;
2768

    
2769
                for(i=0; i<h->short_ref_count && index < h->ref_count[list]; i++){
2770
                    const int i2= list ? i : h->short_ref_count - i - 1;
2771
                    const int poc= sorted_short_ref[i2].poc;
2772
                    
2773
                    if(sorted_short_ref[i2].reference != 3) continue; //FIXME refernce field shit
2774

    
2775
                    if((list==1 && poc > current_poc) || (list==0 && poc < current_poc)){
2776
                        h->default_ref_list[list][index  ]= sorted_short_ref[i2];
2777
                        h->default_ref_list[list][index++].pic_id= sorted_short_ref[i2].frame_num;
2778
                    }
2779
                }
2780

    
2781
                for(i=0; i<h->long_ref_count && index < h->ref_count[ list ]; i++){
2782
                    if(h->long_ref[i]->reference != 3) continue;
2783

    
2784
                    h->default_ref_list[ list ][index  ]= *h->long_ref[i];
2785
                    h->default_ref_list[ list ][index++].pic_id= i;;
2786
                }
2787
                
2788
                if(h->long_ref_count > 1 && h->short_ref_count==0){
2789
                    Picture temp= h->default_ref_list[1][0];
2790
                    h->default_ref_list[1][0] = h->default_ref_list[1][1];
2791
                    h->default_ref_list[1][0] = temp;
2792
                }
2793

    
2794
                if(index < h->ref_count[ list ])
2795
                    memset(&h->default_ref_list[list][index], 0, sizeof(Picture)*(h->ref_count[ list ] - index));
2796
            }
2797
        }else{
2798
            int index=0;
2799
            for(i=0; i<h->short_ref_count && index < h->ref_count[0]; i++){
2800
                if(h->short_ref[i]->reference != 3) continue; //FIXME refernce field shit
2801
                h->default_ref_list[0][index  ]= *h->short_ref[i];
2802
                h->default_ref_list[0][index++].pic_id= h->short_ref[i]->frame_num;
2803
            }
2804
            for(i=0; i<h->long_ref_count && index < h->ref_count[0]; i++){
2805
                if(h->long_ref[i]->reference != 3) continue;
2806
                h->default_ref_list[0][index  ]= *h->long_ref[i];
2807
                h->default_ref_list[0][index++].pic_id= i;;
2808
            }
2809
            if(index < h->ref_count[0])
2810
                memset(&h->default_ref_list[0][index], 0, sizeof(Picture)*(h->ref_count[0] - index));
2811
        }
2812
    }else{ //FIELD
2813
        if(h->slice_type==B_TYPE){
2814
        }else{
2815
            //FIXME second field balh
2816
        }
2817
    }
2818
    return 0;
2819
}
2820

    
2821
static int decode_ref_pic_list_reordering(H264Context *h){
2822
    MpegEncContext * const s = &h->s;
2823
    int list;
2824
    
2825
    if(h->slice_type==I_TYPE || h->slice_type==SI_TYPE) return 0; //FIXME move beofre func
2826
    
2827
    for(list=0; list<2; list++){
2828
        memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
2829

    
2830
        if(get_bits1(&s->gb)){
2831
            int pred= h->curr_pic_num;
2832
            int index;
2833

    
2834
            for(index=0; ; index++){
2835
                int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb);
2836
                int pic_id;
2837
                int i;
2838
                
2839
                if(reordering_of_pic_nums_idc==3) 
2840
                    break;
2841
                
2842
                if(index >= h->ref_count[list]){
2843
                    av_log(h->s.avctx, AV_LOG_ERROR, "reference count overflow\n");
2844
                    return -1;
2845
                }
2846
                
2847
                if(reordering_of_pic_nums_idc<3){
2848
                    if(reordering_of_pic_nums_idc<2){
2849
                        const int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1;
2850

    
2851
                        if(abs_diff_pic_num >= h->max_pic_num){
2852
                            av_log(h->s.avctx, AV_LOG_ERROR, "abs_diff_pic_num overflow\n");
2853
                            return -1;
2854
                        }
2855

    
2856
                        if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num;
2857
                        else                                pred+= abs_diff_pic_num;
2858
                        pred &= h->max_pic_num - 1;
2859
                    
2860
                        for(i= h->ref_count[list]-1; i>=index; i--){
2861
                            if(h->ref_list[list][i].pic_id == pred && h->ref_list[list][i].long_ref==0)
2862
                                break;
2863
                        }
2864
                    }else{
2865
                        pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx
2866

    
2867
                        for(i= h->ref_count[list]-1; i>=index; i--){
2868
                            if(h->ref_list[list][i].pic_id == pic_id && h->ref_list[list][i].long_ref==1)
2869
                                break;
2870
                        }
2871
                    }
2872

    
2873
                    if(i < index){
2874
                        av_log(h->s.avctx, AV_LOG_ERROR, "reference picture missing during reorder\n");
2875
                        memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME
2876
                    }else if(i > index){
2877
                        Picture tmp= h->ref_list[list][i];
2878
                        for(; i>index; i--){
2879
                            h->ref_list[list][i]= h->ref_list[list][i-1];
2880
                        }
2881
                        h->ref_list[list][index]= tmp;
2882
                    }
2883
                }else{
2884
                    av_log(h->s.avctx, AV_LOG_ERROR, "illegal reordering_of_pic_nums_idc\n");
2885
                    return -1;
2886
                }
2887
            }
2888
        }
2889

    
2890
        if(h->slice_type!=B_TYPE) break;
2891
    }
2892
    
2893
    if(h->slice_type==B_TYPE && !h->direct_spatial_mv_pred)
2894
        direct_dist_scale_factor(h);
2895
    return 0;    
2896
}
2897

    
2898
static int pred_weight_table(H264Context *h){
2899
    MpegEncContext * const s = &h->s;
2900
    int list, i;
2901
    
2902
    h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
2903
    h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
2904

    
2905
    for(list=0; list<2; list++){
2906
        for(i=0; i<h->ref_count[list]; i++){
2907
            int luma_weight_flag, chroma_weight_flag;
2908
            
2909
            luma_weight_flag= get_bits1(&s->gb);
2910
            if(luma_weight_flag){
2911
                h->luma_weight[list][i]= get_se_golomb(&s->gb);
2912
                h->luma_offset[list][i]= get_se_golomb(&s->gb);
2913
            }
2914

    
2915
            chroma_weight_flag= get_bits1(&s->gb);
2916
            if(chroma_weight_flag){
2917
                int j;
2918
                for(j=0; j<2; j++){
2919
                    h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
2920
                    h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
2921
                }
2922
            }
2923
        }
2924
        if(h->slice_type != B_TYPE) break;
2925
    }
2926
    return 0;
2927
}
2928

    
2929
/**
2930
 * instantaneous decoder refresh.
2931
 */
2932
static void idr(H264Context *h){
2933
    int i,j;
2934

    
2935
#define CHECK_DELAY(pic) \
2936
    for(j = 0; h->delayed_pic[j]; j++) \
2937
        if(pic == h->delayed_pic[j]){ \
2938
            pic->reference=1; \
2939
            break; \
2940
        }
2941

    
2942
    for(i=0; i<h->long_ref_count; i++){
2943
        h->long_ref[i]->reference=0;
2944
        CHECK_DELAY(h->long_ref[i]);
2945
        h->long_ref[i]= NULL;
2946
    }
2947
    h->long_ref_count=0;
2948

    
2949
    for(i=0; i<h->short_ref_count; i++){
2950
        h->short_ref[i]->reference=0;
2951
        CHECK_DELAY(h->short_ref[i]);
2952
        h->short_ref[i]= NULL;
2953
    }
2954
    h->short_ref_count=0;
2955
}
2956
#undef CHECK_DELAY
2957

    
2958
/**
2959
 *
2960
 * @return the removed picture or NULL if an error occures
2961
 */
2962
static Picture * remove_short(H264Context *h, int frame_num){
2963
    MpegEncContext * const s = &h->s;
2964
    int i;
2965
    
2966
    if(s->avctx->debug&FF_DEBUG_MMCO)
2967
        av_log(h->s.avctx, AV_LOG_DEBUG, "remove short %d count %d\n", frame_num, h->short_ref_count);
2968
    
2969
    for(i=0; i<h->short_ref_count; i++){
2970
        Picture *pic= h->short_ref[i];
2971
        if(s->avctx->debug&FF_DEBUG_MMCO)
2972
            av_log(h->s.avctx, AV_LOG_DEBUG, "%d %d %p\n", i, pic->frame_num, pic);
2973
        if(pic->frame_num == frame_num){
2974
            h->short_ref[i]= NULL;
2975
            memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i - 1)*sizeof(Picture*));
2976
            h->short_ref_count--;
2977
            return pic;
2978
        }
2979
    }
2980
    return NULL;
2981
}
2982

    
2983
/**
2984
 *
2985
 * @return the removed picture or NULL if an error occures
2986
 */
2987
static Picture * remove_long(H264Context *h, int i){
2988
    Picture *pic;
2989

    
2990
    if(i >= h->long_ref_count) return NULL;
2991
    pic= h->long_ref[i];
2992
    if(pic==NULL) return NULL;
2993
    
2994
    h->long_ref[i]= NULL;
2995
    memmove(&h->long_ref[i], &h->long_ref[i+1], (h->long_ref_count - i - 1)*sizeof(Picture*));
2996
    h->long_ref_count--;
2997

    
2998
    return pic;
2999
}
3000

    
3001
/**
3002
 * Executes the reference picture marking (memory management control operations).
3003
 */
3004
static int execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count){
3005
    MpegEncContext * const s = &h->s;
3006
    int i;
3007
    int current_is_long=0;
3008
    Picture *pic;
3009
    
3010
    if((s->avctx->debug&FF_DEBUG_MMCO) && mmco_count==0)
3011
        av_log(h->s.avctx, AV_LOG_DEBUG, "no mmco here\n");
3012
        
3013
    for(i=0; i<mmco_count; i++){
3014
        if(s->avctx->debug&FF_DEBUG_MMCO)
3015
            av_log(h->s.avctx, AV_LOG_DEBUG, "mmco:%d %d %d\n", h->mmco[i].opcode, h->mmco[i].short_frame_num, h->mmco[i].long_index);
3016

    
3017
        switch(mmco[i].opcode){
3018
        case MMCO_SHORT2UNUSED:
3019
            pic= remove_short(h, mmco[i].short_frame_num);
3020
            if(pic==NULL) return -1;
3021
            pic->reference= 0;
3022
            break;
3023
        case MMCO_SHORT2LONG:
3024
            pic= remove_long(h, mmco[i].long_index);
3025
            if(pic) pic->reference=0;
3026
            
3027
            h->long_ref[ mmco[i].long_index ]= remove_short(h, mmco[i].short_frame_num);
3028
            h->long_ref[ mmco[i].long_index ]->long_ref=1;
3029
            break;
3030
        case MMCO_LONG2UNUSED:
3031
            pic= remove_long(h, mmco[i].long_index);
3032
            if(pic==NULL) return -1;
3033
            pic->reference= 0;
3034
            break;
3035
        case MMCO_LONG:
3036
            pic= remove_long(h, mmco[i].long_index);
3037
            if(pic) pic->reference=0;
3038
            
3039
            h->long_ref[ mmco[i].long_index ]= s->current_picture_ptr;
3040
            h->long_ref[ mmco[i].long_index ]->long_ref=1;
3041
            h->long_ref_count++;
3042
            
3043
            current_is_long=1;
3044
            break;
3045
        case MMCO_SET_MAX_LONG:
3046
            assert(mmco[i].long_index <= 16);
3047
            while(mmco[i].long_index < h->long_ref_count){
3048
                pic= remove_long(h, mmco[i].long_index);
3049
                pic->reference=0;
3050
            }
3051
            while(mmco[i].long_index > h->long_ref_count){
3052
                h->long_ref[ h->long_ref_count++ ]= NULL;
3053
            }
3054
            break;
3055
        case MMCO_RESET:
3056
            while(h->short_ref_count){
3057
                pic= remove_short(h, h->short_ref[0]->frame_num);
3058
                pic->reference=0;
3059
            }
3060
            while(h->long_ref_count){
3061
                pic= remove_long(h, h->long_ref_count-1);
3062
                pic->reference=0;
3063
            }
3064
            break;
3065
        default: assert(0);
3066
        }
3067
    }
3068
    
3069
    if(!current_is_long){
3070
        pic= remove_short(h, s->current_picture_ptr->frame_num);
3071
        if(pic){
3072
            pic->reference=0;
3073
            av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term buffer state detected\n");
3074
        }
3075
        
3076
        if(h->short_ref_count)
3077
            memmove(&h->short_ref[1], &h->short_ref[0], h->short_ref_count*sizeof(Picture*));
3078

    
3079
        h->short_ref[0]= s->current_picture_ptr;
3080
        h->short_ref[0]->long_ref=0;
3081
        h->short_ref_count++;
3082
    }
3083
    
3084
    return 0; 
3085
}
3086

    
3087
static int decode_ref_pic_marking(H264Context *h){
3088
    MpegEncContext * const s = &h->s;
3089
    int i;
3090
    
3091
    if(h->nal_unit_type == NAL_IDR_SLICE){ //FIXME fields
3092
        s->broken_link= get_bits1(&s->gb) -1;
3093
        h->mmco[0].long_index= get_bits1(&s->gb) - 1; // current_long_term_idx
3094
        if(h->mmco[0].long_index == -1)
3095
            h->mmco_index= 0;
3096
        else{
3097
            h->mmco[0].opcode= MMCO_LONG;
3098
            h->mmco_index= 1;
3099
        } 
3100
    }else{
3101
        if(get_bits1(&s->gb)){ // adaptive_ref_pic_marking_mode_flag
3102
            for(i= 0; i<MAX_MMCO_COUNT; i++) { 
3103
                MMCOOpcode opcode= get_ue_golomb(&s->gb);;
3104

    
3105
                h->mmco[i].opcode= opcode;
3106
                if(opcode==MMCO_SHORT2UNUSED || opcode==MMCO_SHORT2LONG){
3107
                    h->mmco[i].short_frame_num= (h->frame_num - get_ue_golomb(&s->gb) - 1) & ((1<<h->sps.log2_max_frame_num)-1); //FIXME fields
3108
/*                    if(h->mmco[i].short_frame_num >= h->short_ref_count || h->short_ref[ h->mmco[i].short_frame_num ] == NULL){
3109
                        fprintf(stderr, "illegal short ref in memory management control operation %d\n", mmco);
3110
                        return -1;
3111
                    }*/
3112
                }
3113
                if(opcode==MMCO_SHORT2LONG || opcode==MMCO_LONG2UNUSED || opcode==MMCO_LONG || opcode==MMCO_SET_MAX_LONG){
3114
                    h->mmco[i].long_index= get_ue_golomb(&s->gb);
3115
                    if(/*h->mmco[i].long_index >= h->long_ref_count || h->long_ref[ h->mmco[i].long_index ] == NULL*/ h->mmco[i].long_index >= 16){
3116
                        av_log(h->s.avctx, AV_LOG_ERROR, "illegal long ref in memory management control operation %d\n", opcode);
3117
                        return -1;
3118
                    }
3119
                }
3120
                    
3121
                if(opcode > MMCO_LONG){
3122
                    av_log(h->s.avctx, AV_LOG_ERROR, "illegal memory management control operation %d\n", opcode);
3123
                    return -1;
3124
                }
3125
                if(opcode == MMCO_END)
3126
                    break;
3127
            }
3128
            h->mmco_index= i;
3129
        }else{
3130
            assert(h->long_ref_count + h->short_ref_count <= h->sps.ref_frame_count);
3131

    
3132
            if(h->long_ref_count + h->short_ref_count == h->sps.ref_frame_count){ //FIXME fields
3133
                h->mmco[0].opcode= MMCO_SHORT2UNUSED;
3134
                h->mmco[0].short_frame_num= h->short_ref[ h->short_ref_count - 1 ]->frame_num;
3135
                h->mmco_index= 1;
3136
            }else
3137
                h->mmco_index= 0;
3138
        }
3139
    }
3140
    
3141
    return 0; 
3142
}
3143

    
3144
static int init_poc(H264Context *h){
3145
    MpegEncContext * const s = &h->s;
3146
    const int max_frame_num= 1<<h->sps.log2_max_frame_num;
3147
    int field_poc[2];
3148

    
3149
    if(h->nal_unit_type == NAL_IDR_SLICE){
3150
        h->frame_num_offset= 0;
3151
    }else{
3152
        if(h->frame_num < h->prev_frame_num)
3153
            h->frame_num_offset= h->prev_frame_num_offset + max_frame_num;
3154
        else
3155
            h->frame_num_offset= h->prev_frame_num_offset;
3156
    }
3157

    
3158
    if(h->sps.poc_type==0){
3159
        const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
3160

    
3161
        if     (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
3162
            h->poc_msb = h->prev_poc_msb + max_poc_lsb;
3163
        else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
3164
            h->poc_msb = h->prev_poc_msb - max_poc_lsb;
3165
        else
3166
            h->poc_msb = h->prev_poc_msb;
3167
//printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
3168
        field_poc[0] = 
3169
        field_poc[1] = h->poc_msb + h->poc_lsb;
3170
        if(s->picture_structure == PICT_FRAME) 
3171
            field_poc[1] += h->delta_poc_bottom;
3172
    }else if(h->sps.poc_type==1){
3173
        int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
3174
        int i;
3175

    
3176
        if(h->sps.poc_cycle_length != 0)
3177
            abs_frame_num = h->frame_num_offset + h->frame_num;
3178
        else
3179
            abs_frame_num = 0;
3180

    
3181
        if(h->nal_ref_idc==0 && abs_frame_num > 0)
3182
            abs_frame_num--;
3183
            
3184
        expected_delta_per_poc_cycle = 0;
3185
        for(i=0; i < h->sps.poc_cycle_length; i++)
3186
            expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
3187

    
3188
        if(abs_frame_num > 0){
3189
            int poc_cycle_cnt          = (abs_frame_num - 1) / h->sps.poc_cycle_length;
3190
            int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
3191

    
3192
            expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
3193
            for(i = 0; i <= frame_num_in_poc_cycle; i++)
3194
                expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
3195
        } else
3196
            expectedpoc = 0;
3197

    
3198
        if(h->nal_ref_idc == 0) 
3199
            expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
3200
        
3201
        field_poc[0] = expectedpoc + h->delta_poc[0];
3202
        field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
3203

    
3204
        if(s->picture_structure == PICT_FRAME)
3205
            field_poc[1] += h->delta_poc[1];
3206
    }else{
3207
        int poc;
3208
        if(h->nal_unit_type == NAL_IDR_SLICE){
3209
            poc= 0;
3210
        }else{
3211
            if(h->nal_ref_idc) poc= 2*(h->frame_num_offset + h->frame_num);
3212
            else               poc= 2*(h->frame_num_offset + h->frame_num) - 1;
3213
        }
3214
        field_poc[0]= poc;
3215
        field_poc[1]= poc;
3216
    }
3217
    
3218
    if(s->picture_structure != PICT_BOTTOM_FIELD)
3219
        s->current_picture_ptr->field_poc[0]= field_poc[0];
3220
    if(s->picture_structure != PICT_TOP_FIELD)
3221
        s->current_picture_ptr->field_poc[1]= field_poc[1];
3222
    if(s->picture_structure == PICT_FRAME) // FIXME field pix?
3223
        s->current_picture_ptr->poc= FFMIN(field_poc[0], field_poc[1]);
3224

    
3225
    return 0;
3226
}
3227

    
3228
/**
3229
 * decodes a slice header.
3230
 * this will allso call MPV_common_init() and frame_start() as needed
3231
 */
3232
static int decode_slice_header(H264Context *h){
3233
    MpegEncContext * const s = &h->s;
3234
    int first_mb_in_slice, pps_id;
3235
    int num_ref_idx_active_override_flag;
3236
    static const uint8_t slice_type_map[5]= {P_TYPE, B_TYPE, I_TYPE, SP_TYPE, SI_TYPE};
3237

    
3238
    s->current_picture.reference= h->nal_ref_idc != 0;
3239

    
3240
    first_mb_in_slice= get_ue_golomb(&s->gb);
3241

    
3242
    h->slice_type= get_ue_golomb(&s->gb);
3243
    if(h->slice_type > 9){
3244
        av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
3245
        return -1;
3246
    }
3247
    if(h->slice_type > 4){
3248
        h->slice_type -= 5;
3249
        h->slice_type_fixed=1;
3250
    }else
3251
        h->slice_type_fixed=0;
3252
    
3253
    h->slice_type= slice_type_map[ h->slice_type ];
3254
    
3255
    s->pict_type= h->slice_type; // to make a few old func happy, its wrong though
3256
        
3257
    pps_id= get_ue_golomb(&s->gb);
3258
    if(pps_id>255){
3259
        av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
3260
        return -1;
3261
    }
3262
    h->pps= h->pps_buffer[pps_id];
3263
    if(h->pps.slice_group_count == 0){
3264
        av_log(h->s.avctx, AV_LOG_ERROR, "non existing PPS referenced\n");
3265
        return -1;
3266
    }
3267

    
3268
    h->sps= h->sps_buffer[ h->pps.sps_id ];
3269
    if(h->sps.log2_max_frame_num == 0){
3270
        av_log(h->s.avctx, AV_LOG_ERROR, "non existing SPS referenced\n");
3271
        return -1;
3272
    }
3273
    
3274
    s->mb_width= h->sps.mb_width;
3275
    s->mb_height= h->sps.mb_height;
3276
    
3277
    h->b_stride=  s->mb_width*4 + 1;
3278
    h->b8_stride= s->mb_width*2 + 1;
3279

    
3280
    s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width;
3281
    s->resync_mb_y = s->mb_y = first_mb_in_slice / s->mb_width; //FIXME AFFW
3282
    
3283
    s->width = 16*s->mb_width - 2*(h->sps.crop_left + h->sps.crop_right );
3284
    if(h->sps.frame_mbs_only_flag)
3285
        s->height= 16*s->mb_height - 2*(h->sps.crop_top  + h->sps.crop_bottom);
3286
    else
3287
        s->height= 16*s->mb_height - 4*(h->sps.crop_top  + h->sps.crop_bottom); //FIXME recheck
3288
    
3289
    if (s->context_initialized 
3290
        && (   s->width != s->avctx->width || s->height != s->avctx->height)) {
3291
        free_tables(h);
3292
        MPV_common_end(s);
3293
    }
3294
    if (!s->context_initialized) {
3295
        if (MPV_common_init(s) < 0)
3296
            return -1;
3297

    
3298
        alloc_tables(h);
3299

    
3300
        s->avctx->width = s->width;
3301
        s->avctx->height = s->height;
3302
        s->avctx->sample_aspect_ratio= h->sps.sar;
3303

    
3304
        if(h->sps.timing_info_present_flag && h->sps.fixed_frame_rate_flag){
3305
            s->avctx->frame_rate = h->sps.time_scale;
3306
            s->avctx->frame_rate_base = h->sps.num_units_in_tick;
3307
        }
3308
    }
3309

    
3310
    if(h->slice_num == 0){
3311
        frame_start(h);
3312
    }
3313

    
3314
    s->current_picture_ptr->frame_num= //FIXME frame_num cleanup
3315
    h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
3316

    
3317
    if(h->sps.frame_mbs_only_flag){
3318
        s->picture_structure= PICT_FRAME;
3319
    }else{
3320
        if(get_bits1(&s->gb)) //field_pic_flag
3321
            s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
3322
        else
3323
            s->picture_structure= PICT_FRAME;
3324
    }
3325

    
3326
    if(s->picture_structure==PICT_FRAME){
3327
        h->curr_pic_num=   h->frame_num;
3328
        h->max_pic_num= 1<< h->sps.log2_max_frame_num;
3329
    }else{
3330
        h->curr_pic_num= 2*h->frame_num;
3331
        h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
3332
    }
3333
        
3334
    if(h->nal_unit_type == NAL_IDR_SLICE){
3335
        get_ue_golomb(&s->gb); /* idr_pic_id */
3336
    }
3337
   
3338
    if(h->sps.poc_type==0){
3339
        h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
3340
        
3341
        if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
3342
            h->delta_poc_bottom= get_se_golomb(&s->gb);
3343
        }
3344
    }
3345
    
3346
    if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
3347
        h->delta_poc[0]= get_se_golomb(&s->gb);
3348
        
3349
        if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
3350
            h->delta_poc[1]= get_se_golomb(&s->gb);
3351
    }
3352
    
3353
    init_poc(h);
3354
    
3355
    if(h->pps.redundant_pic_cnt_present){
3356
        h->redundant_pic_count= get_ue_golomb(&s->gb);
3357
    }
3358

    
3359
    //set defaults, might be overriden a few line later
3360
    h->ref_count[0]= h->pps.ref_count[0];
3361
    h->ref_count[1]= h->pps.ref_count[1];
3362

    
3363
    if(h->slice_type == P_TYPE || h->slice_type == SP_TYPE || h->slice_type == B_TYPE){
3364
        if(h->slice_type == B_TYPE){
3365
            h->direct_spatial_mv_pred= get_bits1(&s->gb);
3366
        }
3367
        num_ref_idx_active_override_flag= get_bits1(&s->gb);
3368
    
3369
        if(num_ref_idx_active_override_flag){
3370
            h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
3371
            if(h->slice_type==B_TYPE)
3372
                h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
3373

    
3374
            if(h->ref_count[0] > 32 || h->ref_count[1] > 32){
3375
                av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
3376
                return -1;
3377
            }
3378
        }
3379
    }
3380

    
3381
    if(h->slice_num == 0){
3382
        fill_default_ref_list(h);
3383
    }
3384

    
3385
    decode_ref_pic_list_reordering(h);
3386

    
3387
    if(   (h->pps.weighted_pred          && (h->slice_type == P_TYPE || h->slice_type == SP_TYPE )) 
3388
       || (h->pps.weighted_bipred_idc==1 && h->slice_type==B_TYPE ) )
3389
        pred_weight_table(h);
3390
    
3391
    if(s->current_picture.reference)
3392
        decode_ref_pic_marking(h);
3393

    
3394
    if( h->slice_type != I_TYPE && h->slice_type != SI_TYPE && h->pps.cabac )
3395
        h->cabac_init_idc = get_ue_golomb(&s->gb);
3396

    
3397
    h->last_qscale_diff = 0;
3398
    s->qscale = h->pps.init_qp + get_se_golomb(&s->gb);
3399
    if(s->qscale<0 || s->qscale>51){
3400
        av_log(s->avctx, AV_LOG_ERROR, "QP %d out of range\n", s->qscale);
3401
        return -1;
3402
    }
3403
    h->chroma_qp = get_chroma_qp(h, s->qscale);
3404
    //FIXME qscale / qp ... stuff
3405
    if(h->slice_type == SP_TYPE){
3406
        get_bits1(&s->gb); /* sp_for_switch_flag */
3407
    }
3408
    if(h->slice_type==SP_TYPE || h->slice_type == SI_TYPE){
3409
        get_se_golomb(&s->gb); /* slice_qs_delta */
3410
    }
3411

    
3412
    h->deblocking_filter = 1;
3413
    h->slice_alpha_c0_offset = 0;
3414
    h->slice_beta_offset = 0;
3415
    if( h->pps.deblocking_filter_parameters_present ) {
3416
        h->deblocking_filter= get_ue_golomb(&s->gb);
3417
        if(h->deblocking_filter < 2) 
3418
            h->deblocking_filter^= 1; // 1<->0
3419

    
3420
        if( h->deblocking_filter ) {
3421
            h->slice_alpha_c0_offset = get_se_golomb(&s->gb) << 1;
3422
            h->slice_beta_offset = get_se_golomb(&s->gb) << 1;
3423
        }
3424
    }
3425

    
3426
#if 0 //FMO
3427
    if( h->pps.num_slice_groups > 1  && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
3428
        slice_group_change_cycle= get_bits(&s->gb, ?);
3429
#endif
3430

    
3431
    h->slice_num++;
3432

    
3433
    if(s->avctx->debug&FF_DEBUG_PICT_INFO){
3434
        av_log(h->s.avctx, AV_LOG_DEBUG, "slice:%d mb:%d %c pps:%d frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d\n", 
3435
               h->slice_num, first_mb_in_slice, 
3436
               av_get_pict_type_char(h->slice_type),
3437
               pps_id, h->frame_num,
3438
               s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
3439
               h->ref_count[0], h->ref_count[1],
3440
               s->qscale,
3441
               h->deblocking_filter
3442
               );
3443
    }
3444

    
3445
    return 0;
3446
}
3447

    
3448
/**
3449
 *
3450
 */
3451
static inline int get_level_prefix(GetBitContext *gb){
3452
    unsigned int buf;
3453
    int log;
3454
    
3455
    OPEN_READER(re, gb);
3456
    UPDATE_CACHE(re, gb);
3457
    buf=GET_CACHE(re, gb);
3458
    
3459
    log= 32 - av_log2(buf);
3460
#ifdef TRACE
3461
    print_bin(buf>>(32-log), log);
3462
    av_log(NULL, AV_LOG_DEBUG, "%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__);
3463
#endif
3464

    
3465
    LAST_SKIP_BITS(re, gb, log);
3466
    CLOSE_READER(re, gb);
3467

    
3468
    return log-1;
3469
}
3470

    
3471
/**
3472
 * decodes a residual block.
3473
 * @param n block index
3474
 * @param scantable scantable
3475
 * @param max_coeff number of coefficients in the block
3476
 * @return <0 if an error occured
3477
 */
3478
static int decode_residual(H264Context *h, GetBitContext *gb, DCTELEM *block, int n, const uint8_t *scantable, int qp, int max_coeff){
3479
    MpegEncContext * const s = &h->s;
3480
    const uint16_t *qmul= dequant_coeff[qp];
3481
    static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3};
3482
    int level[16], run[16];
3483
    int suffix_length, zeros_left, coeff_num, coeff_token, total_coeff, i, trailing_ones;
3484

    
3485
    //FIXME put trailing_onex into the context
3486

    
3487
    if(n == CHROMA_DC_BLOCK_INDEX){
3488
        coeff_token= get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1);
3489
        total_coeff= coeff_token>>2;
3490
    }else{    
3491
        if(n == LUMA_DC_BLOCK_INDEX){
3492
            total_coeff= pred_non_zero_count(h, 0);
3493
            coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
3494
            total_coeff= coeff_token>>2;
3495
        }else{
3496
            total_coeff= pred_non_zero_count(h, n);
3497
            coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
3498
            total_coeff= coeff_token>>2;
3499
            h->non_zero_count_cache[ scan8[n] ]= total_coeff;
3500
        }
3501
    }
3502

    
3503
    //FIXME set last_non_zero?
3504

    
3505
    if(total_coeff==0)
3506
        return 0;
3507
        
3508
    trailing_ones= coeff_token&3;
3509
    tprintf("trailing:%d, total:%d\n", trailing_ones, total_coeff);
3510
    assert(total_coeff<=16);
3511
    
3512
    for(i=0; i<trailing_ones; i++){
3513
        level[i]= 1 - 2*get_bits1(gb);
3514
    }
3515

    
3516
    suffix_length= total_coeff > 10 && trailing_ones < 3;
3517

    
3518
    for(; i<total_coeff; i++){
3519
        const int prefix= get_level_prefix(gb);
3520
        int level_code, mask;
3521

    
3522
        if(prefix<14){ //FIXME try to build a large unified VLC table for all this
3523
            if(suffix_length)
3524
                level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
3525
            else
3526
                level_code= (prefix<<suffix_length); //part
3527
        }else if(prefix==14){
3528
            if(suffix_length)
3529
                level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
3530
            else
3531
                level_code= prefix + get_bits(gb, 4); //part
3532
        }else if(prefix==15){
3533
            level_code= (prefix<<suffix_length) + get_bits(gb, 12); //part
3534
            if(suffix_length==0) level_code+=15; //FIXME doesnt make (much)sense
3535
        }else{
3536
            av_log(h->s.avctx, AV_LOG_ERROR, "prefix too large at %d %d\n", s->mb_x, s->mb_y);
3537
            return -1;
3538
        }
3539

    
3540
        if(i==trailing_ones && i<3) level_code+= 2; //FIXME split first iteration
3541

    
3542
        mask= -(level_code&1);
3543
        level[i]= (((2+level_code)>>1) ^ mask) - mask;
3544

    
3545
        if(suffix_length==0) suffix_length=1; //FIXME split first iteration
3546

    
3547
#if 1
3548
        if(ABS(level[i]) > (3<<(suffix_length-1)) && suffix_length<6) suffix_length++;
3549
#else        
3550
        if((2+level_code)>>1) > (3<<(suffix_length-1)) && suffix_length<6) suffix_length++;
3551
        /* ? == prefix > 2 or sth */
3552
#endif
3553
        tprintf("level: %d suffix_length:%d\n", level[i], suffix_length);
3554
    }
3555

    
3556
    if(total_coeff == max_coeff)
3557
        zeros_left=0;
3558
    else{
3559
        if(n == CHROMA_DC_BLOCK_INDEX)
3560
            zeros_left= get_vlc2(gb, chroma_dc_total_zeros_vlc[ total_coeff-1 ].table, CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1);
3561
        else
3562
            zeros_left= get_vlc2(gb, total_zeros_vlc[ total_coeff-1 ].table, TOTAL_ZEROS_VLC_BITS, 1);
3563
    }
3564
    
3565
    for(i=0; i<total_coeff-1; i++){
3566
        if(zeros_left <=0)
3567
            break;
3568
        else if(zeros_left < 7){
3569
            run[i]= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
3570
        }else{
3571
            run[i]= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
3572
        }
3573
        zeros_left -= run[i];
3574
    }
3575

    
3576
    if(zeros_left<0){
3577
        av_log(h->s.avctx, AV_LOG_ERROR, "negative number of zero coeffs at %d %d\n", s->mb_x, s->mb_y);
3578
        return -1;
3579
    }
3580
    
3581
    for(; i<total_coeff-1; i++){
3582
        run[i]= 0;
3583
    }
3584

    
3585
    run[i]= zeros_left;
3586

    
3587
    coeff_num=-1;
3588
    if(n > 24){
3589
        for(i=total_coeff-1; i>=0; i--){ //FIXME merge into rundecode?
3590
            int j;
3591

    
3592
            coeff_num += run[i] + 1; //FIXME add 1 earlier ?
3593
            j= scantable[ coeff_num ];
3594

    
3595
            block[j]= level[i];
3596
        }
3597
    }else{
3598
        for(i=total_coeff-1; i>=0; i--){ //FIXME merge into  rundecode?
3599
            int j;
3600

    
3601
            coeff_num += run[i] + 1; //FIXME add 1 earlier ?
3602
            j= scantable[ coeff_num ];
3603

    
3604
            block[j]= level[i] * qmul[j];
3605
//            printf("%d %d  ", block[j], qmul[j]);
3606
        }
3607
    }
3608
    return 0;
3609
}
3610

    
3611
/**
3612
 * decodes a P_SKIP or B_SKIP macroblock
3613
 */
3614
static void decode_mb_skip(H264Context *h){
3615
    MpegEncContext * const s = &h->s;
3616
    const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
3617
    int mb_type;
3618
    
3619
    memset(h->non_zero_count[mb_xy], 0, 16);
3620
    memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
3621

    
3622
    if( h->slice_type == B_TYPE )
3623
    {
3624
        // just for fill_caches. pred_direct_motion will set the real mb_type
3625
        mb_type= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
3626
        //FIXME mbaff
3627

    
3628
        fill_caches(h, mb_type); //FIXME check what is needed and what not ...
3629
        pred_direct_motion(h, &mb_type);
3630
        if(h->pps.cabac){
3631
            fill_rectangle(h->mvd_cache[0][scan8[0]], 4, 4, 8, 0, 4);
3632
            fill_rectangle(h->mvd_cache[1][scan8[0]], 4, 4, 8, 0, 4);
3633
        }
3634
    }
3635
    else
3636
    {
3637
        int mx, my;
3638
        mb_type= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
3639

    
3640
        if(h->sps.mb_aff && s->mb_skip_run==0 && (s->mb_y&1)==0){
3641
            h->mb_field_decoding_flag= get_bits1(&s->gb);
3642
        }
3643
        if(h->mb_field_decoding_flag)
3644
            mb_type|= MB_TYPE_INTERLACED;
3645
        
3646
        fill_caches(h, mb_type); //FIXME check what is needed and what not ...
3647
        pred_pskip_motion(h, &mx, &my);
3648
        fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
3649
        fill_rectangle(  h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
3650
        if(h->pps.cabac)
3651
            fill_rectangle(h->mvd_cache[0][scan8[0]], 4, 4, 8, 0, 4);
3652
    }
3653

    
3654
    write_back_motion(h, mb_type);
3655
    s->current_picture.mb_type[mb_xy]= mb_type|MB_TYPE_SKIP;
3656
    s->current_picture.qscale_table[mb_xy]= s->qscale;
3657
    h->slice_table[ mb_xy ]= h->slice_num;
3658
    h->prev_mb_skiped= 1;
3659
}
3660

    
3661
/**
3662
 * decodes a macroblock
3663
 * @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
3664
 */
3665
static int decode_mb_cavlc(H264Context *h){
3666
    MpegEncContext * const s = &h->s;
3667
    const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
3668
    int mb_type, partition_count, cbp;
3669

    
3670
    s->dsp.clear_blocks(h->mb); //FIXME avoid if allready clear (move after skip handlong?    
3671

    
3672
    tprintf("pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
3673
    cbp = 0; /* avoid warning. FIXME: find a solution without slowing
3674
                down the code */
3675
    if(h->slice_type != I_TYPE && h->slice_type != SI_TYPE){
3676
        if(s->mb_skip_run==-1)
3677
            s->mb_skip_run= get_ue_golomb(&s->gb);
3678
        
3679
        if (s->mb_skip_run--) {
3680
            decode_mb_skip(h);
3681
            return 0;
3682
        }
3683
    }
3684
    if(h->sps.mb_aff /* && !field pic FIXME needed? */){
3685
        if((s->mb_y&1)==0)
3686
            h->mb_field_decoding_flag = get_bits1(&s->gb);
3687
    }else
3688
        h->mb_field_decoding_flag=0; //FIXME som ed note ?!
3689
    
3690
    h->prev_mb_skiped= 0;
3691
    
3692
    mb_type= get_ue_golomb(&s->gb);
3693
    if(h->slice_type == B_TYPE){
3694
        if(mb_type < 23){
3695
            partition_count= b_mb_type_info[mb_type].partition_count;
3696
            mb_type=         b_mb_type_info[mb_type].type;
3697
        }else{
3698
            mb_type -= 23;
3699
            goto decode_intra_mb;
3700
        }
3701
    }else if(h->slice_type == P_TYPE /*|| h->slice_type == SP_TYPE */){
3702
        if(mb_type < 5){
3703
            partition_count= p_mb_type_info[mb_type].partition_count;
3704
            mb_type=         p_mb_type_info[mb_type].type;
3705
        }else{
3706
            mb_type -= 5;
3707
            goto decode_intra_mb;
3708
        }
3709
    }else{
3710
       assert(h->slice_type == I_TYPE);
3711
decode_intra_mb:
3712
        if(mb_type > 25){
3713
            av_log(h->s.avctx, AV_LOG_ERROR, "mb_type %d in %c slice to large at %d %d\n", mb_type, av_get_pict_type_char(h->slice_type), s->mb_x, s->mb_y);
3714
            return -1;
3715
        }
3716
        partition_count=0;
3717
        cbp= i_mb_type_info[mb_type].cbp;
3718
        h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
3719
        mb_type= i_mb_type_info[mb_type].type;
3720
    }
3721

    
3722
    if(h->mb_field_decoding_flag)
3723
        mb_type |= MB_TYPE_INTERLACED;
3724

    
3725
    s->current_picture.mb_type[mb_xy]= mb_type;
3726
    h->slice_table[ mb_xy ]= h->slice_num;
3727
    
3728
    if(IS_INTRA_PCM(mb_type)){
3729
        const uint8_t *ptr;
3730
        int x, y;
3731
        
3732
        // we assume these blocks are very rare so we dont optimize it
3733
        align_get_bits(&s->gb);
3734
        
3735
        ptr= s->gb.buffer + get_bits_count(&s->gb);
3736
    
3737
        for(y=0; y<16; y++){
3738
            const int index= 4*(y&3) + 64*(y>>2);
3739
            for(x=0; x<16; x++){
3740
                h->mb[index + (x&3) + 16*(x>>2)]= *(ptr++);
3741
            }
3742
        }
3743
        for(y=0; y<8; y++){
3744
            const int index= 256 + 4*(y&3) + 32*(y>>2);
3745
            for(x=0; x<8; x++){
3746
                h->mb[index + (x&3) + 16*(x>>2)]= *(ptr++);
3747
            }
3748
        }
3749
        for(y=0; y<8; y++){
3750
            const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
3751
            for(x=0; x<8; x++){
3752
                h->mb[index + (x&3) + 16*(x>>2)]= *(ptr++);
3753
            }
3754
        }
3755
    
3756
        skip_bits(&s->gb, 384); //FIXME check /fix the bitstream readers
3757
        
3758
        //FIXME deblock filter, non_zero_count_cache init ...
3759
        memset(h->non_zero_count[mb_xy], 16, 16);
3760
        s->current_picture.qscale_table[mb_xy]= s->qscale;
3761
        
3762
        return 0;
3763
    }
3764
        
3765
    fill_caches(h, mb_type);
3766

    
3767
    //mb_pred
3768
    if(IS_INTRA(mb_type)){
3769
//            init_top_left_availability(h);
3770
            if(IS_INTRA4x4(mb_type)){
3771
                int i;
3772

    
3773
//                fill_intra4x4_pred_table(h);
3774
                for(i=0; i<16; i++){
3775
                    const int mode_coded= !get_bits1(&s->gb);
3776
                    const int predicted_mode=  pred_intra_mode(h, i);
3777
                    int mode;
3778

    
3779
                    if(mode_coded){
3780
                        const int rem_mode= get_bits(&s->gb, 3);
3781
                        if(rem_mode<predicted_mode)
3782
                            mode= rem_mode;
3783
                        else
3784
                            mode= rem_mode + 1;
3785
                    }else{
3786
                        mode= predicted_mode;
3787
                    }
3788
                    
3789
                    h->intra4x4_pred_mode_cache[ scan8[i] ] = mode;
3790
                }
3791
                write_back_intra_pred_mode(h);
3792
                if( check_intra4x4_pred_mode(h) < 0)
3793
                    return -1;
3794
            }else{
3795
                h->intra16x16_pred_mode= check_intra_pred_mode(h, h->intra16x16_pred_mode);
3796
                if(h->intra16x16_pred_mode < 0)
3797
                    return -1;
3798
            }
3799
            h->chroma_pred_mode= get_ue_golomb(&s->gb);
3800

    
3801
            h->chroma_pred_mode= check_intra_pred_mode(h, h->chroma_pred_mode);
3802
            if(h->chroma_pred_mode < 0)
3803
                return -1;
3804
    }else if(partition_count==4){
3805
        int i, j, sub_partition_count[4], list, ref[2][4];
3806
        
3807
        if(h->slice_type == B_TYPE){
3808
            for(i=0; i<4; i++){
3809
                h->sub_mb_type[i]= get_ue_golomb(&s->gb);
3810
                if(h->sub_mb_type[i] >=13){
3811
                    av_log(h->s.avctx, AV_LOG_ERROR, "B sub_mb_type %d out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
3812
                    return -1;
3813
                }
3814
                sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
3815
                h->sub_mb_type[i]=      b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
3816
            }
3817
            if(   IS_DIRECT(h->sub_mb_type[0]) || IS_DIRECT(h->sub_mb_type[1])
3818
               || IS_DIRECT(h->sub_mb_type[2]) || IS_DIRECT(h->sub_mb_type[3]))
3819
                pred_direct_motion(h, &mb_type);
3820
        }else{
3821
            assert(h->slice_type == P_TYPE || h->slice_type == SP_TYPE); //FIXME SP correct ?
3822
            for(i=0; i<4; i++){
3823
                h->sub_mb_type[i]= get_ue_golomb(&s->gb);
3824
                if(h->sub_mb_type[i] >=4){
3825
                    av_log(h->s.avctx, AV_LOG_ERROR, "P sub_mb_type %d out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
3826
                    return -1;
3827
                }
3828
                sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
3829
                h->sub_mb_type[i]=      p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
3830
            }
3831
        }
3832
        
3833
        for(list=0; list<2; list++){
3834
            const int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
3835
            if(ref_count == 0) continue;
3836
            for(i=0; i<4; i++){
3837
                if(IS_DIRECT(h->sub_mb_type[i])) continue;
3838
                if(IS_DIR(h->sub_mb_type[i], 0, list)){
3839
                    ref[list][i] = get_te0_golomb(&s->gb, ref_count); //FIXME init to 0 before and skip?
3840
                }else{
3841
                 //FIXME
3842
                    ref[list][i] = -1;
3843
                }
3844
            }
3845
        }
3846
        
3847
        for(list=0; list<2; list++){
3848
            const int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
3849
            if(ref_count == 0) continue;
3850

    
3851
            for(i=0; i<4; i++){
3852
                if(IS_DIRECT(h->sub_mb_type[i])) continue;
3853
                h->ref_cache[list][ scan8[4*i]   ]=h->ref_cache[list][ scan8[4*i]+1 ]=
3854
                h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
3855

    
3856
                if(IS_DIR(h->sub_mb_type[i], 0, list)){
3857
                    const int sub_mb_type= h->sub_mb_type[i];
3858
                    const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
3859
                    for(j=0; j<sub_partition_count[i]; j++){
3860
                        int mx, my;
3861
                        const int index= 4*i + block_width*j;
3862
                        int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
3863
                        pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mx, &my);
3864
                        mx += get_se_golomb(&s->gb);
3865
                        my += get_se_golomb(&s->gb);
3866
                        tprintf("final mv:%d %d\n", mx, my);
3867

    
3868
                        if(IS_SUB_8X8(sub_mb_type)){
3869
                            mv_cache[ 0 ][0]= mv_cache[ 1 ][0]= 
3870
                            mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
3871
                            mv_cache[ 0 ][1]= mv_cache[ 1 ][1]= 
3872
                            mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
3873
                        }else if(IS_SUB_8X4(sub_mb_type)){
3874
                            mv_cache[ 0 ][0]= mv_cache[ 1 ][0]= mx;
3875
                            mv_cache[ 0 ][1]= mv_cache[ 1 ][1]= my;
3876
                        }else if(IS_SUB_4X8(sub_mb_type)){
3877
                            mv_cache[ 0 ][0]= mv_cache[ 8 ][0]= mx;
3878
                            mv_cache[ 0 ][1]= mv_cache[ 8 ][1]= my;
3879
                        }else{
3880
                            assert(IS_SUB_4X4(sub_mb_type));
3881
                            mv_cache[ 0 ][0]= mx;
3882
                            mv_cache[ 0 ][1]= my;
3883
                        }
3884
                    }
3885
                }else{
3886
                    uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
3887
                    p[0] = p[1]=
3888
                    p[8] = p[9]= 0;
3889
                }
3890
            }
3891
        }
3892
    }else if(IS_DIRECT(mb_type)){
3893
        pred_direct_motion(h, &mb_type);
3894
        s->current_picture.mb_type[mb_xy]= mb_type;
3895
    }else{
3896
        int list, mx, my, i;
3897
         //FIXME we should set ref_idx_l? to 0 if we use that later ...
3898
        if(IS_16X16(mb_type)){
3899
            for(list=0; list<2; list++){
3900
                if(h->ref_count[list]>0){
3901
                    if(IS_DIR(mb_type, 0, list)){
3902
                        const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
3903
                        fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, val, 1);
3904
                    }
3905
                }
3906
            }
3907
            for(list=0; list<2; list++){
3908
                if(IS_DIR(mb_type, 0, list)){
3909
                    pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mx, &my);
3910
                    mx += get_se_golomb(&s->gb);
3911
                    my += get_se_golomb(&s->gb);
3912
                    tprintf("final mv:%d %d\n", mx, my);
3913

    
3914
                    fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4);
3915
                }
3916
            }
3917
        }
3918
        else if(IS_16X8(mb_type)){
3919
            for(list=0; list<2; list++){
3920
                if(h->ref_count[list]>0){
3921
                    for(i=0; i<2; i++){
3922
                        if(IS_DIR(mb_type, i, list)){
3923
                            const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
3924
                            fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 1);
3925
                        }else // needed only for mixed refs (e.g. B_L0_L1_16x8)
3926
                            fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, (LIST_NOT_USED&0xFF), 1);
3927
                    }
3928
                }
3929
            }
3930
            for(list=0; list<2; list++){
3931
                for(i=0; i<2; i++){
3932
                    if(IS_DIR(mb_type, i, list)){
3933
                        pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mx, &my);
3934
                        mx += get_se_golomb(&s->gb);
3935
                        my += get_se_golomb(&s->gb);
3936
                        tprintf("final mv:%d %d\n", mx, my);
3937

    
3938
                        fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx,my), 4);
3939
                    }else
3940
                        fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
3941
                }
3942
            }
3943
        }else{
3944
            assert(IS_8X16(mb_type));
3945
            for(list=0; list<2; list++){
3946
                if(h->ref_count[list]>0){
3947
                    for(i=0; i<2; i++){
3948
                        if(IS_DIR(mb_type, i, list)){ //FIXME optimize
3949
                            const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
3950
                            fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 1);
3951
                        }else // needed only for mixed refs
3952
                            fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, (LIST_NOT_USED&0xFF), 1);
3953
                    }
3954
                }
3955
            }
3956
            for(list=0; list<2; list++){
3957
                for(i=0; i<2; i++){
3958
                    if(IS_DIR(mb_type, i, list)){
3959
                        pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mx, &my);
3960
                        mx += get_se_golomb(&s->gb);
3961
                        my += get_se_golomb(&s->gb);
3962
                        tprintf("final mv:%d %d\n", mx, my);
3963

    
3964
                        fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx,my), 4);
3965
                    }else
3966
                        fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
3967
                }
3968
            }
3969
        }
3970
    }
3971
    
3972
    if(IS_INTER(mb_type))
3973
        write_back_motion(h, mb_type);
3974
    
3975
    if(!IS_INTRA16x16(mb_type)){
3976
        cbp= get_ue_golomb(&s->gb);
3977
        if(cbp > 47){
3978
            av_log(h->s.avctx, AV_LOG_ERROR, "cbp too large (%d) at %d %d\n", cbp, s->mb_x, s->mb_y);
3979
            return -1;
3980
        }
3981
        
3982
        if(IS_INTRA4x4(mb_type))
3983
            cbp= golomb_to_intra4x4_cbp[cbp];
3984
        else
3985
            cbp= golomb_to_inter_cbp[cbp];
3986
    }
3987

    
3988
    if(cbp || IS_INTRA16x16(mb_type)){
3989
        int i8x8, i4x4, chroma_idx;
3990
        int chroma_qp, dquant;
3991
        GetBitContext *gb= IS_INTRA(mb_type) ? h->intra_gb_ptr : h->inter_gb_ptr;
3992
        const uint8_t *scan, *dc_scan;
3993
        
3994
//        fill_non_zero_count_cache(h);
3995

    
3996
        if(IS_INTERLACED(mb_type)){
3997
            scan= field_scan;
3998
            dc_scan= luma_dc_field_scan;
3999
        }else{
4000
            scan= zigzag_scan;
4001
            dc_scan= luma_dc_zigzag_scan;
4002
        }
4003

    
4004
        dquant= get_se_golomb(&s->gb);
4005

    
4006
        if( dquant > 25 || dquant < -26 ){
4007
            av_log(h->s.avctx, AV_LOG_ERROR, "dquant out of range (%d) at %d %d\n", dquant, s->mb_x, s->mb_y);
4008
            return -1;
4009
        }
4010
        
4011
        s->qscale += dquant;
4012
        if(((unsigned)s->qscale) > 51){
4013
            if(s->qscale<0) s->qscale+= 52;
4014
            else            s->qscale-= 52;
4015
        }
4016
        
4017
        h->chroma_qp= chroma_qp= get_chroma_qp(h, s->qscale);
4018
        if(IS_INTRA16x16(mb_type)){
4019
            if( decode_residual(h, h->intra_gb_ptr, h->mb, LUMA_DC_BLOCK_INDEX, dc_scan, s->qscale, 16) < 0){
4020
                return -1; //FIXME continue if partotioned and other retirn -1 too
4021
            }
4022

    
4023
            assert((cbp&15) == 0 || (cbp&15) == 15);
4024

    
4025
            if(cbp&15){
4026
                for(i8x8=0; i8x8<4; i8x8++){
4027
                    for(i4x4=0; i4x4<4; i4x4++){
4028
                        const int index= i4x4 + 4*i8x8;
4029
                        if( decode_residual(h, h->intra_gb_ptr, h->mb + 16*index, index, scan + 1, s->qscale, 15) < 0 ){
4030
                            return -1;
4031
                        }
4032
                    }
4033
                }
4034
            }else{
4035
                fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
4036
            }
4037
        }else{
4038
            for(i8x8=0; i8x8<4; i8x8++){
4039
                if(cbp & (1<<i8x8)){
4040
                    for(i4x4=0; i4x4<4; i4x4++){
4041
                        const int index= i4x4 + 4*i8x8;
4042
                        
4043
                        if( decode_residual(h, gb, h->mb + 16*index, index, scan, s->qscale, 16) <0 ){
4044
                            return -1;
4045
                        }
4046
                    }
4047
                }else{
4048
                    uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
4049
                    nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
4050
                }
4051
            }
4052
        }
4053
        
4054
        if(cbp&0x30){
4055
            for(chroma_idx=0; chroma_idx<2; chroma_idx++)
4056
                if( decode_residual(h, gb, h->mb + 256 + 16*4*chroma_idx, CHROMA_DC_BLOCK_INDEX, chroma_dc_scan, chroma_qp, 4) < 0){
4057
                    return -1;
4058
                }
4059
        }
4060

    
4061
        if(cbp&0x20){
4062
            for(chroma_idx=0; chroma_idx<2; chroma_idx++){
4063
                for(i4x4=0; i4x4<4; i4x4++){
4064
                    const int index= 16 + 4*chroma_idx + i4x4;
4065
                    if( decode_residual(h, gb, h->mb + 16*index, index, scan + 1, chroma_qp, 15) < 0){
4066
                        return -1;
4067
                    }
4068
                }
4069
            }
4070
        }else{
4071
            uint8_t * const nnz= &h->non_zero_count_cache[0];
4072
            nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
4073
            nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
4074
        }
4075
    }else{
4076
        uint8_t * const nnz= &h->non_zero_count_cache[0];
4077
        fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1);
4078
        nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
4079
        nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
4080
    }
4081
    s->current_picture.qscale_table[mb_xy]= s->qscale;
4082
    write_back_non_zero_count(h);
4083

    
4084
    return 0;
4085
}
4086

    
4087
static int decode_cabac_intra_mb_type(H264Context *h, int ctx_base, int intra_slice) {
4088
    uint8_t *state= &h->cabac_state[ctx_base];
4089
    int mb_type;
4090
    
4091
    if(intra_slice){
4092
        MpegEncContext * const s = &h->s;
4093
        const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
4094
        int ctx=0;
4095
        if( s->mb_x > 0 && !IS_INTRA4x4( s->current_picture.mb_type[mb_xy-1] ) )
4096
            ctx++;
4097
        if( s->mb_y > 0 && !IS_INTRA4x4( s->current_picture.mb_type[mb_xy-s->mb_stride] ) )
4098
            ctx++;
4099
        if( get_cabac( &h->cabac, &state[ctx] ) == 0 )
4100
            return 0;   /* I4x4 */
4101
        state += 2;
4102
    }else{
4103
        if( get_cabac( &h->cabac, &state[0] ) == 0 )
4104
            return 0;   /* I4x4 */
4105
    }
4106

    
4107
    if( get_cabac_terminate( &h->cabac ) )
4108
        return 25;  /* PCM */
4109

    
4110
    mb_type = 1; /* I16x16 */
4111
    if( get_cabac( &h->cabac, &state[1] ) )
4112
        mb_type += 12;  /* cbp_luma != 0 */
4113

    
4114
    if( get_cabac( &h->cabac, &state[2] ) ) {
4115
        if( get_cabac( &h->cabac, &state[2+intra_slice] ) )
4116
            mb_type += 4 * 2;   /* cbp_chroma == 2 */
4117
        else
4118
            mb_type += 4 * 1;   /* cbp_chroma == 1 */
4119
    }
4120
    if( get_cabac( &h->cabac, &state[3+intra_slice] ) )
4121
        mb_type += 2;
4122
    if( get_cabac( &h->cabac, &state[3+2*intra_slice] ) )
4123
        mb_type += 1;
4124
    return mb_type;
4125
}
4126

    
4127
static int decode_cabac_mb_type( H264Context *h ) {
4128
    MpegEncContext * const s = &h->s;
4129

    
4130
    if( h->slice_type == I_TYPE ) {
4131
        return decode_cabac_intra_mb_type(h, 3, 1);
4132
    } else if( h->slice_type == P_TYPE ) {
4133
        if( get_cabac( &h->cabac, &h->cabac_state[14] ) == 0 ) {
4134
            /* P-type */
4135
            if( get_cabac( &h->cabac, &h->cabac_state[15] ) == 0 ) {
4136
                if( get_cabac( &h->cabac, &h->cabac_state[16] ) == 0 )
4137
                    return 0; /* P_L0_D16x16; */
4138
                else
4139
                    return 3; /* P_8x8; */
4140
            } else {
4141
                if( get_cabac( &h->cabac, &h->cabac_state[17] ) == 0 )
4142
                    return 2; /* P_L0_D8x16; */
4143
                else
4144
                    return 1; /* P_L0_D16x8; */
4145
            }
4146
        } else {
4147
            return decode_cabac_intra_mb_type(h, 17, 0) + 5;
4148
        }
4149
    } else if( h->slice_type == B_TYPE ) {
4150
        const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
4151
        int ctx = 0;
4152
        int bits;
4153

    
4154
        if( s->mb_x > 0 && !IS_SKIP( s->current_picture.mb_type[mb_xy-1] )
4155
                      && !IS_DIRECT( s->current_picture.mb_type[mb_xy-1] ) )
4156
            ctx++;
4157
        if( s->mb_y > 0 && !IS_SKIP( s->current_picture.mb_type[mb_xy-s->mb_stride] )
4158
                      && !IS_DIRECT( s->current_picture.mb_type[mb_xy-s->mb_stride] ) )
4159
            ctx++;
4160

    
4161
        if( !get_cabac( &h->cabac, &h->cabac_state[27+ctx] ) )
4162
            return 0; /* B_Direct_16x16 */
4163

    
4164
        if( !get_cabac( &h->cabac, &h->cabac_state[27+3] ) ) {
4165
            return 1 + get_cabac( &h->cabac, &h->cabac_state[27+5] ); /* B_L[01]_16x16 */
4166
        }
4167

    
4168
        bits = get_cabac( &h->cabac, &h->cabac_state[27+4] ) << 3;
4169
        bits|= get_cabac( &h->cabac, &h->cabac_state[27+5] ) << 2;
4170
        bits|= get_cabac( &h->cabac, &h->cabac_state[27+5] ) << 1;
4171
        bits|= get_cabac( &h->cabac, &h->cabac_state[27+5] );
4172
        if( bits < 8 )
4173
            return bits + 3; /* B_Bi_16x16 through B_L1_L0_16x8 */
4174
        else if( bits == 13 ) {
4175
            return decode_cabac_intra_mb_type(h, 32, 0) + 23;
4176
        } else if( bits == 14 )
4177
            return 11; /* B_L1_L0_8x16 */
4178
        else if( bits == 15 )
4179
            return 22; /* B_8x8 */
4180

    
4181
        bits= ( bits<<1 ) | get_cabac( &h->cabac, &h->cabac_state[27+5] );
4182
        return bits - 4; /* B_L0_Bi_* through B_Bi_Bi_* */
4183
    } else {
4184
        /* TODO SI/SP frames? */
4185
        return -1;
4186
    }
4187
}
4188

    
4189
static int decode_cabac_mb_skip( H264Context *h) {
4190
    MpegEncContext * const s = &h->s;
4191
    const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
4192
    const int mba_xy = mb_xy - 1;
4193
    const int mbb_xy = mb_xy - s->mb_stride;
4194
    int ctx = 0;
4195

    
4196
    if( s->mb_x > 0 && !IS_SKIP( s->current_picture.mb_type[mba_xy] ) )
4197
        ctx++;
4198
    if( s->mb_y > 0 && !IS_SKIP( s->current_picture.mb_type[mbb_xy] ) )
4199
        ctx++;
4200

    
4201
    if( h->slice_type == P_TYPE || h->slice_type == SP_TYPE)
4202
        return get_cabac( &h->cabac, &h->cabac_state[11+ctx] );
4203
    else /* B-frame */
4204
        return get_cabac( &h->cabac, &h->cabac_state[24+ctx] );
4205
}
4206

    
4207
static int decode_cabac_mb_intra4x4_pred_mode( H264Context *h, int pred_mode ) {
4208
    int mode = 0;
4209

    
4210
    if( get_cabac( &h->cabac, &h->cabac_state[68] ) )
4211
        return pred_mode;
4212

    
4213
    if( get_cabac( &h->cabac, &h->cabac_state[69] ) )
4214
        mode += 1;
4215
    if( get_cabac( &h->cabac, &h->cabac_state[69] ) )
4216
        mode += 2;
4217
    if( get_cabac( &h->cabac, &h->cabac_state[69] ) )
4218
        mode += 4;
4219
    if( mode >= pred_mode )
4220
        return mode + 1;
4221
    else
4222
        return mode;
4223
}
4224

    
4225
static int decode_cabac_mb_chroma_pre_mode( H264Context *h) {
4226
    MpegEncContext * const s = &h->s;
4227
    const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
4228
    const int mba_xy = mb_xy - 1;
4229
    const int mbb_xy = mb_xy - s->mb_stride;
4230

    
4231
    int ctx = 0;
4232

    
4233
    /* No need to test for IS_INTRA4x4 and IS_INTRA16x16, as we set chroma_pred_mode_table to 0 */
4234
    if( s->mb_x > 0 && h->chroma_pred_mode_table[mba_xy] != 0 )
4235
        ctx++;
4236

    
4237
    if( s->mb_y > 0 && h->chroma_pred_mode_table[mbb_xy] != 0 )
4238
        ctx++;
4239

    
4240
    if( get_cabac( &h->cabac, &h->cabac_state[64+ctx] ) == 0 )
4241
        return 0;
4242

    
4243
    if( get_cabac( &h->cabac, &h->cabac_state[64+3] ) == 0 )
4244
        return 1;
4245
    if( get_cabac( &h->cabac, &h->cabac_state[64+3] ) == 0 )
4246
        return 2;
4247
    else
4248
        return 3;
4249
}
4250

    
4251
static const uint8_t block_idx_x[16] = {
4252
    0, 1, 0, 1, 2, 3, 2, 3, 0, 1, 0, 1, 2, 3, 2, 3
4253
};
4254
static const uint8_t block_idx_y[16] = {
4255
    0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3
4256
};
4257
static const uint8_t block_idx_xy[4][4] = {
4258
    { 0, 2, 8,  10},
4259
    { 1, 3, 9,  11},
4260
    { 4, 6, 12, 14},
4261
    { 5, 7, 13, 15}
4262
};
4263

    
4264
static int decode_cabac_mb_cbp_luma( H264Context *h) {
4265
    MpegEncContext * const s = &h->s;
4266
    const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
4267

    
4268
    int cbp = 0;
4269
    int i8x8;
4270

    
4271
    h->cbp_table[mb_xy] = 0;  /* FIXME aaahahahah beurk */
4272

    
4273
    for( i8x8 = 0; i8x8 < 4; i8x8++ ) {
4274
        int mba_xy = -1;
4275
        int mbb_xy = -1;
4276
        int x, y;
4277
        int ctx = 0;
4278

    
4279
        x = block_idx_x[4*i8x8];
4280
        y = block_idx_y[4*i8x8];
4281

    
4282
        if( x > 0 )
4283
            mba_xy = mb_xy;
4284
        else if( s->mb_x > 0 )
4285
            mba_xy = mb_xy - 1;
4286

    
4287
        if( y > 0 )
4288
            mbb_xy = mb_xy;
4289
        else if( s->mb_y > 0 )
4290
            mbb_xy = mb_xy - s->mb_stride;
4291

    
4292
        /* No need to test for skip as we put 0 for skip block */
4293
        if( mba_xy >= 0 ) {
4294
            int i8x8a = block_idx_xy[(x-1)&0x03][y]/4;
4295
            if( ((h->cbp_table[mba_xy] >> i8x8a)&0x01) == 0 )
4296
                ctx++;
4297
        }
4298

    
4299
        if( mbb_xy >= 0 ) {
4300
            int i8x8b = block_idx_xy[x][(y-1)&0x03]/4;
4301
            if( ((h->cbp_table[mbb_xy] >> i8x8b)&0x01) == 0 )
4302
                ctx += 2;
4303
        }
4304

    
4305
        if( get_cabac( &h->cabac, &h->cabac_state[73 + ctx] ) ) {
4306
            cbp |= 1 << i8x8;
4307
            h->cbp_table[mb_xy] = cbp;  /* FIXME aaahahahah beurk */
4308
        }
4309
    }
4310
    return cbp;
4311
}
4312
static int decode_cabac_mb_cbp_chroma( H264Context *h) {
4313
    int ctx;
4314
    int cbp_a, cbp_b;
4315

    
4316
    cbp_a = (h->left_cbp>>4)&0x03;
4317
    cbp_b = (h-> top_cbp>>4)&0x03;
4318

    
4319
    ctx = 0;
4320
    if( cbp_a > 0 ) ctx++;
4321
    if( cbp_b > 0 ) ctx += 2;
4322
    if( get_cabac( &h->cabac, &h->cabac_state[77 + ctx] ) == 0 )
4323
        return 0;
4324

    
4325
    ctx = 4;
4326
    if( cbp_a == 2 ) ctx++;
4327
    if( cbp_b == 2 ) ctx += 2;
4328
    return 1 + get_cabac( &h->cabac, &h->cabac_state[77 + ctx] );
4329
}
4330
static int decode_cabac_mb_dqp( H264Context *h) {
4331
    MpegEncContext * const s = &h->s;
4332
    int mbn_xy;
4333
    int   ctx = 0;
4334
    int   val = 0;
4335

    
4336
    if( s->mb_x > 0 )
4337
        mbn_xy = s->mb_x + s->mb_y*s->mb_stride - 1;
4338
    else
4339
        mbn_xy = s->mb_width - 1 + (s->mb_y-1)*s->mb_stride;
4340

    
4341
    if( mbn_xy >= 0 && h->last_qscale_diff != 0 && ( IS_INTRA16x16(s->current_picture.mb_type[mbn_xy] ) || (h->cbp_table[mbn_xy]&0x3f) ) )
4342
        ctx++;
4343

    
4344
    while( get_cabac( &h->cabac, &h->cabac_state[60 + ctx] ) ) {
4345
        if( ctx < 2 )
4346
            ctx = 2;
4347
        else
4348
            ctx = 3;
4349
        val++;
4350
    }
4351

    
4352
    if( val&0x01 )
4353
        return (val + 1)/2;
4354
    else
4355
        return -(val + 1)/2;
4356
}
4357
static int decode_cabac_p_mb_sub_type( H264Context *h ) {
4358
    if( get_cabac( &h->cabac, &h->cabac_state[21] ) )
4359
        return 0;   /* 8x8 */
4360
    if( !get_cabac( &h->cabac, &h->cabac_state[22] ) )
4361
        return 1;   /* 8x4 */
4362
    if( get_cabac( &h->cabac, &h->cabac_state[23] ) )
4363
        return 2;   /* 4x8 */
4364
    return 3;       /* 4x4 */
4365
}
4366
static int decode_cabac_b_mb_sub_type( H264Context *h ) {
4367
    int type;
4368
    if( !get_cabac( &h->cabac, &h->cabac_state[36] ) )
4369
        return 0;   /* B_Direct_8x8 */
4370
    if( !get_cabac( &h->cabac, &h->cabac_state[37] ) )
4371
        return 1 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L0_8x8, B_L1_8x8 */
4372
    type = 3;
4373
    if( get_cabac( &h->cabac, &h->cabac_state[38] ) ) {
4374
        if( get_cabac( &h->cabac, &h->cabac_state[39] ) )
4375
            return 11 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L1_4x4, B_Bi_4x4 */
4376
        type += 4;
4377
    }
4378
    type += 2*get_cabac( &h->cabac, &h->cabac_state[39] );
4379
    type +=   get_cabac( &h->cabac, &h->cabac_state[39] );
4380
    return type;
4381
}
4382

    
4383
static int decode_cabac_mb_ref( H264Context *h, int list, int n ) {
4384
    int refa = h->ref_cache[list][scan8[n] - 1];
4385
    int refb = h->ref_cache[list][scan8[n] - 8];
4386
    int ref  = 0;
4387
    int ctx  = 0;
4388

    
4389
    if( h->slice_type == B_TYPE) {
4390
        if( refa > 0 && !h->direct_cache[scan8[n] - 1] )
4391
            ctx++;
4392
        if( refb > 0 && !h->direct_cache[scan8[n] - 8] )
4393
            ctx += 2;
4394
    } else {
4395
        if( refa > 0 )
4396
            ctx++;
4397
        if( refb > 0 )
4398
            ctx += 2;
4399
    }
4400

    
4401
    while( get_cabac( &h->cabac, &h->cabac_state[54+ctx] ) ) {
4402
        ref++;
4403
        if( ctx < 4 )
4404
            ctx = 4;
4405
        else
4406
            ctx = 5;
4407
    }
4408
    return ref;
4409
}
4410

    
4411
static int decode_cabac_mb_mvd( H264Context *h, int list, int n, int l ) {
4412
    int amvd = abs( h->mvd_cache[list][scan8[n] - 1][l] ) +
4413
               abs( h->mvd_cache[list][scan8[n] - 8][l] );
4414
    int ctxbase = (l == 0) ? 40 : 47;
4415
    int ctx, mvd;
4416

    
4417
    if( amvd < 3 )
4418
        ctx = 0;
4419
    else if( amvd > 32 )
4420
        ctx = 2;
4421
    else
4422
        ctx = 1;
4423

    
4424
    if(!get_cabac(&h->cabac, &h->cabac_state[ctxbase+ctx]))
4425
        return 0;
4426

    
4427
    mvd= 1;
4428
    ctx= 3;
4429
    while( mvd < 9 && get_cabac( &h->cabac, &h->cabac_state[ctxbase+ctx] ) ) {
4430
        mvd++;
4431
        if( ctx < 6 )
4432
            ctx++;
4433
    }
4434

    
4435
    if( mvd >= 9 ) {
4436
        int k = 3;
4437
        while( get_cabac_bypass( &h->cabac ) ) {
4438
            mvd += 1 << k;
4439
            k++;
4440
        }
4441
        while( k-- ) {
4442
            if( get_cabac_bypass( &h->cabac ) )
4443
                mvd += 1 << k;
4444
        }
4445
    }
4446
    if( get_cabac_bypass( &h->cabac ) )  return -mvd;
4447
    else                                 return  mvd;
4448
}
4449

    
4450
static int inline get_cabac_cbf_ctx( H264Context *h, int cat, int idx ) {
4451
    int nza, nzb;
4452
    int ctx = 0;
4453

    
4454
    if( cat == 0 ) {
4455
        nza = h->left_cbp&0x100;
4456
        nzb = h-> top_cbp&0x100;
4457
    } else if( cat == 1 || cat == 2 ) {
4458
        nza = h->non_zero_count_cache[scan8[idx] - 1];
4459
        nzb = h->non_zero_count_cache[scan8[idx] - 8];
4460
    } else if( cat == 3 ) {
4461
        nza = (h->left_cbp>>(6+idx))&0x01;
4462
        nzb = (h-> top_cbp>>(6+idx))&0x01;
4463
    } else {
4464
        assert(cat == 4);
4465
        nza = h->non_zero_count_cache[scan8[16+idx] - 1];
4466
        nzb = h->non_zero_count_cache[scan8[16+idx] - 8];
4467
    }
4468

    
4469
    if( nza > 0 )
4470
        ctx++;
4471

    
4472
    if( nzb > 0 )
4473
        ctx += 2;
4474

    
4475
    return ctx + 4 * cat;
4476
}
4477

    
4478
static int inline decode_cabac_residual( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, int qp, int max_coeff) {
4479
    const int mb_xy  = h->s.mb_x + h->s.mb_y*h->s.mb_stride;
4480
    const uint16_t *qmul= dequant_coeff[qp];
4481
    static const int significant_coeff_flag_offset[5] = { 0, 15, 29, 44, 47 };
4482
    static const int coeff_abs_level_m1_offset[5] = {227+ 0, 227+10, 227+20, 227+30, 227+39 };
4483

    
4484
    int index[16];
4485

    
4486
    int i, last;
4487
    int coeff_count = 0;
4488

    
4489
    int abslevel1 = 1;
4490
    int abslevelgt1 = 0;
4491

    
4492
    /* cat: 0-> DC 16x16  n = 0
4493
     *      1-> AC 16x16  n = luma4x4idx
4494
     *      2-> Luma4x4   n = luma4x4idx
4495
     *      3-> DC Chroma n = iCbCr
4496
     *      4-> AC Chroma n = 4 * iCbCr + chroma4x4idx
4497
     */
4498

    
4499
    /* read coded block flag */