Statistics
| Branch: | Revision:

ffmpeg / libavcodec / vp3.c @ a9621908

History | View | Annotate | Download (93.9 KB)

1
/*
2
 * Copyright (C) 2003-2004 the ffmpeg project
3
 *
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2.1 of the License, or (at your option) any later version.
10
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with FFmpeg; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
 *
20
 */
21

    
22
/**
23
 * @file vp3.c
24
 * On2 VP3 Video Decoder
25
 *
26
 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
27
 * For more information about the VP3 coding process, visit:
28
 *   http://multimedia.cx/
29
 *
30
 * Theora decoder by Alex Beregszaszi
31
 */
32

    
33
#include <stdio.h>
34
#include <stdlib.h>
35
#include <string.h>
36
#include <unistd.h>
37

    
38
#include "common.h"
39
#include "avcodec.h"
40
#include "dsputil.h"
41
#include "mpegvideo.h"
42

    
43
#include "vp3data.h"
44

    
45
#define FRAGMENT_PIXELS 8
46

    
47
/*
48
 * Debugging Variables
49
 *
50
 * Define one or more of the following compile-time variables to 1 to obtain
51
 * elaborate information about certain aspects of the decoding process.
52
 *
53
 * KEYFRAMES_ONLY: set this to 1 to only see keyframes (VP3 slideshow mode)
54
 * DEBUG_VP3: high-level decoding flow
55
 * DEBUG_INIT: initialization parameters
56
 * DEBUG_DEQUANTIZERS: display how the dequanization tables are built
57
 * DEBUG_BLOCK_CODING: unpacking the superblock/macroblock/fragment coding
58
 * DEBUG_MODES: unpacking the coding modes for individual fragments
59
 * DEBUG_VECTORS: display the motion vectors
60
 * DEBUG_TOKEN: display exhaustive information about each DCT token
61
 * DEBUG_VLC: display the VLCs as they are extracted from the stream
62
 * DEBUG_DC_PRED: display the process of reversing DC prediction
63
 * DEBUG_IDCT: show every detail of the IDCT process
64
 */
65

    
66
#define KEYFRAMES_ONLY 0
67

    
68
#define DEBUG_VP3 0
69
#define DEBUG_INIT 0
70
#define DEBUG_DEQUANTIZERS 0
71
#define DEBUG_BLOCK_CODING 0
72
#define DEBUG_MODES 0
73
#define DEBUG_VECTORS 0
74
#define DEBUG_TOKEN 0
75
#define DEBUG_VLC 0
76
#define DEBUG_DC_PRED 0
77
#define DEBUG_IDCT 0
78

    
79
#if DEBUG_VP3
80
#define debug_vp3(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
81
#else
82
static inline void debug_vp3(const char *format, ...) { }
83
#endif
84

    
85
#if DEBUG_INIT
86
#define debug_init(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
87
#else
88
static inline void debug_init(const char *format, ...) { }
89
#endif
90

    
91
#if DEBUG_DEQUANTIZERS
92
#define debug_dequantizers(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
93
#else
94
static inline void debug_dequantizers(const char *format, ...) { }
95
#endif
96

    
97
#if DEBUG_BLOCK_CODING
98
#define debug_block_coding(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
99
#else
100
static inline void debug_block_coding(const char *format, ...) { }
101
#endif
102

    
103
#if DEBUG_MODES
104
#define debug_modes(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
105
#else
106
static inline void debug_modes(const char *format, ...) { }
107
#endif
108

    
109
#if DEBUG_VECTORS
110
#define debug_vectors(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
111
#else
112
static inline void debug_vectors(const char *format, ...) { }
113
#endif
114

    
115
#if DEBUG_TOKEN
116
#define debug_token(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
117
#else
118
static inline void debug_token(const char *format, ...) { }
119
#endif
120

    
121
#if DEBUG_VLC
122
#define debug_vlc(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
123
#else
124
static inline void debug_vlc(const char *format, ...) { }
125
#endif
126

    
127
#if DEBUG_DC_PRED
128
#define debug_dc_pred(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
129
#else
130
static inline void debug_dc_pred(const char *format, ...) { }
131
#endif
132

    
133
#if DEBUG_IDCT
134
#define debug_idct(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
135
#else
136
static inline void debug_idct(const char *format, ...) { }
137
#endif
138

    
139
typedef struct Coeff {
140
    struct Coeff *next;
141
    DCTELEM coeff;
142
    uint8_t index;
143
} Coeff;
144

    
145
//FIXME split things out into their own arrays
146
typedef struct Vp3Fragment {
147
    Coeff *next_coeff;
148
    /* address of first pixel taking into account which plane the fragment
149
     * lives on as well as the plane stride */
150
    int first_pixel;
151
    /* this is the macroblock that the fragment belongs to */
152
    uint16_t macroblock;
153
    uint8_t coding_method;
154
    uint8_t coeff_count;
155
    int8_t motion_x;
156
    int8_t motion_y;
157
} Vp3Fragment;
158

    
159
#define SB_NOT_CODED        0
160
#define SB_PARTIALLY_CODED  1
161
#define SB_FULLY_CODED      2
162

    
163
#define MODE_INTER_NO_MV      0
164
#define MODE_INTRA            1
165
#define MODE_INTER_PLUS_MV    2
166
#define MODE_INTER_LAST_MV    3
167
#define MODE_INTER_PRIOR_LAST 4
168
#define MODE_USING_GOLDEN     5
169
#define MODE_GOLDEN_MV        6
170
#define MODE_INTER_FOURMV     7
171
#define CODING_MODE_COUNT     8
172

    
173
/* special internal mode */
174
#define MODE_COPY             8
175

    
176
/* There are 6 preset schemes, plus a free-form scheme */
177
static int ModeAlphabet[7][CODING_MODE_COUNT] =
178
{
179
    /* this is the custom scheme */
180
    { 0, 0, 0, 0, 0, 0, 0, 0 },
181

    
182
    /* scheme 1: Last motion vector dominates */
183
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
184
         MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
185
         MODE_INTRA,            MODE_USING_GOLDEN,
186
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
187

    
188
    /* scheme 2 */
189
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
190
         MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
191
         MODE_INTRA,            MODE_USING_GOLDEN,
192
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
193

    
194
    /* scheme 3 */
195
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
196
         MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
197
         MODE_INTRA,            MODE_USING_GOLDEN,
198
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
199

    
200
    /* scheme 4 */
201
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
202
         MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
203
         MODE_INTRA,            MODE_USING_GOLDEN,
204
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
205

    
206
    /* scheme 5: No motion vector dominates */
207
    {    MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,
208
         MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
209
         MODE_INTRA,            MODE_USING_GOLDEN,
210
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
211

    
212
    /* scheme 6 */
213
    {    MODE_INTER_NO_MV,      MODE_USING_GOLDEN,
214
         MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
215
         MODE_INTER_PLUS_MV,    MODE_INTRA,
216
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
217

    
218
};
219

    
220
#define MIN_DEQUANT_VAL 2
221

    
222
typedef struct Vp3DecodeContext {
223
    AVCodecContext *avctx;
224
    int theora, theora_tables;
225
    int version;
226
    int width, height;
227
    AVFrame golden_frame;
228
    AVFrame last_frame;
229
    AVFrame current_frame;
230
    int keyframe;
231
    DSPContext dsp;
232
    int flipped_image;
233

    
234
    int qis[3];
235
    int nqis;
236
    int quality_index;
237
    int last_quality_index;
238

    
239
    int superblock_count;
240
    int superblock_width;
241
    int superblock_height;
242
    int y_superblock_width;
243
    int y_superblock_height;
244
    int c_superblock_width;
245
    int c_superblock_height;
246
    int u_superblock_start;
247
    int v_superblock_start;
248
    unsigned char *superblock_coding;
249

    
250
    int macroblock_count;
251
    int macroblock_width;
252
    int macroblock_height;
253

    
254
    int fragment_count;
255
    int fragment_width;
256
    int fragment_height;
257

    
258
    Vp3Fragment *all_fragments;
259
    Coeff *coeffs;
260
    Coeff *next_coeff;
261
    int fragment_start[3];
262

    
263
    ScanTable scantable;
264

    
265
    /* tables */
266
    uint16_t coded_dc_scale_factor[64];
267
    uint32_t coded_ac_scale_factor[64];
268
    uint8_t base_matrix[384][64];
269
    uint8_t qr_count[2][3];
270
    uint8_t qr_size [2][3][64];
271
    uint16_t qr_base[2][3][64];
272

    
273
    /* this is a list of indices into the all_fragments array indicating
274
     * which of the fragments are coded */
275
    int *coded_fragment_list;
276
    int coded_fragment_list_index;
277
    int pixel_addresses_inited;
278

    
279
    VLC dc_vlc[16];
280
    VLC ac_vlc_1[16];
281
    VLC ac_vlc_2[16];
282
    VLC ac_vlc_3[16];
283
    VLC ac_vlc_4[16];
284

    
285
    VLC superblock_run_length_vlc;
286
    VLC fragment_run_length_vlc;
287
    VLC mode_code_vlc;
288
    VLC motion_vector_vlc;
289

    
290
    /* these arrays need to be on 16-byte boundaries since SSE2 operations
291
     * index into them */
292
    DECLARE_ALIGNED_16(int16_t, qmat[2][4][64]);        //<qmat[is_inter][plane]
293

    
294
    /* This table contains superblock_count * 16 entries. Each set of 16
295
     * numbers corresponds to the fragment indices 0..15 of the superblock.
296
     * An entry will be -1 to indicate that no entry corresponds to that
297
     * index. */
298
    int *superblock_fragments;
299

    
300
    /* This table contains superblock_count * 4 entries. Each set of 4
301
     * numbers corresponds to the macroblock indices 0..3 of the superblock.
302
     * An entry will be -1 to indicate that no entry corresponds to that
303
     * index. */
304
    int *superblock_macroblocks;
305

    
306
    /* This table contains macroblock_count * 6 entries. Each set of 6
307
     * numbers corresponds to the fragment indices 0..5 which comprise
308
     * the macroblock (4 Y fragments and 2 C fragments). */
309
    int *macroblock_fragments;
310
    /* This is an array that indicates how a particular macroblock
311
     * is coded. */
312
    unsigned char *macroblock_coding;
313

    
314
    int first_coded_y_fragment;
315
    int first_coded_c_fragment;
316
    int last_coded_y_fragment;
317
    int last_coded_c_fragment;
318

    
319
    uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
320
    int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
321

    
322
    /* Huffman decode */
323
    int hti;
324
    unsigned int hbits;
325
    int entries;
326
    int huff_code_size;
327
    uint16_t huffman_table[80][32][2];
328

    
329
    uint32_t filter_limit_values[64];
330
    int bounding_values_array[256];
331
} Vp3DecodeContext;
332

    
333
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb);
334

    
335
/************************************************************************
336
 * VP3 specific functions
337
 ************************************************************************/
338

    
339
/*
340
 * This function sets up all of the various blocks mappings:
341
 * superblocks <-> fragments, macroblocks <-> fragments,
342
 * superblocks <-> macroblocks
343
 *
344
 * Returns 0 is successful; returns 1 if *anything* went wrong.
345
 */
346
static int init_block_mapping(Vp3DecodeContext *s)
347
{
348
    int i, j;
349
    signed int hilbert_walk_mb[4];
350

    
351
    int current_fragment = 0;
352
    int current_width = 0;
353
    int current_height = 0;
354
    int right_edge = 0;
355
    int bottom_edge = 0;
356
    int superblock_row_inc = 0;
357
    int *hilbert = NULL;
358
    int mapping_index = 0;
359

    
360
    int current_macroblock;
361
    int c_fragment;
362

    
363
    signed char travel_width[16] = {
364
         1,  1,  0, -1,
365
         0,  0,  1,  0,
366
         1,  0,  1,  0,
367
         0, -1,  0,  1
368
    };
369

    
370
    signed char travel_height[16] = {
371
         0,  0,  1,  0,
372
         1,  1,  0, -1,
373
         0,  1,  0, -1,
374
        -1,  0, -1,  0
375
    };
376

    
377
    signed char travel_width_mb[4] = {
378
         1,  0,  1,  0
379
    };
380

    
381
    signed char travel_height_mb[4] = {
382
         0,  1,  0, -1
383
    };
384

    
385
    debug_vp3("  vp3: initialize block mapping tables\n");
386

    
387
    hilbert_walk_mb[0] = 1;
388
    hilbert_walk_mb[1] = s->macroblock_width;
389
    hilbert_walk_mb[2] = 1;
390
    hilbert_walk_mb[3] = -s->macroblock_width;
391

    
392
    /* iterate through each superblock (all planes) and map the fragments */
393
    for (i = 0; i < s->superblock_count; i++) {
394
        debug_init("    superblock %d (u starts @ %d, v starts @ %d)\n",
395
            i, s->u_superblock_start, s->v_superblock_start);
396

    
397
        /* time to re-assign the limits? */
398
        if (i == 0) {
399

    
400
            /* start of Y superblocks */
401
            right_edge = s->fragment_width;
402
            bottom_edge = s->fragment_height;
403
            current_width = -1;
404
            current_height = 0;
405
            superblock_row_inc = 3 * s->fragment_width -
406
                (s->y_superblock_width * 4 - s->fragment_width);
407

    
408
            /* the first operation for this variable is to advance by 1 */
409
            current_fragment = -1;
410

    
411
        } else if (i == s->u_superblock_start) {
412

    
413
            /* start of U superblocks */
414
            right_edge = s->fragment_width / 2;
415
            bottom_edge = s->fragment_height / 2;
416
            current_width = -1;
417
            current_height = 0;
418
            superblock_row_inc = 3 * (s->fragment_width / 2) -
419
                (s->c_superblock_width * 4 - s->fragment_width / 2);
420

    
421
            /* the first operation for this variable is to advance by 1 */
422
            current_fragment = s->fragment_start[1] - 1;
423

    
424
        } else if (i == s->v_superblock_start) {
425

    
426
            /* start of V superblocks */
427
            right_edge = s->fragment_width / 2;
428
            bottom_edge = s->fragment_height / 2;
429
            current_width = -1;
430
            current_height = 0;
431
            superblock_row_inc = 3 * (s->fragment_width / 2) -
432
                (s->c_superblock_width * 4 - s->fragment_width / 2);
433

    
434
            /* the first operation for this variable is to advance by 1 */
435
            current_fragment = s->fragment_start[2] - 1;
436

    
437
        }
438

    
439
        if (current_width >= right_edge - 1) {
440
            /* reset width and move to next superblock row */
441
            current_width = -1;
442
            current_height += 4;
443

    
444
            /* fragment is now at the start of a new superblock row */
445
            current_fragment += superblock_row_inc;
446
        }
447

    
448
        /* iterate through all 16 fragments in a superblock */
449
        for (j = 0; j < 16; j++) {
450
            current_fragment += travel_width[j] + right_edge * travel_height[j];
451
            current_width += travel_width[j];
452
            current_height += travel_height[j];
453

    
454
            /* check if the fragment is in bounds */
455
            if ((current_width < right_edge) &&
456
                (current_height < bottom_edge)) {
457
                s->superblock_fragments[mapping_index] = current_fragment;
458
                debug_init("    mapping fragment %d to superblock %d, position %d (%d/%d x %d/%d)\n",
459
                    s->superblock_fragments[mapping_index], i, j,
460
                    current_width, right_edge, current_height, bottom_edge);
461
            } else {
462
                s->superblock_fragments[mapping_index] = -1;
463
                debug_init("    superblock %d, position %d has no fragment (%d/%d x %d/%d)\n",
464
                    i, j,
465
                    current_width, right_edge, current_height, bottom_edge);
466
            }
467

    
468
            mapping_index++;
469
        }
470
    }
471

    
472
    /* initialize the superblock <-> macroblock mapping; iterate through
473
     * all of the Y plane superblocks to build this mapping */
474
    right_edge = s->macroblock_width;
475
    bottom_edge = s->macroblock_height;
476
    current_width = -1;
477
    current_height = 0;
478
    superblock_row_inc = s->macroblock_width -
479
        (s->y_superblock_width * 2 - s->macroblock_width);;
480
    hilbert = hilbert_walk_mb;
481
    mapping_index = 0;
482
    current_macroblock = -1;
483
    for (i = 0; i < s->u_superblock_start; i++) {
484

    
485
        if (current_width >= right_edge - 1) {
486
            /* reset width and move to next superblock row */
487
            current_width = -1;
488
            current_height += 2;
489

    
490
            /* macroblock is now at the start of a new superblock row */
491
            current_macroblock += superblock_row_inc;
492
        }
493

    
494
        /* iterate through each potential macroblock in the superblock */
495
        for (j = 0; j < 4; j++) {
496
            current_macroblock += hilbert_walk_mb[j];
497
            current_width += travel_width_mb[j];
498
            current_height += travel_height_mb[j];
499

    
500
            /* check if the macroblock is in bounds */
501
            if ((current_width < right_edge) &&
502
                (current_height < bottom_edge)) {
503
                s->superblock_macroblocks[mapping_index] = current_macroblock;
504
                debug_init("    mapping macroblock %d to superblock %d, position %d (%d/%d x %d/%d)\n",
505
                    s->superblock_macroblocks[mapping_index], i, j,
506
                    current_width, right_edge, current_height, bottom_edge);
507
            } else {
508
                s->superblock_macroblocks[mapping_index] = -1;
509
                debug_init("    superblock %d, position %d has no macroblock (%d/%d x %d/%d)\n",
510
                    i, j,
511
                    current_width, right_edge, current_height, bottom_edge);
512
            }
513

    
514
            mapping_index++;
515
        }
516
    }
517

    
518
    /* initialize the macroblock <-> fragment mapping */
519
    current_fragment = 0;
520
    current_macroblock = 0;
521
    mapping_index = 0;
522
    for (i = 0; i < s->fragment_height; i += 2) {
523

    
524
        for (j = 0; j < s->fragment_width; j += 2) {
525

    
526
            debug_init("    macroblock %d contains fragments: ", current_macroblock);
527
            s->all_fragments[current_fragment].macroblock = current_macroblock;
528
            s->macroblock_fragments[mapping_index++] = current_fragment;
529
            debug_init("%d ", current_fragment);
530

    
531
            if (j + 1 < s->fragment_width) {
532
                s->all_fragments[current_fragment + 1].macroblock = current_macroblock;
533
                s->macroblock_fragments[mapping_index++] = current_fragment + 1;
534
                debug_init("%d ", current_fragment + 1);
535
            } else
536
                s->macroblock_fragments[mapping_index++] = -1;
537

    
538
            if (i + 1 < s->fragment_height) {
539
                s->all_fragments[current_fragment + s->fragment_width].macroblock =
540
                    current_macroblock;
541
                s->macroblock_fragments[mapping_index++] =
542
                    current_fragment + s->fragment_width;
543
                debug_init("%d ", current_fragment + s->fragment_width);
544
            } else
545
                s->macroblock_fragments[mapping_index++] = -1;
546

    
547
            if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) {
548
                s->all_fragments[current_fragment + s->fragment_width + 1].macroblock =
549
                    current_macroblock;
550
                s->macroblock_fragments[mapping_index++] =
551
                    current_fragment + s->fragment_width + 1;
552
                debug_init("%d ", current_fragment + s->fragment_width + 1);
553
            } else
554
                s->macroblock_fragments[mapping_index++] = -1;
555

    
556
            /* C planes */
557
            c_fragment = s->fragment_start[1] +
558
                (i * s->fragment_width / 4) + (j / 2);
559
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
560
            s->macroblock_fragments[mapping_index++] = c_fragment;
561
            debug_init("%d ", c_fragment);
562

    
563
            c_fragment = s->fragment_start[2] +
564
                (i * s->fragment_width / 4) + (j / 2);
565
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
566
            s->macroblock_fragments[mapping_index++] = c_fragment;
567
            debug_init("%d ", c_fragment);
568

    
569
            debug_init("\n");
570

    
571
            if (j + 2 <= s->fragment_width)
572
                current_fragment += 2;
573
            else
574
                current_fragment++;
575
            current_macroblock++;
576
        }
577

    
578
        current_fragment += s->fragment_width;
579
    }
580

    
581
    return 0;  /* successful path out */
582
}
583

    
584
/*
585
 * This function wipes out all of the fragment data.
586
 */
587
static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
588
{
589
    int i;
590

    
591
    /* zero out all of the fragment information */
592
    s->coded_fragment_list_index = 0;
593
    for (i = 0; i < s->fragment_count; i++) {
594
        s->all_fragments[i].coeff_count = 0;
595
        s->all_fragments[i].motion_x = 127;
596
        s->all_fragments[i].motion_y = 127;
597
        s->all_fragments[i].next_coeff= NULL;
598
        s->coeffs[i].index=
599
        s->coeffs[i].coeff=0;
600
        s->coeffs[i].next= NULL;
601
    }
602
}
603

    
604
/*
605
 * This function sets up the dequantization tables used for a particular
606
 * frame.
607
 */
608
static void init_dequantizer(Vp3DecodeContext *s)
609
{
610
    int ac_scale_factor = s->coded_ac_scale_factor[s->quality_index];
611
    int dc_scale_factor = s->coded_dc_scale_factor[s->quality_index];
612
    int i, plane, inter, qri, bmi, bmj, qistart;
613

    
614
    debug_vp3("  vp3: initializing dequantization tables\n");
615

    
616
    for(inter=0; inter<2; inter++){
617
        for(plane=0; plane<3; plane++){
618
            int sum=0;
619
            for(qri=0; qri<s->qr_count[inter][plane]; qri++){
620
                sum+= s->qr_size[inter][plane][qri];
621
                if(s->quality_index <= sum)
622
                    break;
623
            }
624
            qistart= sum - s->qr_size[inter][plane][qri];
625
            bmi= s->qr_base[inter][plane][qri  ];
626
            bmj= s->qr_base[inter][plane][qri+1];
627
            for(i=0; i<64; i++){
628
                int coeff= (  2*(sum    -s->quality_index)*s->base_matrix[bmi][i]
629
                            - 2*(qistart-s->quality_index)*s->base_matrix[bmj][i]
630
                            + s->qr_size[inter][plane][qri])
631
                           / (2*s->qr_size[inter][plane][qri]);
632

    
633
                int qmin= 8<<(inter + !i);
634
                int qscale= i ? ac_scale_factor : dc_scale_factor;
635

    
636
                s->qmat[inter][plane][i]= clip((qscale * coeff)/100 * 4, qmin, 4096);
637
            }
638
        }
639
    }
640

    
641
    memset(s->qscale_table, (FFMAX(s->qmat[0][0][1], s->qmat[0][1][1])+8)/16, 512); //FIXME finetune
642
}
643

    
644
/*
645
 * This function initializes the loop filter boundary limits if the frame's
646
 * quality index is different from the previous frame's.
647
 */
648
static void init_loop_filter(Vp3DecodeContext *s)
649
{
650
    int *bounding_values= s->bounding_values_array+127;
651
    int filter_limit;
652
    int x;
653

    
654
    filter_limit = s->filter_limit_values[s->quality_index];
655

    
656
    /* set up the bounding values */
657
    memset(s->bounding_values_array, 0, 256 * sizeof(int));
658
    for (x = 0; x < filter_limit; x++) {
659
        bounding_values[-x - filter_limit] = -filter_limit + x;
660
        bounding_values[-x] = -x;
661
        bounding_values[x] = x;
662
        bounding_values[x + filter_limit] = filter_limit - x;
663
    }
664
}
665

    
666
/*
667
 * This function unpacks all of the superblock/macroblock/fragment coding
668
 * information from the bitstream.
669
 */
670
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
671
{
672
    int bit = 0;
673
    int current_superblock = 0;
674
    int current_run = 0;
675
    int decode_fully_flags = 0;
676
    int decode_partial_blocks = 0;
677
    int first_c_fragment_seen;
678

    
679
    int i, j;
680
    int current_fragment;
681

    
682
    debug_vp3("  vp3: unpacking superblock coding\n");
683

    
684
    if (s->keyframe) {
685

    
686
        debug_vp3("    keyframe-- all superblocks are fully coded\n");
687
        memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
688

    
689
    } else {
690

    
691
        /* unpack the list of partially-coded superblocks */
692
        bit = get_bits(gb, 1);
693
        /* toggle the bit because as soon as the first run length is
694
         * fetched the bit will be toggled again */
695
        bit ^= 1;
696
        while (current_superblock < s->superblock_count) {
697
            if (current_run-- == 0) {
698
                bit ^= 1;
699
                current_run = get_vlc2(gb,
700
                    s->superblock_run_length_vlc.table, 6, 2);
701
                if (current_run == 33)
702
                    current_run += get_bits(gb, 12);
703
                debug_block_coding("      setting superblocks %d..%d to %s\n",
704
                    current_superblock,
705
                    current_superblock + current_run - 1,
706
                    (bit) ? "partially coded" : "not coded");
707

    
708
                /* if any of the superblocks are not partially coded, flag
709
                 * a boolean to decode the list of fully-coded superblocks */
710
                if (bit == 0) {
711
                    decode_fully_flags = 1;
712
                } else {
713

    
714
                    /* make a note of the fact that there are partially coded
715
                     * superblocks */
716
                    decode_partial_blocks = 1;
717
                }
718
            }
719
            s->superblock_coding[current_superblock++] = bit;
720
        }
721

    
722
        /* unpack the list of fully coded superblocks if any of the blocks were
723
         * not marked as partially coded in the previous step */
724
        if (decode_fully_flags) {
725

    
726
            current_superblock = 0;
727
            current_run = 0;
728
            bit = get_bits(gb, 1);
729
            /* toggle the bit because as soon as the first run length is
730
             * fetched the bit will be toggled again */
731
            bit ^= 1;
732
            while (current_superblock < s->superblock_count) {
733

    
734
                /* skip any superblocks already marked as partially coded */
735
                if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
736

    
737
                    if (current_run-- == 0) {
738
                        bit ^= 1;
739
                        current_run = get_vlc2(gb,
740
                            s->superblock_run_length_vlc.table, 6, 2);
741
                        if (current_run == 33)
742
                            current_run += get_bits(gb, 12);
743
                    }
744

    
745
                    debug_block_coding("      setting superblock %d to %s\n",
746
                        current_superblock,
747
                        (bit) ? "fully coded" : "not coded");
748
                    s->superblock_coding[current_superblock] = 2*bit;
749
                }
750
                current_superblock++;
751
            }
752
        }
753

    
754
        /* if there were partial blocks, initialize bitstream for
755
         * unpacking fragment codings */
756
        if (decode_partial_blocks) {
757

    
758
            current_run = 0;
759
            bit = get_bits(gb, 1);
760
            /* toggle the bit because as soon as the first run length is
761
             * fetched the bit will be toggled again */
762
            bit ^= 1;
763
        }
764
    }
765

    
766
    /* figure out which fragments are coded; iterate through each
767
     * superblock (all planes) */
768
    s->coded_fragment_list_index = 0;
769
    s->next_coeff= s->coeffs + s->fragment_count;
770
    s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
771
    s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
772
    first_c_fragment_seen = 0;
773
    memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
774
    for (i = 0; i < s->superblock_count; i++) {
775

    
776
        /* iterate through all 16 fragments in a superblock */
777
        for (j = 0; j < 16; j++) {
778

    
779
            /* if the fragment is in bounds, check its coding status */
780
            current_fragment = s->superblock_fragments[i * 16 + j];
781
            if (current_fragment >= s->fragment_count) {
782
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
783
                    current_fragment, s->fragment_count);
784
                return 1;
785
            }
786
            if (current_fragment != -1) {
787
                if (s->superblock_coding[i] == SB_NOT_CODED) {
788

    
789
                    /* copy all the fragments from the prior frame */
790
                    s->all_fragments[current_fragment].coding_method =
791
                        MODE_COPY;
792

    
793
                } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
794

    
795
                    /* fragment may or may not be coded; this is the case
796
                     * that cares about the fragment coding runs */
797
                    if (current_run-- == 0) {
798
                        bit ^= 1;
799
                        current_run = get_vlc2(gb,
800
                            s->fragment_run_length_vlc.table, 5, 2);
801
                    }
802

    
803
                    if (bit) {
804
                        /* default mode; actual mode will be decoded in
805
                         * the next phase */
806
                        s->all_fragments[current_fragment].coding_method =
807
                            MODE_INTER_NO_MV;
808
                        s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
809
                        s->coded_fragment_list[s->coded_fragment_list_index] =
810
                            current_fragment;
811
                        if ((current_fragment >= s->fragment_start[1]) &&
812
                            (s->last_coded_y_fragment == -1) &&
813
                            (!first_c_fragment_seen)) {
814
                            s->first_coded_c_fragment = s->coded_fragment_list_index;
815
                            s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
816
                            first_c_fragment_seen = 1;
817
                        }
818
                        s->coded_fragment_list_index++;
819
                        s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
820
                        debug_block_coding("      superblock %d is partially coded, fragment %d is coded\n",
821
                            i, current_fragment);
822
                    } else {
823
                        /* not coded; copy this fragment from the prior frame */
824
                        s->all_fragments[current_fragment].coding_method =
825
                            MODE_COPY;
826
                        debug_block_coding("      superblock %d is partially coded, fragment %d is not coded\n",
827
                            i, current_fragment);
828
                    }
829

    
830
                } else {
831

    
832
                    /* fragments are fully coded in this superblock; actual
833
                     * coding will be determined in next step */
834
                    s->all_fragments[current_fragment].coding_method =
835
                        MODE_INTER_NO_MV;
836
                    s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
837
                    s->coded_fragment_list[s->coded_fragment_list_index] =
838
                        current_fragment;
839
                    if ((current_fragment >= s->fragment_start[1]) &&
840
                        (s->last_coded_y_fragment == -1) &&
841
                        (!first_c_fragment_seen)) {
842
                        s->first_coded_c_fragment = s->coded_fragment_list_index;
843
                        s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
844
                        first_c_fragment_seen = 1;
845
                    }
846
                    s->coded_fragment_list_index++;
847
                    s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
848
                    debug_block_coding("      superblock %d is fully coded, fragment %d is coded\n",
849
                        i, current_fragment);
850
                }
851
            }
852
        }
853
    }
854

    
855
    if (!first_c_fragment_seen)
856
        /* only Y fragments coded in this frame */
857
        s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
858
    else
859
        /* end the list of coded C fragments */
860
        s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
861

    
862
    debug_block_coding("    %d total coded fragments, y: %d -> %d, c: %d -> %d\n",
863
        s->coded_fragment_list_index,
864
        s->first_coded_y_fragment,
865
        s->last_coded_y_fragment,
866
        s->first_coded_c_fragment,
867
        s->last_coded_c_fragment);
868

    
869
    return 0;
870
}
871

    
872
/*
873
 * This function unpacks all the coding mode data for individual macroblocks
874
 * from the bitstream.
875
 */
876
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
877
{
878
    int i, j, k;
879
    int scheme;
880
    int current_macroblock;
881
    int current_fragment;
882
    int coding_mode;
883

    
884
    debug_vp3("  vp3: unpacking encoding modes\n");
885

    
886
    if (s->keyframe) {
887
        debug_vp3("    keyframe-- all blocks are coded as INTRA\n");
888

    
889
        for (i = 0; i < s->fragment_count; i++)
890
            s->all_fragments[i].coding_method = MODE_INTRA;
891

    
892
    } else {
893

    
894
        /* fetch the mode coding scheme for this frame */
895
        scheme = get_bits(gb, 3);
896
        debug_modes("    using mode alphabet %d\n", scheme);
897

    
898
        /* is it a custom coding scheme? */
899
        if (scheme == 0) {
900
            debug_modes("    custom mode alphabet ahead:\n");
901
            for (i = 0; i < 8; i++)
902
                ModeAlphabet[scheme][get_bits(gb, 3)] = i;
903
        }
904

    
905
        for (i = 0; i < 8; i++)
906
            debug_modes("      mode[%d][%d] = %d\n", scheme, i,
907
                ModeAlphabet[scheme][i]);
908

    
909
        /* iterate through all of the macroblocks that contain 1 or more
910
         * coded fragments */
911
        for (i = 0; i < s->u_superblock_start; i++) {
912

    
913
            for (j = 0; j < 4; j++) {
914
                current_macroblock = s->superblock_macroblocks[i * 4 + j];
915
                if ((current_macroblock == -1) ||
916
                    (s->macroblock_coding[current_macroblock] == MODE_COPY))
917
                    continue;
918
                if (current_macroblock >= s->macroblock_count) {
919
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad macroblock number (%d >= %d)\n",
920
                        current_macroblock, s->macroblock_count);
921
                    return 1;
922
                }
923

    
924
                /* mode 7 means get 3 bits for each coding mode */
925
                if (scheme == 7)
926
                    coding_mode = get_bits(gb, 3);
927
                else
928
                    coding_mode = ModeAlphabet[scheme]
929
                        [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
930

    
931
                s->macroblock_coding[current_macroblock] = coding_mode;
932
                for (k = 0; k < 6; k++) {
933
                    current_fragment =
934
                        s->macroblock_fragments[current_macroblock * 6 + k];
935
                    if (current_fragment == -1)
936
                        continue;
937
                    if (current_fragment >= s->fragment_count) {
938
                        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad fragment number (%d >= %d)\n",
939
                            current_fragment, s->fragment_count);
940
                        return 1;
941
                    }
942
                    if (s->all_fragments[current_fragment].coding_method !=
943
                        MODE_COPY)
944
                        s->all_fragments[current_fragment].coding_method =
945
                            coding_mode;
946
                }
947

    
948
                debug_modes("    coding method for macroblock starting @ fragment %d = %d\n",
949
                    s->macroblock_fragments[current_macroblock * 6], coding_mode);
950
            }
951
        }
952
    }
953

    
954
    return 0;
955
}
956

    
957
/*
958
 * This function unpacks all the motion vectors for the individual
959
 * macroblocks from the bitstream.
960
 */
961
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
962
{
963
    int i, j, k;
964
    int coding_mode;
965
    int motion_x[6];
966
    int motion_y[6];
967
    int last_motion_x = 0;
968
    int last_motion_y = 0;
969
    int prior_last_motion_x = 0;
970
    int prior_last_motion_y = 0;
971
    int current_macroblock;
972
    int current_fragment;
973

    
974
    debug_vp3("  vp3: unpacking motion vectors\n");
975
    if (s->keyframe) {
976

    
977
        debug_vp3("    keyframe-- there are no motion vectors\n");
978

    
979
    } else {
980

    
981
        memset(motion_x, 0, 6 * sizeof(int));
982
        memset(motion_y, 0, 6 * sizeof(int));
983

    
984
        /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
985
        coding_mode = get_bits(gb, 1);
986
        debug_vectors("    using %s scheme for unpacking motion vectors\n",
987
            (coding_mode == 0) ? "VLC" : "fixed-length");
988

    
989
        /* iterate through all of the macroblocks that contain 1 or more
990
         * coded fragments */
991
        for (i = 0; i < s->u_superblock_start; i++) {
992

    
993
            for (j = 0; j < 4; j++) {
994
                current_macroblock = s->superblock_macroblocks[i * 4 + j];
995
                if ((current_macroblock == -1) ||
996
                    (s->macroblock_coding[current_macroblock] == MODE_COPY))
997
                    continue;
998
                if (current_macroblock >= s->macroblock_count) {
999
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n",
1000
                        current_macroblock, s->macroblock_count);
1001
                    return 1;
1002
                }
1003

    
1004
                current_fragment = s->macroblock_fragments[current_macroblock * 6];
1005
                if (current_fragment >= s->fragment_count) {
1006
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d\n",
1007
                        current_fragment, s->fragment_count);
1008
                    return 1;
1009
                }
1010
                switch (s->macroblock_coding[current_macroblock]) {
1011

    
1012
                case MODE_INTER_PLUS_MV:
1013
                case MODE_GOLDEN_MV:
1014
                    /* all 6 fragments use the same motion vector */
1015
                    if (coding_mode == 0) {
1016
                        motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
1017
                        motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
1018
                    } else {
1019
                        motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
1020
                        motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
1021
                    }
1022

    
1023
                    for (k = 1; k < 6; k++) {
1024
                        motion_x[k] = motion_x[0];
1025
                        motion_y[k] = motion_y[0];
1026
                    }
1027

    
1028
                    /* vector maintenance, only on MODE_INTER_PLUS_MV */
1029
                    if (s->macroblock_coding[current_macroblock] ==
1030
                        MODE_INTER_PLUS_MV) {
1031
                        prior_last_motion_x = last_motion_x;
1032
                        prior_last_motion_y = last_motion_y;
1033
                        last_motion_x = motion_x[0];
1034
                        last_motion_y = motion_y[0];
1035
                    }
1036
                    break;
1037

    
1038
                case MODE_INTER_FOURMV:
1039
                    /* fetch 4 vectors from the bitstream, one for each
1040
                     * Y fragment, then average for the C fragment vectors */
1041
                    motion_x[4] = motion_y[4] = 0;
1042
                    for (k = 0; k < 4; k++) {
1043
                        if (coding_mode == 0) {
1044
                            motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
1045
                            motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
1046
                        } else {
1047
                            motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
1048
                            motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
1049
                        }
1050
                        motion_x[4] += motion_x[k];
1051
                        motion_y[4] += motion_y[k];
1052
                    }
1053

    
1054
                    motion_x[5]=
1055
                    motion_x[4]= RSHIFT(motion_x[4], 2);
1056
                    motion_y[5]=
1057
                    motion_y[4]= RSHIFT(motion_y[4], 2);
1058

    
1059
                    /* vector maintenance; vector[3] is treated as the
1060
                     * last vector in this case */
1061
                    prior_last_motion_x = last_motion_x;
1062
                    prior_last_motion_y = last_motion_y;
1063
                    last_motion_x = motion_x[3];
1064
                    last_motion_y = motion_y[3];
1065
                    break;
1066

    
1067
                case MODE_INTER_LAST_MV:
1068
                    /* all 6 fragments use the last motion vector */
1069
                    motion_x[0] = last_motion_x;
1070
                    motion_y[0] = last_motion_y;
1071
                    for (k = 1; k < 6; k++) {
1072
                        motion_x[k] = motion_x[0];
1073
                        motion_y[k] = motion_y[0];
1074
                    }
1075

    
1076
                    /* no vector maintenance (last vector remains the
1077
                     * last vector) */
1078
                    break;
1079

    
1080
                case MODE_INTER_PRIOR_LAST:
1081
                    /* all 6 fragments use the motion vector prior to the
1082
                     * last motion vector */
1083
                    motion_x[0] = prior_last_motion_x;
1084
                    motion_y[0] = prior_last_motion_y;
1085
                    for (k = 1; k < 6; k++) {
1086
                        motion_x[k] = motion_x[0];
1087
                        motion_y[k] = motion_y[0];
1088
                    }
1089

    
1090
                    /* vector maintenance */
1091
                    prior_last_motion_x = last_motion_x;
1092
                    prior_last_motion_y = last_motion_y;
1093
                    last_motion_x = motion_x[0];
1094
                    last_motion_y = motion_y[0];
1095
                    break;
1096

    
1097
                default:
1098
                    /* covers intra, inter without MV, golden without MV */
1099
                    memset(motion_x, 0, 6 * sizeof(int));
1100
                    memset(motion_y, 0, 6 * sizeof(int));
1101

    
1102
                    /* no vector maintenance */
1103
                    break;
1104
                }
1105

    
1106
                /* assign the motion vectors to the correct fragments */
1107
                debug_vectors("    vectors for macroblock starting @ fragment %d (coding method %d):\n",
1108
                    current_fragment,
1109
                    s->macroblock_coding[current_macroblock]);
1110
                for (k = 0; k < 6; k++) {
1111
                    current_fragment =
1112
                        s->macroblock_fragments[current_macroblock * 6 + k];
1113
                    if (current_fragment == -1)
1114
                        continue;
1115
                    if (current_fragment >= s->fragment_count) {
1116
                        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d)\n",
1117
                            current_fragment, s->fragment_count);
1118
                        return 1;
1119
                    }
1120
                    s->all_fragments[current_fragment].motion_x = motion_x[k];
1121
                    s->all_fragments[current_fragment].motion_y = motion_y[k];
1122
                    debug_vectors("    vector %d: fragment %d = (%d, %d)\n",
1123
                        k, current_fragment, motion_x[k], motion_y[k]);
1124
                }
1125
            }
1126
        }
1127
    }
1128

    
1129
    return 0;
1130
}
1131

    
1132
/*
1133
 * This function is called by unpack_dct_coeffs() to extract the VLCs from
1134
 * the bitstream. The VLCs encode tokens which are used to unpack DCT
1135
 * data. This function unpacks all the VLCs for either the Y plane or both
1136
 * C planes, and is called for DC coefficients or different AC coefficient
1137
 * levels (since different coefficient types require different VLC tables.
1138
 *
1139
 * This function returns a residual eob run. E.g, if a particular token gave
1140
 * instructions to EOB the next 5 fragments and there were only 2 fragments
1141
 * left in the current fragment range, 3 would be returned so that it could
1142
 * be passed into the next call to this same function.
1143
 */
1144
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
1145
                        VLC *table, int coeff_index,
1146
                        int first_fragment, int last_fragment,
1147
                        int eob_run)
1148
{
1149
    int i;
1150
    int token;
1151
    int zero_run = 0;
1152
    DCTELEM coeff = 0;
1153
    Vp3Fragment *fragment;
1154
    uint8_t *perm= s->scantable.permutated;
1155
    int bits_to_get;
1156

    
1157
    if ((first_fragment >= s->fragment_count) ||
1158
        (last_fragment >= s->fragment_count)) {
1159

    
1160
        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vlcs(): bad fragment number (%d -> %d ?)\n",
1161
            first_fragment, last_fragment);
1162
        return 0;
1163
    }
1164

    
1165
    for (i = first_fragment; i <= last_fragment; i++) {
1166

    
1167
        fragment = &s->all_fragments[s->coded_fragment_list[i]];
1168
        if (fragment->coeff_count > coeff_index)
1169
            continue;
1170

    
1171
        if (!eob_run) {
1172
            /* decode a VLC into a token */
1173
            token = get_vlc2(gb, table->table, 5, 3);
1174
            debug_vlc(" token = %2d, ", token);
1175
            /* use the token to get a zero run, a coefficient, and an eob run */
1176
            if (token <= 6) {
1177
                eob_run = eob_run_base[token];
1178
                if (eob_run_get_bits[token])
1179
                    eob_run += get_bits(gb, eob_run_get_bits[token]);
1180
                coeff = zero_run = 0;
1181
            } else {
1182
                bits_to_get = coeff_get_bits[token];
1183
                if (!bits_to_get)
1184
                    coeff = coeff_tables[token][0];
1185
                else
1186
                    coeff = coeff_tables[token][get_bits(gb, bits_to_get)];
1187

    
1188
                zero_run = zero_run_base[token];
1189
                if (zero_run_get_bits[token])
1190
                    zero_run += get_bits(gb, zero_run_get_bits[token]);
1191
            }
1192
        }
1193

    
1194
        if (!eob_run) {
1195
            fragment->coeff_count += zero_run;
1196
            if (fragment->coeff_count < 64){
1197
                fragment->next_coeff->coeff= coeff;
1198
                fragment->next_coeff->index= perm[fragment->coeff_count++]; //FIXME perm here already?
1199
                fragment->next_coeff->next= s->next_coeff;
1200
                s->next_coeff->next=NULL;
1201
                fragment->next_coeff= s->next_coeff++;
1202
            }
1203
            debug_vlc(" fragment %d coeff = %d\n",
1204
                s->coded_fragment_list[i], fragment->next_coeff[coeff_index]);
1205
        } else {
1206
            fragment->coeff_count |= 128;
1207
            debug_vlc(" fragment %d eob with %d coefficients\n",
1208
                s->coded_fragment_list[i], fragment->coeff_count&127);
1209
            eob_run--;
1210
        }
1211
    }
1212

    
1213
    return eob_run;
1214
}
1215

    
1216
/*
1217
 * This function unpacks all of the DCT coefficient data from the
1218
 * bitstream.
1219
 */
1220
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1221
{
1222
    int i;
1223
    int dc_y_table;
1224
    int dc_c_table;
1225
    int ac_y_table;
1226
    int ac_c_table;
1227
    int residual_eob_run = 0;
1228

    
1229
    /* fetch the DC table indices */
1230
    dc_y_table = get_bits(gb, 4);
1231
    dc_c_table = get_bits(gb, 4);
1232

    
1233
    /* unpack the Y plane DC coefficients */
1234
    debug_vp3("  vp3: unpacking Y plane DC coefficients using table %d\n",
1235
        dc_y_table);
1236
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1237
        s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1238

    
1239
    /* unpack the C plane DC coefficients */
1240
    debug_vp3("  vp3: unpacking C plane DC coefficients using table %d\n",
1241
        dc_c_table);
1242
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1243
        s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1244

    
1245
    /* fetch the AC table indices */
1246
    ac_y_table = get_bits(gb, 4);
1247
    ac_c_table = get_bits(gb, 4);
1248

    
1249
    /* unpack the group 1 AC coefficients (coeffs 1-5) */
1250
    for (i = 1; i <= 5; i++) {
1251

    
1252
        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
1253
            i, ac_y_table);
1254
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i,
1255
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1256

    
1257
        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
1258
            i, ac_c_table);
1259
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i,
1260
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1261
    }
1262

    
1263
    /* unpack the group 2 AC coefficients (coeffs 6-14) */
1264
    for (i = 6; i <= 14; i++) {
1265

    
1266
        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
1267
            i, ac_y_table);
1268
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i,
1269
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1270

    
1271
        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
1272
            i, ac_c_table);
1273
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i,
1274
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1275
    }
1276

    
1277
    /* unpack the group 3 AC coefficients (coeffs 15-27) */
1278
    for (i = 15; i <= 27; i++) {
1279

    
1280
        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
1281
            i, ac_y_table);
1282
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i,
1283
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1284

    
1285
        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
1286
            i, ac_c_table);
1287
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i,
1288
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1289
    }
1290

    
1291
    /* unpack the group 4 AC coefficients (coeffs 28-63) */
1292
    for (i = 28; i <= 63; i++) {
1293

    
1294
        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
1295
            i, ac_y_table);
1296
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i,
1297
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1298

    
1299
        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
1300
            i, ac_c_table);
1301
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i,
1302
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1303
    }
1304

    
1305
    return 0;
1306
}
1307

    
1308
/*
1309
 * This function reverses the DC prediction for each coded fragment in
1310
 * the frame. Much of this function is adapted directly from the original
1311
 * VP3 source code.
1312
 */
1313
#define COMPATIBLE_FRAME(x) \
1314
  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1315
#define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY)
1316
#define DC_COEFF(u) (s->coeffs[u].index ? 0 : s->coeffs[u].coeff) //FIXME do somethin to simplify this
1317

    
1318
static void reverse_dc_prediction(Vp3DecodeContext *s,
1319
                                  int first_fragment,
1320
                                  int fragment_width,
1321
                                  int fragment_height)
1322
{
1323

    
1324
#define PUL 8
1325
#define PU 4
1326
#define PUR 2
1327
#define PL 1
1328

    
1329
    int x, y;
1330
    int i = first_fragment;
1331

    
1332
    int predicted_dc;
1333

    
1334
    /* DC values for the left, up-left, up, and up-right fragments */
1335
    int vl, vul, vu, vur;
1336

    
1337
    /* indices for the left, up-left, up, and up-right fragments */
1338
    int l, ul, u, ur;
1339

    
1340
    /*
1341
     * The 6 fields mean:
1342
     *   0: up-left multiplier
1343
     *   1: up multiplier
1344
     *   2: up-right multiplier
1345
     *   3: left multiplier
1346
     */
1347
    int predictor_transform[16][4] = {
1348
        {  0,  0,  0,  0},
1349
        {  0,  0,  0,128},        // PL
1350
        {  0,  0,128,  0},        // PUR
1351
        {  0,  0, 53, 75},        // PUR|PL
1352
        {  0,128,  0,  0},        // PU
1353
        {  0, 64,  0, 64},        // PU|PL
1354
        {  0,128,  0,  0},        // PU|PUR
1355
        {  0,  0, 53, 75},        // PU|PUR|PL
1356
        {128,  0,  0,  0},        // PUL
1357
        {  0,  0,  0,128},        // PUL|PL
1358
        { 64,  0, 64,  0},        // PUL|PUR
1359
        {  0,  0, 53, 75},        // PUL|PUR|PL
1360
        {  0,128,  0,  0},        // PUL|PU
1361
       {-104,116,  0,116},        // PUL|PU|PL
1362
        { 24, 80, 24,  0},        // PUL|PU|PUR
1363
       {-104,116,  0,116}         // PUL|PU|PUR|PL
1364
    };
1365

    
1366
    /* This table shows which types of blocks can use other blocks for
1367
     * prediction. For example, INTRA is the only mode in this table to
1368
     * have a frame number of 0. That means INTRA blocks can only predict
1369
     * from other INTRA blocks. There are 2 golden frame coding types;
1370
     * blocks encoding in these modes can only predict from other blocks
1371
     * that were encoded with these 1 of these 2 modes. */
1372
    unsigned char compatible_frame[8] = {
1373
        1,    /* MODE_INTER_NO_MV */
1374
        0,    /* MODE_INTRA */
1375
        1,    /* MODE_INTER_PLUS_MV */
1376
        1,    /* MODE_INTER_LAST_MV */
1377
        1,    /* MODE_INTER_PRIOR_MV */
1378
        2,    /* MODE_USING_GOLDEN */
1379
        2,    /* MODE_GOLDEN_MV */
1380
        1     /* MODE_INTER_FOUR_MV */
1381
    };
1382
    int current_frame_type;
1383

    
1384
    /* there is a last DC predictor for each of the 3 frame types */
1385
    short last_dc[3];
1386

    
1387
    int transform = 0;
1388

    
1389
    debug_vp3("  vp3: reversing DC prediction\n");
1390

    
1391
    vul = vu = vur = vl = 0;
1392
    last_dc[0] = last_dc[1] = last_dc[2] = 0;
1393

    
1394
    /* for each fragment row... */
1395
    for (y = 0; y < fragment_height; y++) {
1396

    
1397
        /* for each fragment in a row... */
1398
        for (x = 0; x < fragment_width; x++, i++) {
1399

    
1400
            /* reverse prediction if this block was coded */
1401
            if (s->all_fragments[i].coding_method != MODE_COPY) {
1402

    
1403
                current_frame_type =
1404
                    compatible_frame[s->all_fragments[i].coding_method];
1405
                debug_dc_pred(" frag %d: orig DC = %d, ",
1406
                    i, DC_COEFF(i));
1407

    
1408
                transform= 0;
1409
                if(x){
1410
                    l= i-1;
1411
                    vl = DC_COEFF(l);
1412
                    if(FRAME_CODED(l) && COMPATIBLE_FRAME(l))
1413
                        transform |= PL;
1414
                }
1415
                if(y){
1416
                    u= i-fragment_width;
1417
                    vu = DC_COEFF(u);
1418
                    if(FRAME_CODED(u) && COMPATIBLE_FRAME(u))
1419
                        transform |= PU;
1420
                    if(x){
1421
                        ul= i-fragment_width-1;
1422
                        vul = DC_COEFF(ul);
1423
                        if(FRAME_CODED(ul) && COMPATIBLE_FRAME(ul))
1424
                            transform |= PUL;
1425
                    }
1426
                    if(x + 1 < fragment_width){
1427
                        ur= i-fragment_width+1;
1428
                        vur = DC_COEFF(ur);
1429
                        if(FRAME_CODED(ur) && COMPATIBLE_FRAME(ur))
1430
                            transform |= PUR;
1431
                    }
1432
                }
1433

    
1434
                debug_dc_pred("transform = %d, ", transform);
1435

    
1436
                if (transform == 0) {
1437

    
1438
                    /* if there were no fragments to predict from, use last
1439
                     * DC saved */
1440
                    predicted_dc = last_dc[current_frame_type];
1441
                    debug_dc_pred("from last DC (%d) = %d\n",
1442
                        current_frame_type, DC_COEFF(i));
1443

    
1444
                } else {
1445

    
1446
                    /* apply the appropriate predictor transform */
1447
                    predicted_dc =
1448
                        (predictor_transform[transform][0] * vul) +
1449
                        (predictor_transform[transform][1] * vu) +
1450
                        (predictor_transform[transform][2] * vur) +
1451
                        (predictor_transform[transform][3] * vl);
1452

    
1453
                    predicted_dc /= 128;
1454

    
1455
                    /* check for outranging on the [ul u l] and
1456
                     * [ul u ur l] predictors */
1457
                    if ((transform == 13) || (transform == 15)) {
1458
                        if (FFABS(predicted_dc - vu) > 128)
1459
                            predicted_dc = vu;
1460
                        else if (FFABS(predicted_dc - vl) > 128)
1461
                            predicted_dc = vl;
1462
                        else if (FFABS(predicted_dc - vul) > 128)
1463
                            predicted_dc = vul;
1464
                    }
1465

    
1466
                    debug_dc_pred("from pred DC = %d\n",
1467
                    DC_COEFF(i));
1468
                }
1469

    
1470
                /* at long last, apply the predictor */
1471
                if(s->coeffs[i].index){
1472
                    *s->next_coeff= s->coeffs[i];
1473
                    s->coeffs[i].index=0;
1474
                    s->coeffs[i].coeff=0;
1475
                    s->coeffs[i].next= s->next_coeff++;
1476
                }
1477
                s->coeffs[i].coeff += predicted_dc;
1478
                /* save the DC */
1479
                last_dc[current_frame_type] = DC_COEFF(i);
1480
                if(DC_COEFF(i) && !(s->all_fragments[i].coeff_count&127)){
1481
                    s->all_fragments[i].coeff_count= 129;
1482
//                    s->all_fragments[i].next_coeff= s->next_coeff;
1483
                    s->coeffs[i].next= s->next_coeff;
1484
                    (s->next_coeff++)->next=NULL;
1485
                }
1486
            }
1487
        }
1488
    }
1489
}
1490

    
1491

    
1492
static void horizontal_filter(unsigned char *first_pixel, int stride,
1493
    int *bounding_values);
1494
static void vertical_filter(unsigned char *first_pixel, int stride,
1495
    int *bounding_values);
1496

    
1497
/*
1498
 * Perform the final rendering for a particular slice of data.
1499
 * The slice number ranges from 0..(macroblock_height - 1).
1500
 */
1501
static void render_slice(Vp3DecodeContext *s, int slice)
1502
{
1503
    int x;
1504
    int m, n;
1505
    int16_t *dequantizer;
1506
    DECLARE_ALIGNED_16(DCTELEM, block[64]);
1507
    int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1508
    int motion_halfpel_index;
1509
    uint8_t *motion_source;
1510
    int plane;
1511
    int current_macroblock_entry = slice * s->macroblock_width * 6;
1512

    
1513
    if (slice >= s->macroblock_height)
1514
        return;
1515

    
1516
    for (plane = 0; plane < 3; plane++) {
1517
        uint8_t *output_plane = s->current_frame.data    [plane];
1518
        uint8_t *  last_plane = s->   last_frame.data    [plane];
1519
        uint8_t *golden_plane = s-> golden_frame.data    [plane];
1520
        int stride            = s->current_frame.linesize[plane];
1521
        int plane_width       = s->width  >> !!plane;
1522
        int plane_height      = s->height >> !!plane;
1523
        int y =        slice *  FRAGMENT_PIXELS << !plane ;
1524
        int slice_height = y + (FRAGMENT_PIXELS << !plane);
1525
        int i = s->macroblock_fragments[current_macroblock_entry + plane + 3*!!plane];
1526

    
1527
        if (!s->flipped_image) stride = -stride;
1528

    
1529

    
1530
        if(FFABS(stride) > 2048)
1531
            return; //various tables are fixed size
1532

    
1533
        /* for each fragment row in the slice (both of them)... */
1534
        for (; y < slice_height; y += 8) {
1535

    
1536
            /* for each fragment in a row... */
1537
            for (x = 0; x < plane_width; x += 8, i++) {
1538

    
1539
                if ((i < 0) || (i >= s->fragment_count)) {
1540
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:render_slice(): bad fragment number (%d)\n", i);
1541
                    return;
1542
                }
1543

    
1544
                /* transform if this block was coded */
1545
                if ((s->all_fragments[i].coding_method != MODE_COPY) &&
1546
                    !((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) {
1547

    
1548
                    if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1549
                        (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1550
                        motion_source= golden_plane;
1551
                    else
1552
                        motion_source= last_plane;
1553

    
1554
                    motion_source += s->all_fragments[i].first_pixel;
1555
                    motion_halfpel_index = 0;
1556

    
1557
                    /* sort out the motion vector if this fragment is coded
1558
                     * using a motion vector method */
1559
                    if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1560
                        (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1561
                        int src_x, src_y;
1562
                        motion_x = s->all_fragments[i].motion_x;
1563
                        motion_y = s->all_fragments[i].motion_y;
1564
                        if(plane){
1565
                            motion_x= (motion_x>>1) | (motion_x&1);
1566
                            motion_y= (motion_y>>1) | (motion_y&1);
1567
                        }
1568

    
1569
                        src_x= (motion_x>>1) + x;
1570
                        src_y= (motion_y>>1) + y;
1571
                        if ((motion_x == 127) || (motion_y == 127))
1572
                            av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y);
1573

    
1574
                        motion_halfpel_index = motion_x & 0x01;
1575
                        motion_source += (motion_x >> 1);
1576

    
1577
                        motion_halfpel_index |= (motion_y & 0x01) << 1;
1578
                        motion_source += ((motion_y >> 1) * stride);
1579

    
1580
                        if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
1581
                            uint8_t *temp= s->edge_emu_buffer;
1582
                            if(stride<0) temp -= 9*stride;
1583
                            else temp += 9*stride;
1584

    
1585
                            ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
1586
                            motion_source= temp;
1587
                        }
1588
                    }
1589

    
1590

    
1591
                    /* first, take care of copying a block from either the
1592
                     * previous or the golden frame */
1593
                    if (s->all_fragments[i].coding_method != MODE_INTRA) {
1594
                        /* Note, it is possible to implement all MC cases with
1595
                           put_no_rnd_pixels_l2 which would look more like the
1596
                           VP3 source but this would be slower as
1597
                           put_no_rnd_pixels_tab is better optimzed */
1598
                        if(motion_halfpel_index != 3){
1599
                            s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1600
                                output_plane + s->all_fragments[i].first_pixel,
1601
                                motion_source, stride, 8);
1602
                        }else{
1603
                            int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
1604
                            s->dsp.put_no_rnd_pixels_l2[1](
1605
                                output_plane + s->all_fragments[i].first_pixel,
1606
                                motion_source - d,
1607
                                motion_source + stride + 1 + d,
1608
                                stride, 8);
1609
                        }
1610
                        dequantizer = s->qmat[1][plane];
1611
                    }else{
1612
                        dequantizer = s->qmat[0][plane];
1613
                    }
1614

    
1615
                    /* dequantize the DCT coefficients */
1616
                    debug_idct("fragment %d, coding mode %d, DC = %d, dequant = %d:\n",
1617
                        i, s->all_fragments[i].coding_method,
1618
                        DC_COEFF(i), dequantizer[0]);
1619

    
1620
                    if(s->avctx->idct_algo==FF_IDCT_VP3){
1621
                        Coeff *coeff= s->coeffs + i;
1622
                        memset(block, 0, sizeof(block));
1623
                        while(coeff->next){
1624
                            block[coeff->index]= coeff->coeff * dequantizer[coeff->index];
1625
                            coeff= coeff->next;
1626
                        }
1627
                    }else{
1628
                        Coeff *coeff= s->coeffs + i;
1629
                        memset(block, 0, sizeof(block));
1630
                        while(coeff->next){
1631
                            block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2;
1632
                            coeff= coeff->next;
1633
                        }
1634
                    }
1635

    
1636
                    /* invert DCT and place (or add) in final output */
1637

    
1638
                    if (s->all_fragments[i].coding_method == MODE_INTRA) {
1639
                        if(s->avctx->idct_algo!=FF_IDCT_VP3)
1640
                            block[0] += 128<<3;
1641
                        s->dsp.idct_put(
1642
                            output_plane + s->all_fragments[i].first_pixel,
1643
                            stride,
1644
                            block);
1645
                    } else {
1646
                        s->dsp.idct_add(
1647
                            output_plane + s->all_fragments[i].first_pixel,
1648
                            stride,
1649
                            block);
1650
                    }
1651

    
1652
                    debug_idct("block after idct_%s():\n",
1653
                        (s->all_fragments[i].coding_method == MODE_INTRA)?
1654
                        "put" : "add");
1655
                    for (m = 0; m < 8; m++) {
1656
                        for (n = 0; n < 8; n++) {
1657
                            debug_idct(" %3d", *(output_plane +
1658
                                s->all_fragments[i].first_pixel + (m * stride + n)));
1659
                        }
1660
                        debug_idct("\n");
1661
                    }
1662
                    debug_idct("\n");
1663

    
1664
                } else {
1665

    
1666
                    /* copy directly from the previous frame */
1667
                    s->dsp.put_pixels_tab[1][0](
1668
                        output_plane + s->all_fragments[i].first_pixel,
1669
                        last_plane + s->all_fragments[i].first_pixel,
1670
                        stride, 8);
1671

    
1672
                }
1673
#if 0
1674
                /* perform the left edge filter if:
1675
                 *   - the fragment is not on the left column
1676
                 *   - the fragment is coded in this frame
1677
                 *   - the fragment is not coded in this frame but the left
1678
                 *     fragment is coded in this frame (this is done instead
1679
                 *     of a right edge filter when rendering the left fragment
1680
                 *     since this fragment is not available yet) */
1681
                if ((x > 0) &&
1682
                    ((s->all_fragments[i].coding_method != MODE_COPY) ||
1683
                     ((s->all_fragments[i].coding_method == MODE_COPY) &&
1684
                      (s->all_fragments[i - 1].coding_method != MODE_COPY)) )) {
1685
                    horizontal_filter(
1686
                        output_plane + s->all_fragments[i].first_pixel + 7*stride,
1687
                        -stride, s->bounding_values_array + 127);
1688
                }
1689

1690
                /* perform the top edge filter if:
1691
                 *   - the fragment is not on the top row
1692
                 *   - the fragment is coded in this frame
1693
                 *   - the fragment is not coded in this frame but the above
1694
                 *     fragment is coded in this frame (this is done instead
1695
                 *     of a bottom edge filter when rendering the above
1696
                 *     fragment since this fragment is not available yet) */
1697
                if ((y > 0) &&
1698
                    ((s->all_fragments[i].coding_method != MODE_COPY) ||
1699
                     ((s->all_fragments[i].coding_method == MODE_COPY) &&
1700
                      (s->all_fragments[i - fragment_width].coding_method != MODE_COPY)) )) {
1701
                    vertical_filter(
1702
                        output_plane + s->all_fragments[i].first_pixel - stride,
1703
                        -stride, s->bounding_values_array + 127);
1704
                }
1705
#endif
1706
            }
1707
        }
1708
    }
1709

    
1710
     /* this looks like a good place for slice dispatch... */
1711
     /* algorithm:
1712
      *   if (slice == s->macroblock_height - 1)
1713
      *     dispatch (both last slice & 2nd-to-last slice);
1714
      *   else if (slice > 0)
1715
      *     dispatch (slice - 1);
1716
      */
1717

    
1718
    emms_c();
1719
}
1720

    
1721
static void horizontal_filter(unsigned char *first_pixel, int stride,
1722
    int *bounding_values)
1723
{
1724
    unsigned char *end;
1725
    int filter_value;
1726

    
1727
    for (end= first_pixel + 8*stride; first_pixel != end; first_pixel += stride) {
1728
        filter_value =
1729
            (first_pixel[-2] - first_pixel[ 1])
1730
         +3*(first_pixel[ 0] - first_pixel[-1]);
1731
        filter_value = bounding_values[(filter_value + 4) >> 3];
1732
        first_pixel[-1] = clip_uint8(first_pixel[-1] + filter_value);
1733
        first_pixel[ 0] = clip_uint8(first_pixel[ 0] - filter_value);
1734
    }
1735
}
1736

    
1737
static void vertical_filter(unsigned char *first_pixel, int stride,
1738
    int *bounding_values)
1739
{
1740
    unsigned char *end;
1741
    int filter_value;
1742
    const int nstride= -stride;
1743

    
1744
    for (end= first_pixel + 8; first_pixel < end; first_pixel++) {
1745
        filter_value =
1746
            (first_pixel[2 * nstride] - first_pixel[ stride])
1747
         +3*(first_pixel[0          ] - first_pixel[nstride]);
1748
        filter_value = bounding_values[(filter_value + 4) >> 3];
1749
        first_pixel[nstride] = clip_uint8(first_pixel[nstride] + filter_value);
1750
        first_pixel[0] = clip_uint8(first_pixel[0] - filter_value);
1751
    }
1752
}
1753

    
1754
static void apply_loop_filter(Vp3DecodeContext *s)
1755
{
1756
    int plane;
1757
    int x, y;
1758
    int *bounding_values= s->bounding_values_array+127;
1759

    
1760
#if 0
1761
    int bounding_values_array[256];
1762
    int filter_limit;
1763

1764
    /* find the right loop limit value */
1765
    for (x = 63; x >= 0; x--) {
1766
        if (vp31_ac_scale_factor[x] >= s->quality_index)
1767
            break;
1768
    }
1769
    filter_limit = vp31_filter_limit_values[s->quality_index];
1770

1771
    /* set up the bounding values */
1772
    memset(bounding_values_array, 0, 256 * sizeof(int));
1773
    for (x = 0; x < filter_limit; x++) {
1774
        bounding_values[-x - filter_limit] = -filter_limit + x;
1775
        bounding_values[-x] = -x;
1776
        bounding_values[x] = x;
1777
        bounding_values[x + filter_limit] = filter_limit - x;
1778
    }
1779
#endif
1780

    
1781
    for (plane = 0; plane < 3; plane++) {
1782
        int width           = s->fragment_width  >> !!plane;
1783
        int height          = s->fragment_height >> !!plane;
1784
        int fragment        = s->fragment_start        [plane];
1785
        int stride          = s->current_frame.linesize[plane];
1786
        uint8_t *plane_data = s->current_frame.data    [plane];
1787
        if (!s->flipped_image) stride = -stride;
1788

    
1789
        for (y = 0; y < height; y++) {
1790

    
1791
            for (x = 0; x < width; x++) {
1792
START_TIMER
1793
                /* do not perform left edge filter for left columns frags */
1794
                if ((x > 0) &&
1795
                    (s->all_fragments[fragment].coding_method != MODE_COPY)) {
1796
                    horizontal_filter(
1797
                        plane_data + s->all_fragments[fragment].first_pixel,
1798
                        stride, bounding_values);
1799
                }
1800

    
1801
                /* do not perform top edge filter for top row fragments */
1802
                if ((y > 0) &&
1803
                    (s->all_fragments[fragment].coding_method != MODE_COPY)) {
1804
                    vertical_filter(
1805
                        plane_data + s->all_fragments[fragment].first_pixel,
1806
                        stride, bounding_values);
1807
                }
1808

    
1809
                /* do not perform right edge filter for right column
1810
                 * fragments or if right fragment neighbor is also coded
1811
                 * in this frame (it will be filtered in next iteration) */
1812
                if ((x < width - 1) &&
1813
                    (s->all_fragments[fragment].coding_method != MODE_COPY) &&
1814
                    (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1815
                    horizontal_filter(
1816
                        plane_data + s->all_fragments[fragment + 1].first_pixel,
1817
                        stride, bounding_values);
1818
                }
1819

    
1820
                /* do not perform bottom edge filter for bottom row
1821
                 * fragments or if bottom fragment neighbor is also coded
1822
                 * in this frame (it will be filtered in the next row) */
1823
                if ((y < height - 1) &&
1824
                    (s->all_fragments[fragment].coding_method != MODE_COPY) &&
1825
                    (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1826
                    vertical_filter(
1827
                        plane_data + s->all_fragments[fragment + width].first_pixel,
1828
                        stride, bounding_values);
1829
                }
1830

    
1831
                fragment++;
1832
STOP_TIMER("loop filter")
1833
            }
1834
        }
1835
    }
1836
}
1837

    
1838
/*
1839
 * This function computes the first pixel addresses for each fragment.
1840
 * This function needs to be invoked after the first frame is allocated
1841
 * so that it has access to the plane strides.
1842
 */
1843
static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s)
1844
{
1845

    
1846
    int i, x, y;
1847

    
1848
    /* figure out the first pixel addresses for each of the fragments */
1849
    /* Y plane */
1850
    i = 0;
1851
    for (y = s->fragment_height; y > 0; y--) {
1852
        for (x = 0; x < s->fragment_width; x++) {
1853
            s->all_fragments[i++].first_pixel =
1854
                s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
1855
                    s->golden_frame.linesize[0] +
1856
                    x * FRAGMENT_PIXELS;
1857
            debug_init("  fragment %d, first pixel @ %d\n",
1858
                i-1, s->all_fragments[i-1].first_pixel);
1859
        }
1860
    }
1861

    
1862
    /* U plane */
1863
    i = s->fragment_start[1];
1864
    for (y = s->fragment_height / 2; y > 0; y--) {
1865
        for (x = 0; x < s->fragment_width / 2; x++) {
1866
            s->all_fragments[i++].first_pixel =
1867
                s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
1868
                    s->golden_frame.linesize[1] +
1869
                    x * FRAGMENT_PIXELS;
1870
            debug_init("  fragment %d, first pixel @ %d\n",
1871
                i-1, s->all_fragments[i-1].first_pixel);
1872
        }
1873
    }
1874

    
1875
    /* V plane */
1876
    i = s->fragment_start[2];
1877
    for (y = s->fragment_height / 2; y > 0; y--) {
1878
        for (x = 0; x < s->fragment_width / 2; x++) {
1879
            s->all_fragments[i++].first_pixel =
1880
                s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
1881
                    s->golden_frame.linesize[2] +
1882
                    x * FRAGMENT_PIXELS;
1883
            debug_init("  fragment %d, first pixel @ %d\n",
1884
                i-1, s->all_fragments[i-1].first_pixel);
1885
        }
1886
    }
1887
}
1888

    
1889
/* FIXME: this should be merged with the above! */
1890
static void theora_calculate_pixel_addresses(Vp3DecodeContext *s)
1891
{
1892

    
1893
    int i, x, y;
1894

    
1895
    /* figure out the first pixel addresses for each of the fragments */
1896
    /* Y plane */
1897
    i = 0;
1898
    for (y = 1; y <= s->fragment_height; y++) {
1899
        for (x = 0; x < s->fragment_width; x++) {
1900
            s->all_fragments[i++].first_pixel =
1901
                s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
1902
                    s->golden_frame.linesize[0] +
1903
                    x * FRAGMENT_PIXELS;
1904
            debug_init("  fragment %d, first pixel @ %d\n",
1905
                i-1, s->all_fragments[i-1].first_pixel);
1906
        }
1907
    }
1908

    
1909
    /* U plane */
1910
    i = s->fragment_start[1];
1911
    for (y = 1; y <= s->fragment_height / 2; y++) {
1912
        for (x = 0; x < s->fragment_width / 2; x++) {
1913
            s->all_fragments[i++].first_pixel =
1914
                s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
1915
                    s->golden_frame.linesize[1] +
1916
                    x * FRAGMENT_PIXELS;
1917
            debug_init("  fragment %d, first pixel @ %d\n",
1918
                i-1, s->all_fragments[i-1].first_pixel);
1919
        }
1920
    }
1921

    
1922
    /* V plane */
1923
    i = s->fragment_start[2];
1924
    for (y = 1; y <= s->fragment_height / 2; y++) {
1925
        for (x = 0; x < s->fragment_width / 2; x++) {
1926
            s->all_fragments[i++].first_pixel =
1927
                s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
1928
                    s->golden_frame.linesize[2] +
1929
                    x * FRAGMENT_PIXELS;
1930
            debug_init("  fragment %d, first pixel @ %d\n",
1931
                i-1, s->all_fragments[i-1].first_pixel);
1932
        }
1933
    }
1934
}
1935

    
1936
/*
1937
 * This is the ffmpeg/libavcodec API init function.
1938
 */
1939
static int vp3_decode_init(AVCodecContext *avctx)
1940
{
1941
    Vp3DecodeContext *s = avctx->priv_data;
1942
    int i, inter, plane;
1943
    int c_width;
1944
    int c_height;
1945
    int y_superblock_count;
1946
    int c_superblock_count;
1947

    
1948
    if (avctx->codec_tag == MKTAG('V','P','3','0'))
1949
        s->version = 0;
1950
    else
1951
        s->version = 1;
1952

    
1953
    s->avctx = avctx;
1954
    s->width = (avctx->width + 15) & 0xFFFFFFF0;
1955
    s->height = (avctx->height + 15) & 0xFFFFFFF0;
1956
    avctx->pix_fmt = PIX_FMT_YUV420P;
1957
    avctx->has_b_frames = 0;
1958
    if(avctx->idct_algo==FF_IDCT_AUTO)
1959
        avctx->idct_algo=FF_IDCT_VP3;
1960
    dsputil_init(&s->dsp, avctx);
1961

    
1962
    ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
1963

    
1964
    /* initialize to an impossible value which will force a recalculation
1965
     * in the first frame decode */
1966
    s->quality_index = -1;
1967

    
1968
    s->y_superblock_width = (s->width + 31) / 32;
1969
    s->y_superblock_height = (s->height + 31) / 32;
1970
    y_superblock_count = s->y_superblock_width * s->y_superblock_height;
1971

    
1972
    /* work out the dimensions for the C planes */
1973
    c_width = s->width / 2;
1974
    c_height = s->height / 2;
1975
    s->c_superblock_width = (c_width + 31) / 32;
1976
    s->c_superblock_height = (c_height + 31) / 32;
1977
    c_superblock_count = s->c_superblock_width * s->c_superblock_height;
1978

    
1979
    s->superblock_count = y_superblock_count + (c_superblock_count * 2);
1980
    s->u_superblock_start = y_superblock_count;
1981
    s->v_superblock_start = s->u_superblock_start + c_superblock_count;
1982
    s->superblock_coding = av_malloc(s->superblock_count);
1983

    
1984
    s->macroblock_width = (s->width + 15) / 16;
1985
    s->macroblock_height = (s->height + 15) / 16;
1986
    s->macroblock_count = s->macroblock_width * s->macroblock_height;
1987

    
1988
    s->fragment_width = s->width / FRAGMENT_PIXELS;
1989
    s->fragment_height = s->height / FRAGMENT_PIXELS;
1990

    
1991
    /* fragment count covers all 8x8 blocks for all 3 planes */
1992
    s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
1993
    s->fragment_start[1] = s->fragment_width * s->fragment_height;
1994
    s->fragment_start[2] = s->fragment_width * s->fragment_height * 5 / 4;
1995

    
1996
    debug_init("  Y plane: %d x %d\n", s->width, s->height);
1997
    debug_init("  C plane: %d x %d\n", c_width, c_height);
1998
    debug_init("  Y superblocks: %d x %d, %d total\n",
1999
        s->y_superblock_width, s->y_superblock_height, y_superblock_count);
2000
    debug_init("  C superblocks: %d x %d, %d total\n",
2001
        s->c_superblock_width, s->c_superblock_height, c_superblock_count);
2002
    debug_init("  total superblocks = %d, U starts @ %d, V starts @ %d\n",
2003
        s->superblock_count, s->u_superblock_start, s->v_superblock_start);
2004
    debug_init("  macroblocks: %d x %d, %d total\n",
2005
        s->macroblock_width, s->macroblock_height, s->macroblock_count);
2006
    debug_init("  %d fragments, %d x %d, u starts @ %d, v starts @ %d\n",
2007
        s->fragment_count,
2008
        s->fragment_width,
2009
        s->fragment_height,
2010
        s->fragment_start[1],
2011
        s->fragment_start[2]);
2012

    
2013
    s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
2014
    s->coeffs = av_malloc(s->fragment_count * sizeof(Coeff) * 65);
2015
    s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
2016
    s->pixel_addresses_inited = 0;
2017

    
2018
    if (!s->theora_tables)
2019
    {
2020
        for (i = 0; i < 64; i++) {
2021
            s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
2022
            s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
2023
            s->base_matrix[0][i] = vp31_intra_y_dequant[i];
2024
            s->base_matrix[1][i] = vp31_intra_c_dequant[i];
2025
            s->base_matrix[2][i] = vp31_inter_dequant[i];
2026
            s->filter_limit_values[i] = vp31_filter_limit_values[i];
2027
        }
2028

    
2029
        for(inter=0; inter<2; inter++){
2030
            for(plane=0; plane<3; plane++){
2031
                s->qr_count[inter][plane]= 1;
2032
                s->qr_size [inter][plane][0]= 63;
2033
                s->qr_base [inter][plane][0]=
2034
                s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
2035
            }
2036
        }
2037

    
2038
        /* init VLC tables */
2039
        for (i = 0; i < 16; i++) {
2040

    
2041
            /* DC histograms */
2042
            init_vlc(&s->dc_vlc[i], 5, 32,
2043
                &dc_bias[i][0][1], 4, 2,
2044
                &dc_bias[i][0][0], 4, 2, 0);
2045

    
2046
            /* group 1 AC histograms */
2047
            init_vlc(&s->ac_vlc_1[i], 5, 32,
2048
                &ac_bias_0[i][0][1], 4, 2,
2049
                &ac_bias_0[i][0][0], 4, 2, 0);
2050

    
2051
            /* group 2 AC histograms */
2052
            init_vlc(&s->ac_vlc_2[i], 5, 32,
2053
                &ac_bias_1[i][0][1], 4, 2,
2054
                &ac_bias_1[i][0][0], 4, 2, 0);
2055

    
2056
            /* group 3 AC histograms */
2057
            init_vlc(&s->ac_vlc_3[i], 5, 32,
2058
                &ac_bias_2[i][0][1], 4, 2,
2059
                &ac_bias_2[i][0][0], 4, 2, 0);
2060

    
2061
            /* group 4 AC histograms */
2062
            init_vlc(&s->ac_vlc_4[i], 5, 32,
2063
                &ac_bias_3[i][0][1], 4, 2,
2064
                &ac_bias_3[i][0][0], 4, 2, 0);
2065
        }
2066
    } else {
2067
        for (i = 0; i < 16; i++) {
2068

    
2069
            /* DC histograms */
2070
            init_vlc(&s->dc_vlc[i], 5, 32,
2071
                &s->huffman_table[i][0][1], 4, 2,
2072
                &s->huffman_table[i][0][0], 4, 2, 0);
2073

    
2074
            /* group 1 AC histograms */
2075
            init_vlc(&s->ac_vlc_1[i], 5, 32,
2076
                &s->huffman_table[i+16][0][1], 4, 2,
2077
                &s->huffman_table[i+16][0][0], 4, 2, 0);
2078

    
2079
            /* group 2 AC histograms */
2080
            init_vlc(&s->ac_vlc_2[i], 5, 32,
2081
                &s->huffman_table[i+16*2][0][1], 4, 2,
2082
                &s->huffman_table[i+16*2][0][0], 4, 2, 0);
2083

    
2084
            /* group 3 AC histograms */
2085
            init_vlc(&s->ac_vlc_3[i], 5, 32,
2086
                &s->huffman_table[i+16*3][0][1], 4, 2,
2087
                &s->huffman_table[i+16*3][0][0], 4, 2, 0);
2088

    
2089
            /* group 4 AC histograms */
2090
            init_vlc(&s->ac_vlc_4[i], 5, 32,
2091
                &s->huffman_table[i+16*4][0][1], 4, 2,
2092
                &s->huffman_table[i+16*4][0][0], 4, 2, 0);
2093
        }
2094
    }
2095

    
2096
    init_vlc(&s->superblock_run_length_vlc, 6, 34,
2097
        &superblock_run_length_vlc_table[0][1], 4, 2,
2098
        &superblock_run_length_vlc_table[0][0], 4, 2, 0);
2099

    
2100
    init_vlc(&s->fragment_run_length_vlc, 5, 30,
2101
        &fragment_run_length_vlc_table[0][1], 4, 2,
2102
        &fragment_run_length_vlc_table[0][0], 4, 2, 0);
2103

    
2104
    init_vlc(&s->mode_code_vlc, 3, 8,
2105
        &mode_code_vlc_table[0][1], 2, 1,
2106
        &mode_code_vlc_table[0][0], 2, 1, 0);
2107

    
2108
    init_vlc(&s->motion_vector_vlc, 6, 63,
2109
        &motion_vector_vlc_table[0][1], 2, 1,
2110
        &motion_vector_vlc_table[0][0], 2, 1, 0);
2111

    
2112
    /* work out the block mapping tables */
2113
    s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
2114
    s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int));
2115
    s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int));
2116
    s->macroblock_coding = av_malloc(s->macroblock_count + 1);
2117
    init_block_mapping(s);
2118

    
2119
    for (i = 0; i < 3; i++) {
2120
        s->current_frame.data[i] = NULL;
2121
        s->last_frame.data[i] = NULL;
2122
        s->golden_frame.data[i] = NULL;
2123
    }
2124

    
2125
    return 0;
2126
}
2127

    
2128
/*
2129
 * This is the ffmpeg/libavcodec API frame decode function.
2130
 */
2131
static int vp3_decode_frame(AVCodecContext *avctx,
2132
                            void *data, int *data_size,
2133
                            uint8_t *buf, int buf_size)
2134
{
2135
    Vp3DecodeContext *s = avctx->priv_data;
2136
    GetBitContext gb;
2137
    static int counter = 0;
2138
    int i;
2139

    
2140
    init_get_bits(&gb, buf, buf_size * 8);
2141

    
2142
    if (s->theora && get_bits1(&gb))
2143
    {
2144
#if 1
2145
        av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
2146
        return -1;
2147
#else
2148
        int ptype = get_bits(&gb, 7);
2149

    
2150
        skip_bits(&gb, 6*8); /* "theora" */
2151

    
2152
        switch(ptype)
2153
        {
2154
            case 1:
2155
                theora_decode_comments(avctx, &gb);
2156
                break;
2157
            case 2:
2158
                theora_decode_tables(avctx, &gb);
2159
                    init_dequantizer(s);
2160
                break;
2161
            default:
2162
                av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype);
2163
        }
2164
        return buf_size;
2165
#endif
2166
    }
2167

    
2168
    s->keyframe = !get_bits1(&gb);
2169
    if (!s->theora)
2170
        skip_bits(&gb, 1);
2171
    s->last_quality_index = s->quality_index;
2172

    
2173
    s->nqis=0;
2174
    do{
2175
        s->qis[s->nqis++]= get_bits(&gb, 6);
2176
    } while(s->theora >= 0x030200 && s->nqis<3 && get_bits1(&gb));
2177

    
2178
    s->quality_index= s->qis[0];
2179

    
2180
    if (s->avctx->debug & FF_DEBUG_PICT_INFO)
2181
        av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
2182
            s->keyframe?"key":"", counter, s->quality_index);
2183
    counter++;
2184

    
2185
    if (s->quality_index != s->last_quality_index) {
2186
        init_dequantizer(s);
2187
        init_loop_filter(s);
2188
    }
2189

    
2190
    if (s->keyframe) {
2191
        if (!s->theora)
2192
        {
2193
            skip_bits(&gb, 4); /* width code */
2194
            skip_bits(&gb, 4); /* height code */
2195
            if (s->version)
2196
            {
2197
                s->version = get_bits(&gb, 5);
2198
                if (counter == 1)
2199
                    av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
2200
            }
2201
        }
2202
        if (s->version || s->theora)
2203
        {
2204
                if (get_bits1(&gb))
2205
                    av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
2206
            skip_bits(&gb, 2); /* reserved? */
2207
        }
2208

    
2209
        if (s->last_frame.data[0] == s->golden_frame.data[0]) {
2210
            if (s->golden_frame.data[0])
2211
                avctx->release_buffer(avctx, &s->golden_frame);
2212
            s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
2213
        } else {
2214
            if (s->golden_frame.data[0])
2215
                avctx->release_buffer(avctx, &s->golden_frame);
2216
            if (s->last_frame.data[0])
2217
                avctx->release_buffer(avctx, &s->last_frame);
2218
        }
2219

    
2220
        s->golden_frame.reference = 3;
2221
        if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
2222
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
2223
            return -1;
2224
        }
2225

    
2226
        /* golden frame is also the current frame */
2227
        s->current_frame= s->golden_frame;
2228

    
2229
        /* time to figure out pixel addresses? */
2230
        if (!s->pixel_addresses_inited)
2231
        {
2232
            if (!s->flipped_image)
2233
                vp3_calculate_pixel_addresses(s);
2234
            else
2235
                theora_calculate_pixel_addresses(s);
2236
            s->pixel_addresses_inited = 1;
2237
        }
2238
    } else {
2239
        /* allocate a new current frame */
2240
        s->current_frame.reference = 3;
2241
        if (!s->pixel_addresses_inited) {
2242
            av_log(s->avctx, AV_LOG_ERROR, "vp3: first frame not a keyframe\n");
2243
            return -1;
2244
        }
2245
        if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
2246
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
2247
            return -1;
2248
        }
2249
    }
2250

    
2251
    s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
2252
    s->current_frame.qstride= 0;
2253

    
2254
    {START_TIMER
2255
    init_frame(s, &gb);
2256
    STOP_TIMER("init_frame")}
2257

    
2258
#if KEYFRAMES_ONLY
2259
if (!s->keyframe) {
2260

    
2261
    memcpy(s->current_frame.data[0], s->golden_frame.data[0],
2262
        s->current_frame.linesize[0] * s->height);
2263
    memcpy(s->current_frame.data[1], s->golden_frame.data[1],
2264
        s->current_frame.linesize[1] * s->height / 2);
2265
    memcpy(s->current_frame.data[2], s->golden_frame.data[2],
2266
        s->current_frame.linesize[2] * s->height / 2);
2267

    
2268
} else {
2269
#endif
2270

    
2271
    {START_TIMER
2272
    if (unpack_superblocks(s, &gb)){
2273
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
2274
        return -1;
2275
    }
2276
    STOP_TIMER("unpack_superblocks")}
2277
    {START_TIMER
2278
    if (unpack_modes(s, &gb)){
2279
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
2280
        return -1;
2281
    }
2282
    STOP_TIMER("unpack_modes")}
2283
    {START_TIMER
2284
    if (unpack_vectors(s, &gb)){
2285
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
2286
        return -1;
2287
    }
2288
    STOP_TIMER("unpack_vectors")}
2289
    {START_TIMER
2290
    if (unpack_dct_coeffs(s, &gb)){
2291
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
2292
        return -1;
2293
    }
2294
    STOP_TIMER("unpack_dct_coeffs")}
2295
    {START_TIMER
2296

    
2297
    reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
2298
    if ((avctx->flags & CODEC_FLAG_GRAY) == 0) {
2299
        reverse_dc_prediction(s, s->fragment_start[1],
2300
            s->fragment_width / 2, s->fragment_height / 2);
2301
        reverse_dc_prediction(s, s->fragment_start[2],
2302
            s->fragment_width / 2, s->fragment_height / 2);
2303
    }
2304
    STOP_TIMER("reverse_dc_prediction")}
2305
    {START_TIMER
2306

    
2307
    for (i = 0; i < s->macroblock_height; i++)
2308
        render_slice(s, i);
2309
    STOP_TIMER("render_fragments")}
2310

    
2311
    {START_TIMER
2312
    apply_loop_filter(s);
2313
    STOP_TIMER("apply_loop_filter")}
2314
#if KEYFRAMES_ONLY
2315
}
2316
#endif
2317

    
2318
    *data_size=sizeof(AVFrame);
2319
    *(AVFrame*)data= s->current_frame;
2320

    
2321
    /* release the last frame, if it is allocated and if it is not the
2322
     * golden frame */
2323
    if ((s->last_frame.data[0]) &&
2324
        (s->last_frame.data[0] != s->golden_frame.data[0]))
2325
        avctx->release_buffer(avctx, &s->last_frame);
2326

    
2327
    /* shuffle frames (last = current) */
2328
    s->last_frame= s->current_frame;
2329
    s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
2330

    
2331
    return buf_size;
2332
}
2333

    
2334
/*
2335
 * This is the ffmpeg/libavcodec API module cleanup function.
2336
 */
2337
static int vp3_decode_end(AVCodecContext *avctx)
2338
{
2339
    Vp3DecodeContext *s = avctx->priv_data;
2340

    
2341
    av_free(s->all_fragments);
2342
    av_free(s->coeffs);
2343
    av_free(s->coded_fragment_list);
2344
    av_free(s->superblock_fragments);
2345
    av_free(s->superblock_macroblocks);
2346
    av_free(s->macroblock_fragments);
2347
    av_free(s->macroblock_coding);
2348

    
2349
    /* release all frames */
2350
    if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
2351
        avctx->release_buffer(avctx, &s->golden_frame);
2352
    if (s->last_frame.data[0])
2353
        avctx->release_buffer(avctx, &s->last_frame);
2354
    /* no need to release the current_frame since it will always be pointing
2355
     * to the same frame as either the golden or last frame */
2356

    
2357
    return 0;
2358
}
2359

    
2360
static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
2361
{
2362
    Vp3DecodeContext *s = avctx->priv_data;
2363

    
2364
    if (get_bits(gb, 1)) {
2365
        int token;
2366
        if (s->entries >= 32) { /* overflow */
2367
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2368
            return -1;
2369
        }
2370
        token = get_bits(gb, 5);
2371
        //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
2372
        s->huffman_table[s->hti][token][0] = s->hbits;
2373
        s->huffman_table[s->hti][token][1] = s->huff_code_size;
2374
        s->entries++;
2375
    }
2376
    else {
2377
        if (s->huff_code_size >= 32) {/* overflow */
2378
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2379
            return -1;
2380
        }
2381
        s->huff_code_size++;
2382
        s->hbits <<= 1;
2383
        read_huffman_tree(avctx, gb);
2384
        s->hbits |= 1;
2385
        read_huffman_tree(avctx, gb);
2386
        s->hbits >>= 1;
2387
        s->huff_code_size--;
2388
    }
2389
    return 0;
2390
}
2391

    
2392
static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2393
{
2394
    Vp3DecodeContext *s = avctx->priv_data;
2395

    
2396
    s->theora = get_bits_long(gb, 24);
2397
    av_log(avctx, AV_LOG_INFO, "Theora bitstream version %X\n", s->theora);
2398

    
2399
    /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
2400
    /* but previous versions have the image flipped relative to vp3 */
2401
    if (s->theora < 0x030200)
2402
    {
2403
        s->flipped_image = 1;
2404
        av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
2405
    }
2406

    
2407
    s->width = get_bits(gb, 16) << 4;
2408
    s->height = get_bits(gb, 16) << 4;
2409

    
2410
    if(avcodec_check_dimensions(avctx, s->width, s->height)){
2411
        av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
2412
        s->width= s->height= 0;
2413
        return -1;
2414
    }
2415

    
2416
    if (s->theora >= 0x030400)
2417
    {
2418
        skip_bits(gb, 32); /* total number of superblocks in a frame */
2419
        // fixme, the next field is 36bits long
2420
        skip_bits(gb, 32); /* total number of blocks in a frame */
2421
        skip_bits(gb, 4); /* total number of blocks in a frame */
2422
        skip_bits(gb, 32); /* total number of macroblocks in a frame */
2423

    
2424
        skip_bits(gb, 24); /* frame width */
2425
        skip_bits(gb, 24); /* frame height */
2426
    }
2427
    else
2428
    {
2429
        skip_bits(gb, 24); /* frame width */
2430
        skip_bits(gb, 24); /* frame height */
2431
    }
2432

    
2433
  if (s->theora >= 0x030200) {
2434
    skip_bits(gb, 8); /* offset x */
2435
    skip_bits(gb, 8); /* offset y */
2436
  }
2437

    
2438
    skip_bits(gb, 32); /* fps numerator */
2439
    skip_bits(gb, 32); /* fps denumerator */
2440
    skip_bits(gb, 24); /* aspect numerator */
2441
    skip_bits(gb, 24); /* aspect denumerator */
2442

    
2443
    if (s->theora < 0x030200)
2444
        skip_bits(gb, 5); /* keyframe frequency force */
2445
    skip_bits(gb, 8); /* colorspace */
2446
    if (s->theora >= 0x030400)
2447
        skip_bits(gb, 2); /* pixel format: 420,res,422,444 */
2448
    skip_bits(gb, 24); /* bitrate */
2449

    
2450
    skip_bits(gb, 6); /* quality hint */
2451

    
2452
    if (s->theora >= 0x030200)
2453
    {
2454
        skip_bits(gb, 5); /* keyframe frequency force */
2455

    
2456
        if (s->theora < 0x030400)
2457
            skip_bits(gb, 5); /* spare bits */
2458
    }
2459

    
2460
//    align_get_bits(gb);
2461

    
2462
    avctx->width = s->width;
2463
    avctx->height = s->height;
2464

    
2465
    return 0;
2466
}
2467

    
2468
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2469
{
2470
    Vp3DecodeContext *s = avctx->priv_data;
2471
    int i, n, matrices, inter, plane;
2472

    
2473
    if (s->theora >= 0x030200) {
2474
        n = get_bits(gb, 3);
2475
        /* loop filter limit values table */
2476
        for (i = 0; i < 64; i++)
2477
            s->filter_limit_values[i] = get_bits(gb, n);
2478
    }
2479

    
2480
    if (s->theora >= 0x030200)
2481
        n = get_bits(gb, 4) + 1;
2482
    else
2483
        n = 16;
2484
    /* quality threshold table */
2485
    for (i = 0; i < 64; i++)
2486
        s->coded_ac_scale_factor[i] = get_bits(gb, n);
2487

    
2488
    if (s->theora >= 0x030200)
2489
        n = get_bits(gb, 4) + 1;
2490
    else
2491
        n = 16;
2492
    /* dc scale factor table */
2493
    for (i = 0; i < 64; i++)
2494
        s->coded_dc_scale_factor[i] = get_bits(gb, n);
2495

    
2496
    if (s->theora >= 0x030200)
2497
        matrices = get_bits(gb, 9) + 1;
2498
    else
2499
        matrices = 3;
2500

    
2501
    if(matrices > 384){
2502
        av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2503
        return -1;
2504
    }
2505

    
2506
    for(n=0; n<matrices; n++){
2507
        for (i = 0; i < 64; i++)
2508
            s->base_matrix[n][i]= get_bits(gb, 8);
2509
    }
2510

    
2511
    for (inter = 0; inter <= 1; inter++) {
2512
        for (plane = 0; plane <= 2; plane++) {
2513
            int newqr= 1;
2514
            if (inter || plane > 0)
2515
                newqr = get_bits(gb, 1);
2516
            if (!newqr) {
2517
                int qtj, plj;
2518
                if(inter && get_bits(gb, 1)){
2519
                    qtj = 0;
2520
                    plj = plane;
2521
                }else{
2522
                    qtj= (3*inter + plane - 1) / 3;
2523
                    plj= (plane + 2) % 3;
2524
                }
2525
                s->qr_count[inter][plane]= s->qr_count[qtj][plj];
2526
                memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
2527
                memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
2528
            } else {
2529
                int qri= 0;
2530
                int qi = 0;
2531

    
2532
                for(;;){
2533
                    i= get_bits(gb, av_log2(matrices-1)+1);
2534
                    if(i>= matrices){
2535
                        av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
2536
                        return -1;
2537
                    }
2538
                    s->qr_base[inter][plane][qri]= i;
2539
                    if(qi >= 63)
2540
                        break;
2541
                    i = get_bits(gb, av_log2(63-qi)+1) + 1;
2542
                    s->qr_size[inter][plane][qri++]= i;
2543
                    qi += i;
2544
                }
2545

    
2546
                if (qi > 63) {
2547
                    av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2548
                    return -1;
2549
                }
2550
                s->qr_count[inter][plane]= qri;
2551
            }
2552
        }
2553
    }
2554

    
2555
    /* Huffman tables */
2556
    for (s->hti = 0; s->hti < 80; s->hti++) {
2557
        s->entries = 0;
2558
        s->huff_code_size = 1;
2559
        if (!get_bits(gb, 1)) {
2560
            s->hbits = 0;
2561
            read_huffman_tree(avctx, gb);
2562
            s->hbits = 1;
2563
            read_huffman_tree(avctx, gb);
2564
        }
2565
    }
2566

    
2567
    s->theora_tables = 1;
2568

    
2569
    return 0;
2570
}
2571

    
2572
static int theora_decode_init(AVCodecContext *avctx)
2573
{
2574
    Vp3DecodeContext *s = avctx->priv_data;
2575
    GetBitContext gb;
2576
    int ptype;
2577
    uint8_t *p= avctx->extradata;
2578
    int op_bytes, i;
2579

    
2580
    s->theora = 1;
2581

    
2582
    if (!avctx->extradata_size)
2583
    {
2584
        av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2585
        return -1;
2586
    }
2587

    
2588
  for(i=0;i<3;i++) {
2589
    op_bytes = *(p++)<<8;
2590
    op_bytes += *(p++);
2591

    
2592
    init_get_bits(&gb, p, op_bytes);
2593
    p += op_bytes;
2594

    
2595
    ptype = get_bits(&gb, 8);
2596
    debug_vp3("Theora headerpacket type: %x\n", ptype);
2597

    
2598
     if (!(ptype & 0x80))
2599
     {
2600
        av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2601
//        return -1;
2602
     }
2603

    
2604
    // FIXME: check for this aswell
2605
    skip_bits(&gb, 6*8); /* "theora" */
2606

    
2607
    switch(ptype)
2608
    {
2609
        case 0x80:
2610
            theora_decode_header(avctx, &gb);
2611
                break;
2612
        case 0x81:
2613
// FIXME: is this needed? it breaks sometimes
2614
//            theora_decode_comments(avctx, gb);
2615
            break;
2616
        case 0x82:
2617
            theora_decode_tables(avctx, &gb);
2618
            break;
2619
        default:
2620
            av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
2621
            break;
2622
    }
2623
    if(8*op_bytes != get_bits_count(&gb))
2624
        av_log(avctx, AV_LOG_ERROR, "%d bits left in packet %X\n", 8*op_bytes - get_bits_count(&gb), ptype);
2625
    if (s->theora < 0x030200)
2626
        break;
2627
  }
2628

    
2629
    vp3_decode_init(avctx);
2630
    return 0;
2631
}
2632

    
2633
AVCodec vp3_decoder = {
2634
    "vp3",
2635
    CODEC_TYPE_VIDEO,
2636
    CODEC_ID_VP3,
2637
    sizeof(Vp3DecodeContext),
2638
    vp3_decode_init,
2639
    NULL,
2640
    vp3_decode_end,
2641
    vp3_decode_frame,
2642
    0,
2643
    NULL
2644
};
2645

    
2646
AVCodec theora_decoder = {
2647
    "theora",
2648
    CODEC_TYPE_VIDEO,
2649
    CODEC_ID_THEORA,
2650
    sizeof(Vp3DecodeContext),
2651
    theora_decode_init,
2652
    NULL,
2653
    vp3_decode_end,
2654
    vp3_decode_frame,
2655
    0,
2656
    NULL
2657
};