Statistics
| Branch: | Revision:

ffmpeg / libswscale / swscale.c @ adcec46a

History | View | Annotate | Download (81.8 KB)

1
/*
2
 * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3
 *
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or modify
7
 * it under the terms of the GNU General Public License as published by
8
 * the Free Software Foundation; either version 2 of the License, or
9
 * (at your option) any later version.
10
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 * GNU General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU General Public License
17
 * along with FFmpeg; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19
 *
20
 * the C code (not assembly, mmx, ...) of this file can be used
21
 * under the LGPL license too
22
 */
23

    
24
/*
25
  supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09, PAL8
26
  supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
27
  {BGR,RGB}{1,4,8,15,16} support dithering
28
  
29
  unscaled special converters (YV12=I420=IYUV, Y800=Y8)
30
  YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
31
  x -> x
32
  YUV9 -> YV12
33
  YUV9/YV12 -> Y800
34
  Y800 -> YUV9/YV12
35
  BGR24 -> BGR32 & RGB24 -> RGB32
36
  BGR32 -> BGR24 & RGB32 -> RGB24
37
  BGR15 -> BGR16
38
*/
39

    
40
/* 
41
tested special converters (most are tested actually but i didnt write it down ...)
42
 YV12 -> BGR16
43
 YV12 -> YV12
44
 BGR15 -> BGR16
45
 BGR16 -> BGR16
46
 YVU9 -> YV12
47

48
untested special converters
49
  YV12/I420 -> BGR15/BGR24/BGR32 (its the yuv2rgb stuff, so it should be ok)
50
  YV12/I420 -> YV12/I420
51
  YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
52
  BGR24 -> BGR32 & RGB24 -> RGB32
53
  BGR32 -> BGR24 & RGB32 -> RGB24
54
  BGR24 -> YV12
55
*/
56

    
57
#include <inttypes.h>
58
#include <string.h>
59
#include <math.h>
60
#include <stdio.h>
61
#include <unistd.h>
62
#include "config.h"
63
#include <assert.h>
64
#ifdef HAVE_SYS_MMAN_H
65
#include <sys/mman.h>
66
#if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
67
#define MAP_ANONYMOUS MAP_ANON
68
#endif
69
#endif
70
#include "swscale.h"
71
#include "swscale_internal.h"
72
#include "x86_cpu.h"
73
#include "bswap.h"
74
#include "rgb2rgb.h"
75
#ifdef USE_FASTMEMCPY
76
#include "libvo/fastmemcpy.h"
77
#endif
78

    
79
#undef MOVNTQ
80
#undef PAVGB
81

    
82
//#undef HAVE_MMX2
83
//#define HAVE_3DNOW
84
//#undef HAVE_MMX
85
//#undef ARCH_X86
86
//#define WORDS_BIGENDIAN
87
#define DITHER1XBPP
88

    
89
#define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
90

    
91
#define RET 0xC3 //near return opcode for X86
92

    
93
#ifdef MP_DEBUG
94
#define ASSERT(x) assert(x);
95
#else
96
#define ASSERT(x) ;
97
#endif
98

    
99
#ifdef M_PI
100
#define PI M_PI
101
#else
102
#define PI 3.14159265358979323846
103
#endif
104

    
105
#define isSupportedIn(x)  ((x)==PIX_FMT_YUV420P || (x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422\
106
                        || (x)==PIX_FMT_RGB32|| (x)==PIX_FMT_BGR24|| (x)==PIX_FMT_BGR565|| (x)==PIX_FMT_BGR555\
107
                        || (x)==PIX_FMT_BGR32|| (x)==PIX_FMT_RGB24|| (x)==PIX_FMT_RGB565|| (x)==PIX_FMT_RGB555\
108
                        || (x)==PIX_FMT_GRAY8 || (x)==PIX_FMT_YUV410P\
109
                        || (x)==PIX_FMT_GRAY16BE || (x)==PIX_FMT_GRAY16LE\
110
                        || (x)==PIX_FMT_YUV444P || (x)==PIX_FMT_YUV422P || (x)==PIX_FMT_YUV411P\
111
                        || (x)==PIX_FMT_PAL8 || (x)==PIX_FMT_BGR8 || (x)==PIX_FMT_RGB8\
112
                        || (x)==PIX_FMT_BGR4_BYTE  || (x)==PIX_FMT_RGB4_BYTE)
113
#define isSupportedOut(x) ((x)==PIX_FMT_YUV420P || (x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422\
114
                        || (x)==PIX_FMT_YUV444P || (x)==PIX_FMT_YUV422P || (x)==PIX_FMT_YUV411P\
115
                        || isRGB(x) || isBGR(x)\
116
                        || (x)==PIX_FMT_NV12 || (x)==PIX_FMT_NV21\
117
                        || (x)==PIX_FMT_GRAY16BE || (x)==PIX_FMT_GRAY16LE\
118
                        || (x)==PIX_FMT_GRAY8 || (x)==PIX_FMT_YUV410P)
119
#define isPacked(x)    ((x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422 ||isRGB(x) || isBGR(x))
120

    
121
#define RGB2YUV_SHIFT 16
122
#define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
123
#define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
124
#define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
125
#define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
126
#define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
127
#define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
128
#define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
129
#define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
130
#define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
131

    
132
extern const int32_t Inverse_Table_6_9[8][4];
133

    
134
/*
135
NOTES
136
Special versions: fast Y 1:1 scaling (no interpolation in y direction)
137

138
TODO
139
more intelligent missalignment avoidance for the horizontal scaler
140
write special vertical cubic upscale version
141
Optimize C code (yv12 / minmax)
142
add support for packed pixel yuv input & output
143
add support for Y8 output
144
optimize bgr24 & bgr32
145
add BGR4 output support
146
write special BGR->BGR scaler
147
*/
148

    
149
#if defined(ARCH_X86) && defined (CONFIG_GPL)
150
static uint64_t attribute_used __attribute__((aligned(8))) bF8=       0xF8F8F8F8F8F8F8F8LL;
151
static uint64_t attribute_used __attribute__((aligned(8))) bFC=       0xFCFCFCFCFCFCFCFCLL;
152
static uint64_t __attribute__((aligned(8))) w10=       0x0010001000100010LL;
153
static uint64_t attribute_used __attribute__((aligned(8))) w02=       0x0002000200020002LL;
154
static uint64_t attribute_used __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL;
155
static uint64_t attribute_used __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL;
156
static uint64_t attribute_used __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL;
157
static uint64_t attribute_used __attribute__((aligned(8))) bm01010101=0x00FF00FF00FF00FFLL;
158

    
159
static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
160
static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
161
static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
162
static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
163

    
164
static uint64_t __attribute__((aligned(8))) dither4[2]={
165
        0x0103010301030103LL,
166
        0x0200020002000200LL,};
167

    
168
static uint64_t __attribute__((aligned(8))) dither8[2]={
169
        0x0602060206020602LL,
170
        0x0004000400040004LL,};
171

    
172
static uint64_t __attribute__((aligned(8))) b16Mask=   0x001F001F001F001FLL;
173
static uint64_t attribute_used __attribute__((aligned(8))) g16Mask=   0x07E007E007E007E0LL;
174
static uint64_t attribute_used __attribute__((aligned(8))) r16Mask=   0xF800F800F800F800LL;
175
static uint64_t __attribute__((aligned(8))) b15Mask=   0x001F001F001F001FLL;
176
static uint64_t attribute_used __attribute__((aligned(8))) g15Mask=   0x03E003E003E003E0LL;
177
static uint64_t attribute_used __attribute__((aligned(8))) r15Mask=   0x7C007C007C007C00LL;
178

    
179
static uint64_t attribute_used __attribute__((aligned(8))) M24A=   0x00FF0000FF0000FFLL;
180
static uint64_t attribute_used __attribute__((aligned(8))) M24B=   0xFF0000FF0000FF00LL;
181
static uint64_t attribute_used __attribute__((aligned(8))) M24C=   0x0000FF0000FF0000LL;
182

    
183
#ifdef FAST_BGR2YV12
184
static const uint64_t bgr2YCoeff  attribute_used __attribute__((aligned(8))) = 0x000000210041000DULL;
185
static const uint64_t bgr2UCoeff  attribute_used __attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL;
186
static const uint64_t bgr2VCoeff  attribute_used __attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL;
187
#else
188
static const uint64_t bgr2YCoeff  attribute_used __attribute__((aligned(8))) = 0x000020E540830C8BULL;
189
static const uint64_t bgr2UCoeff  attribute_used __attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL;
190
static const uint64_t bgr2VCoeff  attribute_used __attribute__((aligned(8))) = 0x00003831D0E6F6EAULL;
191
#endif /* FAST_BGR2YV12 */
192
static const uint64_t bgr2YOffset attribute_used __attribute__((aligned(8))) = 0x1010101010101010ULL;
193
static const uint64_t bgr2UVOffset attribute_used __attribute__((aligned(8)))= 0x8080808080808080ULL;
194
static const uint64_t w1111       attribute_used __attribute__((aligned(8))) = 0x0001000100010001ULL;
195
#endif /* defined(ARCH_X86) */
196

    
197
// clipping helper table for C implementations:
198
static unsigned char clip_table[768];
199

    
200
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
201
                  
202
extern const uint8_t dither_2x2_4[2][8];
203
extern const uint8_t dither_2x2_8[2][8];
204
extern const uint8_t dither_8x8_32[8][8];
205
extern const uint8_t dither_8x8_73[8][8];
206
extern const uint8_t dither_8x8_220[8][8];
207

    
208
static const char * sws_context_to_name(void * ptr) {
209
    return "swscaler";
210
}
211

    
212
static AVClass sws_context_class = { "SWScaler", sws_context_to_name, NULL };
213

    
214
char *sws_format_name(enum PixelFormat format)
215
{
216
    switch (format) {
217
        case PIX_FMT_YUV420P:
218
            return "yuv420p";
219
        case PIX_FMT_YUYV422:
220
            return "yuyv422";
221
        case PIX_FMT_RGB24:
222
            return "rgb24";
223
        case PIX_FMT_BGR24:
224
            return "bgr24";
225
        case PIX_FMT_YUV422P:
226
            return "yuv422p";
227
        case PIX_FMT_YUV444P:
228
            return "yuv444p";
229
        case PIX_FMT_RGB32:
230
            return "rgb32";
231
        case PIX_FMT_YUV410P:
232
            return "yuv410p";
233
        case PIX_FMT_YUV411P:
234
            return "yuv411p";
235
        case PIX_FMT_RGB565:
236
            return "rgb565";
237
        case PIX_FMT_RGB555:
238
            return "rgb555";
239
        case PIX_FMT_GRAY16BE:
240
            return "gray16be";
241
        case PIX_FMT_GRAY16LE:
242
            return "gray16le";
243
        case PIX_FMT_GRAY8:
244
            return "gray8";
245
        case PIX_FMT_MONOWHITE:
246
            return "mono white";
247
        case PIX_FMT_MONOBLACK:
248
            return "mono black";
249
        case PIX_FMT_PAL8:
250
            return "Palette";
251
        case PIX_FMT_YUVJ420P:
252
            return "yuvj420p";
253
        case PIX_FMT_YUVJ422P:
254
            return "yuvj422p";
255
        case PIX_FMT_YUVJ444P:
256
            return "yuvj444p";
257
        case PIX_FMT_XVMC_MPEG2_MC:
258
            return "xvmc_mpeg2_mc";
259
        case PIX_FMT_XVMC_MPEG2_IDCT:
260
            return "xvmc_mpeg2_idct";
261
        case PIX_FMT_UYVY422:
262
            return "uyvy422";
263
        case PIX_FMT_UYYVYY411:
264
            return "uyyvyy411";
265
        case PIX_FMT_RGB32_1:
266
            return "rgb32x";
267
        case PIX_FMT_BGR32_1:
268
            return "bgr32x";
269
        case PIX_FMT_BGR32:
270
            return "bgr32";
271
        case PIX_FMT_BGR565:
272
            return "bgr565";
273
        case PIX_FMT_BGR555:
274
            return "bgr555";
275
        case PIX_FMT_BGR8:
276
            return "bgr8";
277
        case PIX_FMT_BGR4:
278
            return "bgr4";
279
        case PIX_FMT_BGR4_BYTE:
280
            return "bgr4 byte";
281
        case PIX_FMT_RGB8:
282
            return "rgb8";
283
        case PIX_FMT_RGB4:
284
            return "rgb4";
285
        case PIX_FMT_RGB4_BYTE:
286
            return "rgb4 byte";
287
        case PIX_FMT_NV12:
288
            return "nv12";
289
        case PIX_FMT_NV21:
290
            return "nv21";
291
        default:
292
            return "Unknown format";
293
    }
294
}
295

    
296
#if defined(ARCH_X86) && defined (CONFIG_GPL)
297
void in_asm_used_var_warning_killer()
298
{
299
 volatile int i= bF8+bFC+w10+
300
 bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+
301
 M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0]+bm01010101;
302
 if(i) i=0;
303
}
304
#endif
305

    
306
static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
307
                                    int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
308
                                    uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
309
{
310
        //FIXME Optimize (just quickly writen not opti..)
311
        int i;
312
        for(i=0; i<dstW; i++)
313
        {
314
                int val=1<<18;
315
                int j;
316
                for(j=0; j<lumFilterSize; j++)
317
                        val += lumSrc[j][i] * lumFilter[j];
318

    
319
                dest[i]= av_clip_uint8(val>>19);
320
        }
321

    
322
        if(uDest != NULL)
323
                for(i=0; i<chrDstW; i++)
324
                {
325
                        int u=1<<18;
326
                        int v=1<<18;
327
                        int j;
328
                        for(j=0; j<chrFilterSize; j++)
329
                        {
330
                                u += chrSrc[j][i] * chrFilter[j];
331
                                v += chrSrc[j][i + 2048] * chrFilter[j];
332
                        }
333

    
334
                        uDest[i]= av_clip_uint8(u>>19);
335
                        vDest[i]= av_clip_uint8(v>>19);
336
                }
337
}
338

    
339
static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
340
                                int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
341
                                uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
342
{
343
        //FIXME Optimize (just quickly writen not opti..)
344
        int i;
345
        for(i=0; i<dstW; i++)
346
        {
347
                int val=1<<18;
348
                int j;
349
                for(j=0; j<lumFilterSize; j++)
350
                        val += lumSrc[j][i] * lumFilter[j];
351

    
352
                dest[i]= av_clip_uint8(val>>19);
353
        }
354

    
355
        if(uDest == NULL)
356
                return;
357

    
358
        if(dstFormat == PIX_FMT_NV12)
359
                for(i=0; i<chrDstW; i++)
360
                {
361
                        int u=1<<18;
362
                        int v=1<<18;
363
                        int j;
364
                        for(j=0; j<chrFilterSize; j++)
365
                        {
366
                                u += chrSrc[j][i] * chrFilter[j];
367
                                v += chrSrc[j][i + 2048] * chrFilter[j];
368
                        }
369

    
370
                        uDest[2*i]= av_clip_uint8(u>>19);
371
                        uDest[2*i+1]= av_clip_uint8(v>>19);
372
                }
373
        else
374
                for(i=0; i<chrDstW; i++)
375
                {
376
                        int u=1<<18;
377
                        int v=1<<18;
378
                        int j;
379
                        for(j=0; j<chrFilterSize; j++)
380
                        {
381
                                u += chrSrc[j][i] * chrFilter[j];
382
                                v += chrSrc[j][i + 2048] * chrFilter[j];
383
                        }
384

    
385
                        uDest[2*i]= av_clip_uint8(v>>19);
386
                        uDest[2*i+1]= av_clip_uint8(u>>19);
387
                }
388
}
389

    
390
#define YSCALE_YUV_2_PACKEDX_C(type) \
391
                for(i=0; i<(dstW>>1); i++){\
392
                        int j;\
393
                        int Y1=1<<18;\
394
                        int Y2=1<<18;\
395
                        int U=1<<18;\
396
                        int V=1<<18;\
397
                        type attribute_unused *r, *b, *g;\
398
                        const int i2= 2*i;\
399
                        \
400
                        for(j=0; j<lumFilterSize; j++)\
401
                        {\
402
                                Y1 += lumSrc[j][i2] * lumFilter[j];\
403
                                Y2 += lumSrc[j][i2+1] * lumFilter[j];\
404
                        }\
405
                        for(j=0; j<chrFilterSize; j++)\
406
                        {\
407
                                U += chrSrc[j][i] * chrFilter[j];\
408
                                V += chrSrc[j][i+2048] * chrFilter[j];\
409
                        }\
410
                        Y1>>=19;\
411
                        Y2>>=19;\
412
                        U >>=19;\
413
                        V >>=19;\
414
                        if((Y1|Y2|U|V)&256)\
415
                        {\
416
                                if(Y1>255)   Y1=255;\
417
                                else if(Y1<0)Y1=0;\
418
                                if(Y2>255)   Y2=255;\
419
                                else if(Y2<0)Y2=0;\
420
                                if(U>255)    U=255;\
421
                                else if(U<0) U=0;\
422
                                if(V>255)    V=255;\
423
                                else if(V<0) V=0;\
424
                        }
425
                        
426
#define YSCALE_YUV_2_RGBX_C(type) \
427
                        YSCALE_YUV_2_PACKEDX_C(type)\
428
                        r = (type *)c->table_rV[V];\
429
                        g = (type *)(c->table_gU[U] + c->table_gV[V]);\
430
                        b = (type *)c->table_bU[U];\
431

    
432
#define YSCALE_YUV_2_PACKED2_C \
433
                for(i=0; i<(dstW>>1); i++){\
434
                        const int i2= 2*i;\
435
                        int Y1= (buf0[i2  ]*yalpha1+buf1[i2  ]*yalpha)>>19;\
436
                        int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19;\
437
                        int U= (uvbuf0[i     ]*uvalpha1+uvbuf1[i     ]*uvalpha)>>19;\
438
                        int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19;\
439

    
440
#define YSCALE_YUV_2_RGB2_C(type) \
441
                        YSCALE_YUV_2_PACKED2_C\
442
                        type *r, *b, *g;\
443
                        r = (type *)c->table_rV[V];\
444
                        g = (type *)(c->table_gU[U] + c->table_gV[V]);\
445
                        b = (type *)c->table_bU[U];\
446

    
447
#define YSCALE_YUV_2_PACKED1_C \
448
                for(i=0; i<(dstW>>1); i++){\
449
                        const int i2= 2*i;\
450
                        int Y1= buf0[i2  ]>>7;\
451
                        int Y2= buf0[i2+1]>>7;\
452
                        int U= (uvbuf1[i     ])>>7;\
453
                        int V= (uvbuf1[i+2048])>>7;\
454

    
455
#define YSCALE_YUV_2_RGB1_C(type) \
456
                        YSCALE_YUV_2_PACKED1_C\
457
                        type *r, *b, *g;\
458
                        r = (type *)c->table_rV[V];\
459
                        g = (type *)(c->table_gU[U] + c->table_gV[V]);\
460
                        b = (type *)c->table_bU[U];\
461

    
462
#define YSCALE_YUV_2_PACKED1B_C \
463
                for(i=0; i<(dstW>>1); i++){\
464
                        const int i2= 2*i;\
465
                        int Y1= buf0[i2  ]>>7;\
466
                        int Y2= buf0[i2+1]>>7;\
467
                        int U= (uvbuf0[i     ] + uvbuf1[i     ])>>8;\
468
                        int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\
469

    
470
#define YSCALE_YUV_2_RGB1B_C(type) \
471
                        YSCALE_YUV_2_PACKED1B_C\
472
                        type *r, *b, *g;\
473
                        r = (type *)c->table_rV[V];\
474
                        g = (type *)(c->table_gU[U] + c->table_gV[V]);\
475
                        b = (type *)c->table_bU[U];\
476

    
477
#define YSCALE_YUV_2_ANYRGB_C(func, func2)\
478
        switch(c->dstFormat)\
479
        {\
480
        case PIX_FMT_RGB32:\
481
        case PIX_FMT_BGR32:\
482
                func(uint32_t)\
483
                        ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
484
                        ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
485
                }                \
486
                break;\
487
        case PIX_FMT_RGB24:\
488
                func(uint8_t)\
489
                        ((uint8_t*)dest)[0]= r[Y1];\
490
                        ((uint8_t*)dest)[1]= g[Y1];\
491
                        ((uint8_t*)dest)[2]= b[Y1];\
492
                        ((uint8_t*)dest)[3]= r[Y2];\
493
                        ((uint8_t*)dest)[4]= g[Y2];\
494
                        ((uint8_t*)dest)[5]= b[Y2];\
495
                        dest+=6;\
496
                }\
497
                break;\
498
        case PIX_FMT_BGR24:\
499
                func(uint8_t)\
500
                        ((uint8_t*)dest)[0]= b[Y1];\
501
                        ((uint8_t*)dest)[1]= g[Y1];\
502
                        ((uint8_t*)dest)[2]= r[Y1];\
503
                        ((uint8_t*)dest)[3]= b[Y2];\
504
                        ((uint8_t*)dest)[4]= g[Y2];\
505
                        ((uint8_t*)dest)[5]= r[Y2];\
506
                        dest+=6;\
507
                }\
508
                break;\
509
        case PIX_FMT_RGB565:\
510
        case PIX_FMT_BGR565:\
511
                {\
512
                        const int dr1= dither_2x2_8[y&1    ][0];\
513
                        const int dg1= dither_2x2_4[y&1    ][0];\
514
                        const int db1= dither_2x2_8[(y&1)^1][0];\
515
                        const int dr2= dither_2x2_8[y&1    ][1];\
516
                        const int dg2= dither_2x2_4[y&1    ][1];\
517
                        const int db2= dither_2x2_8[(y&1)^1][1];\
518
                        func(uint16_t)\
519
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
520
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
521
                        }\
522
                }\
523
                break;\
524
        case PIX_FMT_RGB555:\
525
        case PIX_FMT_BGR555:\
526
                {\
527
                        const int dr1= dither_2x2_8[y&1    ][0];\
528
                        const int dg1= dither_2x2_8[y&1    ][1];\
529
                        const int db1= dither_2x2_8[(y&1)^1][0];\
530
                        const int dr2= dither_2x2_8[y&1    ][1];\
531
                        const int dg2= dither_2x2_8[y&1    ][0];\
532
                        const int db2= dither_2x2_8[(y&1)^1][1];\
533
                        func(uint16_t)\
534
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
535
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
536
                        }\
537
                }\
538
                break;\
539
        case PIX_FMT_RGB8:\
540
        case PIX_FMT_BGR8:\
541
                {\
542
                        const uint8_t * const d64= dither_8x8_73[y&7];\
543
                        const uint8_t * const d32= dither_8x8_32[y&7];\
544
                        func(uint8_t)\
545
                                ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
546
                                ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
547
                        }\
548
                }\
549
                break;\
550
        case PIX_FMT_RGB4:\
551
        case PIX_FMT_BGR4:\
552
                {\
553
                        const uint8_t * const d64= dither_8x8_73 [y&7];\
554
                        const uint8_t * const d128=dither_8x8_220[y&7];\
555
                        func(uint8_t)\
556
                                ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
557
                                                 + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
558
                        }\
559
                }\
560
                break;\
561
        case PIX_FMT_RGB4_BYTE:\
562
        case PIX_FMT_BGR4_BYTE:\
563
                {\
564
                        const uint8_t * const d64= dither_8x8_73 [y&7];\
565
                        const uint8_t * const d128=dither_8x8_220[y&7];\
566
                        func(uint8_t)\
567
                                ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
568
                                ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
569
                        }\
570
                }\
571
                break;\
572
        case PIX_FMT_MONOBLACK:\
573
                {\
574
                        const uint8_t * const d128=dither_8x8_220[y&7];\
575
                        uint8_t *g= c->table_gU[128] + c->table_gV[128];\
576
                        for(i=0; i<dstW-7; i+=8){\
577
                                int acc;\
578
                                acc =       g[((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19) + d128[0]];\
579
                                acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
580
                                acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
581
                                acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
582
                                acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
583
                                acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
584
                                acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
585
                                acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
586
                                ((uint8_t*)dest)[0]= acc;\
587
                                dest++;\
588
                        }\
589
\
590
/*\
591
((uint8_t*)dest)-= dstW>>4;\
592
{\
593
                        int acc=0;\
594
                        int left=0;\
595
                        static int top[1024];\
596
                        static int last_new[1024][1024];\
597
                        static int last_in3[1024][1024];\
598
                        static int drift[1024][1024];\
599
                        int topLeft=0;\
600
                        int shift=0;\
601
                        int count=0;\
602
                        const uint8_t * const d128=dither_8x8_220[y&7];\
603
                        int error_new=0;\
604
                        int error_in3=0;\
605
                        int f=0;\
606
                        \
607
                        for(i=dstW>>1; i<dstW; i++){\
608
                                int in= ((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19);\
609
                                int in2 = (76309 * (in - 16) + 32768) >> 16;\
610
                                int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
611
                                int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
612
                                        + (last_new[y][i] - in3)*f/256;\
613
                                int new= old> 128 ? 255 : 0;\
614
\
615
                                error_new+= FFABS(last_new[y][i] - new);\
616
                                error_in3+= FFABS(last_in3[y][i] - in3);\
617
                                f= error_new - error_in3*4;\
618
                                if(f<0) f=0;\
619
                                if(f>256) f=256;\
620
\
621
                                topLeft= top[i];\
622
                                left= top[i]= old - new;\
623
                                last_new[y][i]= new;\
624
                                last_in3[y][i]= in3;\
625
\
626
                                acc+= acc + (new&1);\
627
                                if((i&7)==6){\
628
                                        ((uint8_t*)dest)[0]= acc;\
629
                                        ((uint8_t*)dest)++;\
630
                                }\
631
                        }\
632
}\
633
*/\
634
                }\
635
                break;\
636
        case PIX_FMT_YUYV422:\
637
                func2\
638
                        ((uint8_t*)dest)[2*i2+0]= Y1;\
639
                        ((uint8_t*)dest)[2*i2+1]= U;\
640
                        ((uint8_t*)dest)[2*i2+2]= Y2;\
641
                        ((uint8_t*)dest)[2*i2+3]= V;\
642
                }                \
643
                break;\
644
        case PIX_FMT_UYVY422:\
645
                func2\
646
                        ((uint8_t*)dest)[2*i2+0]= U;\
647
                        ((uint8_t*)dest)[2*i2+1]= Y1;\
648
                        ((uint8_t*)dest)[2*i2+2]= V;\
649
                        ((uint8_t*)dest)[2*i2+3]= Y2;\
650
                }                \
651
                break;\
652
        }\
653

    
654

    
655
static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
656
                                    int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
657
                                    uint8_t *dest, int dstW, int y)
658
{
659
        int i;
660
        switch(c->dstFormat)
661
        {
662
        case PIX_FMT_BGR32:
663
        case PIX_FMT_RGB32:
664
                YSCALE_YUV_2_RGBX_C(uint32_t)
665
                        ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];
666
                        ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];
667
                }
668
                break;
669
        case PIX_FMT_RGB24:
670
                YSCALE_YUV_2_RGBX_C(uint8_t)
671
                        ((uint8_t*)dest)[0]= r[Y1];
672
                        ((uint8_t*)dest)[1]= g[Y1];
673
                        ((uint8_t*)dest)[2]= b[Y1];
674
                        ((uint8_t*)dest)[3]= r[Y2];
675
                        ((uint8_t*)dest)[4]= g[Y2];
676
                        ((uint8_t*)dest)[5]= b[Y2];
677
                        dest+=6;
678
                }
679
                break;
680
        case PIX_FMT_BGR24:
681
                YSCALE_YUV_2_RGBX_C(uint8_t)
682
                        ((uint8_t*)dest)[0]= b[Y1];
683
                        ((uint8_t*)dest)[1]= g[Y1];
684
                        ((uint8_t*)dest)[2]= r[Y1];
685
                        ((uint8_t*)dest)[3]= b[Y2];
686
                        ((uint8_t*)dest)[4]= g[Y2];
687
                        ((uint8_t*)dest)[5]= r[Y2];
688
                        dest+=6;
689
                }
690
                break;
691
        case PIX_FMT_RGB565:
692
        case PIX_FMT_BGR565:
693
                {
694
                        const int dr1= dither_2x2_8[y&1    ][0];
695
                        const int dg1= dither_2x2_4[y&1    ][0];
696
                        const int db1= dither_2x2_8[(y&1)^1][0];
697
                        const int dr2= dither_2x2_8[y&1    ][1];
698
                        const int dg2= dither_2x2_4[y&1    ][1];
699
                        const int db2= dither_2x2_8[(y&1)^1][1];
700
                        YSCALE_YUV_2_RGBX_C(uint16_t)
701
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
702
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
703
                        }
704
                }
705
                break;
706
        case PIX_FMT_RGB555:
707
        case PIX_FMT_BGR555:
708
                {
709
                        const int dr1= dither_2x2_8[y&1    ][0];
710
                        const int dg1= dither_2x2_8[y&1    ][1];
711
                        const int db1= dither_2x2_8[(y&1)^1][0];
712
                        const int dr2= dither_2x2_8[y&1    ][1];
713
                        const int dg2= dither_2x2_8[y&1    ][0];
714
                        const int db2= dither_2x2_8[(y&1)^1][1];
715
                        YSCALE_YUV_2_RGBX_C(uint16_t)
716
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
717
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
718
                        }
719
                }
720
                break;
721
        case PIX_FMT_RGB8:
722
        case PIX_FMT_BGR8:
723
                {
724
                        const uint8_t * const d64= dither_8x8_73[y&7];
725
                        const uint8_t * const d32= dither_8x8_32[y&7];
726
                        YSCALE_YUV_2_RGBX_C(uint8_t)
727
                                ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];
728
                                ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];
729
                        }
730
                }
731
                break;
732
        case PIX_FMT_RGB4:
733
        case PIX_FMT_BGR4:
734
                {
735
                        const uint8_t * const d64= dither_8x8_73 [y&7];
736
                        const uint8_t * const d128=dither_8x8_220[y&7];
737
                        YSCALE_YUV_2_RGBX_C(uint8_t)
738
                                ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]
739
                                                  +((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);
740
                        }
741
                }
742
                break;
743
        case PIX_FMT_RGB4_BYTE:
744
        case PIX_FMT_BGR4_BYTE:
745
                {
746
                        const uint8_t * const d64= dither_8x8_73 [y&7];
747
                        const uint8_t * const d128=dither_8x8_220[y&7];
748
                        YSCALE_YUV_2_RGBX_C(uint8_t)
749
                                ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];
750
                                ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];
751
                        }
752
                }
753
                break;
754
        case PIX_FMT_MONOBLACK:
755
                {
756
                        const uint8_t * const d128=dither_8x8_220[y&7];
757
                        uint8_t *g= c->table_gU[128] + c->table_gV[128];
758
                        int acc=0;
759
                        for(i=0; i<dstW-1; i+=2){
760
                                int j;
761
                                int Y1=1<<18;
762
                                int Y2=1<<18;
763

    
764
                                for(j=0; j<lumFilterSize; j++)
765
                                {
766
                                        Y1 += lumSrc[j][i] * lumFilter[j];
767
                                        Y2 += lumSrc[j][i+1] * lumFilter[j];
768
                                }
769
                                Y1>>=19;
770
                                Y2>>=19;
771
                                if((Y1|Y2)&256)
772
                                {
773
                                        if(Y1>255)   Y1=255;
774
                                        else if(Y1<0)Y1=0;
775
                                        if(Y2>255)   Y2=255;
776
                                        else if(Y2<0)Y2=0;
777
                                }
778
                                acc+= acc + g[Y1+d128[(i+0)&7]];
779
                                acc+= acc + g[Y2+d128[(i+1)&7]];
780
                                if((i&7)==6){
781
                                        ((uint8_t*)dest)[0]= acc;
782
                                        dest++;
783
                                }
784
                        }
785
                }
786
                break;
787
        case PIX_FMT_YUYV422:
788
                YSCALE_YUV_2_PACKEDX_C(void)
789
                        ((uint8_t*)dest)[2*i2+0]= Y1;
790
                        ((uint8_t*)dest)[2*i2+1]= U;
791
                        ((uint8_t*)dest)[2*i2+2]= Y2;
792
                        ((uint8_t*)dest)[2*i2+3]= V;
793
                }
794
                break;
795
        case PIX_FMT_UYVY422:
796
                YSCALE_YUV_2_PACKEDX_C(void)
797
                        ((uint8_t*)dest)[2*i2+0]= U;
798
                        ((uint8_t*)dest)[2*i2+1]= Y1;
799
                        ((uint8_t*)dest)[2*i2+2]= V;
800
                        ((uint8_t*)dest)[2*i2+3]= Y2;
801
                }
802
                break;
803
        }
804
}
805

    
806

    
807
//Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
808
//Plain C versions
809
#if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT) || !defined(CONFIG_GPL)
810
#define COMPILE_C
811
#endif
812

    
813
#ifdef ARCH_POWERPC
814
#if (defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
815
#define COMPILE_ALTIVEC
816
#endif //HAVE_ALTIVEC
817
#endif //ARCH_POWERPC
818

    
819
#if defined(ARCH_X86)
820

    
821
#if ((defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
822
#define COMPILE_MMX
823
#endif
824

    
825
#if (defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
826
#define COMPILE_MMX2
827
#endif
828

    
829
#if ((defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
830
#define COMPILE_3DNOW
831
#endif
832
#endif //ARCH_X86 || ARCH_X86_64
833

    
834
#undef HAVE_MMX
835
#undef HAVE_MMX2
836
#undef HAVE_3DNOW
837

    
838
#ifdef COMPILE_C
839
#undef HAVE_MMX
840
#undef HAVE_MMX2
841
#undef HAVE_3DNOW
842
#undef HAVE_ALTIVEC
843
#define RENAME(a) a ## _C
844
#include "swscale_template.c"
845
#endif
846

    
847
#ifdef ARCH_POWERPC
848
#ifdef COMPILE_ALTIVEC
849
#undef RENAME
850
#define HAVE_ALTIVEC
851
#define RENAME(a) a ## _altivec
852
#include "swscale_template.c"
853
#endif
854
#endif //ARCH_POWERPC
855

    
856
#if defined(ARCH_X86)
857

    
858
//X86 versions
859
/*
860
#undef RENAME
861
#undef HAVE_MMX
862
#undef HAVE_MMX2
863
#undef HAVE_3DNOW
864
#define ARCH_X86
865
#define RENAME(a) a ## _X86
866
#include "swscale_template.c"
867
*/
868
//MMX versions
869
#ifdef COMPILE_MMX
870
#undef RENAME
871
#define HAVE_MMX
872
#undef HAVE_MMX2
873
#undef HAVE_3DNOW
874
#define RENAME(a) a ## _MMX
875
#include "swscale_template.c"
876
#endif
877

    
878
//MMX2 versions
879
#ifdef COMPILE_MMX2
880
#undef RENAME
881
#define HAVE_MMX
882
#define HAVE_MMX2
883
#undef HAVE_3DNOW
884
#define RENAME(a) a ## _MMX2
885
#include "swscale_template.c"
886
#endif
887

    
888
//3DNOW versions
889
#ifdef COMPILE_3DNOW
890
#undef RENAME
891
#define HAVE_MMX
892
#undef HAVE_MMX2
893
#define HAVE_3DNOW
894
#define RENAME(a) a ## _3DNow
895
#include "swscale_template.c"
896
#endif
897

    
898
#endif //ARCH_X86 || ARCH_X86_64
899

    
900
// minor note: the HAVE_xyz is messed up after that line so don't use it
901

    
902
static double getSplineCoeff(double a, double b, double c, double d, double dist)
903
{
904
//        printf("%f %f %f %f %f\n", a,b,c,d,dist);
905
        if(dist<=1.0)         return ((d*dist + c)*dist + b)*dist +a;
906
        else                return getSplineCoeff(        0.0, 
907
                                                 b+ 2.0*c + 3.0*d,
908
                                                        c + 3.0*d,
909
                                                -b- 3.0*c - 6.0*d,
910
                                                dist-1.0);
911
}
912

    
913
static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
914
                              int srcW, int dstW, int filterAlign, int one, int flags,
915
                              SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
916
{
917
        int i;
918
        int filterSize;
919
        int filter2Size;
920
        int minFilterSize;
921
        double *filter=NULL;
922
        double *filter2=NULL;
923
#if defined(ARCH_X86)
924
        if(flags & SWS_CPU_CAPS_MMX)
925
                asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
926
#endif
927

    
928
        // Note the +1 is for the MMXscaler which reads over the end
929
        *filterPos = av_malloc((dstW+1)*sizeof(int16_t));
930

    
931
        if(FFABS(xInc - 0x10000) <10) // unscaled
932
        {
933
                int i;
934
                filterSize= 1;
935
                filter= av_malloc(dstW*sizeof(double)*filterSize);
936
                for(i=0; i<dstW*filterSize; i++) filter[i]=0;
937

    
938
                for(i=0; i<dstW; i++)
939
                {
940
                        filter[i*filterSize]=1;
941
                        (*filterPos)[i]=i;
942
                }
943

    
944
        }
945
        else if(flags&SWS_POINT) // lame looking point sampling mode
946
        {
947
                int i;
948
                int xDstInSrc;
949
                filterSize= 1;
950
                filter= av_malloc(dstW*sizeof(double)*filterSize);
951
                
952
                xDstInSrc= xInc/2 - 0x8000;
953
                for(i=0; i<dstW; i++)
954
                {
955
                        int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
956

    
957
                        (*filterPos)[i]= xx;
958
                        filter[i]= 1.0;
959
                        xDstInSrc+= xInc;
960
                }
961
        }
962
        else if((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
963
        {
964
                int i;
965
                int xDstInSrc;
966
                if     (flags&SWS_BICUBIC) filterSize= 4;
967
                else if(flags&SWS_X      ) filterSize= 4;
968
                else                           filterSize= 2; // SWS_BILINEAR / SWS_AREA 
969
                filter= av_malloc(dstW*sizeof(double)*filterSize);
970

    
971
                xDstInSrc= xInc/2 - 0x8000;
972
                for(i=0; i<dstW; i++)
973
                {
974
                        int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
975
                        int j;
976

    
977
                        (*filterPos)[i]= xx;
978
                                //Bilinear upscale / linear interpolate / Area averaging
979
                                for(j=0; j<filterSize; j++)
980
                                {
981
                                        double d= FFABS((xx<<16) - xDstInSrc)/(double)(1<<16);
982
                                        double coeff= 1.0 - d;
983
                                        if(coeff<0) coeff=0;
984
                                        filter[i*filterSize + j]= coeff;
985
                                        xx++;
986
                                }
987
                        xDstInSrc+= xInc;
988
                }
989
        }
990
        else
991
        {
992
                double xDstInSrc;
993
                double sizeFactor, filterSizeInSrc;
994
                const double xInc1= (double)xInc / (double)(1<<16);
995

    
996
                if     (flags&SWS_BICUBIC)        sizeFactor= 4.0;
997
                else if(flags&SWS_X)                sizeFactor= 8.0;
998
                else if(flags&SWS_AREA)                sizeFactor= 1.0; //downscale only, for upscale it is bilinear
999
                else if(flags&SWS_GAUSS)        sizeFactor= 8.0;   // infinite ;)
1000
                else if(flags&SWS_LANCZOS)        sizeFactor= param[0] != SWS_PARAM_DEFAULT ? 2.0*param[0] : 6.0;
1001
                else if(flags&SWS_SINC)                sizeFactor= 20.0; // infinite ;)
1002
                else if(flags&SWS_SPLINE)        sizeFactor= 20.0;  // infinite ;)
1003
                else if(flags&SWS_BILINEAR)        sizeFactor= 2.0;
1004
                else {
1005
                        sizeFactor= 0.0; //GCC warning killer
1006
                        ASSERT(0)
1007
                }
1008
                
1009
                if(xInc1 <= 1.0)        filterSizeInSrc= sizeFactor; // upscale
1010
                else                        filterSizeInSrc= sizeFactor*srcW / (double)dstW;
1011

    
1012
                filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
1013
                if(filterSize > srcW-2) filterSize=srcW-2;
1014

    
1015
                filter= av_malloc(dstW*sizeof(double)*filterSize);
1016

    
1017
                xDstInSrc= xInc1 / 2.0 - 0.5;
1018
                for(i=0; i<dstW; i++)
1019
                {
1020
                        int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
1021
                        int j;
1022
                        (*filterPos)[i]= xx;
1023
                        for(j=0; j<filterSize; j++)
1024
                        {
1025
                                double d= FFABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
1026
                                double coeff;
1027
                                if(flags & SWS_BICUBIC)
1028
                                {
1029
                                        double B= param[0] != SWS_PARAM_DEFAULT ? param[0] : 0.0;
1030
                                        double C= param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6;
1031

    
1032
                                        if(d<1.0) 
1033
                                                coeff = (12-9*B-6*C)*d*d*d + (-18+12*B+6*C)*d*d + 6-2*B;
1034
                                        else if(d<2.0)
1035
                                                coeff = (-B-6*C)*d*d*d + (6*B+30*C)*d*d + (-12*B-48*C)*d +8*B+24*C;
1036
                                        else
1037
                                                coeff=0.0;
1038
                                }
1039
/*                                else if(flags & SWS_X)
1040
                                {
1041
                                        double p= param ? param*0.01 : 0.3;
1042
                                        coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1043
                                        coeff*= pow(2.0, - p*d*d);
1044
                                }*/
1045
                                else if(flags & SWS_X)
1046
                                {
1047
                                        double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
1048
                                        
1049
                                        if(d<1.0)
1050
                                                coeff = cos(d*PI);
1051
                                        else
1052
                                                coeff=-1.0;
1053
                                        if(coeff<0.0)         coeff= -pow(-coeff, A);
1054
                                        else                coeff=  pow( coeff, A);
1055
                                        coeff= coeff*0.5 + 0.5;
1056
                                }
1057
                                else if(flags & SWS_AREA)
1058
                                {
1059
                                        double srcPixelSize= 1.0/xInc1;
1060
                                        if(d + srcPixelSize/2 < 0.5) coeff= 1.0;
1061
                                        else if(d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
1062
                                        else coeff=0.0;
1063
                                }
1064
                                else if(flags & SWS_GAUSS)
1065
                                {
1066
                                        double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
1067
                                        coeff = pow(2.0, - p*d*d);
1068
                                }
1069
                                else if(flags & SWS_SINC)
1070
                                {
1071
                                        coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1072
                                }
1073
                                else if(flags & SWS_LANCZOS)
1074
                                {
1075
                                        double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0; 
1076
                                        coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
1077
                                        if(d>p) coeff=0;
1078
                                }
1079
                                else if(flags & SWS_BILINEAR)
1080
                                {
1081
                                        coeff= 1.0 - d;
1082
                                        if(coeff<0) coeff=0;
1083
                                }
1084
                                else if(flags & SWS_SPLINE)
1085
                                {
1086
                                        double p=-2.196152422706632;
1087
                                        coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
1088
                                }
1089
                                else {
1090
                                        coeff= 0.0; //GCC warning killer
1091
                                        ASSERT(0)
1092
                                }
1093

    
1094
                                filter[i*filterSize + j]= coeff;
1095
                                xx++;
1096
                        }
1097
                        xDstInSrc+= xInc1;
1098
                }
1099
        }
1100

    
1101
        /* apply src & dst Filter to filter -> filter2
1102
           av_free(filter);
1103
        */
1104
        ASSERT(filterSize>0)
1105
        filter2Size= filterSize;
1106
        if(srcFilter) filter2Size+= srcFilter->length - 1;
1107
        if(dstFilter) filter2Size+= dstFilter->length - 1;
1108
        ASSERT(filter2Size>0)
1109
        filter2= av_malloc(filter2Size*dstW*sizeof(double));
1110

    
1111
        for(i=0; i<dstW; i++)
1112
        {
1113
                int j;
1114
                SwsVector scaleFilter;
1115
                SwsVector *outVec;
1116

    
1117
                scaleFilter.coeff= filter + i*filterSize;
1118
                scaleFilter.length= filterSize;
1119

    
1120
                if(srcFilter) outVec= sws_getConvVec(srcFilter, &scaleFilter);
1121
                else              outVec= &scaleFilter;
1122

    
1123
                ASSERT(outVec->length == filter2Size)
1124
                //FIXME dstFilter
1125

    
1126
                for(j=0; j<outVec->length; j++)
1127
                {
1128
                        filter2[i*filter2Size + j]= outVec->coeff[j];
1129
                }
1130

    
1131
                (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
1132

    
1133
                if(outVec != &scaleFilter) sws_freeVec(outVec);
1134
        }
1135
        av_free(filter); filter=NULL;
1136

    
1137
        /* try to reduce the filter-size (step1 find size and shift left) */
1138
        // Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not)
1139
        minFilterSize= 0;
1140
        for(i=dstW-1; i>=0; i--)
1141
        {
1142
                int min= filter2Size;
1143
                int j;
1144
                double cutOff=0.0;
1145

    
1146
                /* get rid off near zero elements on the left by shifting left */
1147
                for(j=0; j<filter2Size; j++)
1148
                {
1149
                        int k;
1150
                        cutOff += FFABS(filter2[i*filter2Size]);
1151

    
1152
                        if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1153

    
1154
                        /* preserve Monotonicity because the core can't handle the filter otherwise */
1155
                        if(i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
1156

    
1157
                        // Move filter coeffs left
1158
                        for(k=1; k<filter2Size; k++)
1159
                                filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
1160
                        filter2[i*filter2Size + k - 1]= 0.0;
1161
                        (*filterPos)[i]++;
1162
                }
1163

    
1164
                cutOff=0.0;
1165
                /* count near zeros on the right */
1166
                for(j=filter2Size-1; j>0; j--)
1167
                {
1168
                        cutOff += FFABS(filter2[i*filter2Size + j]);
1169

    
1170
                        if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1171
                        min--;
1172
                }
1173

    
1174
                if(min>minFilterSize) minFilterSize= min;
1175
        }
1176

    
1177
        if (flags & SWS_CPU_CAPS_ALTIVEC) {
1178
          // we can handle the special case 4,
1179
          // so we don't want to go to the full 8
1180
          if (minFilterSize < 5)
1181
            filterAlign = 4;
1182

    
1183
          // we really don't want to waste our time
1184
          // doing useless computation, so fall-back on
1185
          // the scalar C code for very small filter.
1186
          // vectorizing is worth it only if you have
1187
          // decent-sized vector.
1188
          if (minFilterSize < 3)
1189
            filterAlign = 1;
1190
        }
1191

    
1192
        if (flags & SWS_CPU_CAPS_MMX) {
1193
                // special case for unscaled vertical filtering
1194
                if(minFilterSize == 1 && filterAlign == 2)
1195
                        filterAlign= 1;
1196
        }
1197

    
1198
        ASSERT(minFilterSize > 0)
1199
        filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
1200
        ASSERT(filterSize > 0)
1201
        filter= av_malloc(filterSize*dstW*sizeof(double));
1202
        if(filterSize >= MAX_FILTER_SIZE)
1203
                return -1;
1204
        *outFilterSize= filterSize;
1205

    
1206
        if(flags&SWS_PRINT_INFO)
1207
                av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
1208
        /* try to reduce the filter-size (step2 reduce it) */
1209
        for(i=0; i<dstW; i++)
1210
        {
1211
                int j;
1212

    
1213
                for(j=0; j<filterSize; j++)
1214
                {
1215
                        if(j>=filter2Size) filter[i*filterSize + j]= 0.0;
1216
                        else                   filter[i*filterSize + j]= filter2[i*filter2Size + j];
1217
                }
1218
        }
1219
        av_free(filter2); filter2=NULL;
1220
        
1221

    
1222
        //FIXME try to align filterpos if possible
1223

    
1224
        //fix borders
1225
        for(i=0; i<dstW; i++)
1226
        {
1227
                int j;
1228
                if((*filterPos)[i] < 0)
1229
                {
1230
                        // Move filter coeffs left to compensate for filterPos
1231
                        for(j=1; j<filterSize; j++)
1232
                        {
1233
                                int left= FFMAX(j + (*filterPos)[i], 0);
1234
                                filter[i*filterSize + left] += filter[i*filterSize + j];
1235
                                filter[i*filterSize + j]=0;
1236
                        }
1237
                        (*filterPos)[i]= 0;
1238
                }
1239

    
1240
                if((*filterPos)[i] + filterSize > srcW)
1241
                {
1242
                        int shift= (*filterPos)[i] + filterSize - srcW;
1243
                        // Move filter coeffs right to compensate for filterPos
1244
                        for(j=filterSize-2; j>=0; j--)
1245
                        {
1246
                                int right= FFMIN(j + shift, filterSize-1);
1247
                                filter[i*filterSize +right] += filter[i*filterSize +j];
1248
                                filter[i*filterSize +j]=0;
1249
                        }
1250
                        (*filterPos)[i]= srcW - filterSize;
1251
                }
1252
        }
1253

    
1254
        // Note the +1 is for the MMXscaler which reads over the end
1255
        /* align at 16 for AltiVec (needed by hScale_altivec_real) */
1256
        *outFilter= av_mallocz(*outFilterSize*(dstW+1)*sizeof(int16_t));
1257

    
1258
        /* Normalize & Store in outFilter */
1259
        for(i=0; i<dstW; i++)
1260
        {
1261
                int j;
1262
                double error=0;
1263
                double sum=0;
1264
                double scale= one;
1265

    
1266
                for(j=0; j<filterSize; j++)
1267
                {
1268
                        sum+= filter[i*filterSize + j];
1269
                }
1270
                scale/= sum;
1271
                for(j=0; j<*outFilterSize; j++)
1272
                {
1273
                        double v= filter[i*filterSize + j]*scale + error;
1274
                        int intV= floor(v + 0.5);
1275
                        (*outFilter)[i*(*outFilterSize) + j]= intV;
1276
                        error = v - intV;
1277
                }
1278
        }
1279
        
1280
        (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
1281
        for(i=0; i<*outFilterSize; i++)
1282
        {
1283
                int j= dstW*(*outFilterSize);
1284
                (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
1285
        }
1286

    
1287
        av_free(filter);
1288
        return 0;
1289
}
1290

    
1291
#ifdef COMPILE_MMX2
1292
static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
1293
{
1294
        uint8_t *fragmentA;
1295
        long imm8OfPShufW1A;
1296
        long imm8OfPShufW2A;
1297
        long fragmentLengthA;
1298
        uint8_t *fragmentB;
1299
        long imm8OfPShufW1B;
1300
        long imm8OfPShufW2B;
1301
        long fragmentLengthB;
1302
        int fragmentPos;
1303

    
1304
        int xpos, i;
1305

    
1306
        // create an optimized horizontal scaling routine
1307

    
1308
        //code fragment
1309

    
1310
        asm volatile(
1311
                "jmp 9f                                \n\t"
1312
        // Begin
1313
                "0:                                \n\t"
1314
                "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t" 
1315
                "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t" 
1316
                "movd 1(%%"REG_c", %%"REG_S"), %%mm1\n\t"
1317
                "punpcklbw %%mm7, %%mm1                \n\t"
1318
                "punpcklbw %%mm7, %%mm0                \n\t"
1319
                "pshufw $0xFF, %%mm1, %%mm1        \n\t"
1320
                "1:                                \n\t"
1321
                "pshufw $0xFF, %%mm0, %%mm0        \n\t"
1322
                "2:                                \n\t"
1323
                "psubw %%mm1, %%mm0                \n\t"
1324
                "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
1325
                "pmullw %%mm3, %%mm0                \n\t"
1326
                "psllw $7, %%mm1                \n\t"
1327
                "paddw %%mm1, %%mm0                \n\t"
1328

    
1329
                "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
1330

    
1331
                "add $8, %%"REG_a"                \n\t"
1332
        // End
1333
                "9:                                \n\t"
1334
//                "int $3\n\t"
1335
                "lea 0b, %0                        \n\t"
1336
                "lea 1b, %1                        \n\t"
1337
                "lea 2b, %2                        \n\t"
1338
                "dec %1                                \n\t"
1339
                "dec %2                                \n\t"
1340
                "sub %0, %1                        \n\t"
1341
                "sub %0, %2                        \n\t"
1342
                "lea 9b, %3                        \n\t"
1343
                "sub %0, %3                        \n\t"
1344

    
1345

    
1346
                :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
1347
                "=r" (fragmentLengthA)
1348
        );
1349

    
1350
        asm volatile(
1351
                "jmp 9f                                \n\t"
1352
        // Begin
1353
                "0:                                \n\t"
1354
                "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t" 
1355
                "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t" 
1356
                "punpcklbw %%mm7, %%mm0                \n\t"
1357
                "pshufw $0xFF, %%mm0, %%mm1        \n\t"
1358
                "1:                                \n\t"
1359
                "pshufw $0xFF, %%mm0, %%mm0        \n\t"
1360
                "2:                                \n\t"
1361
                "psubw %%mm1, %%mm0                \n\t"
1362
                "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
1363
                "pmullw %%mm3, %%mm0                \n\t"
1364
                "psllw $7, %%mm1                \n\t"
1365
                "paddw %%mm1, %%mm0                \n\t"
1366

    
1367
                "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
1368

    
1369
                "add $8, %%"REG_a"                \n\t"
1370
        // End
1371
                "9:                                \n\t"
1372
//                "int $3\n\t"
1373
                "lea 0b, %0                        \n\t"
1374
                "lea 1b, %1                        \n\t"
1375
                "lea 2b, %2                        \n\t"
1376
                "dec %1                                \n\t"
1377
                "dec %2                                \n\t"
1378
                "sub %0, %1                        \n\t"
1379
                "sub %0, %2                        \n\t"
1380
                "lea 9b, %3                        \n\t"
1381
                "sub %0, %3                        \n\t"
1382

    
1383

    
1384
                :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
1385
                "=r" (fragmentLengthB)
1386
        );
1387

    
1388
        xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
1389
        fragmentPos=0;
1390
        
1391
        for(i=0; i<dstW/numSplits; i++)
1392
        {
1393
                int xx=xpos>>16;
1394

    
1395
                if((i&3) == 0)
1396
                {
1397
                        int a=0;
1398
                        int b=((xpos+xInc)>>16) - xx;
1399
                        int c=((xpos+xInc*2)>>16) - xx;
1400
                        int d=((xpos+xInc*3)>>16) - xx;
1401

    
1402
                        filter[i  ] = (( xpos         & 0xFFFF) ^ 0xFFFF)>>9;
1403
                        filter[i+1] = (((xpos+xInc  ) & 0xFFFF) ^ 0xFFFF)>>9;
1404
                        filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
1405
                        filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
1406
                        filterPos[i/2]= xx;
1407

    
1408
                        if(d+1<4)
1409
                        {
1410
                                int maxShift= 3-(d+1);
1411
                                int shift=0;
1412

    
1413
                                memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
1414

    
1415
                                funnyCode[fragmentPos + imm8OfPShufW1B]=
1416
                                        (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
1417
                                funnyCode[fragmentPos + imm8OfPShufW2B]=
1418
                                        a | (b<<2) | (c<<4) | (d<<6);
1419

    
1420
                                if(i+3>=dstW) shift=maxShift; //avoid overread
1421
                                else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
1422

    
1423
                                if(shift && i>=shift)
1424
                                {
1425
                                        funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
1426
                                        funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
1427
                                        filterPos[i/2]-=shift;
1428
                                }
1429

    
1430
                                fragmentPos+= fragmentLengthB;
1431
                        }
1432
                        else
1433
                        {
1434
                                int maxShift= 3-d;
1435
                                int shift=0;
1436

    
1437
                                memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
1438

    
1439
                                funnyCode[fragmentPos + imm8OfPShufW1A]=
1440
                                funnyCode[fragmentPos + imm8OfPShufW2A]=
1441
                                        a | (b<<2) | (c<<4) | (d<<6);
1442

    
1443
                                if(i+4>=dstW) shift=maxShift; //avoid overread
1444
                                else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
1445

    
1446
                                if(shift && i>=shift)
1447
                                {
1448
                                        funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
1449
                                        funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
1450
                                        filterPos[i/2]-=shift;
1451
                                }
1452

    
1453
                                fragmentPos+= fragmentLengthA;
1454
                        }
1455

    
1456
                        funnyCode[fragmentPos]= RET;
1457
                }
1458
                xpos+=xInc;
1459
        }
1460
        filterPos[i/2]= xpos>>16; // needed to jump to the next part
1461
}
1462
#endif /* COMPILE_MMX2 */
1463

    
1464
static void globalInit(void){
1465
    // generating tables:
1466
    int i;
1467
    for(i=0; i<768; i++){
1468
        int c= av_clip_uint8(i-256);
1469
        clip_table[i]=c;
1470
    }
1471
}
1472

    
1473
static SwsFunc getSwsFunc(int flags){
1474
    
1475
#if defined(RUNTIME_CPUDETECT) && defined (CONFIG_GPL)
1476
#if defined(ARCH_X86)
1477
        // ordered per speed fasterst first
1478
        if(flags & SWS_CPU_CAPS_MMX2)
1479
                return swScale_MMX2;
1480
        else if(flags & SWS_CPU_CAPS_3DNOW)
1481
                return swScale_3DNow;
1482
        else if(flags & SWS_CPU_CAPS_MMX)
1483
                return swScale_MMX;
1484
        else
1485
                return swScale_C;
1486

    
1487
#else
1488
#ifdef ARCH_POWERPC
1489
        if(flags & SWS_CPU_CAPS_ALTIVEC)
1490
          return swScale_altivec;
1491
        else
1492
          return swScale_C;
1493
#endif
1494
        return swScale_C;
1495
#endif /* defined(ARCH_X86) */
1496
#else //RUNTIME_CPUDETECT
1497
#ifdef HAVE_MMX2
1498
        return swScale_MMX2;
1499
#elif defined (HAVE_3DNOW)
1500
        return swScale_3DNow;
1501
#elif defined (HAVE_MMX)
1502
        return swScale_MMX;
1503
#elif defined (HAVE_ALTIVEC)
1504
        return swScale_altivec;
1505
#else
1506
        return swScale_C;
1507
#endif
1508
#endif //!RUNTIME_CPUDETECT
1509
}
1510

    
1511
static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1512
             int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1513
        uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1514
        /* Copy Y plane */
1515
        if(dstStride[0]==srcStride[0] && srcStride[0] > 0)
1516
                memcpy(dst, src[0], srcSliceH*dstStride[0]);
1517
        else
1518
        {
1519
                int i;
1520
                uint8_t *srcPtr= src[0];
1521
                uint8_t *dstPtr= dst;
1522
                for(i=0; i<srcSliceH; i++)
1523
                {
1524
                        memcpy(dstPtr, srcPtr, c->srcW);
1525
                        srcPtr+= srcStride[0];
1526
                        dstPtr+= dstStride[0];
1527
                }
1528
        }
1529
        dst = dstParam[1] + dstStride[1]*srcSliceY/2;
1530
        if (c->dstFormat == PIX_FMT_NV12)
1531
                interleaveBytes( src[1],src[2],dst,c->srcW/2,srcSliceH/2,srcStride[1],srcStride[2],dstStride[0] );
1532
        else
1533
                interleaveBytes( src[2],src[1],dst,c->srcW/2,srcSliceH/2,srcStride[2],srcStride[1],dstStride[0] );
1534

    
1535
        return srcSliceH;
1536
}
1537

    
1538
static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1539
             int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1540
        uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1541

    
1542
        yv12toyuy2( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1543

    
1544
        return srcSliceH;
1545
}
1546

    
1547
static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1548
             int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1549
        uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1550

    
1551
        yv12touyvy( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1552

    
1553
        return srcSliceH;
1554
}
1555

    
1556
/* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
1557
static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1558
                           int srcSliceH, uint8_t* dst[], int dstStride[]){
1559
        const int srcFormat= c->srcFormat;
1560
        const int dstFormat= c->dstFormat;
1561
        const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
1562
        const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
1563
        const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
1564
        const int dstId= fmt_depth(dstFormat) >> 2;
1565
        void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
1566

    
1567
        /* BGR -> BGR */
1568
        if(   (isBGR(srcFormat) && isBGR(dstFormat))
1569
           || (isRGB(srcFormat) && isRGB(dstFormat))){
1570
                switch(srcId | (dstId<<4)){
1571
                case 0x34: conv= rgb16to15; break;
1572
                case 0x36: conv= rgb24to15; break;
1573
                case 0x38: conv= rgb32to15; break;
1574
                case 0x43: conv= rgb15to16; break;
1575
                case 0x46: conv= rgb24to16; break;
1576
                case 0x48: conv= rgb32to16; break;
1577
                case 0x63: conv= rgb15to24; break;
1578
                case 0x64: conv= rgb16to24; break;
1579
                case 0x68: conv= rgb32to24; break;
1580
                case 0x83: conv= rgb15to32; break;
1581
                case 0x84: conv= rgb16to32; break;
1582
                case 0x86: conv= rgb24to32; break;
1583
                default: av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n", 
1584
                                 sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
1585
                }
1586
        }else if(   (isBGR(srcFormat) && isRGB(dstFormat))
1587
                 || (isRGB(srcFormat) && isBGR(dstFormat))){
1588
                switch(srcId | (dstId<<4)){
1589
                case 0x33: conv= rgb15tobgr15; break;
1590
                case 0x34: conv= rgb16tobgr15; break;
1591
                case 0x36: conv= rgb24tobgr15; break;
1592
                case 0x38: conv= rgb32tobgr15; break;
1593
                case 0x43: conv= rgb15tobgr16; break;
1594
                case 0x44: conv= rgb16tobgr16; break;
1595
                case 0x46: conv= rgb24tobgr16; break;
1596
                case 0x48: conv= rgb32tobgr16; break;
1597
                case 0x63: conv= rgb15tobgr24; break;
1598
                case 0x64: conv= rgb16tobgr24; break;
1599
                case 0x66: conv= rgb24tobgr24; break;
1600
                case 0x68: conv= rgb32tobgr24; break;
1601
                case 0x83: conv= rgb15tobgr32; break;
1602
                case 0x84: conv= rgb16tobgr32; break;
1603
                case 0x86: conv= rgb24tobgr32; break;
1604
                case 0x88: conv= rgb32tobgr32; break;
1605
                default: av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n", 
1606
                                 sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
1607
                }
1608
        }else{
1609
                av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n", 
1610
                         sws_format_name(srcFormat), sws_format_name(dstFormat));
1611
        }
1612

    
1613
        if(dstStride[0]*srcBpp == srcStride[0]*dstBpp)
1614
                conv(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
1615
        else
1616
        {
1617
                int i;
1618
                uint8_t *srcPtr= src[0];
1619
                uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1620

    
1621
                for(i=0; i<srcSliceH; i++)
1622
                {
1623
                        conv(srcPtr, dstPtr, c->srcW*srcBpp);
1624
                        srcPtr+= srcStride[0];
1625
                        dstPtr+= dstStride[0];
1626
                }
1627
        }     
1628
        return srcSliceH;
1629
}
1630

    
1631
static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1632
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1633

    
1634
        rgb24toyv12(
1635
                src[0], 
1636
                dst[0]+ srcSliceY    *dstStride[0], 
1637
                dst[1]+(srcSliceY>>1)*dstStride[1], 
1638
                dst[2]+(srcSliceY>>1)*dstStride[2],
1639
                c->srcW, srcSliceH, 
1640
                dstStride[0], dstStride[1], srcStride[0]);
1641
        return srcSliceH;
1642
}
1643

    
1644
static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1645
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1646
        int i;
1647

    
1648
        /* copy Y */
1649
        if(srcStride[0]==dstStride[0] && srcStride[0] > 0) 
1650
                memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
1651
        else{
1652
                uint8_t *srcPtr= src[0];
1653
                uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1654

    
1655
                for(i=0; i<srcSliceH; i++)
1656
                {
1657
                        memcpy(dstPtr, srcPtr, c->srcW);
1658
                        srcPtr+= srcStride[0];
1659
                        dstPtr+= dstStride[0];
1660
                }
1661
        }
1662

    
1663
        if(c->dstFormat==PIX_FMT_YUV420P){
1664
                planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
1665
                planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
1666
        }else{
1667
                planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
1668
                planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
1669
        }
1670
        return srcSliceH;
1671
}
1672

    
1673
/* unscaled copy like stuff (assumes nearly identical formats) */
1674
static int simpleCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1675
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1676

    
1677
        if(isPacked(c->srcFormat))
1678
        {
1679
                if(dstStride[0]==srcStride[0] && srcStride[0] > 0)
1680
                        memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
1681
                else
1682
                {
1683
                        int i;
1684
                        uint8_t *srcPtr= src[0];
1685
                        uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1686
                        int length=0;
1687

    
1688
                        /* universal length finder */
1689
                        while(length+c->srcW <= FFABS(dstStride[0]) 
1690
                           && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
1691
                        ASSERT(length!=0);
1692

    
1693
                        for(i=0; i<srcSliceH; i++)
1694
                        {
1695
                                memcpy(dstPtr, srcPtr, length);
1696
                                srcPtr+= srcStride[0];
1697
                                dstPtr+= dstStride[0];
1698
                        }
1699
                }
1700
        }
1701
        else 
1702
        { /* Planar YUV or gray */
1703
                int plane;
1704
                for(plane=0; plane<3; plane++)
1705
                {
1706
                        int length= plane==0 ? c->srcW  : -((-c->srcW  )>>c->chrDstHSubSample);
1707
                        int y=      plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
1708
                        int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
1709

    
1710
                        if((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
1711
                        {
1712
                                if(!isGray(c->dstFormat))
1713
                                        memset(dst[plane], 128, dstStride[plane]*height);
1714
                        }
1715
                        else
1716
                        {
1717
                                if(dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
1718
                                        memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
1719
                                else
1720
                                {
1721
                                        int i;
1722
                                        uint8_t *srcPtr= src[plane];
1723
                                        uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
1724
                                        for(i=0; i<height; i++)
1725
                                        {
1726
                                                memcpy(dstPtr, srcPtr, length);
1727
                                                srcPtr+= srcStride[plane];
1728
                                                dstPtr+= dstStride[plane];
1729
                                        }
1730
                                }
1731
                        }
1732
                }
1733
        }
1734
        return srcSliceH;
1735
}
1736

    
1737
static int gray16togray(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1738
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1739

    
1740
        int length= c->srcW;
1741
        int y=      srcSliceY;
1742
        int height= srcSliceH;
1743
        int i, j;
1744
        uint8_t *srcPtr= src[0];
1745
        uint8_t *dstPtr= dst[0] + dstStride[0]*y;
1746

    
1747
        if(!isGray(c->dstFormat)){
1748
                int height= -((-srcSliceH)>>c->chrDstVSubSample);
1749
                memset(dst[1], 128, dstStride[1]*height);
1750
                memset(dst[2], 128, dstStride[2]*height);
1751
        }
1752
        if(c->srcFormat == PIX_FMT_GRAY16LE) srcPtr++;
1753
        for(i=0; i<height; i++)
1754
        {
1755
                for(j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
1756
                srcPtr+= srcStride[0];
1757
                dstPtr+= dstStride[0];
1758
        }
1759
        return srcSliceH;
1760
}
1761

    
1762
static int graytogray16(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1763
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1764

    
1765
        int length= c->srcW;
1766
        int y=      srcSliceY;
1767
        int height= srcSliceH;
1768
        int i, j;
1769
        uint8_t *srcPtr= src[0];
1770
        uint8_t *dstPtr= dst[0] + dstStride[0]*y;
1771
        for(i=0; i<height; i++)
1772
        {
1773
                for(j=0; j<length; j++)
1774
                {
1775
                        dstPtr[j<<1] = srcPtr[j];
1776
                        dstPtr[(j<<1)+1] = srcPtr[j];
1777
                }
1778
                srcPtr+= srcStride[0];
1779
                dstPtr+= dstStride[0];
1780
        }
1781
        return srcSliceH;
1782
}
1783

    
1784
static int gray16swap(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1785
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1786

    
1787
        int length= c->srcW;
1788
        int y=      srcSliceY;
1789
        int height= srcSliceH;
1790
        int i, j;
1791
        uint16_t *srcPtr= src[0];
1792
        uint16_t *dstPtr= dst[0] + dstStride[0]*y/2;
1793
        for(i=0; i<height; i++)
1794
        {
1795
                for(j=0; j<length; j++) dstPtr[j] = bswap_16(srcPtr[j]);
1796
                srcPtr+= srcStride[0]/2;
1797
                dstPtr+= dstStride[0]/2;
1798
        }
1799
        return srcSliceH;
1800
}
1801

    
1802

    
1803
static void getSubSampleFactors(int *h, int *v, int format){
1804
        switch(format){
1805
        case PIX_FMT_UYVY422:
1806
        case PIX_FMT_YUYV422:
1807
                *h=1;
1808
                *v=0;
1809
                break;
1810
        case PIX_FMT_YUV420P:
1811
        case PIX_FMT_GRAY16BE:
1812
        case PIX_FMT_GRAY16LE:
1813
        case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
1814
        case PIX_FMT_NV12:
1815
        case PIX_FMT_NV21:
1816
                *h=1;
1817
                *v=1;
1818
                break;
1819
        case PIX_FMT_YUV410P:
1820
                *h=2;
1821
                *v=2;
1822
                break;
1823
        case PIX_FMT_YUV444P:
1824
                *h=0;
1825
                *v=0;
1826
                break;
1827
        case PIX_FMT_YUV422P:
1828
                *h=1;
1829
                *v=0;
1830
                break;
1831
        case PIX_FMT_YUV411P:
1832
                *h=2;
1833
                *v=0;
1834
                break;
1835
        default:
1836
                *h=0;
1837
                *v=0;
1838
                break;
1839
        }
1840
}
1841

    
1842
static uint16_t roundToInt16(int64_t f){
1843
        int r= (f + (1<<15))>>16;
1844
             if(r<-0x7FFF) return 0x8000;
1845
        else if(r> 0x7FFF) return 0x7FFF;
1846
        else               return r;
1847
}
1848

    
1849
/**
1850
 * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
1851
 * @param fullRange if 1 then the luma range is 0..255 if 0 its 16..235
1852
 * @return -1 if not supported
1853
 */
1854
int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
1855
        int64_t crv =  inv_table[0];
1856
        int64_t cbu =  inv_table[1];
1857
        int64_t cgu = -inv_table[2];
1858
        int64_t cgv = -inv_table[3];
1859
        int64_t cy  = 1<<16;
1860
        int64_t oy  = 0;
1861

    
1862
        if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1863
        memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
1864
        memcpy(c->dstColorspaceTable,     table, sizeof(int)*4);
1865

    
1866
        c->brightness= brightness;
1867
        c->contrast  = contrast;
1868
        c->saturation= saturation;
1869
        c->srcRange  = srcRange;
1870
        c->dstRange  = dstRange;
1871

    
1872
        c->uOffset=   0x0400040004000400LL;
1873
        c->vOffset=   0x0400040004000400LL;
1874

    
1875
        if(!srcRange){
1876
                cy= (cy*255) / 219;
1877
                oy= 16<<16;
1878
        }
1879

    
1880
        cy = (cy *contrast             )>>16;
1881
        crv= (crv*contrast * saturation)>>32;
1882
        cbu= (cbu*contrast * saturation)>>32;
1883
        cgu= (cgu*contrast * saturation)>>32;
1884
        cgv= (cgv*contrast * saturation)>>32;
1885

    
1886
        oy -= 256*brightness;
1887

    
1888
        c->yCoeff=    roundToInt16(cy *8192) * 0x0001000100010001ULL;
1889
        c->vrCoeff=   roundToInt16(crv*8192) * 0x0001000100010001ULL;
1890
        c->ubCoeff=   roundToInt16(cbu*8192) * 0x0001000100010001ULL;
1891
        c->vgCoeff=   roundToInt16(cgv*8192) * 0x0001000100010001ULL;
1892
        c->ugCoeff=   roundToInt16(cgu*8192) * 0x0001000100010001ULL;
1893
        c->yOffset=   roundToInt16(oy *   8) * 0x0001000100010001ULL;
1894

    
1895
        yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
1896
        //FIXME factorize
1897

    
1898
#ifdef COMPILE_ALTIVEC
1899
        if (c->flags & SWS_CPU_CAPS_ALTIVEC)
1900
            yuv2rgb_altivec_init_tables (c, inv_table, brightness, contrast, saturation);
1901
#endif        
1902
        return 0;
1903
}
1904

    
1905
/**
1906
 * @return -1 if not supported
1907
 */
1908
int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
1909
        if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1910

    
1911
        *inv_table = c->srcColorspaceTable;
1912
        *table     = c->dstColorspaceTable;
1913
        *srcRange  = c->srcRange;
1914
        *dstRange  = c->dstRange;
1915
        *brightness= c->brightness;
1916
        *contrast  = c->contrast;
1917
        *saturation= c->saturation;
1918
        
1919
        return 0;        
1920
}
1921

    
1922
static int handle_jpeg(int *format)
1923
{
1924
        switch (*format) {
1925
                case PIX_FMT_YUVJ420P:
1926
                        *format = PIX_FMT_YUV420P;
1927
                        return 1;
1928
                case PIX_FMT_YUVJ422P:
1929
                        *format = PIX_FMT_YUV422P;
1930
                        return 1;
1931
                case PIX_FMT_YUVJ444P:
1932
                        *format = PIX_FMT_YUV444P;
1933
                        return 1;
1934
                default:
1935
                        return 0;
1936
        }
1937
}
1938

    
1939
SwsContext *sws_getContext(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat, int flags,
1940
                         SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
1941

    
1942
        SwsContext *c;
1943
        int i;
1944
        int usesVFilter, usesHFilter;
1945
        int unscaled, needsDither;
1946
        int srcRange, dstRange;
1947
        SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
1948
#if defined(ARCH_X86)
1949
        if(flags & SWS_CPU_CAPS_MMX)
1950
                asm volatile("emms\n\t"::: "memory");
1951
#endif
1952

    
1953
#if !defined(RUNTIME_CPUDETECT) || !defined (CONFIG_GPL) //ensure that the flags match the compiled variant if cpudetect is off
1954
        flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC);
1955
#ifdef HAVE_MMX2
1956
        flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
1957
#elif defined (HAVE_3DNOW)
1958
        flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
1959
#elif defined (HAVE_MMX)
1960
        flags |= SWS_CPU_CAPS_MMX;
1961
#elif defined (HAVE_ALTIVEC)
1962
        flags |= SWS_CPU_CAPS_ALTIVEC;
1963
#endif
1964
#endif /* RUNTIME_CPUDETECT */
1965
        if(clip_table[512] != 255) globalInit();
1966
        if(rgb15to16 == NULL) sws_rgb2rgb_init(flags);
1967

    
1968
        unscaled = (srcW == dstW && srcH == dstH);
1969
        needsDither= (isBGR(dstFormat) || isRGB(dstFormat)) 
1970
                     && (fmt_depth(dstFormat))<24
1971
                     && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
1972

    
1973
        srcRange = handle_jpeg(&srcFormat);
1974
        dstRange = handle_jpeg(&dstFormat);
1975

    
1976
        if(!isSupportedIn(srcFormat)) 
1977
        {
1978
                av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input format\n", sws_format_name(srcFormat));
1979
                return NULL;
1980
        }
1981
        if(!isSupportedOut(dstFormat))
1982
        {
1983
                av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output format\n", sws_format_name(dstFormat));
1984
                return NULL;
1985
        }
1986

    
1987
        /* sanity check */
1988
        if(srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
1989
        {
1990
                 av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n", 
1991
                        srcW, srcH, dstW, dstH);
1992
                return NULL;
1993
        }
1994

    
1995
        if(!dstFilter) dstFilter= &dummyFilter;
1996
        if(!srcFilter) srcFilter= &dummyFilter;
1997

    
1998
        c= av_mallocz(sizeof(SwsContext));
1999

    
2000
        c->av_class = &sws_context_class;
2001
        c->srcW= srcW;
2002
        c->srcH= srcH;
2003
        c->dstW= dstW;
2004
        c->dstH= dstH;
2005
        c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
2006
        c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
2007
        c->flags= flags;
2008
        c->dstFormat= dstFormat;
2009
        c->srcFormat= srcFormat;
2010
        c->vRounder= 4* 0x0001000100010001ULL;
2011

    
2012
        usesHFilter= usesVFilter= 0;
2013
        if(dstFilter->lumV!=NULL && dstFilter->lumV->length>1) usesVFilter=1;
2014
        if(dstFilter->lumH!=NULL && dstFilter->lumH->length>1) usesHFilter=1;
2015
        if(dstFilter->chrV!=NULL && dstFilter->chrV->length>1) usesVFilter=1;
2016
        if(dstFilter->chrH!=NULL && dstFilter->chrH->length>1) usesHFilter=1;
2017
        if(srcFilter->lumV!=NULL && srcFilter->lumV->length>1) usesVFilter=1;
2018
        if(srcFilter->lumH!=NULL && srcFilter->lumH->length>1) usesHFilter=1;
2019
        if(srcFilter->chrV!=NULL && srcFilter->chrV->length>1) usesVFilter=1;
2020
        if(srcFilter->chrH!=NULL && srcFilter->chrH->length>1) usesHFilter=1;
2021

    
2022
        getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
2023
        getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
2024

    
2025
        // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
2026
        if((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
2027

    
2028
        // drop some chroma lines if the user wants it
2029
        c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
2030
        c->chrSrcVSubSample+= c->vChrDrop;
2031

    
2032
        // drop every 2. pixel for chroma calculation unless user wants full chroma
2033
        if((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)) 
2034
                c->chrSrcHSubSample=1;
2035

    
2036
        if(param){
2037
                c->param[0] = param[0];
2038
                c->param[1] = param[1];
2039
        }else{
2040
                c->param[0] =
2041
                c->param[1] = SWS_PARAM_DEFAULT;
2042
        }
2043

    
2044
        c->chrIntHSubSample= c->chrDstHSubSample;
2045
        c->chrIntVSubSample= c->chrSrcVSubSample;
2046

    
2047
        // note the -((-x)>>y) is so that we allways round toward +inf
2048
        c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
2049
        c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
2050
        c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
2051
        c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
2052

    
2053
        sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], srcRange, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16); 
2054

    
2055
        /* unscaled special Cases */
2056
        if(unscaled && !usesHFilter && !usesVFilter)
2057
        {
2058
                /* yv12_to_nv12 */
2059
                if(srcFormat == PIX_FMT_YUV420P && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
2060
                {
2061
                        c->swScale= PlanarToNV12Wrapper;
2062
                }
2063
#ifdef CONFIG_GPL
2064
                /* yuv2bgr */
2065
                if((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P) && (isBGR(dstFormat) || isRGB(dstFormat)))
2066
                {
2067
                        c->swScale= yuv2rgb_get_func_ptr(c);
2068
                }
2069
#endif
2070
                
2071
                if( srcFormat==PIX_FMT_YUV410P && dstFormat==PIX_FMT_YUV420P )
2072
                {
2073
                        c->swScale= yvu9toyv12Wrapper;
2074
                }
2075

    
2076
                /* bgr24toYV12 */
2077
                if(srcFormat==PIX_FMT_BGR24 && dstFormat==PIX_FMT_YUV420P)
2078
                        c->swScale= bgr24toyv12Wrapper;
2079
                
2080
                /* rgb/bgr -> rgb/bgr (no dither needed forms) */
2081
                if(   (isBGR(srcFormat) || isRGB(srcFormat))
2082
                   && (isBGR(dstFormat) || isRGB(dstFormat)) 
2083
                   && !needsDither)
2084
                        c->swScale= rgb2rgbWrapper;
2085

    
2086
                /* LQ converters if -sws 0 or -sws 4*/
2087
                if(c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
2088
                        /* rgb/bgr -> rgb/bgr (dither needed forms) */
2089
                        if(  (isBGR(srcFormat) || isRGB(srcFormat))
2090
                          && (isBGR(dstFormat) || isRGB(dstFormat)) 
2091
                          && needsDither)
2092
                                c->swScale= rgb2rgbWrapper;
2093

    
2094
                        /* yv12_to_yuy2 */
2095
                        if(srcFormat == PIX_FMT_YUV420P && 
2096
                            (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422))
2097
                        {
2098
                                if (dstFormat == PIX_FMT_YUYV422)
2099
                                    c->swScale= PlanarToYuy2Wrapper;
2100
                                else
2101
                                    c->swScale= PlanarToUyvyWrapper;
2102
                        }
2103
                }
2104

    
2105
#ifdef COMPILE_ALTIVEC
2106
                if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
2107
                    ((srcFormat == PIX_FMT_YUV420P && 
2108
                      (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422)))) {
2109
                  // unscaled YV12 -> packed YUV, we want speed
2110
                  if (dstFormat == PIX_FMT_YUYV422)
2111
                    c->swScale= yv12toyuy2_unscaled_altivec;
2112
                  else
2113
                    c->swScale= yv12touyvy_unscaled_altivec;
2114
                }
2115
#endif
2116

    
2117
                /* simple copy */
2118
                if(   srcFormat == dstFormat
2119
                   || (isPlanarYUV(srcFormat) && isGray(dstFormat))
2120
                   || (isPlanarYUV(dstFormat) && isGray(srcFormat))
2121
                  )
2122
                {
2123
                        c->swScale= simpleCopy;
2124
                }
2125

    
2126
                /* gray16{le,be} conversions */
2127
                if(isGray16(srcFormat) && (isPlanarYUV(dstFormat) || (dstFormat == PIX_FMT_GRAY8)))
2128
                {
2129
                        c->swScale= gray16togray;
2130
                }
2131
                if((isPlanarYUV(srcFormat) || (srcFormat == PIX_FMT_GRAY8)) && isGray16(dstFormat))
2132
                {
2133
                        c->swScale= graytogray16;
2134
                }
2135
                if(srcFormat != dstFormat && isGray16(srcFormat) && isGray16(dstFormat))
2136
                {
2137
                        c->swScale= gray16swap;
2138
                }                
2139

    
2140
                if(c->swScale){
2141
                        if(flags&SWS_PRINT_INFO)
2142
                                av_log(c, AV_LOG_INFO, "SwScaler: using unscaled %s -> %s special converter\n", 
2143
                                        sws_format_name(srcFormat), sws_format_name(dstFormat));
2144
                        return c;
2145
                }
2146
        }
2147

    
2148
        if(flags & SWS_CPU_CAPS_MMX2)
2149
        {
2150
                c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
2151
                if(!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
2152
                {
2153
                        if(flags&SWS_PRINT_INFO)
2154
                                av_log(c, AV_LOG_INFO, "SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
2155
                }
2156
                if(usesHFilter) c->canMMX2BeUsed=0;
2157
        }
2158
        else
2159
                c->canMMX2BeUsed=0;
2160

    
2161
        c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
2162
        c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
2163

    
2164
        // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
2165
        // but only for the FAST_BILINEAR mode otherwise do correct scaling
2166
        // n-2 is the last chrominance sample available
2167
        // this is not perfect, but noone shuld notice the difference, the more correct variant
2168
        // would be like the vertical one, but that would require some special code for the
2169
        // first and last pixel
2170
        if(flags&SWS_FAST_BILINEAR)
2171
        {
2172
                if(c->canMMX2BeUsed)
2173
                {
2174
                        c->lumXInc+= 20;
2175
                        c->chrXInc+= 20;
2176
                }
2177
                //we don't use the x86asm scaler if mmx is available
2178
                else if(flags & SWS_CPU_CAPS_MMX)
2179
                {
2180
                        c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
2181
                        c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
2182
                }
2183
        }
2184

    
2185
        /* precalculate horizontal scaler filter coefficients */
2186
        {
2187
                const int filterAlign=
2188
                  (flags & SWS_CPU_CAPS_MMX) ? 4 :
2189
                  (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2190
                  1;
2191

    
2192
                initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
2193
                                 srcW      ,       dstW, filterAlign, 1<<14,
2194
                                 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
2195
                                 srcFilter->lumH, dstFilter->lumH, c->param);
2196
                initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
2197
                                 c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
2198
                                 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2199
                                 srcFilter->chrH, dstFilter->chrH, c->param);
2200

    
2201
#define MAX_FUNNY_CODE_SIZE 10000
2202
#if defined(COMPILE_MMX2)
2203
// can't downscale !!!
2204
                if(c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
2205
                {
2206
#ifdef MAP_ANONYMOUS
2207
                        c->funnyYCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2208
                        c->funnyUVCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2209
#else
2210
                        c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
2211
                        c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
2212
#endif
2213

    
2214
                        c->lumMmx2Filter   = av_malloc((dstW        /8+8)*sizeof(int16_t));
2215
                        c->chrMmx2Filter   = av_malloc((c->chrDstW  /4+8)*sizeof(int16_t));
2216
                        c->lumMmx2FilterPos= av_malloc((dstW      /2/8+8)*sizeof(int32_t));
2217
                        c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
2218

    
2219
                        initMMX2HScaler(      dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
2220
                        initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
2221
                }
2222
#endif /* defined(COMPILE_MMX2) */
2223
        } // Init Horizontal stuff
2224

    
2225

    
2226

    
2227
        /* precalculate vertical scaler filter coefficients */
2228
        {
2229
                const int filterAlign=
2230
                  (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
2231
                  (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2232
                  1;
2233

    
2234
                initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
2235
                                srcH      ,        dstH, filterAlign, (1<<12)-4,
2236
                                (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
2237
                                srcFilter->lumV, dstFilter->lumV, c->param);
2238
                initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
2239
                                c->chrSrcH, c->chrDstH, filterAlign, (1<<12)-4,
2240
                                (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2241
                                srcFilter->chrV, dstFilter->chrV, c->param);
2242

    
2243
#ifdef HAVE_ALTIVEC
2244
                c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
2245
                c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
2246

    
2247
                for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
2248
                  int j;
2249
                  short *p = (short *)&c->vYCoeffsBank[i];
2250
                  for (j=0;j<8;j++)
2251
                    p[j] = c->vLumFilter[i];
2252
                }
2253

    
2254
                for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
2255
                  int j;
2256
                  short *p = (short *)&c->vCCoeffsBank[i];
2257
                  for (j=0;j<8;j++)
2258
                    p[j] = c->vChrFilter[i];
2259
                }
2260
#endif
2261
        }
2262

    
2263
        // Calculate Buffer Sizes so that they won't run out while handling these damn slices
2264
        c->vLumBufSize= c->vLumFilterSize;
2265
        c->vChrBufSize= c->vChrFilterSize;
2266
        for(i=0; i<dstH; i++)
2267
        {
2268
                int chrI= i*c->chrDstH / dstH;
2269
                int nextSlice= FFMAX(c->vLumFilterPos[i   ] + c->vLumFilterSize - 1,
2270
                                 ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
2271

    
2272
                nextSlice>>= c->chrSrcVSubSample;
2273
                nextSlice<<= c->chrSrcVSubSample;
2274
                if(c->vLumFilterPos[i   ] + c->vLumBufSize < nextSlice)
2275
                        c->vLumBufSize= nextSlice - c->vLumFilterPos[i   ];
2276
                if(c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
2277
                        c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
2278
        }
2279

    
2280
        // allocate pixbufs (we use dynamic allocation because otherwise we would need to
2281
        c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
2282
        c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
2283
        //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
2284
        /* align at 16 bytes for AltiVec */
2285
        for(i=0; i<c->vLumBufSize; i++)
2286
                c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_mallocz(4000);
2287
        for(i=0; i<c->vChrBufSize; i++)
2288
                c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc(8000);
2289

    
2290
        //try to avoid drawing green stuff between the right end and the stride end
2291
        for(i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000);
2292

    
2293
        ASSERT(c->chrDstH <= dstH)
2294

    
2295
        if(flags&SWS_PRINT_INFO)
2296
        {
2297
#ifdef DITHER1XBPP
2298
                char *dither= " dithered";
2299
#else
2300
                char *dither= "";
2301
#endif
2302
                if(flags&SWS_FAST_BILINEAR)
2303
                        av_log(c, AV_LOG_INFO, "SwScaler: FAST_BILINEAR scaler, ");
2304
                else if(flags&SWS_BILINEAR)
2305
                        av_log(c, AV_LOG_INFO, "SwScaler: BILINEAR scaler, ");
2306
                else if(flags&SWS_BICUBIC)
2307
                        av_log(c, AV_LOG_INFO, "SwScaler: BICUBIC scaler, ");
2308
                else if(flags&SWS_X)
2309
                        av_log(c, AV_LOG_INFO, "SwScaler: Experimental scaler, ");
2310
                else if(flags&SWS_POINT)
2311
                        av_log(c, AV_LOG_INFO, "SwScaler: Nearest Neighbor / POINT scaler, ");
2312
                else if(flags&SWS_AREA)
2313
                        av_log(c, AV_LOG_INFO, "SwScaler: Area Averageing scaler, ");
2314
                else if(flags&SWS_BICUBLIN)
2315
                        av_log(c, AV_LOG_INFO, "SwScaler: luma BICUBIC / chroma BILINEAR scaler, ");
2316
                else if(flags&SWS_GAUSS)
2317
                        av_log(c, AV_LOG_INFO, "SwScaler: Gaussian scaler, ");
2318
                else if(flags&SWS_SINC)
2319
                        av_log(c, AV_LOG_INFO, "SwScaler: Sinc scaler, ");
2320
                else if(flags&SWS_LANCZOS)
2321
                        av_log(c, AV_LOG_INFO, "SwScaler: Lanczos scaler, ");
2322
                else if(flags&SWS_SPLINE)
2323
                        av_log(c, AV_LOG_INFO, "SwScaler: Bicubic spline scaler, ");
2324
                else
2325
                        av_log(c, AV_LOG_INFO, "SwScaler: ehh flags invalid?! ");
2326

    
2327
                if(dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
2328
                        av_log(c, AV_LOG_INFO, "from %s to%s %s ", 
2329
                                sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
2330
                else
2331
                        av_log(c, AV_LOG_INFO, "from %s to %s ", 
2332
                                sws_format_name(srcFormat), sws_format_name(dstFormat));
2333

    
2334
                if(flags & SWS_CPU_CAPS_MMX2)
2335
                        av_log(c, AV_LOG_INFO, "using MMX2\n");
2336
                else if(flags & SWS_CPU_CAPS_3DNOW)
2337
                        av_log(c, AV_LOG_INFO, "using 3DNOW\n");
2338
                else if(flags & SWS_CPU_CAPS_MMX)
2339
                        av_log(c, AV_LOG_INFO, "using MMX\n");
2340
                else if(flags & SWS_CPU_CAPS_ALTIVEC)
2341
                        av_log(c, AV_LOG_INFO, "using AltiVec\n");
2342
                else 
2343
                        av_log(c, AV_LOG_INFO, "using C\n");
2344
        }
2345

    
2346
        if(flags & SWS_PRINT_INFO)
2347
        {
2348
                if(flags & SWS_CPU_CAPS_MMX)
2349
                {
2350
                        if(c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
2351
                                av_log(c, AV_LOG_VERBOSE, "SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
2352
                        else
2353
                        {
2354
                                if(c->hLumFilterSize==4)
2355
                                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
2356
                                else if(c->hLumFilterSize==8)
2357
                                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
2358
                                else
2359
                                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
2360

    
2361
                                if(c->hChrFilterSize==4)
2362
                                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
2363
                                else if(c->hChrFilterSize==8)
2364
                                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
2365
                                else
2366
                                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
2367
                        }
2368
                }
2369
                else
2370
                {
2371
#if defined(ARCH_X86)
2372
                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using X86-Asm scaler for horizontal scaling\n");
2373
#else
2374
                        if(flags & SWS_FAST_BILINEAR)
2375
                                av_log(c, AV_LOG_VERBOSE, "SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
2376
                        else
2377
                                av_log(c, AV_LOG_VERBOSE, "SwScaler: using C scaler for horizontal scaling\n");
2378
#endif
2379
                }
2380
                if(isPlanarYUV(dstFormat))
2381
                {
2382
                        if(c->vLumFilterSize==1)
2383
                                av_log(c, AV_LOG_VERBOSE, "SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2384
                        else
2385
                                av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2386
                }
2387
                else
2388
                {
2389
                        if(c->vLumFilterSize==1 && c->vChrFilterSize==2)
2390
                                av_log(c, AV_LOG_VERBOSE, "SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
2391
                                       "SwScaler:       2-tap scaler for vertical chrominance scaling (BGR)\n",(flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2392
                        else if(c->vLumFilterSize==2 && c->vChrFilterSize==2)
2393
                                av_log(c, AV_LOG_VERBOSE, "SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2394
                        else
2395
                                av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2396
                }
2397

    
2398
                if(dstFormat==PIX_FMT_BGR24)
2399
                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR24 Converter\n",
2400
                                (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
2401
                else if(dstFormat==PIX_FMT_RGB32)
2402
                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2403
                else if(dstFormat==PIX_FMT_BGR565)
2404
                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2405
                else if(dstFormat==PIX_FMT_BGR555)
2406
                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2407

    
2408
                av_log(c, AV_LOG_VERBOSE, "SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
2409
        }
2410
        if(flags & SWS_PRINT_INFO)
2411
        {
2412
                av_log(c, AV_LOG_DEBUG, "SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2413
                        c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
2414
                av_log(c, AV_LOG_DEBUG, "SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2415
                        c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
2416
        }
2417

    
2418
        c->swScale= getSwsFunc(flags);
2419
        return c;
2420
}
2421

    
2422
/**
2423
 * swscale warper, so we don't need to export the SwsContext.
2424
 * assumes planar YUV to be in YUV order instead of YVU
2425
 */
2426
int sws_scale(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2427
                           int srcSliceH, uint8_t* dst[], int dstStride[]){
2428
        if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
2429
            av_log(c, AV_LOG_ERROR, "swScaler: slices start in the middle!\n");
2430
            return 0;
2431
        }
2432
        if (c->sliceDir == 0) {
2433
            if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
2434
        }
2435

    
2436
        // copy strides, so they can safely be modified
2437
        if (c->sliceDir == 1) {
2438
            // slices go from top to bottom
2439
            int srcStride2[3]= {srcStride[0], srcStride[1], srcStride[2]};
2440
            int dstStride2[3]= {dstStride[0], dstStride[1], dstStride[2]};
2441
            return c->swScale(c, src, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
2442
        } else {
2443
            // slices go from bottom to top => we flip the image internally
2444
            uint8_t* src2[3]= {src[0] + (srcSliceH-1)*srcStride[0],
2445
                               src[1] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1],
2446
                               src[2] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2]
2447
            };
2448
            uint8_t* dst2[3]= {dst[0] + (c->dstH-1)*dstStride[0],
2449
                               dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
2450
                               dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2]};
2451
            int srcStride2[3]= {-srcStride[0], -srcStride[1], -srcStride[2]};
2452
            int dstStride2[3]= {-dstStride[0], -dstStride[1], -dstStride[2]};
2453
            
2454
            return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
2455
        }
2456
}
2457

    
2458
/**
2459
 * swscale warper, so we don't need to export the SwsContext
2460
 */
2461
int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2462
                           int srcSliceH, uint8_t* dst[], int dstStride[]){
2463
        return sws_scale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
2464
}
2465

    
2466
SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur, 
2467
                                float lumaSharpen, float chromaSharpen,
2468
                                float chromaHShift, float chromaVShift,
2469
                                int verbose)
2470
{
2471
        SwsFilter *filter= av_malloc(sizeof(SwsFilter));
2472

    
2473
        if(lumaGBlur!=0.0){
2474
                filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
2475
                filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
2476
        }else{
2477
                filter->lumH= sws_getIdentityVec();
2478
                filter->lumV= sws_getIdentityVec();
2479
        }
2480

    
2481
        if(chromaGBlur!=0.0){
2482
                filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
2483
                filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
2484
        }else{
2485
                filter->chrH= sws_getIdentityVec();
2486
                filter->chrV= sws_getIdentityVec();
2487
        }
2488

    
2489
        if(chromaSharpen!=0.0){
2490
                SwsVector *id= sws_getIdentityVec();
2491
                sws_scaleVec(filter->chrH, -chromaSharpen);
2492
                sws_scaleVec(filter->chrV, -chromaSharpen);
2493
                sws_addVec(filter->chrH, id);
2494
                sws_addVec(filter->chrV, id);
2495
                sws_freeVec(id);
2496
        }
2497

    
2498
        if(lumaSharpen!=0.0){
2499
                SwsVector *id= sws_getIdentityVec();
2500
                sws_scaleVec(filter->lumH, -lumaSharpen);
2501
                sws_scaleVec(filter->lumV, -lumaSharpen);
2502
                sws_addVec(filter->lumH, id);
2503
                sws_addVec(filter->lumV, id);
2504
                sws_freeVec(id);
2505
        }
2506

    
2507
        if(chromaHShift != 0.0)
2508
                sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
2509

    
2510
        if(chromaVShift != 0.0)
2511
                sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
2512

    
2513
        sws_normalizeVec(filter->chrH, 1.0);
2514
        sws_normalizeVec(filter->chrV, 1.0);
2515
        sws_normalizeVec(filter->lumH, 1.0);
2516
        sws_normalizeVec(filter->lumV, 1.0);
2517

    
2518
        if(verbose) sws_printVec(filter->chrH);
2519
        if(verbose) sws_printVec(filter->lumH);
2520

    
2521
        return filter;
2522
}
2523

    
2524
/**
2525
 * returns a normalized gaussian curve used to filter stuff
2526
 * quality=3 is high quality, lowwer is lowwer quality
2527
 */
2528
SwsVector *sws_getGaussianVec(double variance, double quality){
2529
        const int length= (int)(variance*quality + 0.5) | 1;
2530
        int i;
2531
        double *coeff= av_malloc(length*sizeof(double));
2532
        double middle= (length-1)*0.5;
2533
        SwsVector *vec= av_malloc(sizeof(SwsVector));
2534

    
2535
        vec->coeff= coeff;
2536
        vec->length= length;
2537

    
2538
        for(i=0; i<length; i++)
2539
        {
2540
                double dist= i-middle;
2541
                coeff[i]= exp( -dist*dist/(2*variance*variance) ) / sqrt(2*variance*PI);
2542
        }
2543

    
2544
        sws_normalizeVec(vec, 1.0);
2545

    
2546
        return vec;
2547
}
2548

    
2549
SwsVector *sws_getConstVec(double c, int length){
2550
        int i;
2551
        double *coeff= av_malloc(length*sizeof(double));
2552
        SwsVector *vec= av_malloc(sizeof(SwsVector));
2553

    
2554
        vec->coeff= coeff;
2555
        vec->length= length;
2556

    
2557
        for(i=0; i<length; i++)
2558
                coeff[i]= c;
2559

    
2560
        return vec;
2561
}
2562

    
2563

    
2564
SwsVector *sws_getIdentityVec(void){
2565
        return sws_getConstVec(1.0, 1);
2566
}
2567

    
2568
double sws_dcVec(SwsVector *a){
2569
        int i;
2570
        double sum=0;
2571

    
2572
        for(i=0; i<a->length; i++)
2573
                sum+= a->coeff[i];
2574

    
2575
        return sum;
2576
}
2577

    
2578
void sws_scaleVec(SwsVector *a, double scalar){
2579
        int i;
2580

    
2581
        for(i=0; i<a->length; i++)
2582
                a->coeff[i]*= scalar;
2583
}
2584

    
2585
void sws_normalizeVec(SwsVector *a, double height){
2586
        sws_scaleVec(a, height/sws_dcVec(a));
2587
}
2588

    
2589
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
2590
        int length= a->length + b->length - 1;
2591
        double *coeff= av_malloc(length*sizeof(double));
2592
        int i, j;
2593
        SwsVector *vec= av_malloc(sizeof(SwsVector));
2594

    
2595
        vec->coeff= coeff;
2596
        vec->length= length;
2597

    
2598
        for(i=0; i<length; i++) coeff[i]= 0.0;
2599

    
2600
        for(i=0; i<a->length; i++)
2601
        {
2602
                for(j=0; j<b->length; j++)
2603
                {
2604
                        coeff[i+j]+= a->coeff[i]*b->coeff[j];
2605
                }
2606
        }
2607

    
2608
        return vec;
2609
}
2610

    
2611
static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
2612
        int length= FFMAX(a->length, b->length);
2613
        double *coeff= av_malloc(length*sizeof(double));
2614
        int i;
2615
        SwsVector *vec= av_malloc(sizeof(SwsVector));
2616

    
2617
        vec->coeff= coeff;
2618
        vec->length= length;
2619

    
2620
        for(i=0; i<length; i++) coeff[i]= 0.0;
2621

    
2622
        for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2623
        for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
2624

    
2625
        return vec;
2626
}
2627

    
2628
static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
2629
        int length= FFMAX(a->length, b->length);
2630
        double *coeff= av_malloc(length*sizeof(double));
2631
        int i;
2632
        SwsVector *vec= av_malloc(sizeof(SwsVector));
2633

    
2634
        vec->coeff= coeff;
2635
        vec->length= length;
2636

    
2637
        for(i=0; i<length; i++) coeff[i]= 0.0;
2638

    
2639
        for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2640
        for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
2641

    
2642
        return vec;
2643
}
2644

    
2645
/* shift left / or right if "shift" is negative */
2646
static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
2647
        int length= a->length + FFABS(shift)*2;
2648
        double *coeff= av_malloc(length*sizeof(double));
2649
        int i;
2650
        SwsVector *vec= av_malloc(sizeof(SwsVector));
2651

    
2652
        vec->coeff= coeff;
2653
        vec->length= length;
2654

    
2655
        for(i=0; i<length; i++) coeff[i]= 0.0;
2656

    
2657
        for(i=0; i<a->length; i++)
2658
        {
2659
                coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
2660
        }
2661

    
2662
        return vec;
2663
}
2664

    
2665
void sws_shiftVec(SwsVector *a, int shift){
2666
        SwsVector *shifted= sws_getShiftedVec(a, shift);
2667
        av_free(a->coeff);
2668
        a->coeff= shifted->coeff;
2669
        a->length= shifted->length;
2670
        av_free(shifted);
2671
}
2672

    
2673
void sws_addVec(SwsVector *a, SwsVector *b){
2674
        SwsVector *sum= sws_sumVec(a, b);
2675
        av_free(a->coeff);
2676
        a->coeff= sum->coeff;
2677
        a->length= sum->length;
2678
        av_free(sum);
2679
}
2680

    
2681
void sws_subVec(SwsVector *a, SwsVector *b){
2682
        SwsVector *diff= sws_diffVec(a, b);
2683
        av_free(a->coeff);
2684
        a->coeff= diff->coeff;
2685
        a->length= diff->length;
2686
        av_free(diff);
2687
}
2688

    
2689
void sws_convVec(SwsVector *a, SwsVector *b){
2690
        SwsVector *conv= sws_getConvVec(a, b);
2691
        av_free(a->coeff);  
2692
        a->coeff= conv->coeff;
2693
        a->length= conv->length;
2694
        av_free(conv);
2695
}
2696

    
2697
SwsVector *sws_cloneVec(SwsVector *a){
2698
        double *coeff= av_malloc(a->length*sizeof(double));
2699
        int i;
2700
        SwsVector *vec= av_malloc(sizeof(SwsVector));
2701

    
2702
        vec->coeff= coeff;
2703
        vec->length= a->length;
2704

    
2705
        for(i=0; i<a->length; i++) coeff[i]= a->coeff[i];
2706

    
2707
        return vec;
2708
}
2709

    
2710
void sws_printVec(SwsVector *a){
2711
        int i;
2712
        double max=0;
2713
        double min=0;
2714
        double range;
2715

    
2716
        for(i=0; i<a->length; i++)
2717
                if(a->coeff[i]>max) max= a->coeff[i];
2718

    
2719
        for(i=0; i<a->length; i++)
2720
                if(a->coeff[i]<min) min= a->coeff[i];
2721

    
2722
        range= max - min;
2723

    
2724
        for(i=0; i<a->length; i++)
2725
        {
2726
                int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
2727
                av_log(NULL, AV_LOG_DEBUG, "%1.3f ", a->coeff[i]);
2728
                for(;x>0; x--) av_log(NULL, AV_LOG_DEBUG, " ");
2729
                av_log(NULL, AV_LOG_DEBUG, "|\n");
2730
        }
2731
}
2732

    
2733
void sws_freeVec(SwsVector *a){
2734
        if(!a) return;
2735
        av_free(a->coeff);
2736
        a->coeff=NULL;
2737
        a->length=0;
2738
        av_free(a);
2739
}
2740

    
2741
void sws_freeFilter(SwsFilter *filter){
2742
        if(!filter) return;
2743

    
2744
        if(filter->lumH) sws_freeVec(filter->lumH);
2745
        if(filter->lumV) sws_freeVec(filter->lumV);
2746
        if(filter->chrH) sws_freeVec(filter->chrH);
2747
        if(filter->chrV) sws_freeVec(filter->chrV);
2748
        av_free(filter);
2749
}
2750

    
2751

    
2752
void sws_freeContext(SwsContext *c){
2753
        int i;
2754
        if(!c) return;
2755

    
2756
        if(c->lumPixBuf)
2757
        {
2758
                for(i=0; i<c->vLumBufSize; i++)
2759
                {
2760
                        av_free(c->lumPixBuf[i]);
2761
                        c->lumPixBuf[i]=NULL;
2762
                }
2763
                av_free(c->lumPixBuf);
2764
                c->lumPixBuf=NULL;
2765
        }
2766

    
2767
        if(c->chrPixBuf)
2768
        {
2769
                for(i=0; i<c->vChrBufSize; i++)
2770
                {
2771
                        av_free(c->chrPixBuf[i]);
2772
                        c->chrPixBuf[i]=NULL;
2773
                }
2774
                av_free(c->chrPixBuf);
2775
                c->chrPixBuf=NULL;
2776
        }
2777

    
2778
        av_free(c->vLumFilter);
2779
        c->vLumFilter = NULL;
2780
        av_free(c->vChrFilter);
2781
        c->vChrFilter = NULL;
2782
        av_free(c->hLumFilter);
2783
        c->hLumFilter = NULL;
2784
        av_free(c->hChrFilter);
2785
        c->hChrFilter = NULL;
2786
#ifdef HAVE_ALTIVEC
2787
        av_free(c->vYCoeffsBank);
2788
        c->vYCoeffsBank = NULL;
2789
        av_free(c->vCCoeffsBank);
2790
        c->vCCoeffsBank = NULL;
2791
#endif
2792

    
2793
        av_free(c->vLumFilterPos);
2794
        c->vLumFilterPos = NULL;
2795
        av_free(c->vChrFilterPos);
2796
        c->vChrFilterPos = NULL;
2797
        av_free(c->hLumFilterPos);
2798
        c->hLumFilterPos = NULL;
2799
        av_free(c->hChrFilterPos);
2800
        c->hChrFilterPos = NULL;
2801

    
2802
#if defined(ARCH_X86) && defined(CONFIG_GPL)
2803
#ifdef MAP_ANONYMOUS
2804
        if(c->funnyYCode) munmap(c->funnyYCode, MAX_FUNNY_CODE_SIZE);
2805
        if(c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
2806
#else
2807
        av_free(c->funnyYCode);
2808
        av_free(c->funnyUVCode);
2809
#endif
2810
        c->funnyYCode=NULL;
2811
        c->funnyUVCode=NULL;
2812
#endif /* defined(ARCH_X86) */
2813

    
2814
        av_free(c->lumMmx2Filter);
2815
        c->lumMmx2Filter=NULL;
2816
        av_free(c->chrMmx2Filter);
2817
        c->chrMmx2Filter=NULL;
2818
        av_free(c->lumMmx2FilterPos);
2819
        c->lumMmx2FilterPos=NULL;
2820
        av_free(c->chrMmx2FilterPos);
2821
        c->chrMmx2FilterPos=NULL;
2822
        av_free(c->yuvTable);
2823
        c->yuvTable=NULL;
2824

    
2825
        av_free(c);
2826
}
2827

    
2828
/**
2829
 * Checks if context is valid or reallocs a new one instead.
2830
 * If context is NULL, just calls sws_getContext() to get a new one.
2831
 * Otherwise, checks if the parameters are the same already saved in context.
2832
 * If that is the case, returns the current context.
2833
 * Otherwise, frees context and gets a new one.
2834
 *
2835
 * Be warned that srcFilter, dstFilter are not checked, they are
2836
 * asumed to remain valid.
2837
 */
2838
struct SwsContext *sws_getCachedContext(struct SwsContext *context,
2839
                        int srcW, int srcH, int srcFormat,
2840
                        int dstW, int dstH, int dstFormat, int flags,
2841
                        SwsFilter *srcFilter, SwsFilter *dstFilter, double *param)
2842
{
2843
    if (context != NULL) {
2844
        if ((context->srcW != srcW) || (context->srcH != srcH) ||
2845
            (context->srcFormat != srcFormat) ||
2846
            (context->dstW != dstW) || (context->dstH != dstH) ||
2847
            (context->dstFormat != dstFormat) || (context->flags != flags) ||
2848
            (context->param != param))
2849
        {
2850
            sws_freeContext(context);
2851
            context = NULL;
2852
        }
2853
    }
2854
    if (context == NULL) {
2855
        return sws_getContext(srcW, srcH, srcFormat,
2856
                        dstW, dstH, dstFormat, flags,
2857
                        srcFilter, dstFilter, param);
2858
    }
2859
    return context;
2860
}
2861