Statistics
| Branch: | Revision:

ffmpeg / postproc / swscale.c @ ae4cffd9

History | View | Annotate | Download (71.1 KB)

1
/*
2
    Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3

4
    This program is free software; you can redistribute it and/or modify
5
    it under the terms of the GNU General Public License as published by
6
    the Free Software Foundation; either version 2 of the License, or
7
    (at your option) any later version.
8

9
    This program is distributed in the hope that it will be useful,
10
    but WITHOUT ANY WARRANTY; without even the implied warranty of
11
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12
    GNU General Public License for more details.
13

14
    You should have received a copy of the GNU General Public License
15
    along with this program; if not, write to the Free Software
16
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
17
*/
18

    
19
/*
20
  supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09
21
  supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
22
  {BGR,RGB}{1,4,8,15,16} support dithering
23
  
24
  unscaled special converters (YV12=I420=IYUV, Y800=Y8)
25
  YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
26
  x -> x
27
  YUV9 -> YV12
28
  YUV9/YV12 -> Y800
29
  Y800 -> YUV9/YV12
30
  BGR24 -> BGR32 & RGB24 -> RGB32
31
  BGR32 -> BGR24 & RGB32 -> RGB24
32
  BGR15 -> BGR16
33
*/
34

    
35
/* 
36
tested special converters (most are tested actually but i didnt write it down ...)
37
 YV12 -> BGR16
38
 YV12 -> YV12
39
 BGR15 -> BGR16
40
 BGR16 -> BGR16
41
 YVU9 -> YV12
42

43
untested special converters
44
  YV12/I420 -> BGR15/BGR24/BGR32 (its the yuv2rgb stuff, so it should be ok)
45
  YV12/I420 -> YV12/I420
46
  YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
47
  BGR24 -> BGR32 & RGB24 -> RGB32
48
  BGR32 -> BGR24 & RGB32 -> RGB24
49
  BGR24 -> YV12
50
*/
51

    
52
#include <inttypes.h>
53
#include <string.h>
54
#include <math.h>
55
#include <stdio.h>
56
#include "../config.h"
57
#include "../mangle.h"
58
#include <assert.h>
59
#ifdef HAVE_MALLOC_H
60
#include <malloc.h>
61
#else
62
#include <stdlib.h>
63
#endif
64
#ifdef HAVE_ALTIVEC_H
65
#include <altivec.h>
66
#endif
67
#include "swscale.h"
68
#include "swscale_internal.h"
69
#include "../cpudetect.h"
70
#include "../bswap.h"
71
#include "../libvo/img_format.h"
72
#include "rgb2rgb.h"
73
#include "../libvo/fastmemcpy.h"
74

    
75
#undef MOVNTQ
76
#undef PAVGB
77

    
78
//#undef HAVE_MMX2
79
//#define HAVE_3DNOW
80
//#undef HAVE_MMX
81
//#undef ARCH_X86
82
//#define WORDS_BIGENDIAN
83
#define DITHER1XBPP
84

    
85
#define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
86

    
87
#define RET 0xC3 //near return opcode for X86
88

    
89
#ifdef MP_DEBUG
90
#define ASSERT(x) assert(x);
91
#else
92
#define ASSERT(x) ;
93
#endif
94

    
95
#ifdef M_PI
96
#define PI M_PI
97
#else
98
#define PI 3.14159265358979323846
99
#endif
100

    
101
//FIXME replace this with something faster
102
#define isPlanarYUV(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YVU9 \
103
                        || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P)
104
#define isYUV(x)       ((x)==IMGFMT_UYVY || (x)==IMGFMT_YUY2 || isPlanarYUV(x))
105
#define isGray(x)      ((x)==IMGFMT_Y800)
106
#define isRGB(x)       (((x)&IMGFMT_RGB_MASK)==IMGFMT_RGB)
107
#define isBGR(x)       (((x)&IMGFMT_BGR_MASK)==IMGFMT_BGR)
108
#define isSupportedIn(x)  ((x)==IMGFMT_YV12 || (x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY\
109
                        || (x)==IMGFMT_BGR32|| (x)==IMGFMT_BGR24|| (x)==IMGFMT_BGR16|| (x)==IMGFMT_BGR15\
110
                        || (x)==IMGFMT_RGB32|| (x)==IMGFMT_RGB24\
111
                        || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9\
112
                        || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P)
113
#define isSupportedOut(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY\
114
                        || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P\
115
                        || isRGB(x) || isBGR(x)\
116
                        || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9)
117
#define isPacked(x)    ((x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY ||isRGB(x) || isBGR(x))
118

    
119
#define RGB2YUV_SHIFT 16
120
#define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
121
#define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
122
#define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
123
#define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
124
#define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
125
#define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
126
#define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
127
#define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
128
#define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
129

    
130
extern const int32_t Inverse_Table_6_9[8][4];
131

    
132
/*
133
NOTES
134
Special versions: fast Y 1:1 scaling (no interpolation in y direction)
135

136
TODO
137
more intelligent missalignment avoidance for the horizontal scaler
138
write special vertical cubic upscale version
139
Optimize C code (yv12 / minmax)
140
add support for packed pixel yuv input & output
141
add support for Y8 output
142
optimize bgr24 & bgr32
143
add BGR4 output support
144
write special BGR->BGR scaler
145
*/
146

    
147
#define ABS(a) ((a) > 0 ? (a) : (-(a)))
148
#define MIN(a,b) ((a) > (b) ? (b) : (a))
149
#define MAX(a,b) ((a) < (b) ? (b) : (a))
150

    
151
#ifdef ARCH_X86
152
static uint64_t attribute_used __attribute__((aligned(8))) bF8=       0xF8F8F8F8F8F8F8F8LL;
153
static uint64_t attribute_used __attribute__((aligned(8))) bFC=       0xFCFCFCFCFCFCFCFCLL;
154
static uint64_t __attribute__((aligned(8))) w10=       0x0010001000100010LL;
155
static uint64_t attribute_used __attribute__((aligned(8))) w02=       0x0002000200020002LL;
156
static uint64_t attribute_used __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL;
157
static uint64_t attribute_used __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL;
158
static uint64_t attribute_used __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL;
159
static uint64_t attribute_used __attribute__((aligned(8))) bm01010101=0x00FF00FF00FF00FFLL;
160

    
161
static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
162
static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
163
static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
164
static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
165

    
166
static uint64_t __attribute__((aligned(8))) dither4[2]={
167
        0x0103010301030103LL,
168
        0x0200020002000200LL,};
169

    
170
static uint64_t __attribute__((aligned(8))) dither8[2]={
171
        0x0602060206020602LL,
172
        0x0004000400040004LL,};
173

    
174
static uint64_t __attribute__((aligned(8))) b16Mask=   0x001F001F001F001FLL;
175
static uint64_t attribute_used __attribute__((aligned(8))) g16Mask=   0x07E007E007E007E0LL;
176
static uint64_t attribute_used __attribute__((aligned(8))) r16Mask=   0xF800F800F800F800LL;
177
static uint64_t __attribute__((aligned(8))) b15Mask=   0x001F001F001F001FLL;
178
static uint64_t attribute_used __attribute__((aligned(8))) g15Mask=   0x03E003E003E003E0LL;
179
static uint64_t attribute_used __attribute__((aligned(8))) r15Mask=   0x7C007C007C007C00LL;
180

    
181
static uint64_t attribute_used __attribute__((aligned(8))) M24A=   0x00FF0000FF0000FFLL;
182
static uint64_t attribute_used __attribute__((aligned(8))) M24B=   0xFF0000FF0000FF00LL;
183
static uint64_t attribute_used __attribute__((aligned(8))) M24C=   0x0000FF0000FF0000LL;
184

    
185
#ifdef FAST_BGR2YV12
186
static const uint64_t bgr2YCoeff  attribute_used __attribute__((aligned(8))) = 0x000000210041000DULL;
187
static const uint64_t bgr2UCoeff  attribute_used __attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL;
188
static const uint64_t bgr2VCoeff  attribute_used __attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL;
189
#else
190
static const uint64_t bgr2YCoeff  attribute_used __attribute__((aligned(8))) = 0x000020E540830C8BULL;
191
static const uint64_t bgr2UCoeff  attribute_used __attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL;
192
static const uint64_t bgr2VCoeff  attribute_used __attribute__((aligned(8))) = 0x00003831D0E6F6EAULL;
193
#endif
194
static const uint64_t bgr2YOffset attribute_used __attribute__((aligned(8))) = 0x1010101010101010ULL;
195
static const uint64_t bgr2UVOffset attribute_used __attribute__((aligned(8)))= 0x8080808080808080ULL;
196
static const uint64_t w1111       attribute_used __attribute__((aligned(8))) = 0x0001000100010001ULL;
197
#endif
198

    
199
// clipping helper table for C implementations:
200
static unsigned char clip_table[768];
201

    
202
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
203
                  
204
extern const uint8_t dither_2x2_4[2][8];
205
extern const uint8_t dither_2x2_8[2][8];
206
extern const uint8_t dither_8x8_32[8][8];
207
extern const uint8_t dither_8x8_73[8][8];
208
extern const uint8_t dither_8x8_220[8][8];
209

    
210
#ifdef ARCH_X86
211
void in_asm_used_var_warning_killer()
212
{
213
 volatile int i= bF8+bFC+w10+
214
 bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+
215
 M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0]+bm01010101;
216
 if(i) i=0;
217
}
218
#endif
219

    
220
static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
221
                                    int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
222
                                    uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
223
{
224
        //FIXME Optimize (just quickly writen not opti..)
225
        int i;
226
        for(i=0; i<dstW; i++)
227
        {
228
                int val=1<<18;
229
                int j;
230
                for(j=0; j<lumFilterSize; j++)
231
                        val += lumSrc[j][i] * lumFilter[j];
232

    
233
                dest[i]= MIN(MAX(val>>19, 0), 255);
234
        }
235

    
236
        if(uDest != NULL)
237
                for(i=0; i<chrDstW; i++)
238
                {
239
                        int u=1<<18;
240
                        int v=1<<18;
241
                        int j;
242
                        for(j=0; j<chrFilterSize; j++)
243
                        {
244
                                u += chrSrc[j][i] * chrFilter[j];
245
                                v += chrSrc[j][i + 2048] * chrFilter[j];
246
                        }
247

    
248
                        uDest[i]= MIN(MAX(u>>19, 0), 255);
249
                        vDest[i]= MIN(MAX(v>>19, 0), 255);
250
                }
251
}
252

    
253

    
254
#define YSCALE_YUV_2_PACKEDX_C(type) \
255
                for(i=0; i<(dstW>>1); i++){\
256
                        int j;\
257
                        int Y1=1<<18;\
258
                        int Y2=1<<18;\
259
                        int U=1<<18;\
260
                        int V=1<<18;\
261
                        type *r, *b, *g;\
262
                        const int i2= 2*i;\
263
                        \
264
                        for(j=0; j<lumFilterSize; j++)\
265
                        {\
266
                                Y1 += lumSrc[j][i2] * lumFilter[j];\
267
                                Y2 += lumSrc[j][i2+1] * lumFilter[j];\
268
                        }\
269
                        for(j=0; j<chrFilterSize; j++)\
270
                        {\
271
                                U += chrSrc[j][i] * chrFilter[j];\
272
                                V += chrSrc[j][i+2048] * chrFilter[j];\
273
                        }\
274
                        Y1>>=19;\
275
                        Y2>>=19;\
276
                        U >>=19;\
277
                        V >>=19;\
278
                        if((Y1|Y2|U|V)&256)\
279
                        {\
280
                                if(Y1>255)   Y1=255;\
281
                                else if(Y1<0)Y1=0;\
282
                                if(Y2>255)   Y2=255;\
283
                                else if(Y2<0)Y2=0;\
284
                                if(U>255)    U=255;\
285
                                else if(U<0) U=0;\
286
                                if(V>255)    V=255;\
287
                                else if(V<0) V=0;\
288
                        }
289
                        
290
#define YSCALE_YUV_2_RGBX_C(type) \
291
                        YSCALE_YUV_2_PACKEDX_C(type)\
292
                        r = c->table_rV[V];\
293
                        g = c->table_gU[U] + c->table_gV[V];\
294
                        b = c->table_bU[U];\
295

    
296
#define YSCALE_YUV_2_PACKED2_C \
297
                for(i=0; i<(dstW>>1); i++){\
298
                        const int i2= 2*i;\
299
                        int Y1= (buf0[i2  ]*yalpha1+buf1[i2  ]*yalpha)>>19;\
300
                        int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19;\
301
                        int U= (uvbuf0[i     ]*uvalpha1+uvbuf1[i     ]*uvalpha)>>19;\
302
                        int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19;\
303

    
304
#define YSCALE_YUV_2_RGB2_C(type) \
305
                        YSCALE_YUV_2_PACKED2_C\
306
                        type *r, *b, *g;\
307
                        r = c->table_rV[V];\
308
                        g = c->table_gU[U] + c->table_gV[V];\
309
                        b = c->table_bU[U];\
310

    
311
#define YSCALE_YUV_2_PACKED1_C \
312
                for(i=0; i<(dstW>>1); i++){\
313
                        const int i2= 2*i;\
314
                        int Y1= buf0[i2  ]>>7;\
315
                        int Y2= buf0[i2+1]>>7;\
316
                        int U= (uvbuf1[i     ])>>7;\
317
                        int V= (uvbuf1[i+2048])>>7;\
318

    
319
#define YSCALE_YUV_2_RGB1_C(type) \
320
                        YSCALE_YUV_2_PACKED1_C\
321
                        type *r, *b, *g;\
322
                        r = c->table_rV[V];\
323
                        g = c->table_gU[U] + c->table_gV[V];\
324
                        b = c->table_bU[U];\
325

    
326
#define YSCALE_YUV_2_PACKED1B_C \
327
                for(i=0; i<(dstW>>1); i++){\
328
                        const int i2= 2*i;\
329
                        int Y1= buf0[i2  ]>>7;\
330
                        int Y2= buf0[i2+1]>>7;\
331
                        int U= (uvbuf0[i     ] + uvbuf1[i     ])>>8;\
332
                        int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\
333

    
334
#define YSCALE_YUV_2_RGB1B_C(type) \
335
                        YSCALE_YUV_2_PACKED1B_C\
336
                        type *r, *b, *g;\
337
                        r = c->table_rV[V];\
338
                        g = c->table_gU[U] + c->table_gV[V];\
339
                        b = c->table_bU[U];\
340

    
341
#define YSCALE_YUV_2_ANYRGB_C(func, func2)\
342
        switch(c->dstFormat)\
343
        {\
344
        case IMGFMT_BGR32:\
345
        case IMGFMT_RGB32:\
346
                func(uint32_t)\
347
                        ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
348
                        ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
349
                }                \
350
                break;\
351
        case IMGFMT_RGB24:\
352
                func(uint8_t)\
353
                        ((uint8_t*)dest)[0]= r[Y1];\
354
                        ((uint8_t*)dest)[1]= g[Y1];\
355
                        ((uint8_t*)dest)[2]= b[Y1];\
356
                        ((uint8_t*)dest)[3]= r[Y2];\
357
                        ((uint8_t*)dest)[4]= g[Y2];\
358
                        ((uint8_t*)dest)[5]= b[Y2];\
359
                        dest+=6;\
360
                }\
361
                break;\
362
        case IMGFMT_BGR24:\
363
                func(uint8_t)\
364
                        ((uint8_t*)dest)[0]= b[Y1];\
365
                        ((uint8_t*)dest)[1]= g[Y1];\
366
                        ((uint8_t*)dest)[2]= r[Y1];\
367
                        ((uint8_t*)dest)[3]= b[Y2];\
368
                        ((uint8_t*)dest)[4]= g[Y2];\
369
                        ((uint8_t*)dest)[5]= r[Y2];\
370
                        dest+=6;\
371
                }\
372
                break;\
373
        case IMGFMT_RGB16:\
374
        case IMGFMT_BGR16:\
375
                {\
376
                        const int dr1= dither_2x2_8[y&1    ][0];\
377
                        const int dg1= dither_2x2_4[y&1    ][0];\
378
                        const int db1= dither_2x2_8[(y&1)^1][0];\
379
                        const int dr2= dither_2x2_8[y&1    ][1];\
380
                        const int dg2= dither_2x2_4[y&1    ][1];\
381
                        const int db2= dither_2x2_8[(y&1)^1][1];\
382
                        func(uint16_t)\
383
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
384
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
385
                        }\
386
                }\
387
                break;\
388
        case IMGFMT_RGB15:\
389
        case IMGFMT_BGR15:\
390
                {\
391
                        const int dr1= dither_2x2_8[y&1    ][0];\
392
                        const int dg1= dither_2x2_8[y&1    ][1];\
393
                        const int db1= dither_2x2_8[(y&1)^1][0];\
394
                        const int dr2= dither_2x2_8[y&1    ][1];\
395
                        const int dg2= dither_2x2_8[y&1    ][0];\
396
                        const int db2= dither_2x2_8[(y&1)^1][1];\
397
                        func(uint16_t)\
398
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
399
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
400
                        }\
401
                }\
402
                break;\
403
        case IMGFMT_RGB8:\
404
        case IMGFMT_BGR8:\
405
                {\
406
                        const uint8_t * const d64= dither_8x8_73[y&7];\
407
                        const uint8_t * const d32= dither_8x8_32[y&7];\
408
                        func(uint8_t)\
409
                                ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
410
                                ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
411
                        }\
412
                }\
413
                break;\
414
        case IMGFMT_RGB4:\
415
        case IMGFMT_BGR4:\
416
                {\
417
                        const uint8_t * const d64= dither_8x8_73 [y&7];\
418
                        const uint8_t * const d128=dither_8x8_220[y&7];\
419
                        func(uint8_t)\
420
                                ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
421
                                                 + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
422
                        }\
423
                }\
424
                break;\
425
        case IMGFMT_RG4B:\
426
        case IMGFMT_BG4B:\
427
                {\
428
                        const uint8_t * const d64= dither_8x8_73 [y&7];\
429
                        const uint8_t * const d128=dither_8x8_220[y&7];\
430
                        func(uint8_t)\
431
                                ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
432
                                ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
433
                        }\
434
                }\
435
                break;\
436
        case IMGFMT_RGB1:\
437
        case IMGFMT_BGR1:\
438
                {\
439
                        const uint8_t * const d128=dither_8x8_220[y&7];\
440
                        uint8_t *g= c->table_gU[128] + c->table_gV[128];\
441
                        for(i=0; i<dstW-7; i+=8){\
442
                                int acc;\
443
                                acc =       g[((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19) + d128[0]];\
444
                                acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
445
                                acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
446
                                acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
447
                                acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
448
                                acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
449
                                acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
450
                                acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
451
                                ((uint8_t*)dest)[0]= acc;\
452
                                dest++;\
453
                        }\
454
\
455
/*\
456
((uint8_t*)dest)-= dstW>>4;\
457
{\
458
                        int acc=0;\
459
                        int left=0;\
460
                        static int top[1024];\
461
                        static int last_new[1024][1024];\
462
                        static int last_in3[1024][1024];\
463
                        static int drift[1024][1024];\
464
                        int topLeft=0;\
465
                        int shift=0;\
466
                        int count=0;\
467
                        const uint8_t * const d128=dither_8x8_220[y&7];\
468
                        int error_new=0;\
469
                        int error_in3=0;\
470
                        int f=0;\
471
                        \
472
                        for(i=dstW>>1; i<dstW; i++){\
473
                                int in= ((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19);\
474
                                int in2 = (76309 * (in - 16) + 32768) >> 16;\
475
                                int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
476
                                int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
477
                                        + (last_new[y][i] - in3)*f/256;\
478
                                int new= old> 128 ? 255 : 0;\
479
\
480
                                error_new+= ABS(last_new[y][i] - new);\
481
                                error_in3+= ABS(last_in3[y][i] - in3);\
482
                                f= error_new - error_in3*4;\
483
                                if(f<0) f=0;\
484
                                if(f>256) f=256;\
485
\
486
                                topLeft= top[i];\
487
                                left= top[i]= old - new;\
488
                                last_new[y][i]= new;\
489
                                last_in3[y][i]= in3;\
490
\
491
                                acc+= acc + (new&1);\
492
                                if((i&7)==6){\
493
                                        ((uint8_t*)dest)[0]= acc;\
494
                                        ((uint8_t*)dest)++;\
495
                                }\
496
                        }\
497
}\
498
*/\
499
                }\
500
                break;\
501
        case IMGFMT_YUY2:\
502
                func2\
503
                        ((uint8_t*)dest)[2*i2+0]= Y1;\
504
                        ((uint8_t*)dest)[2*i2+1]= U;\
505
                        ((uint8_t*)dest)[2*i2+2]= Y2;\
506
                        ((uint8_t*)dest)[2*i2+3]= V;\
507
                }                \
508
                break;\
509
        case IMGFMT_UYVY:\
510
                func2\
511
                        ((uint8_t*)dest)[2*i2+0]= U;\
512
                        ((uint8_t*)dest)[2*i2+1]= Y1;\
513
                        ((uint8_t*)dest)[2*i2+2]= V;\
514
                        ((uint8_t*)dest)[2*i2+3]= Y2;\
515
                }                \
516
                break;\
517
        }\
518

    
519

    
520
static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
521
                                    int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
522
                                    uint8_t *dest, int dstW, int y)
523
{
524
        int i;
525
        switch(c->dstFormat)
526
        {
527
        case IMGFMT_RGB32:
528
        case IMGFMT_BGR32:
529
                YSCALE_YUV_2_RGBX_C(uint32_t)
530
                        ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];
531
                        ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];
532
                }
533
                break;
534
        case IMGFMT_RGB24:
535
                YSCALE_YUV_2_RGBX_C(uint8_t)
536
                        ((uint8_t*)dest)[0]= r[Y1];
537
                        ((uint8_t*)dest)[1]= g[Y1];
538
                        ((uint8_t*)dest)[2]= b[Y1];
539
                        ((uint8_t*)dest)[3]= r[Y2];
540
                        ((uint8_t*)dest)[4]= g[Y2];
541
                        ((uint8_t*)dest)[5]= b[Y2];
542
                        dest+=6;
543
                }
544
                break;
545
        case IMGFMT_BGR24:
546
                YSCALE_YUV_2_RGBX_C(uint8_t)
547
                        ((uint8_t*)dest)[0]= b[Y1];
548
                        ((uint8_t*)dest)[1]= g[Y1];
549
                        ((uint8_t*)dest)[2]= r[Y1];
550
                        ((uint8_t*)dest)[3]= b[Y2];
551
                        ((uint8_t*)dest)[4]= g[Y2];
552
                        ((uint8_t*)dest)[5]= r[Y2];
553
                        dest+=6;
554
                }
555
                break;
556
        case IMGFMT_RGB16:
557
        case IMGFMT_BGR16:
558
                {
559
                        const int dr1= dither_2x2_8[y&1    ][0];
560
                        const int dg1= dither_2x2_4[y&1    ][0];
561
                        const int db1= dither_2x2_8[(y&1)^1][0];
562
                        const int dr2= dither_2x2_8[y&1    ][1];
563
                        const int dg2= dither_2x2_4[y&1    ][1];
564
                        const int db2= dither_2x2_8[(y&1)^1][1];
565
                        YSCALE_YUV_2_RGBX_C(uint16_t)
566
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
567
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
568
                        }
569
                }
570
                break;
571
        case IMGFMT_RGB15:
572
        case IMGFMT_BGR15:
573
                {
574
                        const int dr1= dither_2x2_8[y&1    ][0];
575
                        const int dg1= dither_2x2_8[y&1    ][1];
576
                        const int db1= dither_2x2_8[(y&1)^1][0];
577
                        const int dr2= dither_2x2_8[y&1    ][1];
578
                        const int dg2= dither_2x2_8[y&1    ][0];
579
                        const int db2= dither_2x2_8[(y&1)^1][1];
580
                        YSCALE_YUV_2_RGBX_C(uint16_t)
581
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
582
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
583
                        }
584
                }
585
                break;
586
        case IMGFMT_RGB8:
587
        case IMGFMT_BGR8:
588
                {
589
                        const uint8_t * const d64= dither_8x8_73[y&7];
590
                        const uint8_t * const d32= dither_8x8_32[y&7];
591
                        YSCALE_YUV_2_RGBX_C(uint8_t)
592
                                ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];
593
                                ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];
594
                        }
595
                }
596
                break;
597
        case IMGFMT_RGB4:
598
        case IMGFMT_BGR4:
599
                {
600
                        const uint8_t * const d64= dither_8x8_73 [y&7];
601
                        const uint8_t * const d128=dither_8x8_220[y&7];
602
                        YSCALE_YUV_2_RGBX_C(uint8_t)
603
                                ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]
604
                                                  +((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);
605
                        }
606
                }
607
                break;
608
        case IMGFMT_RG4B:
609
        case IMGFMT_BG4B:
610
                {
611
                        const uint8_t * const d64= dither_8x8_73 [y&7];
612
                        const uint8_t * const d128=dither_8x8_220[y&7];
613
                        YSCALE_YUV_2_RGBX_C(uint8_t)
614
                                ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];
615
                                ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];
616
                        }
617
                }
618
                break;
619
        case IMGFMT_RGB1:
620
        case IMGFMT_BGR1:
621
                {
622
                        const uint8_t * const d128=dither_8x8_220[y&7];
623
                        uint8_t *g= c->table_gU[128] + c->table_gV[128];
624
                        int acc=0;
625
                        for(i=0; i<dstW-1; i+=2){
626
                                int j;
627
                                int Y1=1<<18;
628
                                int Y2=1<<18;
629

    
630
                                for(j=0; j<lumFilterSize; j++)
631
                                {
632
                                        Y1 += lumSrc[j][i] * lumFilter[j];
633
                                        Y2 += lumSrc[j][i+1] * lumFilter[j];
634
                                }
635
                                Y1>>=19;
636
                                Y2>>=19;
637
                                if((Y1|Y2)&256)
638
                                {
639
                                        if(Y1>255)   Y1=255;
640
                                        else if(Y1<0)Y1=0;
641
                                        if(Y2>255)   Y2=255;
642
                                        else if(Y2<0)Y2=0;
643
                                }
644
                                acc+= acc + g[Y1+d128[(i+0)&7]];
645
                                acc+= acc + g[Y2+d128[(i+1)&7]];
646
                                if((i&7)==6){
647
                                        ((uint8_t*)dest)[0]= acc;
648
                                        dest++;
649
                                }
650
                        }
651
                }
652
                break;
653
        case IMGFMT_YUY2:
654
                YSCALE_YUV_2_PACKEDX_C(void)
655
                        ((uint8_t*)dest)[2*i2+0]= Y1;
656
                        ((uint8_t*)dest)[2*i2+1]= U;
657
                        ((uint8_t*)dest)[2*i2+2]= Y2;
658
                        ((uint8_t*)dest)[2*i2+3]= V;
659
                }
660
                break;
661
        case IMGFMT_UYVY:
662
                YSCALE_YUV_2_PACKEDX_C(void)
663
                        ((uint8_t*)dest)[2*i2+0]= U;
664
                        ((uint8_t*)dest)[2*i2+1]= Y1;
665
                        ((uint8_t*)dest)[2*i2+2]= V;
666
                        ((uint8_t*)dest)[2*i2+3]= Y2;
667
                }
668
                break;
669
        }
670
}
671

    
672

    
673
//Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
674
//Plain C versions
675
#if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT)
676
#define COMPILE_C
677
#endif
678

    
679
#ifdef ARCH_POWERPC
680
#ifdef HAVE_ALTIVEC
681
#define COMPILE_ALTIVEC
682
#endif //HAVE_ALTIVEC
683
#endif //ARCH_POWERPC
684

    
685
#ifdef ARCH_X86
686

    
687
#if (defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
688
#define COMPILE_MMX
689
#endif
690

    
691
#if defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)
692
#define COMPILE_MMX2
693
#endif
694

    
695
#if (defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
696
#define COMPILE_3DNOW
697
#endif
698
#endif //ARCH_X86
699

    
700
#undef HAVE_MMX
701
#undef HAVE_MMX2
702
#undef HAVE_3DNOW
703

    
704
#ifdef COMPILE_C
705
#undef HAVE_MMX
706
#undef HAVE_MMX2
707
#undef HAVE_3DNOW
708
#undef HAVE_ALTIVEC
709
#define RENAME(a) a ## _C
710
#include "swscale_template.c"
711
#endif
712

    
713
#ifdef ARCH_POWERPC
714
#ifdef COMPILE_ALTIVEC
715
#undef RENAME
716
#define HAVE_ALTIVEC
717
#define RENAME(a) a ## _altivec
718
#include "swscale_template.c"
719
#endif
720
#endif //ARCH_POWERPC
721

    
722
#ifdef ARCH_X86
723

    
724
//X86 versions
725
/*
726
#undef RENAME
727
#undef HAVE_MMX
728
#undef HAVE_MMX2
729
#undef HAVE_3DNOW
730
#define ARCH_X86
731
#define RENAME(a) a ## _X86
732
#include "swscale_template.c"
733
*/
734
//MMX versions
735
#ifdef COMPILE_MMX
736
#undef RENAME
737
#define HAVE_MMX
738
#undef HAVE_MMX2
739
#undef HAVE_3DNOW
740
#define RENAME(a) a ## _MMX
741
#include "swscale_template.c"
742
#endif
743

    
744
//MMX2 versions
745
#ifdef COMPILE_MMX2
746
#undef RENAME
747
#define HAVE_MMX
748
#define HAVE_MMX2
749
#undef HAVE_3DNOW
750
#define RENAME(a) a ## _MMX2
751
#include "swscale_template.c"
752
#endif
753

    
754
//3DNOW versions
755
#ifdef COMPILE_3DNOW
756
#undef RENAME
757
#define HAVE_MMX
758
#undef HAVE_MMX2
759
#define HAVE_3DNOW
760
#define RENAME(a) a ## _3DNow
761
#include "swscale_template.c"
762
#endif
763

    
764
#endif //ARCH_X86
765

    
766
// minor note: the HAVE_xyz is messed up after that line so don't use it
767

    
768
static double getSplineCoeff(double a, double b, double c, double d, double dist)
769
{
770
//        printf("%f %f %f %f %f\n", a,b,c,d,dist);
771
        if(dist<=1.0)         return ((d*dist + c)*dist + b)*dist +a;
772
        else                return getSplineCoeff(        0.0, 
773
                                                 b+ 2.0*c + 3.0*d,
774
                                                        c + 3.0*d,
775
                                                -b- 3.0*c - 6.0*d,
776
                                                dist-1.0);
777
}
778

    
779
static inline void initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
780
                              int srcW, int dstW, int filterAlign, int one, int flags,
781
                              SwsVector *srcFilter, SwsVector *dstFilter)
782
{
783
        int i;
784
        int filterSize;
785
        int filter2Size;
786
        int minFilterSize;
787
        double *filter=NULL;
788
        double *filter2=NULL;
789
#ifdef ARCH_X86
790
        if(flags & SWS_CPU_CAPS_MMX)
791
                asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
792
#endif
793

    
794
        // Note the +1 is for the MMXscaler which reads over the end
795
        *filterPos = (int16_t*)memalign(8, (dstW+1)*sizeof(int16_t));
796

    
797
        if(ABS(xInc - 0x10000) <10) // unscaled
798
        {
799
                int i;
800
                filterSize= 1;
801
                filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
802
                for(i=0; i<dstW*filterSize; i++) filter[i]=0;
803

    
804
                for(i=0; i<dstW; i++)
805
                {
806
                        filter[i*filterSize]=1;
807
                        (*filterPos)[i]=i;
808
                }
809

    
810
        }
811
        else if(flags&SWS_POINT) // lame looking point sampling mode
812
        {
813
                int i;
814
                int xDstInSrc;
815
                filterSize= 1;
816
                filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
817
                
818
                xDstInSrc= xInc/2 - 0x8000;
819
                for(i=0; i<dstW; i++)
820
                {
821
                        int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
822

    
823
                        (*filterPos)[i]= xx;
824
                        filter[i]= 1.0;
825
                        xDstInSrc+= xInc;
826
                }
827
        }
828
        else if((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
829
        {
830
                int i;
831
                int xDstInSrc;
832
                if     (flags&SWS_BICUBIC) filterSize= 4;
833
                else if(flags&SWS_X      ) filterSize= 4;
834
                else                           filterSize= 2; // SWS_BILINEAR / SWS_AREA 
835
                filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
836

    
837
                xDstInSrc= xInc/2 - 0x8000;
838
                for(i=0; i<dstW; i++)
839
                {
840
                        int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
841
                        int j;
842

    
843
                        (*filterPos)[i]= xx;
844
                                //Bilinear upscale / linear interpolate / Area averaging
845
                                for(j=0; j<filterSize; j++)
846
                                {
847
                                        double d= ABS((xx<<16) - xDstInSrc)/(double)(1<<16);
848
                                        double coeff= 1.0 - d;
849
                                        if(coeff<0) coeff=0;
850
                                        filter[i*filterSize + j]= coeff;
851
                                        xx++;
852
                                }
853
                        xDstInSrc+= xInc;
854
                }
855
        }
856
        else
857
        {
858
                double xDstInSrc;
859
                double sizeFactor, filterSizeInSrc;
860
                const double xInc1= (double)xInc / (double)(1<<16);
861
                int param= (flags&SWS_PARAM_MASK)>>SWS_PARAM_SHIFT;
862

    
863
                if     (flags&SWS_BICUBIC)        sizeFactor= 4.0;
864
                else if(flags&SWS_X)                sizeFactor= 8.0;
865
                else if(flags&SWS_AREA)                sizeFactor= 1.0; //downscale only, for upscale it is bilinear
866
                else if(flags&SWS_GAUSS)        sizeFactor= 8.0;   // infinite ;)
867
                else if(flags&SWS_LANCZOS)        sizeFactor= param ? 2.0*param : 6.0;
868
                else if(flags&SWS_SINC)                sizeFactor= 20.0; // infinite ;)
869
                else if(flags&SWS_SPLINE)        sizeFactor= 20.0;  // infinite ;)
870
                else if(flags&SWS_BILINEAR)        sizeFactor= 2.0;
871
                else {
872
                        sizeFactor= 0.0; //GCC warning killer
873
                        ASSERT(0)
874
                }
875
                
876
                if(xInc1 <= 1.0)        filterSizeInSrc= sizeFactor; // upscale
877
                else                        filterSizeInSrc= sizeFactor*srcW / (double)dstW;
878

    
879
                filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
880
                if(filterSize > srcW-2) filterSize=srcW-2;
881

    
882
                filter= (double*)memalign(16, dstW*sizeof(double)*filterSize);
883

    
884
                xDstInSrc= xInc1 / 2.0 - 0.5;
885
                for(i=0; i<dstW; i++)
886
                {
887
                        int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
888
                        int j;
889
                        (*filterPos)[i]= xx;
890
                        for(j=0; j<filterSize; j++)
891
                        {
892
                                double d= ABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
893
                                double coeff;
894
                                if(flags & SWS_BICUBIC)
895
                                {
896
                                        double A= param ? -param*0.01 : -0.60;
897
                                        
898
                                        // Equation is from VirtualDub
899
                                        if(d<1.0)
900
                                                coeff = (1.0 - (A+3.0)*d*d + (A+2.0)*d*d*d);
901
                                        else if(d<2.0)
902
                                                coeff = (-4.0*A + 8.0*A*d - 5.0*A*d*d + A*d*d*d);
903
                                        else
904
                                                coeff=0.0;
905
                                }
906
/*                                else if(flags & SWS_X)
907
                                {
908
                                        double p= param ? param*0.01 : 0.3;
909
                                        coeff = d ? sin(d*PI)/(d*PI) : 1.0;
910
                                        coeff*= pow(2.0, - p*d*d);
911
                                }*/
912
                                else if(flags & SWS_X)
913
                                {
914
                                        double A= param ? param*0.1 : 1.0;
915
                                        
916
                                        if(d<1.0)
917
                                                coeff = cos(d*PI);
918
                                        else
919
                                                coeff=-1.0;
920
                                        if(coeff<0.0)         coeff= -pow(-coeff, A);
921
                                        else                coeff=  pow( coeff, A);
922
                                        coeff= coeff*0.5 + 0.5;
923
                                }
924
                                else if(flags & SWS_AREA)
925
                                {
926
                                        double srcPixelSize= 1.0/xInc1;
927
                                        if(d + srcPixelSize/2 < 0.5) coeff= 1.0;
928
                                        else if(d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
929
                                        else coeff=0.0;
930
                                }
931
                                else if(flags & SWS_GAUSS)
932
                                {
933
                                        double p= param ? param*0.1 : 3.0;
934
                                        coeff = pow(2.0, - p*d*d);
935
                                }
936
                                else if(flags & SWS_SINC)
937
                                {
938
                                        coeff = d ? sin(d*PI)/(d*PI) : 1.0;
939
                                }
940
                                else if(flags & SWS_LANCZOS)
941
                                {
942
                                        double p= param ? param : 3.0; 
943
                                        coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
944
                                        if(d>p) coeff=0;
945
                                }
946
                                else if(flags & SWS_BILINEAR)
947
                                {
948
                                        coeff= 1.0 - d;
949
                                        if(coeff<0) coeff=0;
950
                                }
951
                                else if(flags & SWS_SPLINE)
952
                                {
953
                                        double p=-2.196152422706632;
954
                                        coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
955
                                }
956
                                else {
957
                                        coeff= 0.0; //GCC warning killer
958
                                        ASSERT(0)
959
                                }
960

    
961
                                filter[i*filterSize + j]= coeff;
962
                                xx++;
963
                        }
964
                        xDstInSrc+= xInc1;
965
                }
966
        }
967

    
968
        /* apply src & dst Filter to filter -> filter2
969
           free(filter);
970
        */
971
        ASSERT(filterSize>0)
972
        filter2Size= filterSize;
973
        if(srcFilter) filter2Size+= srcFilter->length - 1;
974
        if(dstFilter) filter2Size+= dstFilter->length - 1;
975
        ASSERT(filter2Size>0)
976
        filter2= (double*)memalign(8, filter2Size*dstW*sizeof(double));
977

    
978
        for(i=0; i<dstW; i++)
979
        {
980
                int j;
981
                SwsVector scaleFilter;
982
                SwsVector *outVec;
983

    
984
                scaleFilter.coeff= filter + i*filterSize;
985
                scaleFilter.length= filterSize;
986

    
987
                if(srcFilter) outVec= sws_getConvVec(srcFilter, &scaleFilter);
988
                else              outVec= &scaleFilter;
989

    
990
                ASSERT(outVec->length == filter2Size)
991
                //FIXME dstFilter
992

    
993
                for(j=0; j<outVec->length; j++)
994
                {
995
                        filter2[i*filter2Size + j]= outVec->coeff[j];
996
                }
997

    
998
                (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
999

    
1000
                if(outVec != &scaleFilter) sws_freeVec(outVec);
1001
        }
1002
        free(filter); filter=NULL;
1003

    
1004
        /* try to reduce the filter-size (step1 find size and shift left) */
1005
        // Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not)
1006
        minFilterSize= 0;
1007
        for(i=dstW-1; i>=0; i--)
1008
        {
1009
                int min= filter2Size;
1010
                int j;
1011
                double cutOff=0.0;
1012

    
1013
                /* get rid off near zero elements on the left by shifting left */
1014
                for(j=0; j<filter2Size; j++)
1015
                {
1016
                        int k;
1017
                        cutOff += ABS(filter2[i*filter2Size]);
1018

    
1019
                        if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1020

    
1021
                        /* preserve Monotonicity because the core can't handle the filter otherwise */
1022
                        if(i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
1023

    
1024
                        // Move filter coeffs left
1025
                        for(k=1; k<filter2Size; k++)
1026
                                filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
1027
                        filter2[i*filter2Size + k - 1]= 0.0;
1028
                        (*filterPos)[i]++;
1029
                }
1030

    
1031
                cutOff=0.0;
1032
                /* count near zeros on the right */
1033
                for(j=filter2Size-1; j>0; j--)
1034
                {
1035
                        cutOff += ABS(filter2[i*filter2Size + j]);
1036

    
1037
                        if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1038
                        min--;
1039
                }
1040

    
1041
                if(min>minFilterSize) minFilterSize= min;
1042
        }
1043

    
1044
        if (flags & SWS_CPU_CAPS_ALTIVEC) {
1045
          // we can handle the special case 4,
1046
          // so we don't want to go to the full 8
1047
          if (minFilterSize < 5)
1048
            filterAlign = 4;
1049

    
1050
          // we really don't want to waste our time
1051
          // doing useless computation, so fall-back on
1052
          // the scalar C code for very small filter.
1053
          // vectorizing is worth it only if you have
1054
          // decent-sized vector.
1055
          if (minFilterSize < 3)
1056
            filterAlign = 1;
1057
        }
1058

    
1059
        ASSERT(minFilterSize > 0)
1060
        filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
1061
        ASSERT(filterSize > 0)
1062
        filter= (double*)memalign(8, filterSize*dstW*sizeof(double));
1063
        *outFilterSize= filterSize;
1064

    
1065
        if(flags&SWS_PRINT_INFO)
1066
                MSG_INFO("SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
1067
        /* try to reduce the filter-size (step2 reduce it) */
1068
        for(i=0; i<dstW; i++)
1069
        {
1070
                int j;
1071

    
1072
                for(j=0; j<filterSize; j++)
1073
                {
1074
                        if(j>=filter2Size) filter[i*filterSize + j]= 0.0;
1075
                        else                   filter[i*filterSize + j]= filter2[i*filter2Size + j];
1076
                }
1077
        }
1078
        free(filter2); filter2=NULL;
1079
        
1080

    
1081
        //FIXME try to align filterpos if possible
1082

    
1083
        //fix borders
1084
        for(i=0; i<dstW; i++)
1085
        {
1086
                int j;
1087
                if((*filterPos)[i] < 0)
1088
                {
1089
                        // Move filter coeffs left to compensate for filterPos
1090
                        for(j=1; j<filterSize; j++)
1091
                        {
1092
                                int left= MAX(j + (*filterPos)[i], 0);
1093
                                filter[i*filterSize + left] += filter[i*filterSize + j];
1094
                                filter[i*filterSize + j]=0;
1095
                        }
1096
                        (*filterPos)[i]= 0;
1097
                }
1098

    
1099
                if((*filterPos)[i] + filterSize > srcW)
1100
                {
1101
                        int shift= (*filterPos)[i] + filterSize - srcW;
1102
                        // Move filter coeffs right to compensate for filterPos
1103
                        for(j=filterSize-2; j>=0; j--)
1104
                        {
1105
                                int right= MIN(j + shift, filterSize-1);
1106
                                filter[i*filterSize +right] += filter[i*filterSize +j];
1107
                                filter[i*filterSize +j]=0;
1108
                        }
1109
                        (*filterPos)[i]= srcW - filterSize;
1110
                }
1111
        }
1112

    
1113
        // Note the +1 is for the MMXscaler which reads over the end
1114
        *outFilter= (int16_t*)memalign(8, *outFilterSize*(dstW+1)*sizeof(int16_t));
1115
        memset(*outFilter, 0, *outFilterSize*(dstW+1)*sizeof(int16_t));
1116

    
1117
        /* Normalize & Store in outFilter */
1118
        for(i=0; i<dstW; i++)
1119
        {
1120
                int j;
1121
                double error=0;
1122
                double sum=0;
1123
                double scale= one;
1124

    
1125
                for(j=0; j<filterSize; j++)
1126
                {
1127
                        sum+= filter[i*filterSize + j];
1128
                }
1129
                scale/= sum;
1130
                for(j=0; j<*outFilterSize; j++)
1131
                {
1132
                        double v= filter[i*filterSize + j]*scale + error;
1133
                        int intV= floor(v + 0.5);
1134
                        (*outFilter)[i*(*outFilterSize) + j]= intV;
1135
                        error = v - intV;
1136
                }
1137
        }
1138
        
1139
        (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
1140
        for(i=0; i<*outFilterSize; i++)
1141
        {
1142
                int j= dstW*(*outFilterSize);
1143
                (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
1144
        }
1145

    
1146
        free(filter);
1147
}
1148

    
1149
#ifdef ARCH_X86
1150
static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
1151
{
1152
        uint8_t *fragmentA;
1153
        int imm8OfPShufW1A;
1154
        int imm8OfPShufW2A;
1155
        int fragmentLengthA;
1156
        uint8_t *fragmentB;
1157
        int imm8OfPShufW1B;
1158
        int imm8OfPShufW2B;
1159
        int fragmentLengthB;
1160
        int fragmentPos;
1161

    
1162
        int xpos, i;
1163

    
1164
        // create an optimized horizontal scaling routine
1165

    
1166
        //code fragment
1167

    
1168
        asm volatile(
1169
                "jmp 9f                                \n\t"
1170
        // Begin
1171
                "0:                                \n\t"
1172
                "movq (%%edx, %%eax), %%mm3        \n\t" 
1173
                "movd (%%ecx, %%esi), %%mm0        \n\t" 
1174
                "movd 1(%%ecx, %%esi), %%mm1        \n\t"
1175
                "punpcklbw %%mm7, %%mm1                \n\t"
1176
                "punpcklbw %%mm7, %%mm0                \n\t"
1177
                "pshufw $0xFF, %%mm1, %%mm1        \n\t"
1178
                "1:                                \n\t"
1179
                "pshufw $0xFF, %%mm0, %%mm0        \n\t"
1180
                "2:                                \n\t"
1181
                "psubw %%mm1, %%mm0                \n\t"
1182
                "movl 8(%%ebx, %%eax), %%esi        \n\t"
1183
                "pmullw %%mm3, %%mm0                \n\t"
1184
                "psllw $7, %%mm1                \n\t"
1185
                "paddw %%mm1, %%mm0                \n\t"
1186

    
1187
                "movq %%mm0, (%%edi, %%eax)        \n\t"
1188

    
1189
                "addl $8, %%eax                        \n\t"
1190
        // End
1191
                "9:                                \n\t"
1192
//                "int $3\n\t"
1193
                "leal 0b, %0                        \n\t"
1194
                "leal 1b, %1                        \n\t"
1195
                "leal 2b, %2                        \n\t"
1196
                "decl %1                        \n\t"
1197
                "decl %2                        \n\t"
1198
                "subl %0, %1                        \n\t"
1199
                "subl %0, %2                        \n\t"
1200
                "leal 9b, %3                        \n\t"
1201
                "subl %0, %3                        \n\t"
1202

    
1203

    
1204
                :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
1205
                "=r" (fragmentLengthA)
1206
        );
1207

    
1208
        asm volatile(
1209
                "jmp 9f                                \n\t"
1210
        // Begin
1211
                "0:                                \n\t"
1212
                "movq (%%edx, %%eax), %%mm3        \n\t" 
1213
                "movd (%%ecx, %%esi), %%mm0        \n\t" 
1214
                "punpcklbw %%mm7, %%mm0                \n\t"
1215
                "pshufw $0xFF, %%mm0, %%mm1        \n\t"
1216
                "1:                                \n\t"
1217
                "pshufw $0xFF, %%mm0, %%mm0        \n\t"
1218
                "2:                                \n\t"
1219
                "psubw %%mm1, %%mm0                \n\t"
1220
                "movl 8(%%ebx, %%eax), %%esi        \n\t"
1221
                "pmullw %%mm3, %%mm0                \n\t"
1222
                "psllw $7, %%mm1                \n\t"
1223
                "paddw %%mm1, %%mm0                \n\t"
1224

    
1225
                "movq %%mm0, (%%edi, %%eax)        \n\t"
1226

    
1227
                "addl $8, %%eax                        \n\t"
1228
        // End
1229
                "9:                                \n\t"
1230
//                "int $3\n\t"
1231
                "leal 0b, %0                        \n\t"
1232
                "leal 1b, %1                        \n\t"
1233
                "leal 2b, %2                        \n\t"
1234
                "decl %1                        \n\t"
1235
                "decl %2                        \n\t"
1236
                "subl %0, %1                        \n\t"
1237
                "subl %0, %2                        \n\t"
1238
                "leal 9b, %3                        \n\t"
1239
                "subl %0, %3                        \n\t"
1240

    
1241

    
1242
                :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
1243
                "=r" (fragmentLengthB)
1244
        );
1245

    
1246
        xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
1247
        fragmentPos=0;
1248
        
1249
        for(i=0; i<dstW/numSplits; i++)
1250
        {
1251
                int xx=xpos>>16;
1252

    
1253
                if((i&3) == 0)
1254
                {
1255
                        int a=0;
1256
                        int b=((xpos+xInc)>>16) - xx;
1257
                        int c=((xpos+xInc*2)>>16) - xx;
1258
                        int d=((xpos+xInc*3)>>16) - xx;
1259

    
1260
                        filter[i  ] = (( xpos         & 0xFFFF) ^ 0xFFFF)>>9;
1261
                        filter[i+1] = (((xpos+xInc  ) & 0xFFFF) ^ 0xFFFF)>>9;
1262
                        filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
1263
                        filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
1264
                        filterPos[i/2]= xx;
1265

    
1266
                        if(d+1<4)
1267
                        {
1268
                                int maxShift= 3-(d+1);
1269
                                int shift=0;
1270

    
1271
                                memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
1272

    
1273
                                funnyCode[fragmentPos + imm8OfPShufW1B]=
1274
                                        (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
1275
                                funnyCode[fragmentPos + imm8OfPShufW2B]=
1276
                                        a | (b<<2) | (c<<4) | (d<<6);
1277

    
1278
                                if(i+3>=dstW) shift=maxShift; //avoid overread
1279
                                else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
1280

    
1281
                                if(shift && i>=shift)
1282
                                {
1283
                                        funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
1284
                                        funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
1285
                                        filterPos[i/2]-=shift;
1286
                                }
1287

    
1288
                                fragmentPos+= fragmentLengthB;
1289
                        }
1290
                        else
1291
                        {
1292
                                int maxShift= 3-d;
1293
                                int shift=0;
1294

    
1295
                                memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
1296

    
1297
                                funnyCode[fragmentPos + imm8OfPShufW1A]=
1298
                                funnyCode[fragmentPos + imm8OfPShufW2A]=
1299
                                        a | (b<<2) | (c<<4) | (d<<6);
1300

    
1301
                                if(i+4>=dstW) shift=maxShift; //avoid overread
1302
                                else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
1303

    
1304
                                if(shift && i>=shift)
1305
                                {
1306
                                        funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
1307
                                        funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
1308
                                        filterPos[i/2]-=shift;
1309
                                }
1310

    
1311
                                fragmentPos+= fragmentLengthA;
1312
                        }
1313

    
1314
                        funnyCode[fragmentPos]= RET;
1315
                }
1316
                xpos+=xInc;
1317
        }
1318
        filterPos[i/2]= xpos>>16; // needed to jump to the next part
1319
}
1320
#endif // ARCH_X86
1321

    
1322
static void globalInit(){
1323
    // generating tables:
1324
    int i;
1325
    for(i=0; i<768; i++){
1326
        int c= MIN(MAX(i-256, 0), 255);
1327
        clip_table[i]=c;
1328
    }
1329
}
1330

    
1331
static SwsFunc getSwsFunc(int flags){
1332
    
1333
#ifdef RUNTIME_CPUDETECT
1334
#ifdef ARCH_X86
1335
        // ordered per speed fasterst first
1336
        if(flags & SWS_CPU_CAPS_MMX2)
1337
                return swScale_MMX2;
1338
        else if(flags & SWS_CPU_CAPS_3DNOW)
1339
                return swScale_3DNow;
1340
        else if(flags & SWS_CPU_CAPS_MMX)
1341
                return swScale_MMX;
1342
        else
1343
                return swScale_C;
1344

    
1345
#else
1346
#ifdef ARCH_POWERPC
1347
        if(flags & SWS_CPU_CAPS_ALTIVEC)
1348
          return swScale_altivec;
1349
        else
1350
          return swScale_C;
1351
#endif
1352
        return swScale_C;
1353
#endif
1354
#else //RUNTIME_CPUDETECT
1355
#ifdef HAVE_MMX2
1356
        return swScale_MMX2;
1357
#elif defined (HAVE_3DNOW)
1358
        return swScale_3DNow;
1359
#elif defined (HAVE_MMX)
1360
        return swScale_MMX;
1361
#elif defined (HAVE_ALTIVEC)
1362
        return swScale_altivec;
1363
#else
1364
        return swScale_C;
1365
#endif
1366
#endif //!RUNTIME_CPUDETECT
1367
}
1368

    
1369
static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1370
             int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1371
        uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1372
        /* Copy Y plane */
1373
        if(dstStride[0]==srcStride[0])
1374
                memcpy(dst, src[0], srcSliceH*dstStride[0]);
1375
        else
1376
        {
1377
                int i;
1378
                uint8_t *srcPtr= src[0];
1379
                uint8_t *dstPtr= dst;
1380
                for(i=0; i<srcSliceH; i++)
1381
                {
1382
                        memcpy(dstPtr, srcPtr, srcStride[0]);
1383
                        srcPtr+= srcStride[0];
1384
                        dstPtr+= dstStride[0];
1385
                }
1386
        }
1387
        dst = dstParam[1] + dstStride[1]*srcSliceY;
1388
        interleaveBytes( src[1],src[2],dst,c->srcW,srcSliceH,srcStride[1],srcStride[2],dstStride[0] );
1389

    
1390
        return srcSliceH;
1391
}
1392

    
1393
static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1394
             int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1395
        uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1396

    
1397
        yv12toyuy2( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1398

    
1399
        return srcSliceH;
1400
}
1401

    
1402
static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1403
             int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1404
        uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1405

    
1406
        yv12touyvy( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1407

    
1408
        return srcSliceH;
1409
}
1410

    
1411
/* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
1412
static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1413
                           int srcSliceH, uint8_t* dst[], int dstStride[]){
1414
        const int srcFormat= c->srcFormat;
1415
        const int dstFormat= c->dstFormat;
1416
        const int srcBpp= ((srcFormat&0xFF) + 7)>>3;
1417
        const int dstBpp= ((dstFormat&0xFF) + 7)>>3;
1418
        const int srcId= (srcFormat&0xFF)>>2; // 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 
1419
        const int dstId= (dstFormat&0xFF)>>2;
1420
        void (*conv)(const uint8_t *src, uint8_t *dst, unsigned src_size)=NULL;
1421

    
1422
        /* BGR -> BGR */
1423
        if(   (isBGR(srcFormat) && isBGR(dstFormat))
1424
           || (isRGB(srcFormat) && isRGB(dstFormat))){
1425
                switch(srcId | (dstId<<4)){
1426
                case 0x34: conv= rgb16to15; break;
1427
                case 0x36: conv= rgb24to15; break;
1428
                case 0x38: conv= rgb32to15; break;
1429
                case 0x43: conv= rgb15to16; break;
1430
                case 0x46: conv= rgb24to16; break;
1431
                case 0x48: conv= rgb32to16; break;
1432
                case 0x63: conv= rgb15to24; break;
1433
                case 0x64: conv= rgb16to24; break;
1434
                case 0x68: conv= rgb32to24; break;
1435
                case 0x83: conv= rgb15to32; break;
1436
                case 0x84: conv= rgb16to32; break;
1437
                case 0x86: conv= rgb24to32; break;
1438
                default: MSG_ERR("swScaler: internal error %s -> %s converter\n", 
1439
                                 vo_format_name(srcFormat), vo_format_name(dstFormat)); break;
1440
                }
1441
        }else if(   (isBGR(srcFormat) && isRGB(dstFormat))
1442
                 || (isRGB(srcFormat) && isBGR(dstFormat))){
1443
                switch(srcId | (dstId<<4)){
1444
                case 0x33: conv= rgb15tobgr15; break;
1445
                case 0x34: conv= rgb16tobgr15; break;
1446
                case 0x36: conv= rgb24tobgr15; break;
1447
                case 0x38: conv= rgb32tobgr15; break;
1448
                case 0x43: conv= rgb15tobgr16; break;
1449
                case 0x44: conv= rgb16tobgr16; break;
1450
                case 0x46: conv= rgb24tobgr16; break;
1451
                case 0x48: conv= rgb32tobgr16; break;
1452
                case 0x63: conv= rgb15tobgr24; break;
1453
                case 0x64: conv= rgb16tobgr24; break;
1454
                case 0x66: conv= rgb24tobgr24; break;
1455
                case 0x68: conv= rgb32tobgr24; break;
1456
                case 0x83: conv= rgb15tobgr32; break;
1457
                case 0x84: conv= rgb16tobgr32; break;
1458
                case 0x86: conv= rgb24tobgr32; break;
1459
                case 0x88: conv= rgb32tobgr32; break;
1460
                default: MSG_ERR("swScaler: internal error %s -> %s converter\n", 
1461
                                 vo_format_name(srcFormat), vo_format_name(dstFormat)); break;
1462
                }
1463
        }else{
1464
                MSG_ERR("swScaler: internal error %s -> %s converter\n", 
1465
                         vo_format_name(srcFormat), vo_format_name(dstFormat));
1466
        }
1467

    
1468
        if(dstStride[0]*srcBpp == srcStride[0]*dstBpp)
1469
                conv(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
1470
        else
1471
        {
1472
                int i;
1473
                uint8_t *srcPtr= src[0];
1474
                uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1475

    
1476
                for(i=0; i<srcSliceH; i++)
1477
                {
1478
                        conv(srcPtr, dstPtr, c->srcW*srcBpp);
1479
                        srcPtr+= srcStride[0];
1480
                        dstPtr+= dstStride[0];
1481
                }
1482
        }     
1483
        return srcSliceH;
1484
}
1485

    
1486
static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1487
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1488

    
1489
        rgb24toyv12(
1490
                src[0], 
1491
                dst[0]+ srcSliceY    *dstStride[0], 
1492
                dst[1]+(srcSliceY>>1)*dstStride[1], 
1493
                dst[2]+(srcSliceY>>1)*dstStride[2],
1494
                c->srcW, srcSliceH, 
1495
                dstStride[0], dstStride[1], srcStride[0]);
1496
        return srcSliceH;
1497
}
1498

    
1499
static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1500
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1501
        int i;
1502

    
1503
        /* copy Y */
1504
        if(srcStride[0]==dstStride[0]) 
1505
                memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
1506
        else{
1507
                uint8_t *srcPtr= src[0];
1508
                uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1509

    
1510
                for(i=0; i<srcSliceH; i++)
1511
                {
1512
                        memcpy(dstPtr, srcPtr, c->srcW);
1513
                        srcPtr+= srcStride[0];
1514
                        dstPtr+= dstStride[0];
1515
                }
1516
        }
1517

    
1518
        if(c->dstFormat==IMGFMT_YV12){
1519
                planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
1520
                planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
1521
        }else{
1522
                planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
1523
                planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
1524
        }
1525
        return srcSliceH;
1526
}
1527

    
1528
/**
1529
 * bring pointers in YUV order instead of YVU
1530
 */
1531
static inline void sws_orderYUV(int format, uint8_t * sortedP[], int sortedStride[], uint8_t * p[], int stride[]){
1532
        if(format == IMGFMT_YV12 || format == IMGFMT_YVU9
1533
           || format == IMGFMT_444P || format == IMGFMT_422P || format == IMGFMT_411P){
1534
                sortedP[0]= p[0];
1535
                sortedP[1]= p[2];
1536
                sortedP[2]= p[1];
1537
                sortedStride[0]= stride[0];
1538
                sortedStride[1]= stride[2];
1539
                sortedStride[2]= stride[1];
1540
        }
1541
        else if(isPacked(format) || isGray(format) || format == IMGFMT_Y8)
1542
        {
1543
                sortedP[0]= p[0];
1544
                sortedP[1]= 
1545
                sortedP[2]= NULL;
1546
                sortedStride[0]= stride[0];
1547
                sortedStride[1]= 
1548
                sortedStride[2]= 0;
1549
        }
1550
        else if(format == IMGFMT_I420 || format == IMGFMT_IYUV)
1551
        {
1552
                sortedP[0]= p[0];
1553
                sortedP[1]= p[1];
1554
                sortedP[2]= p[2];
1555
                sortedStride[0]= stride[0];
1556
                sortedStride[1]= stride[1];
1557
                sortedStride[2]= stride[2];
1558
        }else{
1559
                MSG_ERR("internal error in orderYUV\n");
1560
        }
1561
}
1562

    
1563
/* unscaled copy like stuff (assumes nearly identical formats) */
1564
static int simpleCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1565
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1566

    
1567
        if(isPacked(c->srcFormat))
1568
        {
1569
                if(dstStride[0]==srcStride[0])
1570
                        memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
1571
                else
1572
                {
1573
                        int i;
1574
                        uint8_t *srcPtr= src[0];
1575
                        uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1576
                        int length=0;
1577

    
1578
                        /* universal length finder */
1579
                        while(length+c->srcW <= ABS(dstStride[0]) 
1580
                           && length+c->srcW <= ABS(srcStride[0])) length+= c->srcW;
1581
                        ASSERT(length!=0);
1582

    
1583
                        for(i=0; i<srcSliceH; i++)
1584
                        {
1585
                                memcpy(dstPtr, srcPtr, length);
1586
                                srcPtr+= srcStride[0];
1587
                                dstPtr+= dstStride[0];
1588
                        }
1589
                }
1590
        }
1591
        else 
1592
        { /* Planar YUV or gray */
1593
                int plane;
1594
                for(plane=0; plane<3; plane++)
1595
                {
1596
                        int length= plane==0 ? c->srcW  : -((-c->srcW  )>>c->chrDstHSubSample);
1597
                        int y=      plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
1598
                        int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
1599

    
1600
                        if((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
1601
                        {
1602
                                if(!isGray(c->dstFormat))
1603
                                        memset(dst[plane], 128, dstStride[plane]*height);
1604
                        }
1605
                        else
1606
                        {
1607
                                if(dstStride[plane]==srcStride[plane])
1608
                                        memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
1609
                                else
1610
                                {
1611
                                        int i;
1612
                                        uint8_t *srcPtr= src[plane];
1613
                                        uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
1614
                                        for(i=0; i<height; i++)
1615
                                        {
1616
                                                memcpy(dstPtr, srcPtr, length);
1617
                                                srcPtr+= srcStride[plane];
1618
                                                dstPtr+= dstStride[plane];
1619
                                        }
1620
                                }
1621
                        }
1622
                }
1623
        }
1624
        return srcSliceH;
1625
}
1626

    
1627
static int remove_dup_fourcc(int fourcc)
1628
{
1629
        switch(fourcc)
1630
        {
1631
            case IMGFMT_I420:
1632
            case IMGFMT_IYUV: return IMGFMT_YV12;
1633
            case IMGFMT_Y8  : return IMGFMT_Y800;
1634
            case IMGFMT_IF09: return IMGFMT_YVU9;
1635
            default: return fourcc;
1636
        }
1637
}
1638

    
1639
static void getSubSampleFactors(int *h, int *v, int format){
1640
        switch(format){
1641
        case IMGFMT_UYVY:
1642
        case IMGFMT_YUY2:
1643
                *h=1;
1644
                *v=0;
1645
                break;
1646
        case IMGFMT_YV12:
1647
        case IMGFMT_Y800: //FIXME remove after different subsamplings are fully implemented
1648
                *h=1;
1649
                *v=1;
1650
                break;
1651
        case IMGFMT_YVU9:
1652
                *h=2;
1653
                *v=2;
1654
                break;
1655
        case IMGFMT_444P:
1656
                *h=0;
1657
                *v=0;
1658
                break;
1659
        case IMGFMT_422P:
1660
                *h=1;
1661
                *v=0;
1662
                break;
1663
        case IMGFMT_411P:
1664
                *h=2;
1665
                *v=0;
1666
                break;
1667
        default:
1668
                *h=0;
1669
                *v=0;
1670
                break;
1671
        }
1672
}
1673

    
1674
static uint16_t roundToInt16(int64_t f){
1675
        int r= (f + (1<<15))>>16;
1676
             if(r<-0x7FFF) return 0x8000;
1677
        else if(r> 0x7FFF) return 0x7FFF;
1678
        else               return r;
1679
}
1680

    
1681
/**
1682
 * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
1683
 * @param fullRange if 1 then the luma range is 0..255 if 0 its 16..235
1684
 * @return -1 if not supported
1685
 */
1686
int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
1687
        int64_t crv =  inv_table[0];
1688
        int64_t cbu =  inv_table[1];
1689
        int64_t cgu = -inv_table[2];
1690
        int64_t cgv = -inv_table[3];
1691
        int64_t cy  = 1<<16;
1692
        int64_t oy  = 0;
1693

    
1694
        if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1695
        memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
1696
        memcpy(c->dstColorspaceTable,     table, sizeof(int)*4);
1697

    
1698
        c->brightness= brightness;
1699
        c->contrast  = contrast;
1700
        c->saturation= saturation;
1701
        c->srcRange  = srcRange;
1702
        c->dstRange  = dstRange;
1703

    
1704
        c->uOffset=   0x0400040004000400LL;
1705
        c->vOffset=   0x0400040004000400LL;
1706

    
1707
        if(!srcRange){
1708
                cy= (cy*255) / 219;
1709
                oy= 16<<16;
1710
        }
1711

    
1712
        cy = (cy *contrast             )>>16;
1713
        crv= (crv*contrast * saturation)>>32;
1714
        cbu= (cbu*contrast * saturation)>>32;
1715
        cgu= (cgu*contrast * saturation)>>32;
1716
        cgv= (cgv*contrast * saturation)>>32;
1717

    
1718
        oy -= 256*brightness;
1719

    
1720
        c->yCoeff=    roundToInt16(cy *8192) * 0x0001000100010001ULL;
1721
        c->vrCoeff=   roundToInt16(crv*8192) * 0x0001000100010001ULL;
1722
        c->ubCoeff=   roundToInt16(cbu*8192) * 0x0001000100010001ULL;
1723
        c->vgCoeff=   roundToInt16(cgv*8192) * 0x0001000100010001ULL;
1724
        c->ugCoeff=   roundToInt16(cgu*8192) * 0x0001000100010001ULL;
1725
        c->yOffset=   roundToInt16(oy *   8) * 0x0001000100010001ULL;
1726

    
1727
        yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
1728
        //FIXME factorize
1729
        
1730
        return 0;
1731
}
1732

    
1733
/**
1734
 * @return -1 if not supported
1735
 */
1736
int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
1737
        if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1738

    
1739
        *inv_table = c->srcColorspaceTable;
1740
        *table     = c->dstColorspaceTable;
1741
        *srcRange  = c->srcRange;
1742
        *dstRange  = c->dstRange;
1743
        *brightness= c->brightness;
1744
        *contrast  = c->contrast;
1745
        *saturation= c->saturation;
1746
        
1747
        return 0;        
1748
}
1749

    
1750
SwsContext *sws_getContext(int srcW, int srcH, int origSrcFormat, int dstW, int dstH, int origDstFormat, int flags,
1751
                         SwsFilter *srcFilter, SwsFilter *dstFilter){
1752

    
1753
        SwsContext *c;
1754
        int i;
1755
        int usesVFilter, usesHFilter;
1756
        int unscaled, needsDither;
1757
        int srcFormat, dstFormat;
1758
        SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
1759
#ifdef ARCH_X86
1760
        if(flags & SWS_CPU_CAPS_MMX)
1761
                asm volatile("emms\n\t"::: "memory");
1762
#endif
1763

    
1764
#ifndef RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
1765
        flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC);
1766
#ifdef HAVE_MMX2
1767
        flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
1768
#elif defined (HAVE_3DNOW)
1769
        flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
1770
#elif defined (HAVE_MMX)
1771
        flags |= SWS_CPU_CAPS_MMX;
1772
#elif defined (HAVE_ALTIVEC)
1773
        flags |= SWS_CPU_CAPS_ALTIVEC;
1774
#endif
1775
#endif
1776
        if(clip_table[512] != 255) globalInit();
1777
        if(rgb15to16 == NULL) sws_rgb2rgb_init(flags);
1778

    
1779
        /* avoid duplicate Formats, so we don't need to check to much */
1780
        srcFormat = remove_dup_fourcc(origSrcFormat);
1781
        dstFormat = remove_dup_fourcc(origDstFormat);
1782

    
1783
        unscaled = (srcW == dstW && srcH == dstH);
1784
        needsDither= (isBGR(dstFormat) || isRGB(dstFormat)) 
1785
                     && (dstFormat&0xFF)<24
1786
                     && ((dstFormat&0xFF)<(srcFormat&0xFF) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
1787

    
1788
        if(!isSupportedIn(srcFormat)) 
1789
        {
1790
                MSG_ERR("swScaler: %s is not supported as input format\n", vo_format_name(srcFormat));
1791
                return NULL;
1792
        }
1793
        if(!isSupportedOut(dstFormat))
1794
        {
1795
                MSG_ERR("swScaler: %s is not supported as output format\n", vo_format_name(dstFormat));
1796
                return NULL;
1797
        }
1798

    
1799
        /* sanity check */
1800
        if(srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
1801
        {
1802
                 MSG_ERR("swScaler: %dx%d -> %dx%d is invalid scaling dimension\n", 
1803
                        srcW, srcH, dstW, dstH);
1804
                return NULL;
1805
        }
1806

    
1807
        if(!dstFilter) dstFilter= &dummyFilter;
1808
        if(!srcFilter) srcFilter= &dummyFilter;
1809

    
1810
        c= memalign(64, sizeof(SwsContext));
1811
        memset(c, 0, sizeof(SwsContext));
1812

    
1813
        c->srcW= srcW;
1814
        c->srcH= srcH;
1815
        c->dstW= dstW;
1816
        c->dstH= dstH;
1817
        c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
1818
        c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
1819
        c->flags= flags;
1820
        c->dstFormat= dstFormat;
1821
        c->srcFormat= srcFormat;
1822
        c->origDstFormat= origDstFormat;
1823
        c->origSrcFormat= origSrcFormat;
1824
        c->vRounder= 4* 0x0001000100010001ULL;
1825

    
1826
        usesHFilter= usesVFilter= 0;
1827
        if(dstFilter->lumV!=NULL && dstFilter->lumV->length>1) usesVFilter=1;
1828
        if(dstFilter->lumH!=NULL && dstFilter->lumH->length>1) usesHFilter=1;
1829
        if(dstFilter->chrV!=NULL && dstFilter->chrV->length>1) usesVFilter=1;
1830
        if(dstFilter->chrH!=NULL && dstFilter->chrH->length>1) usesHFilter=1;
1831
        if(srcFilter->lumV!=NULL && srcFilter->lumV->length>1) usesVFilter=1;
1832
        if(srcFilter->lumH!=NULL && srcFilter->lumH->length>1) usesHFilter=1;
1833
        if(srcFilter->chrV!=NULL && srcFilter->chrV->length>1) usesVFilter=1;
1834
        if(srcFilter->chrH!=NULL && srcFilter->chrH->length>1) usesHFilter=1;
1835

    
1836
        getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
1837
        getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
1838

    
1839
        // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
1840
        if((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
1841

    
1842
        // drop some chroma lines if the user wants it
1843
        c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
1844
        c->chrSrcVSubSample+= c->vChrDrop;
1845

    
1846
        // drop every 2. pixel for chroma calculation unless user wants full chroma
1847
        if((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)) 
1848
                c->chrSrcHSubSample=1;
1849

    
1850
        c->chrIntHSubSample= c->chrDstHSubSample;
1851
        c->chrIntVSubSample= c->chrSrcVSubSample;
1852

    
1853
        // note the -((-x)>>y) is so that we allways round toward +inf
1854
        c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
1855
        c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
1856
        c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
1857
        c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
1858

    
1859
        sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], 0, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, 0, 0, 1<<16, 1<<16); 
1860

    
1861
        /* unscaled special Cases */
1862
        if(unscaled && !usesHFilter && !usesVFilter)
1863
        {
1864
                /* yv12_to_nv12 */
1865
                if(srcFormat == IMGFMT_YV12 && dstFormat == IMGFMT_NV12)
1866
                {
1867
                        c->swScale= PlanarToNV12Wrapper;
1868
                }
1869
                /* yuv2bgr */
1870
                if((srcFormat==IMGFMT_YV12 || srcFormat==IMGFMT_422P) && (isBGR(dstFormat) || isRGB(dstFormat)))
1871
                {
1872
                        c->swScale= yuv2rgb_get_func_ptr(c);
1873
                }
1874
                
1875
                if( srcFormat==IMGFMT_YVU9 && dstFormat==IMGFMT_YV12 )
1876
                {
1877
                        c->swScale= yvu9toyv12Wrapper;
1878
                }
1879

    
1880
                /* bgr24toYV12 */
1881
                if(srcFormat==IMGFMT_BGR24 && dstFormat==IMGFMT_YV12)
1882
                        c->swScale= bgr24toyv12Wrapper;
1883
                
1884
                /* rgb/bgr -> rgb/bgr (no dither needed forms) */
1885
                if(   (isBGR(srcFormat) || isRGB(srcFormat))
1886
                   && (isBGR(dstFormat) || isRGB(dstFormat)) 
1887
                   && !needsDither)
1888
                        c->swScale= rgb2rgbWrapper;
1889

    
1890
                /* LQ converters if -sws 0 or -sws 4*/
1891
                if(c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
1892
                        /* rgb/bgr -> rgb/bgr (dither needed forms) */
1893
                        if(  (isBGR(srcFormat) || isRGB(srcFormat))
1894
                          && (isBGR(dstFormat) || isRGB(dstFormat)) 
1895
                          && needsDither)
1896
                                c->swScale= rgb2rgbWrapper;
1897

    
1898
                        /* yv12_to_yuy2 */
1899
                        if(srcFormat == IMGFMT_YV12 && 
1900
                            (dstFormat == IMGFMT_YUY2 || dstFormat == IMGFMT_UYVY))
1901
                        {
1902
                                if (dstFormat == IMGFMT_YUY2)
1903
                                    c->swScale= PlanarToYuy2Wrapper;
1904
                                else
1905
                                    c->swScale= PlanarToUyvyWrapper;
1906
                        }
1907
                }
1908

    
1909
                /* simple copy */
1910
                if(   srcFormat == dstFormat
1911
                   || (isPlanarYUV(srcFormat) && isGray(dstFormat))
1912
                   || (isPlanarYUV(dstFormat) && isGray(srcFormat))
1913
                  )
1914
                {
1915
                        c->swScale= simpleCopy;
1916
                }
1917

    
1918
                if(c->swScale){
1919
                        if(flags&SWS_PRINT_INFO)
1920
                                MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", 
1921
                                        vo_format_name(srcFormat), vo_format_name(dstFormat));
1922
                        return c;
1923
                }
1924
        }
1925

    
1926
        if(flags & SWS_CPU_CAPS_MMX2)
1927
        {
1928
                c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
1929
                if(!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
1930
                {
1931
                        if(flags&SWS_PRINT_INFO)
1932
                                MSG_INFO("SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
1933
                }
1934
                if(usesHFilter) c->canMMX2BeUsed=0;
1935
        }
1936
        else
1937
                c->canMMX2BeUsed=0;
1938

    
1939
        c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
1940
        c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
1941

    
1942
        // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
1943
        // but only for the FAST_BILINEAR mode otherwise do correct scaling
1944
        // n-2 is the last chrominance sample available
1945
        // this is not perfect, but noone shuld notice the difference, the more correct variant
1946
        // would be like the vertical one, but that would require some special code for the
1947
        // first and last pixel
1948
        if(flags&SWS_FAST_BILINEAR)
1949
        {
1950
                if(c->canMMX2BeUsed)
1951
                {
1952
                        c->lumXInc+= 20;
1953
                        c->chrXInc+= 20;
1954
                }
1955
                //we don't use the x86asm scaler if mmx is available
1956
                else if(flags & SWS_CPU_CAPS_MMX)
1957
                {
1958
                        c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
1959
                        c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
1960
                }
1961
        }
1962

    
1963
        /* precalculate horizontal scaler filter coefficients */
1964
        {
1965
                const int filterAlign=
1966
                  (flags & SWS_CPU_CAPS_MMX) ? 4 :
1967
                  (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
1968
                  1;
1969

    
1970
                initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
1971
                                 srcW      ,       dstW, filterAlign, 1<<14,
1972
                                 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
1973
                                 srcFilter->lumH, dstFilter->lumH);
1974
                initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
1975
                                 c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
1976
                                 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
1977
                                 srcFilter->chrH, dstFilter->chrH);
1978

    
1979
#ifdef ARCH_X86
1980
// can't downscale !!!
1981
                if(c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
1982
                {
1983
                        c->lumMmx2Filter   = (int16_t*)memalign(8, (dstW        /8+8)*sizeof(int16_t));
1984
                        c->chrMmx2Filter   = (int16_t*)memalign(8, (c->chrDstW  /4+8)*sizeof(int16_t));
1985
                        c->lumMmx2FilterPos= (int32_t*)memalign(8, (dstW      /2/8+8)*sizeof(int32_t));
1986
                        c->chrMmx2FilterPos= (int32_t*)memalign(8, (c->chrDstW/2/4+8)*sizeof(int32_t));
1987

    
1988
                        initMMX2HScaler(      dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
1989
                        initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
1990
                }
1991
#endif
1992
        } // Init Horizontal stuff
1993

    
1994

    
1995

    
1996
        /* precalculate vertical scaler filter coefficients */
1997
        {
1998
                const int filterAlign=
1999
                  (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2000
                  1;
2001

    
2002
                initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
2003
                                srcH      ,        dstH, filterAlign, (1<<12)-4,
2004
                                (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
2005
                                srcFilter->lumV, dstFilter->lumV);
2006
                initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
2007
                                c->chrSrcH, c->chrDstH, filterAlign, (1<<12)-4,
2008
                                (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2009
                                srcFilter->chrV, dstFilter->chrV);
2010
        }
2011

    
2012
        // Calculate Buffer Sizes so that they won't run out while handling these damn slices
2013
        c->vLumBufSize= c->vLumFilterSize;
2014
        c->vChrBufSize= c->vChrFilterSize;
2015
        for(i=0; i<dstH; i++)
2016
        {
2017
                int chrI= i*c->chrDstH / dstH;
2018
                int nextSlice= MAX(c->vLumFilterPos[i   ] + c->vLumFilterSize - 1,
2019
                                 ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
2020

    
2021
                nextSlice>>= c->chrSrcVSubSample;
2022
                nextSlice<<= c->chrSrcVSubSample;
2023
                if(c->vLumFilterPos[i   ] + c->vLumBufSize < nextSlice)
2024
                        c->vLumBufSize= nextSlice - c->vLumFilterPos[i   ];
2025
                if(c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
2026
                        c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
2027
        }
2028

    
2029
        // allocate pixbufs (we use dynamic allocation because otherwise we would need to
2030
        c->lumPixBuf= (int16_t**)memalign(4, c->vLumBufSize*2*sizeof(int16_t*));
2031
        c->chrPixBuf= (int16_t**)memalign(4, c->vChrBufSize*2*sizeof(int16_t*));
2032
        //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
2033
        for(i=0; i<c->vLumBufSize; i++)
2034
                c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= (uint16_t*)memalign(8, 4000);
2035
        for(i=0; i<c->vChrBufSize; i++)
2036
                c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= (uint16_t*)memalign(8, 8000);
2037

    
2038
        //try to avoid drawing green stuff between the right end and the stride end
2039
        for(i=0; i<c->vLumBufSize; i++) memset(c->lumPixBuf[i], 0, 4000);
2040
        for(i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000);
2041

    
2042
        ASSERT(c->chrDstH <= dstH)
2043

    
2044
        if(flags&SWS_PRINT_INFO)
2045
        {
2046
#ifdef DITHER1XBPP
2047
                char *dither= " dithered";
2048
#else
2049
                char *dither= "";
2050
#endif
2051
                if(flags&SWS_FAST_BILINEAR)
2052
                        MSG_INFO("\nSwScaler: FAST_BILINEAR scaler, ");
2053
                else if(flags&SWS_BILINEAR)
2054
                        MSG_INFO("\nSwScaler: BILINEAR scaler, ");
2055
                else if(flags&SWS_BICUBIC)
2056
                        MSG_INFO("\nSwScaler: BICUBIC scaler, ");
2057
                else if(flags&SWS_X)
2058
                        MSG_INFO("\nSwScaler: Experimental scaler, ");
2059
                else if(flags&SWS_POINT)
2060
                        MSG_INFO("\nSwScaler: Nearest Neighbor / POINT scaler, ");
2061
                else if(flags&SWS_AREA)
2062
                        MSG_INFO("\nSwScaler: Area Averageing scaler, ");
2063
                else if(flags&SWS_BICUBLIN)
2064
                        MSG_INFO("\nSwScaler: luma BICUBIC / chroma BILINEAR scaler, ");
2065
                else if(flags&SWS_GAUSS)
2066
                        MSG_INFO("\nSwScaler: Gaussian scaler, ");
2067
                else if(flags&SWS_SINC)
2068
                        MSG_INFO("\nSwScaler: Sinc scaler, ");
2069
                else if(flags&SWS_LANCZOS)
2070
                        MSG_INFO("\nSwScaler: Lanczos scaler, ");
2071
                else if(flags&SWS_SPLINE)
2072
                        MSG_INFO("\nSwScaler: Bicubic spline scaler, ");
2073
                else
2074
                        MSG_INFO("\nSwScaler: ehh flags invalid?! ");
2075

    
2076
                if(dstFormat==IMGFMT_BGR15 || dstFormat==IMGFMT_BGR16)
2077
                        MSG_INFO("from %s to%s %s ", 
2078
                                vo_format_name(srcFormat), dither, vo_format_name(dstFormat));
2079
                else
2080
                        MSG_INFO("from %s to %s ", 
2081
                                vo_format_name(srcFormat), vo_format_name(dstFormat));
2082

    
2083
                if(flags & SWS_CPU_CAPS_MMX2)
2084
                        MSG_INFO("using MMX2\n");
2085
                else if(flags & SWS_CPU_CAPS_3DNOW)
2086
                        MSG_INFO("using 3DNOW\n");
2087
                else if(flags & SWS_CPU_CAPS_MMX)
2088
                        MSG_INFO("using MMX\n");
2089
                else if(flags & SWS_CPU_CAPS_ALTIVEC)
2090
                        MSG_INFO("using AltiVec\n");
2091
                else 
2092
                        MSG_INFO("using C\n");
2093
        }
2094

    
2095
        if(flags & SWS_PRINT_INFO)
2096
        {
2097
                if(flags & SWS_CPU_CAPS_MMX)
2098
                {
2099
                        if(c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
2100
                                MSG_V("SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
2101
                        else
2102
                        {
2103
                                if(c->hLumFilterSize==4)
2104
                                        MSG_V("SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
2105
                                else if(c->hLumFilterSize==8)
2106
                                        MSG_V("SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
2107
                                else
2108
                                        MSG_V("SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
2109

    
2110
                                if(c->hChrFilterSize==4)
2111
                                        MSG_V("SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
2112
                                else if(c->hChrFilterSize==8)
2113
                                        MSG_V("SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
2114
                                else
2115
                                        MSG_V("SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
2116
                        }
2117
                }
2118
                else
2119
                {
2120
#ifdef ARCH_X86
2121
                        MSG_V("SwScaler: using X86-Asm scaler for horizontal scaling\n");
2122
#else
2123
                        if(flags & SWS_FAST_BILINEAR)
2124
                                MSG_V("SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
2125
                        else
2126
                                MSG_V("SwScaler: using C scaler for horizontal scaling\n");
2127
#endif
2128
                }
2129
                if(isPlanarYUV(dstFormat))
2130
                {
2131
                        if(c->vLumFilterSize==1)
2132
                                MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2133
                        else
2134
                                MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2135
                }
2136
                else
2137
                {
2138
                        if(c->vLumFilterSize==1 && c->vChrFilterSize==2)
2139
                                MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
2140
                                       "SwScaler:       2-tap scaler for vertical chrominance scaling (BGR)\n",(flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2141
                        else if(c->vLumFilterSize==2 && c->vChrFilterSize==2)
2142
                                MSG_V("SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2143
                        else
2144
                                MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2145
                }
2146

    
2147
                if(dstFormat==IMGFMT_BGR24)
2148
                        MSG_V("SwScaler: using %s YV12->BGR24 Converter\n",
2149
                                (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
2150
                else if(dstFormat==IMGFMT_BGR32)
2151
                        MSG_V("SwScaler: using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2152
                else if(dstFormat==IMGFMT_BGR16)
2153
                        MSG_V("SwScaler: using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2154
                else if(dstFormat==IMGFMT_BGR15)
2155
                        MSG_V("SwScaler: using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2156

    
2157
                MSG_V("SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
2158
        }
2159
        if(flags & SWS_PRINT_INFO)
2160
        {
2161
                MSG_DBG2("SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2162
                        c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
2163
                MSG_DBG2("SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2164
                        c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
2165
        }
2166

    
2167
        c->swScale= getSwsFunc(flags);
2168
        return c;
2169
}
2170

    
2171
/**
2172
 * swscale warper, so we don't need to export the SwsContext.
2173
 * assumes planar YUV to be in YUV order instead of YVU
2174
 */
2175
int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2176
                           int srcSliceH, uint8_t* dst[], int dstStride[]){
2177
        //copy strides, so they can safely be modified
2178
        int srcStride2[3]= {srcStride[0], srcStride[1], srcStride[2]};
2179
        int dstStride2[3]= {dstStride[0], dstStride[1], dstStride[2]};
2180
        return c->swScale(c, src, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
2181
}
2182

    
2183
/**
2184
 * swscale warper, so we don't need to export the SwsContext
2185
 */
2186
int sws_scale(SwsContext *c, uint8_t* srcParam[], int srcStrideParam[], int srcSliceY,
2187
                           int srcSliceH, uint8_t* dstParam[], int dstStrideParam[]){
2188
        int srcStride[3];
2189
        int dstStride[3];
2190
        uint8_t *src[3];
2191
        uint8_t *dst[3];
2192
        sws_orderYUV(c->origSrcFormat, src, srcStride, srcParam, srcStrideParam);
2193
        sws_orderYUV(c->origDstFormat, dst, dstStride, dstParam, dstStrideParam);
2194
//printf("sws: slice %d %d\n", srcSliceY, srcSliceH);
2195

    
2196
        return c->swScale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
2197
}
2198

    
2199
SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur, 
2200
                                float lumaSharpen, float chromaSharpen,
2201
                                float chromaHShift, float chromaVShift,
2202
                                int verbose)
2203
{
2204
        SwsFilter *filter= malloc(sizeof(SwsFilter));
2205

    
2206
        if(lumaGBlur!=0.0){
2207
                filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
2208
                filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
2209
        }else{
2210
                filter->lumH= sws_getIdentityVec();
2211
                filter->lumV= sws_getIdentityVec();
2212
        }
2213

    
2214
        if(chromaGBlur!=0.0){
2215
                filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
2216
                filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
2217
        }else{
2218
                filter->chrH= sws_getIdentityVec();
2219
                filter->chrV= sws_getIdentityVec();
2220
        }
2221

    
2222
        if(chromaSharpen!=0.0){
2223
                SwsVector *g= sws_getConstVec(-1.0, 3);
2224
                SwsVector *id= sws_getConstVec(10.0/chromaSharpen, 1);
2225
                g->coeff[1]=2.0;
2226
                sws_addVec(id, g);
2227
                sws_convVec(filter->chrH, id);
2228
                sws_convVec(filter->chrV, id);
2229
                sws_freeVec(g);
2230
                sws_freeVec(id);
2231
        }
2232

    
2233
        if(lumaSharpen!=0.0){
2234
                SwsVector *g= sws_getConstVec(-1.0, 3);
2235
                SwsVector *id= sws_getConstVec(10.0/lumaSharpen, 1);
2236
                g->coeff[1]=2.0;
2237
                sws_addVec(id, g);
2238
                sws_convVec(filter->lumH, id);
2239
                sws_convVec(filter->lumV, id);
2240
                sws_freeVec(g);
2241
                sws_freeVec(id);
2242
        }
2243

    
2244
        if(chromaHShift != 0.0)
2245
                sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
2246

    
2247
        if(chromaVShift != 0.0)
2248
                sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
2249

    
2250
        sws_normalizeVec(filter->chrH, 1.0);
2251
        sws_normalizeVec(filter->chrV, 1.0);
2252
        sws_normalizeVec(filter->lumH, 1.0);
2253
        sws_normalizeVec(filter->lumV, 1.0);
2254

    
2255
        if(verbose) sws_printVec(filter->chrH);
2256
        if(verbose) sws_printVec(filter->lumH);
2257

    
2258
        return filter;
2259
}
2260

    
2261
/**
2262
 * returns a normalized gaussian curve used to filter stuff
2263
 * quality=3 is high quality, lowwer is lowwer quality
2264
 */
2265
SwsVector *sws_getGaussianVec(double variance, double quality){
2266
        const int length= (int)(variance*quality + 0.5) | 1;
2267
        int i;
2268
        double *coeff= memalign(sizeof(double), length*sizeof(double));
2269
        double middle= (length-1)*0.5;
2270
        SwsVector *vec= malloc(sizeof(SwsVector));
2271

    
2272
        vec->coeff= coeff;
2273
        vec->length= length;
2274

    
2275
        for(i=0; i<length; i++)
2276
        {
2277
                double dist= i-middle;
2278
                coeff[i]= exp( -dist*dist/(2*variance*variance) ) / sqrt(2*variance*PI);
2279
        }
2280

    
2281
        sws_normalizeVec(vec, 1.0);
2282

    
2283
        return vec;
2284
}
2285

    
2286
SwsVector *sws_getConstVec(double c, int length){
2287
        int i;
2288
        double *coeff= memalign(sizeof(double), length*sizeof(double));
2289
        SwsVector *vec= malloc(sizeof(SwsVector));
2290

    
2291
        vec->coeff= coeff;
2292
        vec->length= length;
2293

    
2294
        for(i=0; i<length; i++)
2295
                coeff[i]= c;
2296

    
2297
        return vec;
2298
}
2299

    
2300

    
2301
SwsVector *sws_getIdentityVec(void){
2302
        double *coeff= memalign(sizeof(double), sizeof(double));
2303
        SwsVector *vec= malloc(sizeof(SwsVector));
2304
        coeff[0]= 1.0;
2305

    
2306
        vec->coeff= coeff;
2307
        vec->length= 1;
2308

    
2309
        return vec;
2310
}
2311

    
2312
void sws_normalizeVec(SwsVector *a, double height){
2313
        int i;
2314
        double sum=0;
2315
        double inv;
2316

    
2317
        for(i=0; i<a->length; i++)
2318
                sum+= a->coeff[i];
2319

    
2320
        inv= height/sum;
2321

    
2322
        for(i=0; i<a->length; i++)
2323
                a->coeff[i]*= inv;
2324
}
2325

    
2326
void sws_scaleVec(SwsVector *a, double scalar){
2327
        int i;
2328

    
2329
        for(i=0; i<a->length; i++)
2330
                a->coeff[i]*= scalar;
2331
}
2332

    
2333
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
2334
        int length= a->length + b->length - 1;
2335
        double *coeff= memalign(sizeof(double), length*sizeof(double));
2336
        int i, j;
2337
        SwsVector *vec= malloc(sizeof(SwsVector));
2338

    
2339
        vec->coeff= coeff;
2340
        vec->length= length;
2341

    
2342
        for(i=0; i<length; i++) coeff[i]= 0.0;
2343

    
2344
        for(i=0; i<a->length; i++)
2345
        {
2346
                for(j=0; j<b->length; j++)
2347
                {
2348
                        coeff[i+j]+= a->coeff[i]*b->coeff[j];
2349
                }
2350
        }
2351

    
2352
        return vec;
2353
}
2354

    
2355
static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
2356
        int length= MAX(a->length, b->length);
2357
        double *coeff= memalign(sizeof(double), length*sizeof(double));
2358
        int i;
2359
        SwsVector *vec= malloc(sizeof(SwsVector));
2360

    
2361
        vec->coeff= coeff;
2362
        vec->length= length;
2363

    
2364
        for(i=0; i<length; i++) coeff[i]= 0.0;
2365

    
2366
        for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2367
        for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
2368

    
2369
        return vec;
2370
}
2371

    
2372
static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
2373
        int length= MAX(a->length, b->length);
2374
        double *coeff= memalign(sizeof(double), length*sizeof(double));
2375
        int i;
2376
        SwsVector *vec= malloc(sizeof(SwsVector));
2377

    
2378
        vec->coeff= coeff;
2379
        vec->length= length;
2380

    
2381
        for(i=0; i<length; i++) coeff[i]= 0.0;
2382

    
2383
        for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2384
        for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
2385

    
2386
        return vec;
2387
}
2388

    
2389
/* shift left / or right if "shift" is negative */
2390
static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
2391
        int length= a->length + ABS(shift)*2;
2392
        double *coeff= memalign(sizeof(double), length*sizeof(double));
2393
        int i;
2394
        SwsVector *vec= malloc(sizeof(SwsVector));
2395

    
2396
        vec->coeff= coeff;
2397
        vec->length= length;
2398

    
2399
        for(i=0; i<length; i++) coeff[i]= 0.0;
2400

    
2401
        for(i=0; i<a->length; i++)
2402
        {
2403
                coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
2404
        }
2405

    
2406
        return vec;
2407
}
2408

    
2409
void sws_shiftVec(SwsVector *a, int shift){
2410
        SwsVector *shifted= sws_getShiftedVec(a, shift);
2411
        free(a->coeff);
2412
        a->coeff= shifted->coeff;
2413
        a->length= shifted->length;
2414
        free(shifted);
2415
}
2416

    
2417
void sws_addVec(SwsVector *a, SwsVector *b){
2418
        SwsVector *sum= sws_sumVec(a, b);
2419
        free(a->coeff);
2420
        a->coeff= sum->coeff;
2421
        a->length= sum->length;
2422
        free(sum);
2423
}
2424

    
2425
void sws_subVec(SwsVector *a, SwsVector *b){
2426
        SwsVector *diff= sws_diffVec(a, b);
2427
        free(a->coeff);
2428
        a->coeff= diff->coeff;
2429
        a->length= diff->length;
2430
        free(diff);
2431
}
2432

    
2433
void sws_convVec(SwsVector *a, SwsVector *b){
2434
        SwsVector *conv= sws_getConvVec(a, b);
2435
        free(a->coeff);  
2436
        a->coeff= conv->coeff;
2437
        a->length= conv->length;
2438
        free(conv);
2439
}
2440

    
2441
SwsVector *sws_cloneVec(SwsVector *a){
2442
        double *coeff= memalign(sizeof(double), a->length*sizeof(double));
2443
        int i;
2444
        SwsVector *vec= malloc(sizeof(SwsVector));
2445

    
2446
        vec->coeff= coeff;
2447
        vec->length= a->length;
2448

    
2449
        for(i=0; i<a->length; i++) coeff[i]= a->coeff[i];
2450

    
2451
        return vec;
2452
}
2453

    
2454
void sws_printVec(SwsVector *a){
2455
        int i;
2456
        double max=0;
2457
        double min=0;
2458
        double range;
2459

    
2460
        for(i=0; i<a->length; i++)
2461
                if(a->coeff[i]>max) max= a->coeff[i];
2462

    
2463
        for(i=0; i<a->length; i++)
2464
                if(a->coeff[i]<min) min= a->coeff[i];
2465

    
2466
        range= max - min;
2467

    
2468
        for(i=0; i<a->length; i++)
2469
        {
2470
                int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
2471
                MSG_DBG2("%1.3f ", a->coeff[i]);
2472
                for(;x>0; x--) MSG_DBG2(" ");
2473
                MSG_DBG2("|\n");
2474
        }
2475
}
2476

    
2477
void sws_freeVec(SwsVector *a){
2478
        if(!a) return;
2479
        if(a->coeff) free(a->coeff);
2480
        a->coeff=NULL;
2481
        a->length=0;
2482
        free(a);
2483
}
2484

    
2485
void sws_freeFilter(SwsFilter *filter){
2486
        if(!filter) return;
2487

    
2488
        if(filter->lumH) sws_freeVec(filter->lumH);
2489
        if(filter->lumV) sws_freeVec(filter->lumV);
2490
        if(filter->chrH) sws_freeVec(filter->chrH);
2491
        if(filter->chrV) sws_freeVec(filter->chrV);
2492
        free(filter);
2493
}
2494

    
2495

    
2496
void sws_freeContext(SwsContext *c){
2497
        int i;
2498
        if(!c) return;
2499

    
2500
        if(c->lumPixBuf)
2501
        {
2502
                for(i=0; i<c->vLumBufSize; i++)
2503
                {
2504
                        if(c->lumPixBuf[i]) free(c->lumPixBuf[i]);
2505
                        c->lumPixBuf[i]=NULL;
2506
                }
2507
                free(c->lumPixBuf);
2508
                c->lumPixBuf=NULL;
2509
        }
2510

    
2511
        if(c->chrPixBuf)
2512
        {
2513
                for(i=0; i<c->vChrBufSize; i++)
2514
                {
2515
                        if(c->chrPixBuf[i]) free(c->chrPixBuf[i]);
2516
                        c->chrPixBuf[i]=NULL;
2517
                }
2518
                free(c->chrPixBuf);
2519
                c->chrPixBuf=NULL;
2520
        }
2521

    
2522
        if(c->vLumFilter) free(c->vLumFilter);
2523
        c->vLumFilter = NULL;
2524
        if(c->vChrFilter) free(c->vChrFilter);
2525
        c->vChrFilter = NULL;
2526
        if(c->hLumFilter) free(c->hLumFilter);
2527
        c->hLumFilter = NULL;
2528
        if(c->hChrFilter) free(c->hChrFilter);
2529
        c->hChrFilter = NULL;
2530

    
2531
        if(c->vLumFilterPos) free(c->vLumFilterPos);
2532
        c->vLumFilterPos = NULL;
2533
        if(c->vChrFilterPos) free(c->vChrFilterPos);
2534
        c->vChrFilterPos = NULL;
2535
        if(c->hLumFilterPos) free(c->hLumFilterPos);
2536
        c->hLumFilterPos = NULL;
2537
        if(c->hChrFilterPos) free(c->hChrFilterPos);
2538
        c->hChrFilterPos = NULL;
2539

    
2540
        if(c->lumMmx2Filter) free(c->lumMmx2Filter);
2541
        c->lumMmx2Filter=NULL;
2542
        if(c->chrMmx2Filter) free(c->chrMmx2Filter);
2543
        c->chrMmx2Filter=NULL;
2544
        if(c->lumMmx2FilterPos) free(c->lumMmx2FilterPos);
2545
        c->lumMmx2FilterPos=NULL;
2546
        if(c->chrMmx2FilterPos) free(c->chrMmx2FilterPos);
2547
        c->chrMmx2FilterPos=NULL;
2548
        if(c->yuvTable) free(c->yuvTable);
2549
        c->yuvTable=NULL;
2550

    
2551
        free(c);
2552
}
2553