Statistics
| Branch: | Revision:

ffmpeg / libavcodec / adpcm.c @ af3c8f82

History | View | Annotate | Download (66.5 KB)

1
/*
2
 * ADPCM codecs
3
 * Copyright (c) 2001-2003 The ffmpeg Project
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
#include "avcodec.h"
22
#include "get_bits.h"
23
#include "put_bits.h"
24
#include "bytestream.h"
25

    
26
/**
27
 * @file
28
 * ADPCM codecs.
29
 * First version by Francois Revol (revol@free.fr)
30
 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
31
 *   by Mike Melanson (melanson@pcisys.net)
32
 * CD-ROM XA ADPCM codec by BERO
33
 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
34
 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
35
 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
36
 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
37
 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
38
 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
39
 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
40
 *
41
 * Features and limitations:
42
 *
43
 * Reference documents:
44
 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
45
 * http://www.geocities.com/SiliconValley/8682/aud3.txt
46
 * http://openquicktime.sourceforge.net/plugins.htm
47
 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
48
 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
49
 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
50
 *
51
 * CD-ROM XA:
52
 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
53
 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
54
 * readstr http://www.geocities.co.jp/Playtown/2004/
55
 */
56

    
57
#define BLKSIZE 1024
58

    
59
/* step_table[] and index_table[] are from the ADPCM reference source */
60
/* This is the index table: */
61
static const int index_table[16] = {
62
    -1, -1, -1, -1, 2, 4, 6, 8,
63
    -1, -1, -1, -1, 2, 4, 6, 8,
64
};
65

    
66
/**
67
 * This is the step table. Note that many programs use slight deviations from
68
 * this table, but such deviations are negligible:
69
 */
70
static const int step_table[89] = {
71
    7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
72
    19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
73
    50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
74
    130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
75
    337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
76
    876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
77
    2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
78
    5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
79
    15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
80
};
81

    
82
/* These are for MS-ADPCM */
83
/* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
84
static const int AdaptationTable[] = {
85
        230, 230, 230, 230, 307, 409, 512, 614,
86
        768, 614, 512, 409, 307, 230, 230, 230
87
};
88

    
89
/** Divided by 4 to fit in 8-bit integers */
90
static const uint8_t AdaptCoeff1[] = {
91
        64, 128, 0, 48, 60, 115, 98
92
};
93

    
94
/** Divided by 4 to fit in 8-bit integers */
95
static const int8_t AdaptCoeff2[] = {
96
        0, -64, 0, 16, 0, -52, -58
97
};
98

    
99
/* These are for CD-ROM XA ADPCM */
100
static const int xa_adpcm_table[5][2] = {
101
   {   0,   0 },
102
   {  60,   0 },
103
   { 115, -52 },
104
   {  98, -55 },
105
   { 122, -60 }
106
};
107

    
108
static const int ea_adpcm_table[] = {
109
    0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
110
    3, 4, 7, 8, 10, 11, 0, -1, -3, -4
111
};
112

    
113
// padded to zero where table size is less then 16
114
static const int swf_index_tables[4][16] = {
115
    /*2*/ { -1, 2 },
116
    /*3*/ { -1, -1, 2, 4 },
117
    /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
118
    /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
119
};
120

    
121
static const int yamaha_indexscale[] = {
122
    230, 230, 230, 230, 307, 409, 512, 614,
123
    230, 230, 230, 230, 307, 409, 512, 614
124
};
125

    
126
static const int yamaha_difflookup[] = {
127
    1, 3, 5, 7, 9, 11, 13, 15,
128
    -1, -3, -5, -7, -9, -11, -13, -15
129
};
130

    
131
/* end of tables */
132

    
133
typedef struct ADPCMChannelStatus {
134
    int predictor;
135
    short int step_index;
136
    int step;
137
    /* for encoding */
138
    int prev_sample;
139

    
140
    /* MS version */
141
    short sample1;
142
    short sample2;
143
    int coeff1;
144
    int coeff2;
145
    int idelta;
146
} ADPCMChannelStatus;
147

    
148
typedef struct TrellisPath {
149
    int nibble;
150
    int prev;
151
} TrellisPath;
152

    
153
typedef struct TrellisNode {
154
    uint32_t ssd;
155
    int path;
156
    int sample1;
157
    int sample2;
158
    int step;
159
} TrellisNode;
160

    
161
typedef struct ADPCMContext {
162
    ADPCMChannelStatus status[6];
163
    TrellisPath *paths;
164
    TrellisNode *node_buf;
165
    TrellisNode **nodep_buf;
166
    uint8_t *trellis_hash;
167
} ADPCMContext;
168

    
169
#define FREEZE_INTERVAL 128
170

    
171
/* XXX: implement encoding */
172

    
173
#if CONFIG_ENCODERS
174
static av_cold int adpcm_encode_init(AVCodecContext *avctx)
175
{
176
    ADPCMContext *s = avctx->priv_data;
177
    uint8_t *extradata;
178
    int i;
179
    if (avctx->channels > 2)
180
        return -1; /* only stereo or mono =) */
181

    
182
    if(avctx->trellis && (unsigned)avctx->trellis > 16U){
183
        av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
184
        return -1;
185
    }
186

    
187
    if (avctx->trellis) {
188
        int frontier = 1 << avctx->trellis;
189
        int max_paths =  frontier * FREEZE_INTERVAL;
190
        FF_ALLOC_OR_GOTO(avctx, s->paths,     max_paths * sizeof(*s->paths), error);
191
        FF_ALLOC_OR_GOTO(avctx, s->node_buf,  2 * frontier * sizeof(*s->node_buf), error);
192
        FF_ALLOC_OR_GOTO(avctx, s->nodep_buf, 2 * frontier * sizeof(*s->nodep_buf), error);
193
        FF_ALLOC_OR_GOTO(avctx, s->trellis_hash, 65536 * sizeof(*s->trellis_hash), error);
194
    }
195

    
196
    switch(avctx->codec->id) {
197
    case CODEC_ID_ADPCM_IMA_WAV:
198
        avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
199
                                                             /* and we have 4 bytes per channel overhead */
200
        avctx->block_align = BLKSIZE;
201
        /* seems frame_size isn't taken into account... have to buffer the samples :-( */
202
        break;
203
    case CODEC_ID_ADPCM_IMA_QT:
204
        avctx->frame_size = 64;
205
        avctx->block_align = 34 * avctx->channels;
206
        break;
207
    case CODEC_ID_ADPCM_MS:
208
        avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
209
                                                             /* and we have 7 bytes per channel overhead */
210
        avctx->block_align = BLKSIZE;
211
        avctx->extradata_size = 32;
212
        extradata = avctx->extradata = av_malloc(avctx->extradata_size);
213
        if (!extradata)
214
            return AVERROR(ENOMEM);
215
        bytestream_put_le16(&extradata, avctx->frame_size);
216
        bytestream_put_le16(&extradata, 7); /* wNumCoef */
217
        for (i = 0; i < 7; i++) {
218
            bytestream_put_le16(&extradata, AdaptCoeff1[i] * 4);
219
            bytestream_put_le16(&extradata, AdaptCoeff2[i] * 4);
220
        }
221
        break;
222
    case CODEC_ID_ADPCM_YAMAHA:
223
        avctx->frame_size = BLKSIZE * avctx->channels;
224
        avctx->block_align = BLKSIZE;
225
        break;
226
    case CODEC_ID_ADPCM_SWF:
227
        if (avctx->sample_rate != 11025 &&
228
            avctx->sample_rate != 22050 &&
229
            avctx->sample_rate != 44100) {
230
            av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
231
            goto error;
232
        }
233
        avctx->frame_size = 512 * (avctx->sample_rate / 11025);
234
        break;
235
    default:
236
        goto error;
237
    }
238

    
239
    avctx->coded_frame= avcodec_alloc_frame();
240
    avctx->coded_frame->key_frame= 1;
241

    
242
    return 0;
243
error:
244
    av_freep(&s->paths);
245
    av_freep(&s->node_buf);
246
    av_freep(&s->nodep_buf);
247
    av_freep(&s->trellis_hash);
248
    return -1;
249
}
250

    
251
static av_cold int adpcm_encode_close(AVCodecContext *avctx)
252
{
253
    ADPCMContext *s = avctx->priv_data;
254
    av_freep(&avctx->coded_frame);
255
    av_freep(&s->paths);
256
    av_freep(&s->node_buf);
257
    av_freep(&s->nodep_buf);
258
    av_freep(&s->trellis_hash);
259

    
260
    return 0;
261
}
262

    
263

    
264
static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
265
{
266
    int delta = sample - c->prev_sample;
267
    int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
268
    c->prev_sample += ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
269
    c->prev_sample = av_clip_int16(c->prev_sample);
270
    c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
271
    return nibble;
272
}
273

    
274
static inline unsigned char adpcm_ima_qt_compress_sample(ADPCMChannelStatus *c, short sample)
275
{
276
    int delta = sample - c->prev_sample;
277
    int diff, step = step_table[c->step_index];
278
    int nibble = 8*(delta < 0);
279

    
280
    delta= abs(delta);
281
    diff = delta + (step >> 3);
282

    
283
    if (delta >= step) {
284
        nibble |= 4;
285
        delta -= step;
286
    }
287
    step >>= 1;
288
    if (delta >= step) {
289
        nibble |= 2;
290
        delta -= step;
291
    }
292
    step >>= 1;
293
    if (delta >= step) {
294
        nibble |= 1;
295
        delta -= step;
296
    }
297
    diff -= delta;
298

    
299
    if (nibble & 8)
300
        c->prev_sample -= diff;
301
    else
302
        c->prev_sample += diff;
303

    
304
    c->prev_sample = av_clip_int16(c->prev_sample);
305
    c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
306

    
307
    return nibble;
308
}
309

    
310
static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
311
{
312
    int predictor, nibble, bias;
313

    
314
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
315

    
316
    nibble= sample - predictor;
317
    if(nibble>=0) bias= c->idelta/2;
318
    else          bias=-c->idelta/2;
319

    
320
    nibble= (nibble + bias) / c->idelta;
321
    nibble= av_clip(nibble, -8, 7)&0x0F;
322

    
323
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
324

    
325
    c->sample2 = c->sample1;
326
    c->sample1 = av_clip_int16(predictor);
327

    
328
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
329
    if (c->idelta < 16) c->idelta = 16;
330

    
331
    return nibble;
332
}
333

    
334
static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
335
{
336
    int nibble, delta;
337

    
338
    if(!c->step) {
339
        c->predictor = 0;
340
        c->step = 127;
341
    }
342

    
343
    delta = sample - c->predictor;
344

    
345
    nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
346

    
347
    c->predictor += ((c->step * yamaha_difflookup[nibble]) / 8);
348
    c->predictor = av_clip_int16(c->predictor);
349
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
350
    c->step = av_clip(c->step, 127, 24567);
351

    
352
    return nibble;
353
}
354

    
355
static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
356
                                   uint8_t *dst, ADPCMChannelStatus *c, int n)
357
{
358
    //FIXME 6% faster if frontier is a compile-time constant
359
    ADPCMContext *s = avctx->priv_data;
360
    const int frontier = 1 << avctx->trellis;
361
    const int stride = avctx->channels;
362
    const int version = avctx->codec->id;
363
    TrellisPath *paths = s->paths, *p;
364
    TrellisNode *node_buf = s->node_buf;
365
    TrellisNode **nodep_buf = s->nodep_buf;
366
    TrellisNode **nodes = nodep_buf; // nodes[] is always sorted by .ssd
367
    TrellisNode **nodes_next = nodep_buf + frontier;
368
    int pathn = 0, froze = -1, i, j, k, generation = 0;
369
    uint8_t *hash = s->trellis_hash;
370
    memset(hash, 0xff, 65536 * sizeof(*hash));
371

    
372
    memset(nodep_buf, 0, 2 * frontier * sizeof(*nodep_buf));
373
    nodes[0] = node_buf + frontier;
374
    nodes[0]->ssd = 0;
375
    nodes[0]->path = 0;
376
    nodes[0]->step = c->step_index;
377
    nodes[0]->sample1 = c->sample1;
378
    nodes[0]->sample2 = c->sample2;
379
    if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_IMA_QT) || (version == CODEC_ID_ADPCM_SWF))
380
        nodes[0]->sample1 = c->prev_sample;
381
    if(version == CODEC_ID_ADPCM_MS)
382
        nodes[0]->step = c->idelta;
383
    if(version == CODEC_ID_ADPCM_YAMAHA) {
384
        if(c->step == 0) {
385
            nodes[0]->step = 127;
386
            nodes[0]->sample1 = 0;
387
        } else {
388
            nodes[0]->step = c->step;
389
            nodes[0]->sample1 = c->predictor;
390
        }
391
    }
392

    
393
    for(i=0; i<n; i++) {
394
        TrellisNode *t = node_buf + frontier*(i&1);
395
        TrellisNode **u;
396
        int sample = samples[i*stride];
397
        int heap_pos = 0;
398
        memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
399
        for(j=0; j<frontier && nodes[j]; j++) {
400
            // higher j have higher ssd already, so they're likely to yield a suboptimal next sample too
401
            const int range = (j < frontier/2) ? 1 : 0;
402
            const int step = nodes[j]->step;
403
            int nidx;
404
            if(version == CODEC_ID_ADPCM_MS) {
405
                const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 64;
406
                const int div = (sample - predictor) / step;
407
                const int nmin = av_clip(div-range, -8, 6);
408
                const int nmax = av_clip(div+range, -7, 7);
409
                for(nidx=nmin; nidx<=nmax; nidx++) {
410
                    const int nibble = nidx & 0xf;
411
                    int dec_sample = predictor + nidx * step;
412
#define STORE_NODE(NAME, STEP_INDEX)\
413
                    int d;\
414
                    uint32_t ssd;\
415
                    int pos;\
416
                    TrellisNode *u;\
417
                    uint8_t *h;\
418
                    dec_sample = av_clip_int16(dec_sample);\
419
                    d = sample - dec_sample;\
420
                    ssd = nodes[j]->ssd + d*d;\
421
                    /* Check for wraparound, skip such samples completely. \
422
                     * Note, changing ssd to a 64 bit variable would be \
423
                     * simpler, avoiding this check, but it's slower on \
424
                     * x86 32 bit at the moment. */\
425
                    if (ssd < nodes[j]->ssd)\
426
                        goto next_##NAME;\
427
                    /* Collapse any two states with the same previous sample value. \
428
                     * One could also distinguish states by step and by 2nd to last
429
                     * sample, but the effects of that are negligible.
430
                     * Since nodes in the previous generation are iterated
431
                     * through a heap, they're roughly ordered from better to
432
                     * worse, but not strictly ordered. Therefore, an earlier
433
                     * node with the same sample value is better in most cases
434
                     * (and thus the current is skipped), but not strictly
435
                     * in all cases. Only skipping samples where ssd >=
436
                     * ssd of the earlier node with the same sample gives
437
                     * slightly worse quality, though, for some reason. */ \
438
                    h = &hash[(uint16_t) dec_sample];\
439
                    if (*h == generation)\
440
                        goto next_##NAME;\
441
                    if (heap_pos < frontier) {\
442
                        pos = heap_pos++;\
443
                    } else {\
444
                        /* Try to replace one of the leaf nodes with the new \
445
                         * one, but try a different slot each time. */\
446
                        pos = (frontier >> 1) + (heap_pos & ((frontier >> 1) - 1));\
447
                        if (ssd > nodes_next[pos]->ssd)\
448
                            goto next_##NAME;\
449
                        heap_pos++;\
450
                    }\
451
                    *h = generation;\
452
                    u = nodes_next[pos];\
453
                    if(!u) {\
454
                        assert(pathn < FREEZE_INTERVAL<<avctx->trellis);\
455
                        u = t++;\
456
                        nodes_next[pos] = u;\
457
                        u->path = pathn++;\
458
                    }\
459
                    u->ssd = ssd;\
460
                    u->step = STEP_INDEX;\
461
                    u->sample2 = nodes[j]->sample1;\
462
                    u->sample1 = dec_sample;\
463
                    paths[u->path].nibble = nibble;\
464
                    paths[u->path].prev = nodes[j]->path;\
465
                    /* Sift the newly inserted node up in the heap to \
466
                     * restore the heap property. */\
467
                    while (pos > 0) {\
468
                        int parent = (pos - 1) >> 1;\
469
                        if (nodes_next[parent]->ssd <= ssd)\
470
                            break;\
471
                        FFSWAP(TrellisNode*, nodes_next[parent], nodes_next[pos]);\
472
                        pos = parent;\
473
                    }\
474
                    next_##NAME:;
475
                    STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
476
                }
477
            } else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_IMA_QT)|| (version == CODEC_ID_ADPCM_SWF)) {
478
#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
479
                const int predictor = nodes[j]->sample1;\
480
                const int div = (sample - predictor) * 4 / STEP_TABLE;\
481
                int nmin = av_clip(div-range, -7, 6);\
482
                int nmax = av_clip(div+range, -6, 7);\
483
                if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
484
                if(nmax<0) nmax--;\
485
                for(nidx=nmin; nidx<=nmax; nidx++) {\
486
                    const int nibble = nidx<0 ? 7-nidx : nidx;\
487
                    int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
488
                    STORE_NODE(NAME, STEP_INDEX);\
489
                }
490
                LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88));
491
            } else { //CODEC_ID_ADPCM_YAMAHA
492
                LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
493
#undef LOOP_NODES
494
#undef STORE_NODE
495
            }
496
        }
497

    
498
        u = nodes;
499
        nodes = nodes_next;
500
        nodes_next = u;
501

    
502
        generation++;
503
        if (generation == 255) {
504
            memset(hash, 0xff, 65536 * sizeof(*hash));
505
            generation = 0;
506
        }
507

    
508
        // prevent overflow
509
        if(nodes[0]->ssd > (1<<28)) {
510
            for(j=1; j<frontier && nodes[j]; j++)
511
                nodes[j]->ssd -= nodes[0]->ssd;
512
            nodes[0]->ssd = 0;
513
        }
514

    
515
        // merge old paths to save memory
516
        if(i == froze + FREEZE_INTERVAL) {
517
            p = &paths[nodes[0]->path];
518
            for(k=i; k>froze; k--) {
519
                dst[k] = p->nibble;
520
                p = &paths[p->prev];
521
            }
522
            froze = i;
523
            pathn = 0;
524
            // other nodes might use paths that don't coincide with the frozen one.
525
            // checking which nodes do so is too slow, so just kill them all.
526
            // this also slightly improves quality, but I don't know why.
527
            memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
528
        }
529
    }
530

    
531
    p = &paths[nodes[0]->path];
532
    for(i=n-1; i>froze; i--) {
533
        dst[i] = p->nibble;
534
        p = &paths[p->prev];
535
    }
536

    
537
    c->predictor = nodes[0]->sample1;
538
    c->sample1 = nodes[0]->sample1;
539
    c->sample2 = nodes[0]->sample2;
540
    c->step_index = nodes[0]->step;
541
    c->step = nodes[0]->step;
542
    c->idelta = nodes[0]->step;
543
}
544

    
545
static int adpcm_encode_frame(AVCodecContext *avctx,
546
                            unsigned char *frame, int buf_size, void *data)
547
{
548
    int n, i, st;
549
    short *samples;
550
    unsigned char *dst;
551
    ADPCMContext *c = avctx->priv_data;
552
    uint8_t *buf;
553

    
554
    dst = frame;
555
    samples = (short *)data;
556
    st= avctx->channels == 2;
557
/*    n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
558

    
559
    switch(avctx->codec->id) {
560
    case CODEC_ID_ADPCM_IMA_WAV:
561
        n = avctx->frame_size / 8;
562
            c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
563
/*            c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
564
            bytestream_put_le16(&dst, c->status[0].prev_sample);
565
            *dst++ = (unsigned char)c->status[0].step_index;
566
            *dst++ = 0; /* unknown */
567
            samples++;
568
            if (avctx->channels == 2) {
569
                c->status[1].prev_sample = (signed short)samples[0];
570
/*                c->status[1].step_index = 0; */
571
                bytestream_put_le16(&dst, c->status[1].prev_sample);
572
                *dst++ = (unsigned char)c->status[1].step_index;
573
                *dst++ = 0;
574
                samples++;
575
            }
576

    
577
            /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
578
            if(avctx->trellis > 0) {
579
                FF_ALLOC_OR_GOTO(avctx, buf, 2*n*8, error);
580
                adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n*8);
581
                if(avctx->channels == 2)
582
                    adpcm_compress_trellis(avctx, samples+1, buf + n*8, &c->status[1], n*8);
583
                for(i=0; i<n; i++) {
584
                    *dst++ = buf[8*i+0] | (buf[8*i+1] << 4);
585
                    *dst++ = buf[8*i+2] | (buf[8*i+3] << 4);
586
                    *dst++ = buf[8*i+4] | (buf[8*i+5] << 4);
587
                    *dst++ = buf[8*i+6] | (buf[8*i+7] << 4);
588
                    if (avctx->channels == 2) {
589
                        uint8_t *buf1 = buf + n*8;
590
                        *dst++ = buf1[8*i+0] | (buf1[8*i+1] << 4);
591
                        *dst++ = buf1[8*i+2] | (buf1[8*i+3] << 4);
592
                        *dst++ = buf1[8*i+4] | (buf1[8*i+5] << 4);
593
                        *dst++ = buf1[8*i+6] | (buf1[8*i+7] << 4);
594
                    }
595
                }
596
                av_free(buf);
597
            } else
598
            for (; n>0; n--) {
599
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]);
600
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4;
601
                dst++;
602
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]);
603
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4;
604
                dst++;
605
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]);
606
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4;
607
                dst++;
608
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]);
609
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4;
610
                dst++;
611
                /* right channel */
612
                if (avctx->channels == 2) {
613
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
614
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
615
                    dst++;
616
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
617
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
618
                    dst++;
619
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
620
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
621
                    dst++;
622
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
623
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
624
                    dst++;
625
                }
626
                samples += 8 * avctx->channels;
627
            }
628
        break;
629
    case CODEC_ID_ADPCM_IMA_QT:
630
    {
631
        int ch, i;
632
        PutBitContext pb;
633
        init_put_bits(&pb, dst, buf_size*8);
634

    
635
        for(ch=0; ch<avctx->channels; ch++){
636
            put_bits(&pb, 9, (c->status[ch].prev_sample + 0x10000) >> 7);
637
            put_bits(&pb, 7, c->status[ch].step_index);
638
            if(avctx->trellis > 0) {
639
                uint8_t buf[64];
640
                adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64);
641
                for(i=0; i<64; i++)
642
                    put_bits(&pb, 4, buf[i^1]);
643
            } else {
644
                for (i=0; i<64; i+=2){
645
                    int t1, t2;
646
                    t1 = adpcm_ima_qt_compress_sample(&c->status[ch], samples[avctx->channels*(i+0)+ch]);
647
                    t2 = adpcm_ima_qt_compress_sample(&c->status[ch], samples[avctx->channels*(i+1)+ch]);
648
                    put_bits(&pb, 4, t2);
649
                    put_bits(&pb, 4, t1);
650
                }
651
            }
652
        }
653

    
654
        flush_put_bits(&pb);
655
        dst += put_bits_count(&pb)>>3;
656
        break;
657
    }
658
    case CODEC_ID_ADPCM_SWF:
659
    {
660
        int i;
661
        PutBitContext pb;
662
        init_put_bits(&pb, dst, buf_size*8);
663

    
664
        n = avctx->frame_size-1;
665

    
666
        //Store AdpcmCodeSize
667
        put_bits(&pb, 2, 2);                //Set 4bits flash adpcm format
668

    
669
        //Init the encoder state
670
        for(i=0; i<avctx->channels; i++){
671
            c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits
672
            put_sbits(&pb, 16, samples[i]);
673
            put_bits(&pb, 6, c->status[i].step_index);
674
            c->status[i].prev_sample = (signed short)samples[i];
675
        }
676

    
677
        if(avctx->trellis > 0) {
678
            FF_ALLOC_OR_GOTO(avctx, buf, 2*n, error);
679
            adpcm_compress_trellis(avctx, samples+2, buf, &c->status[0], n);
680
            if (avctx->channels == 2)
681
                adpcm_compress_trellis(avctx, samples+3, buf+n, &c->status[1], n);
682
            for(i=0; i<n; i++) {
683
                put_bits(&pb, 4, buf[i]);
684
                if (avctx->channels == 2)
685
                    put_bits(&pb, 4, buf[n+i]);
686
            }
687
            av_free(buf);
688
        } else {
689
            for (i=1; i<avctx->frame_size; i++) {
690
                put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i]));
691
                if (avctx->channels == 2)
692
                    put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1]));
693
            }
694
        }
695
        flush_put_bits(&pb);
696
        dst += put_bits_count(&pb)>>3;
697
        break;
698
    }
699
    case CODEC_ID_ADPCM_MS:
700
        for(i=0; i<avctx->channels; i++){
701
            int predictor=0;
702

    
703
            *dst++ = predictor;
704
            c->status[i].coeff1 = AdaptCoeff1[predictor];
705
            c->status[i].coeff2 = AdaptCoeff2[predictor];
706
        }
707
        for(i=0; i<avctx->channels; i++){
708
            if (c->status[i].idelta < 16)
709
                c->status[i].idelta = 16;
710

    
711
            bytestream_put_le16(&dst, c->status[i].idelta);
712
        }
713
        for(i=0; i<avctx->channels; i++){
714
            c->status[i].sample2= *samples++;
715
        }
716
        for(i=0; i<avctx->channels; i++){
717
            c->status[i].sample1= *samples++;
718

    
719
            bytestream_put_le16(&dst, c->status[i].sample1);
720
        }
721
        for(i=0; i<avctx->channels; i++)
722
            bytestream_put_le16(&dst, c->status[i].sample2);
723

    
724
        if(avctx->trellis > 0) {
725
            int n = avctx->block_align - 7*avctx->channels;
726
            FF_ALLOC_OR_GOTO(avctx, buf, 2*n, error);
727
            if(avctx->channels == 1) {
728
                adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
729
                for(i=0; i<n; i+=2)
730
                    *dst++ = (buf[i] << 4) | buf[i+1];
731
            } else {
732
                adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
733
                adpcm_compress_trellis(avctx, samples+1, buf+n, &c->status[1], n);
734
                for(i=0; i<n; i++)
735
                    *dst++ = (buf[i] << 4) | buf[n+i];
736
            }
737
            av_free(buf);
738
        } else
739
        for(i=7*avctx->channels; i<avctx->block_align; i++) {
740
            int nibble;
741
            nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
742
            nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
743
            *dst++ = nibble;
744
        }
745
        break;
746
    case CODEC_ID_ADPCM_YAMAHA:
747
        n = avctx->frame_size / 2;
748
        if(avctx->trellis > 0) {
749
            FF_ALLOC_OR_GOTO(avctx, buf, 2*n*2, error);
750
            n *= 2;
751
            if(avctx->channels == 1) {
752
                adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
753
                for(i=0; i<n; i+=2)
754
                    *dst++ = buf[i] | (buf[i+1] << 4);
755
            } else {
756
                adpcm_compress_trellis(avctx, samples, buf, &c->status[0], n);
757
                adpcm_compress_trellis(avctx, samples+1, buf+n, &c->status[1], n);
758
                for(i=0; i<n; i++)
759
                    *dst++ = buf[i] | (buf[n+i] << 4);
760
            }
761
            av_free(buf);
762
        } else
763
            for (n *= avctx->channels; n>0; n--) {
764
                int nibble;
765
                nibble  = adpcm_yamaha_compress_sample(&c->status[ 0], *samples++);
766
                nibble |= adpcm_yamaha_compress_sample(&c->status[st], *samples++) << 4;
767
                *dst++ = nibble;
768
            }
769
        break;
770
    default:
771
    error:
772
        return -1;
773
    }
774
    return dst - frame;
775
}
776
#endif //CONFIG_ENCODERS
777

    
778
static av_cold int adpcm_decode_init(AVCodecContext * avctx)
779
{
780
    ADPCMContext *c = avctx->priv_data;
781
    unsigned int max_channels = 2;
782

    
783
    switch(avctx->codec->id) {
784
    case CODEC_ID_ADPCM_EA_R1:
785
    case CODEC_ID_ADPCM_EA_R2:
786
    case CODEC_ID_ADPCM_EA_R3:
787
    case CODEC_ID_ADPCM_EA_XAS:
788
        max_channels = 6;
789
        break;
790
    }
791
    if(avctx->channels > max_channels){
792
        return -1;
793
    }
794

    
795
    switch(avctx->codec->id) {
796
    case CODEC_ID_ADPCM_CT:
797
        c->status[0].step = c->status[1].step = 511;
798
        break;
799
    case CODEC_ID_ADPCM_IMA_WAV:
800
        if (avctx->bits_per_coded_sample != 4) {
801
            av_log(avctx, AV_LOG_ERROR, "Only 4-bit ADPCM IMA WAV files are supported\n");
802
            return -1;
803
        }
804
        break;
805
    case CODEC_ID_ADPCM_IMA_WS:
806
        if (avctx->extradata && avctx->extradata_size == 2 * 4) {
807
            c->status[0].predictor = AV_RL32(avctx->extradata);
808
            c->status[1].predictor = AV_RL32(avctx->extradata + 4);
809
        }
810
        break;
811
    default:
812
        break;
813
    }
814
    avctx->sample_fmt = AV_SAMPLE_FMT_S16;
815
    return 0;
816
}
817

    
818
static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
819
{
820
    int step_index;
821
    int predictor;
822
    int sign, delta, diff, step;
823

    
824
    step = step_table[c->step_index];
825
    step_index = c->step_index + index_table[(unsigned)nibble];
826
    if (step_index < 0) step_index = 0;
827
    else if (step_index > 88) step_index = 88;
828

    
829
    sign = nibble & 8;
830
    delta = nibble & 7;
831
    /* perform direct multiplication instead of series of jumps proposed by
832
     * the reference ADPCM implementation since modern CPUs can do the mults
833
     * quickly enough */
834
    diff = ((2 * delta + 1) * step) >> shift;
835
    predictor = c->predictor;
836
    if (sign) predictor -= diff;
837
    else predictor += diff;
838

    
839
    c->predictor = av_clip_int16(predictor);
840
    c->step_index = step_index;
841

    
842
    return (short)c->predictor;
843
}
844

    
845
static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
846
{
847
    int step_index;
848
    int predictor;
849
    int diff, step;
850

    
851
    step = step_table[c->step_index];
852
    step_index = c->step_index + index_table[nibble];
853
    step_index = av_clip(step_index, 0, 88);
854

    
855
    diff = step >> 3;
856
    if (nibble & 4) diff += step;
857
    if (nibble & 2) diff += step >> 1;
858
    if (nibble & 1) diff += step >> 2;
859

    
860
    if (nibble & 8)
861
        predictor = c->predictor - diff;
862
    else
863
        predictor = c->predictor + diff;
864

    
865
    c->predictor = av_clip_int16(predictor);
866
    c->step_index = step_index;
867

    
868
    return c->predictor;
869
}
870

    
871
static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
872
{
873
    int predictor;
874

    
875
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
876
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
877

    
878
    c->sample2 = c->sample1;
879
    c->sample1 = av_clip_int16(predictor);
880
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
881
    if (c->idelta < 16) c->idelta = 16;
882

    
883
    return c->sample1;
884
}
885

    
886
static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
887
{
888
    int sign, delta, diff;
889
    int new_step;
890

    
891
    sign = nibble & 8;
892
    delta = nibble & 7;
893
    /* perform direct multiplication instead of series of jumps proposed by
894
     * the reference ADPCM implementation since modern CPUs can do the mults
895
     * quickly enough */
896
    diff = ((2 * delta + 1) * c->step) >> 3;
897
    /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
898
    c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
899
    c->predictor = av_clip_int16(c->predictor);
900
    /* calculate new step and clamp it to range 511..32767 */
901
    new_step = (AdaptationTable[nibble & 7] * c->step) >> 8;
902
    c->step = av_clip(new_step, 511, 32767);
903

    
904
    return (short)c->predictor;
905
}
906

    
907
static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
908
{
909
    int sign, delta, diff;
910

    
911
    sign = nibble & (1<<(size-1));
912
    delta = nibble & ((1<<(size-1))-1);
913
    diff = delta << (7 + c->step + shift);
914

    
915
    /* clamp result */
916
    c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
917

    
918
    /* calculate new step */
919
    if (delta >= (2*size - 3) && c->step < 3)
920
        c->step++;
921
    else if (delta == 0 && c->step > 0)
922
        c->step--;
923

    
924
    return (short) c->predictor;
925
}
926

    
927
static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
928
{
929
    if(!c->step) {
930
        c->predictor = 0;
931
        c->step = 127;
932
    }
933

    
934
    c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
935
    c->predictor = av_clip_int16(c->predictor);
936
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
937
    c->step = av_clip(c->step, 127, 24567);
938
    return c->predictor;
939
}
940

    
941
static void xa_decode(short *out, const unsigned char *in,
942
    ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
943
{
944
    int i, j;
945
    int shift,filter,f0,f1;
946
    int s_1,s_2;
947
    int d,s,t;
948

    
949
    for(i=0;i<4;i++) {
950

    
951
        shift  = 12 - (in[4+i*2] & 15);
952
        filter = in[4+i*2] >> 4;
953
        f0 = xa_adpcm_table[filter][0];
954
        f1 = xa_adpcm_table[filter][1];
955

    
956
        s_1 = left->sample1;
957
        s_2 = left->sample2;
958

    
959
        for(j=0;j<28;j++) {
960
            d = in[16+i+j*4];
961

    
962
            t = (signed char)(d<<4)>>4;
963
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
964
            s_2 = s_1;
965
            s_1 = av_clip_int16(s);
966
            *out = s_1;
967
            out += inc;
968
        }
969

    
970
        if (inc==2) { /* stereo */
971
            left->sample1 = s_1;
972
            left->sample2 = s_2;
973
            s_1 = right->sample1;
974
            s_2 = right->sample2;
975
            out = out + 1 - 28*2;
976
        }
977

    
978
        shift  = 12 - (in[5+i*2] & 15);
979
        filter = in[5+i*2] >> 4;
980

    
981
        f0 = xa_adpcm_table[filter][0];
982
        f1 = xa_adpcm_table[filter][1];
983

    
984
        for(j=0;j<28;j++) {
985
            d = in[16+i+j*4];
986

    
987
            t = (signed char)d >> 4;
988
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
989
            s_2 = s_1;
990
            s_1 = av_clip_int16(s);
991
            *out = s_1;
992
            out += inc;
993
        }
994

    
995
        if (inc==2) { /* stereo */
996
            right->sample1 = s_1;
997
            right->sample2 = s_2;
998
            out -= 1;
999
        } else {
1000
            left->sample1 = s_1;
1001
            left->sample2 = s_2;
1002
        }
1003
    }
1004
}
1005

    
1006

    
1007
/* DK3 ADPCM support macro */
1008
#define DK3_GET_NEXT_NIBBLE() \
1009
    if (decode_top_nibble_next) \
1010
    { \
1011
        nibble = last_byte >> 4; \
1012
        decode_top_nibble_next = 0; \
1013
    } \
1014
    else \
1015
    { \
1016
        last_byte = *src++; \
1017
        if (src >= buf + buf_size) break; \
1018
        nibble = last_byte & 0x0F; \
1019
        decode_top_nibble_next = 1; \
1020
    }
1021

    
1022
static int adpcm_decode_frame(AVCodecContext *avctx,
1023
                            void *data, int *data_size,
1024
                            AVPacket *avpkt)
1025
{
1026
    const uint8_t *buf = avpkt->data;
1027
    int buf_size = avpkt->size;
1028
    ADPCMContext *c = avctx->priv_data;
1029
    ADPCMChannelStatus *cs;
1030
    int n, m, channel, i;
1031
    int block_predictor[2];
1032
    short *samples;
1033
    short *samples_end;
1034
    const uint8_t *src;
1035
    int st; /* stereo */
1036

    
1037
    /* DK3 ADPCM accounting variables */
1038
    unsigned char last_byte = 0;
1039
    unsigned char nibble;
1040
    int decode_top_nibble_next = 0;
1041
    int diff_channel;
1042

    
1043
    /* EA ADPCM state variables */
1044
    uint32_t samples_in_chunk;
1045
    int32_t previous_left_sample, previous_right_sample;
1046
    int32_t current_left_sample, current_right_sample;
1047
    int32_t next_left_sample, next_right_sample;
1048
    int32_t coeff1l, coeff2l, coeff1r, coeff2r;
1049
    uint8_t shift_left, shift_right;
1050
    int count1, count2;
1051
    int coeff[2][2], shift[2];//used in EA MAXIS ADPCM
1052

    
1053
    if (!buf_size)
1054
        return 0;
1055

    
1056
    //should protect all 4bit ADPCM variants
1057
    //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
1058
    //
1059
    if(*data_size/4 < buf_size + 8)
1060
        return -1;
1061

    
1062
    samples = data;
1063
    samples_end= samples + *data_size/2;
1064
    *data_size= 0;
1065
    src = buf;
1066

    
1067
    st = avctx->channels == 2 ? 1 : 0;
1068

    
1069
    switch(avctx->codec->id) {
1070
    case CODEC_ID_ADPCM_IMA_QT:
1071
        n = buf_size - 2*avctx->channels;
1072
        for (channel = 0; channel < avctx->channels; channel++) {
1073
            int16_t predictor;
1074
            int step_index;
1075
            cs = &(c->status[channel]);
1076
            /* (pppppp) (piiiiiii) */
1077

    
1078
            /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
1079
            predictor = AV_RB16(src);
1080
            step_index = predictor & 0x7F;
1081
            predictor &= 0xFF80;
1082

    
1083
            src += 2;
1084

    
1085
            if (cs->step_index == step_index) {
1086
                int diff = (int)predictor - cs->predictor;
1087
                if (diff < 0)
1088
                    diff = - diff;
1089
                if (diff > 0x7f)
1090
                    goto update;
1091
            } else {
1092
            update:
1093
                cs->step_index = step_index;
1094
                cs->predictor = predictor;
1095
            }
1096

    
1097
            if (cs->step_index > 88){
1098
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
1099
                cs->step_index = 88;
1100
            }
1101

    
1102
            samples = (short*)data + channel;
1103

    
1104
            for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
1105
                *samples = adpcm_ima_qt_expand_nibble(cs, src[0] & 0x0F, 3);
1106
                samples += avctx->channels;
1107
                *samples = adpcm_ima_qt_expand_nibble(cs, src[0] >> 4  , 3);
1108
                samples += avctx->channels;
1109
                src ++;
1110
            }
1111
        }
1112
        if (st)
1113
            samples--;
1114
        break;
1115
    case CODEC_ID_ADPCM_IMA_WAV:
1116
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1117
            buf_size = avctx->block_align;
1118

    
1119
//        samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
1120

    
1121
        for(i=0; i<avctx->channels; i++){
1122
            cs = &(c->status[i]);
1123
            cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src);
1124

    
1125
            cs->step_index = *src++;
1126
            if (cs->step_index > 88){
1127
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
1128
                cs->step_index = 88;
1129
            }
1130
            if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
1131
        }
1132

    
1133
        while(src < buf + buf_size){
1134
            for(m=0; m<4; m++){
1135
                for(i=0; i<=st; i++)
1136
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
1137
                for(i=0; i<=st; i++)
1138
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4  , 3);
1139
                src++;
1140
            }
1141
            src += 4*st;
1142
        }
1143
        break;
1144
    case CODEC_ID_ADPCM_4XM:
1145
        cs = &(c->status[0]);
1146
        c->status[0].predictor= (int16_t)bytestream_get_le16(&src);
1147
        if(st){
1148
            c->status[1].predictor= (int16_t)bytestream_get_le16(&src);
1149
        }
1150
        c->status[0].step_index= (int16_t)bytestream_get_le16(&src);
1151
        if(st){
1152
            c->status[1].step_index= (int16_t)bytestream_get_le16(&src);
1153
        }
1154
        if (cs->step_index < 0) cs->step_index = 0;
1155
        if (cs->step_index > 88) cs->step_index = 88;
1156

    
1157
        m= (buf_size - (src - buf))>>st;
1158
        for(i=0; i<m; i++) {
1159
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
1160
            if (st)
1161
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
1162
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
1163
            if (st)
1164
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
1165
        }
1166

    
1167
        src += m<<st;
1168

    
1169
        break;
1170
    case CODEC_ID_ADPCM_MS:
1171
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1172
            buf_size = avctx->block_align;
1173
        n = buf_size - 7 * avctx->channels;
1174
        if (n < 0)
1175
            return -1;
1176
        block_predictor[0] = av_clip(*src++, 0, 6);
1177
        block_predictor[1] = 0;
1178
        if (st)
1179
            block_predictor[1] = av_clip(*src++, 0, 6);
1180
        c->status[0].idelta = (int16_t)bytestream_get_le16(&src);
1181
        if (st){
1182
            c->status[1].idelta = (int16_t)bytestream_get_le16(&src);
1183
        }
1184
        c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
1185
        c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
1186
        c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
1187
        c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
1188

    
1189
        c->status[0].sample1 = bytestream_get_le16(&src);
1190
        if (st) c->status[1].sample1 = bytestream_get_le16(&src);
1191
        c->status[0].sample2 = bytestream_get_le16(&src);
1192
        if (st) c->status[1].sample2 = bytestream_get_le16(&src);
1193

    
1194
        *samples++ = c->status[0].sample2;
1195
        if (st) *samples++ = c->status[1].sample2;
1196
        *samples++ = c->status[0].sample1;
1197
        if (st) *samples++ = c->status[1].sample1;
1198
        for(;n>0;n--) {
1199
            *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4  );
1200
            *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
1201
            src ++;
1202
        }
1203
        break;
1204
    case CODEC_ID_ADPCM_IMA_DK4:
1205
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1206
            buf_size = avctx->block_align;
1207

    
1208
        c->status[0].predictor  = (int16_t)bytestream_get_le16(&src);
1209
        c->status[0].step_index = *src++;
1210
        src++;
1211
        *samples++ = c->status[0].predictor;
1212
        if (st) {
1213
            c->status[1].predictor  = (int16_t)bytestream_get_le16(&src);
1214
            c->status[1].step_index = *src++;
1215
            src++;
1216
            *samples++ = c->status[1].predictor;
1217
        }
1218
        while (src < buf + buf_size) {
1219

    
1220
            /* take care of the top nibble (always left or mono channel) */
1221
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1222
                src[0] >> 4, 3);
1223

    
1224
            /* take care of the bottom nibble, which is right sample for
1225
             * stereo, or another mono sample */
1226
            if (st)
1227
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1228
                    src[0] & 0x0F, 3);
1229
            else
1230
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1231
                    src[0] & 0x0F, 3);
1232

    
1233
            src++;
1234
        }
1235
        break;
1236
    case CODEC_ID_ADPCM_IMA_DK3:
1237
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1238
            buf_size = avctx->block_align;
1239

    
1240
        if(buf_size + 16 > (samples_end - samples)*3/8)
1241
            return -1;
1242

    
1243
        c->status[0].predictor  = (int16_t)AV_RL16(src + 10);
1244
        c->status[1].predictor  = (int16_t)AV_RL16(src + 12);
1245
        c->status[0].step_index = src[14];
1246
        c->status[1].step_index = src[15];
1247
        /* sign extend the predictors */
1248
        src += 16;
1249
        diff_channel = c->status[1].predictor;
1250

    
1251
        /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1252
         * the buffer is consumed */
1253
        while (1) {
1254

    
1255
            /* for this algorithm, c->status[0] is the sum channel and
1256
             * c->status[1] is the diff channel */
1257

    
1258
            /* process the first predictor of the sum channel */
1259
            DK3_GET_NEXT_NIBBLE();
1260
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1261

    
1262
            /* process the diff channel predictor */
1263
            DK3_GET_NEXT_NIBBLE();
1264
            adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1265

    
1266
            /* process the first pair of stereo PCM samples */
1267
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1268
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1269
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1270

    
1271
            /* process the second predictor of the sum channel */
1272
            DK3_GET_NEXT_NIBBLE();
1273
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1274

    
1275
            /* process the second pair of stereo PCM samples */
1276
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1277
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1278
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1279
        }
1280
        break;
1281
    case CODEC_ID_ADPCM_IMA_ISS:
1282
        c->status[0].predictor  = (int16_t)AV_RL16(src + 0);
1283
        c->status[0].step_index = src[2];
1284
        src += 4;
1285
        if(st) {
1286
            c->status[1].predictor  = (int16_t)AV_RL16(src + 0);
1287
            c->status[1].step_index = src[2];
1288
            src += 4;
1289
        }
1290

    
1291
        while (src < buf + buf_size) {
1292

    
1293
            if (st) {
1294
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1295
                    src[0] >> 4  , 3);
1296
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1297
                    src[0] & 0x0F, 3);
1298
            } else {
1299
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1300
                    src[0] & 0x0F, 3);
1301
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1302
                    src[0] >> 4  , 3);
1303
            }
1304

    
1305
            src++;
1306
        }
1307
        break;
1308
    case CODEC_ID_ADPCM_IMA_WS:
1309
        /* no per-block initialization; just start decoding the data */
1310
        while (src < buf + buf_size) {
1311

    
1312
            if (st) {
1313
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1314
                    src[0] >> 4  , 3);
1315
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1316
                    src[0] & 0x0F, 3);
1317
            } else {
1318
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1319
                    src[0] >> 4  , 3);
1320
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1321
                    src[0] & 0x0F, 3);
1322
            }
1323

    
1324
            src++;
1325
        }
1326
        break;
1327
    case CODEC_ID_ADPCM_XA:
1328
        while (buf_size >= 128) {
1329
            xa_decode(samples, src, &c->status[0], &c->status[1],
1330
                avctx->channels);
1331
            src += 128;
1332
            samples += 28 * 8;
1333
            buf_size -= 128;
1334
        }
1335
        break;
1336
    case CODEC_ID_ADPCM_IMA_EA_EACS:
1337
        samples_in_chunk = bytestream_get_le32(&src) >> (1-st);
1338

    
1339
        if (samples_in_chunk > buf_size-4-(8<<st)) {
1340
            src += buf_size - 4;
1341
            break;
1342
        }
1343

    
1344
        for (i=0; i<=st; i++)
1345
            c->status[i].step_index = bytestream_get_le32(&src);
1346
        for (i=0; i<=st; i++)
1347
            c->status[i].predictor  = bytestream_get_le32(&src);
1348

    
1349
        for (; samples_in_chunk; samples_in_chunk--, src++) {
1350
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],  *src>>4,   3);
1351
            *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
1352
        }
1353
        break;
1354
    case CODEC_ID_ADPCM_IMA_EA_SEAD:
1355
        for (; src < buf+buf_size; src++) {
1356
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
1357
            *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
1358
        }
1359
        break;
1360
    case CODEC_ID_ADPCM_EA:
1361
        if (buf_size < 12 || AV_RL32(src) > (buf_size - 12)/30*28) {
1362
            src += buf_size;
1363
            break;
1364
        }
1365
        samples_in_chunk = AV_RL32(src);
1366
        src += 4;
1367
        current_left_sample   = (int16_t)bytestream_get_le16(&src);
1368
        previous_left_sample  = (int16_t)bytestream_get_le16(&src);
1369
        current_right_sample  = (int16_t)bytestream_get_le16(&src);
1370
        previous_right_sample = (int16_t)bytestream_get_le16(&src);
1371

    
1372
        for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
1373
            coeff1l = ea_adpcm_table[ *src >> 4       ];
1374
            coeff2l = ea_adpcm_table[(*src >> 4  ) + 4];
1375
            coeff1r = ea_adpcm_table[*src & 0x0F];
1376
            coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
1377
            src++;
1378

    
1379
            shift_left  = (*src >> 4  ) + 8;
1380
            shift_right = (*src & 0x0F) + 8;
1381
            src++;
1382

    
1383
            for (count2 = 0; count2 < 28; count2++) {
1384
                next_left_sample  = (int32_t)((*src & 0xF0) << 24) >> shift_left;
1385
                next_right_sample = (int32_t)((*src & 0x0F) << 28) >> shift_right;
1386
                src++;
1387

    
1388
                next_left_sample = (next_left_sample +
1389
                    (current_left_sample * coeff1l) +
1390
                    (previous_left_sample * coeff2l) + 0x80) >> 8;
1391
                next_right_sample = (next_right_sample +
1392
                    (current_right_sample * coeff1r) +
1393
                    (previous_right_sample * coeff2r) + 0x80) >> 8;
1394

    
1395
                previous_left_sample = current_left_sample;
1396
                current_left_sample = av_clip_int16(next_left_sample);
1397
                previous_right_sample = current_right_sample;
1398
                current_right_sample = av_clip_int16(next_right_sample);
1399
                *samples++ = (unsigned short)current_left_sample;
1400
                *samples++ = (unsigned short)current_right_sample;
1401
            }
1402
        }
1403

    
1404
        if (src - buf == buf_size - 2)
1405
            src += 2; // Skip terminating 0x0000
1406

    
1407
        break;
1408
    case CODEC_ID_ADPCM_EA_MAXIS_XA:
1409
        for(channel = 0; channel < avctx->channels; channel++) {
1410
            for (i=0; i<2; i++)
1411
                coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
1412
            shift[channel] = (*src & 0x0F) + 8;
1413
            src++;
1414
        }
1415
        for (count1 = 0; count1 < (buf_size - avctx->channels) / avctx->channels; count1++) {
1416
            for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1417
                for(channel = 0; channel < avctx->channels; channel++) {
1418
                    int32_t sample = (int32_t)(((*(src+channel) >> i) & 0x0F) << 0x1C) >> shift[channel];
1419
                    sample = (sample +
1420
                             c->status[channel].sample1 * coeff[channel][0] +
1421
                             c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1422
                    c->status[channel].sample2 = c->status[channel].sample1;
1423
                    c->status[channel].sample1 = av_clip_int16(sample);
1424
                    *samples++ = c->status[channel].sample1;
1425
                }
1426
            }
1427
            src+=avctx->channels;
1428
        }
1429
        break;
1430
    case CODEC_ID_ADPCM_EA_R1:
1431
    case CODEC_ID_ADPCM_EA_R2:
1432
    case CODEC_ID_ADPCM_EA_R3: {
1433
        /* channel numbering
1434
           2chan: 0=fl, 1=fr
1435
           4chan: 0=fl, 1=rl, 2=fr, 3=rr
1436
           6chan: 0=fl, 1=c,  2=fr, 3=rl,  4=rr, 5=sub */
1437
        const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
1438
        int32_t previous_sample, current_sample, next_sample;
1439
        int32_t coeff1, coeff2;
1440
        uint8_t shift;
1441
        unsigned int channel;
1442
        uint16_t *samplesC;
1443
        const uint8_t *srcC;
1444
        const uint8_t *src_end = buf + buf_size;
1445

    
1446
        samples_in_chunk = (big_endian ? bytestream_get_be32(&src)
1447
                                       : bytestream_get_le32(&src)) / 28;
1448
        if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) ||
1449
            28*samples_in_chunk*avctx->channels > samples_end-samples) {
1450
            src += buf_size - 4;
1451
            break;
1452
        }
1453

    
1454
        for (channel=0; channel<avctx->channels; channel++) {
1455
            int32_t offset = (big_endian ? bytestream_get_be32(&src)
1456
                                         : bytestream_get_le32(&src))
1457
                           + (avctx->channels-channel-1) * 4;
1458

    
1459
            if ((offset < 0) || (offset >= src_end - src - 4)) break;
1460
            srcC  = src + offset;
1461
            samplesC = samples + channel;
1462

    
1463
            if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
1464
                current_sample  = (int16_t)bytestream_get_le16(&srcC);
1465
                previous_sample = (int16_t)bytestream_get_le16(&srcC);
1466
            } else {
1467
                current_sample  = c->status[channel].predictor;
1468
                previous_sample = c->status[channel].prev_sample;
1469
            }
1470

    
1471
            for (count1=0; count1<samples_in_chunk; count1++) {
1472
                if (*srcC == 0xEE) {  /* only seen in R2 and R3 */
1473
                    srcC++;
1474
                    if (srcC > src_end - 30*2) break;
1475
                    current_sample  = (int16_t)bytestream_get_be16(&srcC);
1476
                    previous_sample = (int16_t)bytestream_get_be16(&srcC);
1477

    
1478
                    for (count2=0; count2<28; count2++) {
1479
                        *samplesC = (int16_t)bytestream_get_be16(&srcC);
1480
                        samplesC += avctx->channels;
1481
                    }
1482
                } else {
1483
                    coeff1 = ea_adpcm_table[ *srcC>>4     ];
1484
                    coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
1485
                    shift = (*srcC++ & 0x0F) + 8;
1486

    
1487
                    if (srcC > src_end - 14) break;
1488
                    for (count2=0; count2<28; count2++) {
1489
                        if (count2 & 1)
1490
                            next_sample = (int32_t)((*srcC++ & 0x0F) << 28) >> shift;
1491
                        else
1492
                            next_sample = (int32_t)((*srcC   & 0xF0) << 24) >> shift;
1493

    
1494
                        next_sample += (current_sample  * coeff1) +
1495
                                       (previous_sample * coeff2);
1496
                        next_sample = av_clip_int16(next_sample >> 8);
1497

    
1498
                        previous_sample = current_sample;
1499
                        current_sample  = next_sample;
1500
                        *samplesC = current_sample;
1501
                        samplesC += avctx->channels;
1502
                    }
1503
                }
1504
            }
1505

    
1506
            if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
1507
                c->status[channel].predictor   = current_sample;
1508
                c->status[channel].prev_sample = previous_sample;
1509
            }
1510
        }
1511

    
1512
        src = src + buf_size - (4 + 4*avctx->channels);
1513
        samples += 28 * samples_in_chunk * avctx->channels;
1514
        break;
1515
    }
1516
    case CODEC_ID_ADPCM_EA_XAS:
1517
        if (samples_end-samples < 32*4*avctx->channels
1518
            || buf_size < (4+15)*4*avctx->channels) {
1519
            src += buf_size;
1520
            break;
1521
        }
1522
        for (channel=0; channel<avctx->channels; channel++) {
1523
            int coeff[2][4], shift[4];
1524
            short *s2, *s = &samples[channel];
1525
            for (n=0; n<4; n++, s+=32*avctx->channels) {
1526
                for (i=0; i<2; i++)
1527
                    coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
1528
                shift[n] = (src[2]&0x0F) + 8;
1529
                for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
1530
                    s2[0] = (src[0]&0xF0) + (src[1]<<8);
1531
            }
1532

    
1533
            for (m=2; m<32; m+=2) {
1534
                s = &samples[m*avctx->channels + channel];
1535
                for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
1536
                    for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
1537
                        int level = (int32_t)((*src & (0xF0>>i)) << (24+i)) >> shift[n];
1538
                        int pred  = s2[-1*avctx->channels] * coeff[0][n]
1539
                                  + s2[-2*avctx->channels] * coeff[1][n];
1540
                        s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
1541
                    }
1542
                }
1543
            }
1544
        }
1545
        samples += 32*4*avctx->channels;
1546
        break;
1547
    case CODEC_ID_ADPCM_IMA_AMV:
1548
    case CODEC_ID_ADPCM_IMA_SMJPEG:
1549
        c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1550
        c->status[0].step_index = bytestream_get_le16(&src);
1551

    
1552
        if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1553
            src+=4;
1554

    
1555
        while (src < buf + buf_size) {
1556
            char hi, lo;
1557
            lo = *src & 0x0F;
1558
            hi = *src >> 4;
1559

    
1560
            if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1561
                FFSWAP(char, hi, lo);
1562

    
1563
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1564
                lo, 3);
1565
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1566
                hi, 3);
1567
            src++;
1568
        }
1569
        break;
1570
    case CODEC_ID_ADPCM_CT:
1571
        while (src < buf + buf_size) {
1572
            if (st) {
1573
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1574
                    src[0] >> 4);
1575
                *samples++ = adpcm_ct_expand_nibble(&c->status[1],
1576
                    src[0] & 0x0F);
1577
            } else {
1578
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1579
                    src[0] >> 4);
1580
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1581
                    src[0] & 0x0F);
1582
            }
1583
            src++;
1584
        }
1585
        break;
1586
    case CODEC_ID_ADPCM_SBPRO_4:
1587
    case CODEC_ID_ADPCM_SBPRO_3:
1588
    case CODEC_ID_ADPCM_SBPRO_2:
1589
        if (!c->status[0].step_index) {
1590
            /* the first byte is a raw sample */
1591
            *samples++ = 128 * (*src++ - 0x80);
1592
            if (st)
1593
              *samples++ = 128 * (*src++ - 0x80);
1594
            c->status[0].step_index = 1;
1595
        }
1596
        if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1597
            while (src < buf + buf_size) {
1598
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1599
                    src[0] >> 4, 4, 0);
1600
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1601
                    src[0] & 0x0F, 4, 0);
1602
                src++;
1603
            }
1604
        } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1605
            while (src < buf + buf_size && samples + 2 < samples_end) {
1606
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1607
                     src[0] >> 5        , 3, 0);
1608
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1609
                    (src[0] >> 2) & 0x07, 3, 0);
1610
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1611
                    src[0] & 0x03, 2, 0);
1612
                src++;
1613
            }
1614
        } else {
1615
            while (src < buf + buf_size && samples + 3 < samples_end) {
1616
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1617
                     src[0] >> 6        , 2, 2);
1618
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1619
                    (src[0] >> 4) & 0x03, 2, 2);
1620
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1621
                    (src[0] >> 2) & 0x03, 2, 2);
1622
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1623
                    src[0] & 0x03, 2, 2);
1624
                src++;
1625
            }
1626
        }
1627
        break;
1628
    case CODEC_ID_ADPCM_SWF:
1629
    {
1630
        GetBitContext gb;
1631
        const int *table;
1632
        int k0, signmask, nb_bits, count;
1633
        int size = buf_size*8;
1634

    
1635
        init_get_bits(&gb, buf, size);
1636

    
1637
        //read bits & initial values
1638
        nb_bits = get_bits(&gb, 2)+2;
1639
        //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1640
        table = swf_index_tables[nb_bits-2];
1641
        k0 = 1 << (nb_bits-2);
1642
        signmask = 1 << (nb_bits-1);
1643

    
1644
        while (get_bits_count(&gb) <= size - 22*avctx->channels) {
1645
            for (i = 0; i < avctx->channels; i++) {
1646
                *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1647
                c->status[i].step_index = get_bits(&gb, 6);
1648
            }
1649

    
1650
            for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
1651
                int i;
1652

    
1653
                for (i = 0; i < avctx->channels; i++) {
1654
                    // similar to IMA adpcm
1655
                    int delta = get_bits(&gb, nb_bits);
1656
                    int step = step_table[c->status[i].step_index];
1657
                    long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1658
                    int k = k0;
1659

    
1660
                    do {
1661
                        if (delta & k)
1662
                            vpdiff += step;
1663
                        step >>= 1;
1664
                        k >>= 1;
1665
                    } while(k);
1666
                    vpdiff += step;
1667

    
1668
                    if (delta & signmask)
1669
                        c->status[i].predictor -= vpdiff;
1670
                    else
1671
                        c->status[i].predictor += vpdiff;
1672

    
1673
                    c->status[i].step_index += table[delta & (~signmask)];
1674

    
1675
                    c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
1676
                    c->status[i].predictor = av_clip_int16(c->status[i].predictor);
1677

    
1678
                    *samples++ = c->status[i].predictor;
1679
                    if (samples >= samples_end) {
1680
                        av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1681
                        return -1;
1682
                    }
1683
                }
1684
            }
1685
        }
1686
        src += buf_size;
1687
        break;
1688
    }
1689
    case CODEC_ID_ADPCM_YAMAHA:
1690
        while (src < buf + buf_size) {
1691
            if (st) {
1692
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1693
                        src[0] & 0x0F);
1694
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1695
                        src[0] >> 4  );
1696
            } else {
1697
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1698
                        src[0] & 0x0F);
1699
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1700
                        src[0] >> 4  );
1701
            }
1702
            src++;
1703
        }
1704
        break;
1705
    case CODEC_ID_ADPCM_THP:
1706
    {
1707
        int table[2][16];
1708
        unsigned int samplecnt;
1709
        int prev[2][2];
1710
        int ch;
1711

    
1712
        if (buf_size < 80) {
1713
            av_log(avctx, AV_LOG_ERROR, "frame too small\n");
1714
            return -1;
1715
        }
1716

    
1717
        src+=4;
1718
        samplecnt = bytestream_get_be32(&src);
1719

    
1720
        for (i = 0; i < 32; i++)
1721
            table[0][i] = (int16_t)bytestream_get_be16(&src);
1722

    
1723
        /* Initialize the previous sample.  */
1724
        for (i = 0; i < 4; i++)
1725
            prev[0][i] = (int16_t)bytestream_get_be16(&src);
1726

    
1727
        if (samplecnt >= (samples_end - samples) /  (st + 1)) {
1728
            av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1729
            return -1;
1730
        }
1731

    
1732
        for (ch = 0; ch <= st; ch++) {
1733
            samples = (unsigned short *) data + ch;
1734

    
1735
            /* Read in every sample for this channel.  */
1736
            for (i = 0; i < samplecnt / 14; i++) {
1737
                int index = (*src >> 4) & 7;
1738
                unsigned int exp = 28 - (*src++ & 15);
1739
                int factor1 = table[ch][index * 2];
1740
                int factor2 = table[ch][index * 2 + 1];
1741

    
1742
                /* Decode 14 samples.  */
1743
                for (n = 0; n < 14; n++) {
1744
                    int32_t sampledat;
1745
                    if(n&1) sampledat=  *src++    <<28;
1746
                    else    sampledat= (*src&0xF0)<<24;
1747

    
1748
                    sampledat = ((prev[ch][0]*factor1
1749
                                + prev[ch][1]*factor2) >> 11) + (sampledat>>exp);
1750
                    *samples = av_clip_int16(sampledat);
1751
                    prev[ch][1] = prev[ch][0];
1752
                    prev[ch][0] = *samples++;
1753

    
1754
                    /* In case of stereo, skip one sample, this sample
1755
                       is for the other channel.  */
1756
                    samples += st;
1757
                }
1758
            }
1759
        }
1760

    
1761
        /* In the previous loop, in case stereo is used, samples is
1762
           increased exactly one time too often.  */
1763
        samples -= st;
1764
        break;
1765
    }
1766

    
1767
    default:
1768
        return -1;
1769
    }
1770
    *data_size = (uint8_t *)samples - (uint8_t *)data;
1771
    return src - buf;
1772
}
1773

    
1774

    
1775

    
1776
#if CONFIG_ENCODERS
1777
#define ADPCM_ENCODER(id,name,long_name_)       \
1778
AVCodec ff_ ## name ## _encoder = {             \
1779
    #name,                                      \
1780
    AVMEDIA_TYPE_AUDIO,                         \
1781
    id,                                         \
1782
    sizeof(ADPCMContext),                       \
1783
    adpcm_encode_init,                          \
1784
    adpcm_encode_frame,                         \
1785
    adpcm_encode_close,                         \
1786
    NULL,                                       \
1787
    .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE}, \
1788
    .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1789
}
1790
#else
1791
#define ADPCM_ENCODER(id,name,long_name_)
1792
#endif
1793

    
1794
#if CONFIG_DECODERS
1795
#define ADPCM_DECODER(id,name,long_name_)       \
1796
AVCodec ff_ ## name ## _decoder = {             \
1797
    #name,                                      \
1798
    AVMEDIA_TYPE_AUDIO,                         \
1799
    id,                                         \
1800
    sizeof(ADPCMContext),                       \
1801
    adpcm_decode_init,                          \
1802
    NULL,                                       \
1803
    NULL,                                       \
1804
    adpcm_decode_frame,                         \
1805
    .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1806
}
1807
#else
1808
#define ADPCM_DECODER(id,name,long_name_)
1809
#endif
1810

    
1811
#define ADPCM_CODEC(id,name,long_name_)         \
1812
    ADPCM_ENCODER(id,name,long_name_); ADPCM_DECODER(id,name,long_name_)
1813

    
1814
/* Note: Do not forget to add new entries to the Makefile as well. */
1815
ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie");
1816
ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology");
1817
ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts");
1818
ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
1819
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1");
1820
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2");
1821
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3");
1822
ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
1823
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV");
1824
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
1825
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
1826
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
1827
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
1828
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
1829
ADPCM_CODEC  (CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
1830
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
1831
ADPCM_CODEC  (CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
1832
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood");
1833
ADPCM_CODEC  (CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
1834
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
1835
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
1836
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
1837
ADPCM_CODEC  (CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
1838
ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP");
1839
ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA");
1840
ADPCM_CODEC  (CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");