ffmpeg / libavcodec / lagarith.c @ b0c8b8a6
History | View | Annotate | Download (14.8 KB)
1 | d267b339 | Carl Eugen Hoyos | /*
|
---|---|---|---|
2 | * Lagarith lossless decoder
|
||
3 | * Copyright (c) 2009 Nathan Caldwell <saintdev (at) gmail.com>
|
||
4 | *
|
||
5 | * This file is part of FFmpeg.
|
||
6 | *
|
||
7 | * FFmpeg is free software; you can redistribute it and/or
|
||
8 | * modify it under the terms of the GNU Lesser General Public
|
||
9 | * License as published by the Free Software Foundation; either
|
||
10 | * version 2.1 of the License, or (at your option) any later version.
|
||
11 | *
|
||
12 | * FFmpeg is distributed in the hope that it will be useful,
|
||
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
15 | * Lesser General Public License for more details.
|
||
16 | *
|
||
17 | * You should have received a copy of the GNU Lesser General Public
|
||
18 | * License along with FFmpeg; if not, write to the Free Software
|
||
19 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
20 | */
|
||
21 | |||
22 | /**
|
||
23 | * @file libavcodec/lagarith.c
|
||
24 | * Lagarith lossless decoder
|
||
25 | * @author Nathan Caldwell
|
||
26 | */
|
||
27 | |||
28 | #include "avcodec.h" |
||
29 | #include "get_bits.h" |
||
30 | #include "mathops.h" |
||
31 | #include "dsputil.h" |
||
32 | #include "lagarithrac.h" |
||
33 | |||
34 | enum LagarithFrameType {
|
||
35 | FRAME_RAW = 1, /*!< uncompressed */ |
||
36 | FRAME_U_RGB24 = 2, /*!< unaligned RGB24 */ |
||
37 | FRAME_ARITH_YUY2 = 3, /*!< arithmetic coded YUY2 */ |
||
38 | FRAME_ARITH_RGB24 = 4, /*!< arithmetic coded RGB24 */ |
||
39 | FRAME_SOLID_GRAY = 5, /*!< solid grayscale color frame */ |
||
40 | FRAME_SOLID_COLOR = 6, /*!< solid non-grayscale color frame */ |
||
41 | FRAME_OLD_ARITH_RGB = 7, /*!< obsolete arithmetic coded RGB (no longer encoded by upstream since version 1.1.0) */ |
||
42 | FRAME_ARITH_RGBA = 8, /*!< arithmetic coded RGBA */ |
||
43 | FRAME_SOLID_RGBA = 9, /*!< solid RGBA color frame */ |
||
44 | FRAME_ARITH_YV12 = 10, /*!< arithmetic coded YV12 */ |
||
45 | FRAME_REDUCED_RES = 11, /*!< reduced resolution YV12 frame */ |
||
46 | }; |
||
47 | |||
48 | typedef struct LagarithContext { |
||
49 | AVCodecContext *avctx; |
||
50 | AVFrame picture; |
||
51 | DSPContext dsp; |
||
52 | int zeros; /*!< number of consecutive zero bytes encountered */ |
||
53 | int zeros_rem; /*!< number of zero bytes remaining to output */ |
||
54 | } LagarithContext; |
||
55 | |||
56 | /**
|
||
57 | * Compute the 52bit mantissa of 1/(double)denom.
|
||
58 | * This crazy format uses floats in an entropy coder and we have to match x86
|
||
59 | * rounding exactly, thus ordinary floats aren't portable enough.
|
||
60 | * @param denom denominator
|
||
61 | * @return 52bit mantissa
|
||
62 | * @see softfloat_mul
|
||
63 | */
|
||
64 | static uint64_t softfloat_reciprocal(uint32_t denom)
|
||
65 | { |
||
66 | int shift = av_log2(denom - 1) + 1; |
||
67 | uint64_t ret = (1ULL << 52) / denom; |
||
68 | uint64_t err = (1ULL << 52) - ret * denom; |
||
69 | ret <<= shift; |
||
70 | err <<= shift; |
||
71 | err += denom / 2;
|
||
72 | return ret + err / denom;
|
||
73 | } |
||
74 | |||
75 | /**
|
||
76 | * (uint32_t)(x*f), where f has the given mantissa, and exponent 0
|
||
77 | * Used in combination with softfloat_reciprocal computes x/(double)denom.
|
||
78 | * @param x 32bit integer factor
|
||
79 | * @param mantissa mantissa of f with exponent 0
|
||
80 | * @return 32bit integer value (x*f)
|
||
81 | * @see softfloat_reciprocal
|
||
82 | */
|
||
83 | static uint32_t softfloat_mul(uint32_t x, uint64_t mantissa)
|
||
84 | { |
||
85 | uint64_t l = x * (mantissa & 0xffffffff);
|
||
86 | uint64_t h = x * (mantissa >> 32);
|
||
87 | h += l >> 32;
|
||
88 | l &= 0xffffffff;
|
||
89 | l += 1 << av_log2(h >> 21); |
||
90 | h += l >> 32;
|
||
91 | return h >> 20; |
||
92 | } |
||
93 | |||
94 | static uint8_t lag_calc_zero_run(int8_t x)
|
||
95 | { |
||
96 | return (x << 1) ^ (x >> 7); |
||
97 | } |
||
98 | |||
99 | static int lag_decode_prob(GetBitContext *gb, uint32_t *value) |
||
100 | { |
||
101 | static const uint8_t series[] = { 1, 2, 3, 5, 8, 13, 21 }; |
||
102 | int i;
|
||
103 | int bit = 0; |
||
104 | int bits = 0; |
||
105 | int prevbit = 0; |
||
106 | unsigned val;
|
||
107 | |||
108 | for (i = 0; i < 7; i++) { |
||
109 | if (prevbit && bit)
|
||
110 | break;
|
||
111 | prevbit = bit; |
||
112 | bit = get_bits1(gb); |
||
113 | if (bit && !prevbit)
|
||
114 | bits += series[i]; |
||
115 | } |
||
116 | bits--; |
||
117 | if (bits < 0 || bits > 31) { |
||
118 | *value = 0;
|
||
119 | return -1; |
||
120 | } else if (bits == 0) { |
||
121 | *value = 0;
|
||
122 | return 0; |
||
123 | } |
||
124 | |||
125 | val = get_bits_long(gb, bits); |
||
126 | val |= 1 << bits;
|
||
127 | |||
128 | *value = val - 1;
|
||
129 | |||
130 | return 0; |
||
131 | } |
||
132 | |||
133 | static int lag_read_prob_header(lag_rac *rac, GetBitContext *gb) |
||
134 | { |
||
135 | int i, j, scale_factor;
|
||
136 | unsigned prob, cumulative_target;
|
||
137 | unsigned cumul_prob = 0; |
||
138 | unsigned scaled_cumul_prob = 0; |
||
139 | |||
140 | rac->prob[0] = 0; |
||
141 | rac->prob[257] = UINT_MAX;
|
||
142 | /* Read probabilities from bitstream */
|
||
143 | for (i = 1; i < 257; i++) { |
||
144 | if (lag_decode_prob(gb, &rac->prob[i]) < 0) { |
||
145 | av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability encountered.\n");
|
||
146 | return -1; |
||
147 | } |
||
148 | if ((uint64_t)cumul_prob + rac->prob[i] > UINT_MAX) {
|
||
149 | av_log(rac->avctx, AV_LOG_ERROR, "Integer overflow encountered in cumulative probability calculation.\n");
|
||
150 | return -1; |
||
151 | } |
||
152 | cumul_prob += rac->prob[i]; |
||
153 | if (!rac->prob[i]) {
|
||
154 | if (lag_decode_prob(gb, &prob)) {
|
||
155 | av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability run encountered.\n");
|
||
156 | return -1; |
||
157 | } |
||
158 | if (prob > 257 - i) |
||
159 | prob = 257 - i;
|
||
160 | for (j = 0; j < prob; j++) |
||
161 | rac->prob[++i] = 0;
|
||
162 | } |
||
163 | } |
||
164 | |||
165 | if (!cumul_prob) {
|
||
166 | av_log(rac->avctx, AV_LOG_ERROR, "All probabilities are 0!\n");
|
||
167 | return -1; |
||
168 | } |
||
169 | |||
170 | /* Scale probabilities so cumulative probability is an even power of 2. */
|
||
171 | scale_factor = av_log2(cumul_prob); |
||
172 | |||
173 | if (cumul_prob & (cumul_prob - 1)) { |
||
174 | uint64_t mul = softfloat_reciprocal(cumul_prob); |
||
175 | for (i = 1; i < 257; i++) { |
||
176 | rac->prob[i] = softfloat_mul(rac->prob[i], mul); |
||
177 | scaled_cumul_prob += rac->prob[i]; |
||
178 | } |
||
179 | |||
180 | scale_factor++; |
||
181 | cumulative_target = 1 << scale_factor;
|
||
182 | |||
183 | if (scaled_cumul_prob > cumulative_target) {
|
||
184 | av_log(rac->avctx, AV_LOG_ERROR, |
||
185 | "Scaled probabilities are larger than target!\n");
|
||
186 | return -1; |
||
187 | } |
||
188 | |||
189 | scaled_cumul_prob = cumulative_target - scaled_cumul_prob; |
||
190 | |||
191 | for (i = 1; scaled_cumul_prob; i = (i & 0x7f) + 1) { |
||
192 | if (rac->prob[i]) {
|
||
193 | rac->prob[i]++; |
||
194 | scaled_cumul_prob--; |
||
195 | } |
||
196 | /* Comment from reference source:
|
||
197 | * if (b & 0x80 == 0) { // order of operations is 'wrong'; it has been left this way
|
||
198 | * // since the compression change is negligable and fixing it
|
||
199 | * // breaks backwards compatibilty
|
||
200 | * b =- (signed int)b;
|
||
201 | * b &= 0xFF;
|
||
202 | * } else {
|
||
203 | * b++;
|
||
204 | * b &= 0x7f;
|
||
205 | * }
|
||
206 | */
|
||
207 | } |
||
208 | } |
||
209 | |||
210 | rac->scale = scale_factor; |
||
211 | |||
212 | /* Fill probability array with cumulative probability for each symbol. */
|
||
213 | for (i = 1; i < 257; i++) |
||
214 | rac->prob[i] += rac->prob[i - 1];
|
||
215 | |||
216 | return 0; |
||
217 | } |
||
218 | |||
219 | static void add_lag_median_prediction(uint8_t *dst, uint8_t *src1, |
||
220 | uint8_t *diff, int w, int *left, |
||
221 | int *left_top)
|
||
222 | { |
||
223 | /* This is almost identical to add_hfyu_median_prediction in dsputil.h.
|
||
224 | * However the &0xFF on the gradient predictor yealds incorrect output
|
||
225 | * for lagarith.
|
||
226 | */
|
||
227 | int i;
|
||
228 | uint8_t l, lt; |
||
229 | |||
230 | l = *left; |
||
231 | lt = *left_top; |
||
232 | |||
233 | for (i = 0; i < w; i++) { |
||
234 | l = mid_pred(l, src1[i], l + src1[i] - lt) + diff[i]; |
||
235 | lt = src1[i]; |
||
236 | dst[i] = l; |
||
237 | } |
||
238 | |||
239 | *left = l; |
||
240 | *left_top = lt; |
||
241 | } |
||
242 | |||
243 | static void lag_pred_line(LagarithContext *l, uint8_t *buf, |
||
244 | int width, int stride, int line) |
||
245 | { |
||
246 | int L, TL;
|
||
247 | |||
248 | if (!line) {
|
||
249 | /* Left prediction only for first line */
|
||
250 | L = l->dsp.add_hfyu_left_prediction(buf + 1, buf + 1, |
||
251 | width - 1, buf[0]); |
||
252 | return;
|
||
253 | } else if (line == 1) { |
||
254 | /* Second line, left predict first pixel, the rest of the line is median predicted */
|
||
255 | /* FIXME: In the case of RGB this pixel is top predicted */
|
||
256 | TL = buf[-stride]; |
||
257 | } else {
|
||
258 | /* Top left is 2 rows back, last pixel */
|
||
259 | TL = buf[width - (2 * stride) - 1]; |
||
260 | } |
||
261 | /* Left pixel is actually prev_row[width] */
|
||
262 | L = buf[width - stride - 1];
|
||
263 | |||
264 | add_lag_median_prediction(buf, buf - stride, buf, |
||
265 | width, &L, &TL); |
||
266 | } |
||
267 | |||
268 | static int lag_decode_line(LagarithContext *l, lag_rac *rac, |
||
269 | uint8_t *dst, int width, int stride, |
||
270 | int esc_count)
|
||
271 | { |
||
272 | int i = 0; |
||
273 | int ret = 0; |
||
274 | |||
275 | if (!esc_count)
|
||
276 | esc_count = -1;
|
||
277 | |||
278 | /* Output any zeros remaining from the previous run */
|
||
279 | handle_zeros:
|
||
280 | if (l->zeros_rem) {
|
||
281 | int count = FFMIN(l->zeros_rem, width - i);
|
||
282 | memset(dst + i, 0, count);
|
||
283 | i += count; |
||
284 | l->zeros_rem -= count; |
||
285 | } |
||
286 | |||
287 | while (i < width) {
|
||
288 | dst[i] = lag_get_rac(rac); |
||
289 | ret++; |
||
290 | |||
291 | if (dst[i])
|
||
292 | l->zeros = 0;
|
||
293 | else
|
||
294 | l->zeros++; |
||
295 | |||
296 | i++; |
||
297 | if (l->zeros == esc_count) {
|
||
298 | int index = lag_get_rac(rac);
|
||
299 | ret++; |
||
300 | |||
301 | l->zeros = 0;
|
||
302 | |||
303 | l->zeros_rem = lag_calc_zero_run(index); |
||
304 | goto handle_zeros;
|
||
305 | } |
||
306 | } |
||
307 | return ret;
|
||
308 | } |
||
309 | |||
310 | static int lag_decode_zero_run_line(LagarithContext *l, uint8_t *dst, |
||
311 | const uint8_t *src, int width, |
||
312 | int esc_count)
|
||
313 | { |
||
314 | int i = 0; |
||
315 | int count;
|
||
316 | uint8_t zero_run = 0;
|
||
317 | const uint8_t *start = src;
|
||
318 | uint8_t mask1 = -(esc_count < 2);
|
||
319 | uint8_t mask2 = -(esc_count < 3);
|
||
320 | uint8_t *end = dst + (width - 2);
|
||
321 | |||
322 | output_zeros:
|
||
323 | if (l->zeros_rem) {
|
||
324 | count = FFMIN(l->zeros_rem, width - i); |
||
325 | memset(dst, 0, count);
|
||
326 | l->zeros_rem -= count; |
||
327 | dst += count; |
||
328 | } |
||
329 | |||
330 | while (dst < end) {
|
||
331 | i = 0;
|
||
332 | while (!zero_run && dst + i < end) {
|
||
333 | i++; |
||
334 | zero_run = |
||
335 | !(src[i] | (src[i + 1] & mask1) | (src[i + 2] & mask2)); |
||
336 | } |
||
337 | if (zero_run) {
|
||
338 | zero_run = 0;
|
||
339 | i += esc_count; |
||
340 | memcpy(dst, src, i); |
||
341 | dst += i; |
||
342 | l->zeros_rem = lag_calc_zero_run(src[i]); |
||
343 | |||
344 | src += i + 1;
|
||
345 | goto output_zeros;
|
||
346 | } else {
|
||
347 | memcpy(dst, src, i); |
||
348 | src += i; |
||
349 | } |
||
350 | } |
||
351 | return start - src;
|
||
352 | } |
||
353 | |||
354 | |||
355 | |||
356 | static int lag_decode_arith_plane(LagarithContext *l, uint8_t *dst, |
||
357 | int width, int height, int stride, |
||
358 | const uint8_t *src, int src_size) |
||
359 | { |
||
360 | int i = 0; |
||
361 | int read = 0; |
||
362 | uint32_t length; |
||
363 | uint32_t offset = 1;
|
||
364 | int esc_count = src[0]; |
||
365 | GetBitContext gb; |
||
366 | lag_rac rac; |
||
367 | |||
368 | rac.avctx = l->avctx; |
||
369 | l->zeros = 0;
|
||
370 | |||
371 | if (esc_count < 4) { |
||
372 | length = width * height; |
||
373 | if (esc_count && AV_RL32(src + 1) < length) { |
||
374 | length = AV_RL32(src + 1);
|
||
375 | offset += 4;
|
||
376 | } |
||
377 | |||
378 | init_get_bits(&gb, src + offset, src_size * 8);
|
||
379 | |||
380 | if (lag_read_prob_header(&rac, &gb) < 0) |
||
381 | return -1; |
||
382 | |||
383 | lag_rac_init(&rac, &gb, length - stride); |
||
384 | |||
385 | for (i = 0; i < height; i++) |
||
386 | read += lag_decode_line(l, &rac, dst + (i * stride), width, |
||
387 | stride, esc_count); |
||
388 | |||
389 | if (read > length)
|
||
390 | av_log(l->avctx, AV_LOG_WARNING, |
||
391 | "Output more bytes than length (%d of %d)\n", read,
|
||
392 | length); |
||
393 | } else if (esc_count < 8) { |
||
394 | esc_count -= 4;
|
||
395 | if (esc_count > 0) { |
||
396 | /* Zero run coding only, no range coding. */
|
||
397 | for (i = 0; i < height; i++) |
||
398 | src += lag_decode_zero_run_line(l, dst + (i * stride), src, |
||
399 | width, esc_count); |
||
400 | } else {
|
||
401 | /* Plane is stored uncompressed */
|
||
402 | for (i = 0; i < height; i++) { |
||
403 | memcpy(dst + (i * stride), src, width); |
||
404 | src += width; |
||
405 | } |
||
406 | } |
||
407 | } else if (esc_count == 0xff) { |
||
408 | b0c8b8a6 | Reimar Döffinger | /* Plane is a solid run of given value */
|
409 | d267b339 | Carl Eugen Hoyos | for (i = 0; i < height; i++) |
410 | b0c8b8a6 | Reimar Döffinger | memset(dst + i * stride, src[1], width);
|
411 | /* Do not apply prediction.
|
||
412 | Note: memset to 0 above, setting first value to src[1]
|
||
413 | and applying prediction gives the same result. */
|
||
414 | return 0; |
||
415 | d267b339 | Carl Eugen Hoyos | } else {
|
416 | av_log(l->avctx, AV_LOG_ERROR, |
||
417 | "Invalid zero run escape code! (%#x)\n", esc_count);
|
||
418 | return -1; |
||
419 | } |
||
420 | |||
421 | for (i = 0; i < height; i++) { |
||
422 | lag_pred_line(l, dst, width, stride, i); |
||
423 | dst += stride; |
||
424 | } |
||
425 | |||
426 | return 0; |
||
427 | } |
||
428 | |||
429 | /**
|
||
430 | * Decode a frame.
|
||
431 | * @param avctx codec context
|
||
432 | * @param data output AVFrame
|
||
433 | * @param data_size size of output data or 0 if no picture is returned
|
||
434 | * @param avpkt input packet
|
||
435 | * @return number of consumed bytes on success or negative if decode fails
|
||
436 | */
|
||
437 | static int lag_decode_frame(AVCodecContext *avctx, |
||
438 | void *data, int *data_size, AVPacket *avpkt) |
||
439 | { |
||
440 | const uint8_t *buf = avpkt->data;
|
||
441 | int buf_size = avpkt->size;
|
||
442 | LagarithContext *l = avctx->priv_data; |
||
443 | AVFrame *const p = &l->picture;
|
||
444 | uint8_t frametype = 0;
|
||
445 | uint32_t offset_gu = 0, offset_bv = 0, offset_ry = 9; |
||
446 | |||
447 | AVFrame *picture = data; |
||
448 | |||
449 | if (p->data[0]) |
||
450 | avctx->release_buffer(avctx, p); |
||
451 | |||
452 | p->reference = 0;
|
||
453 | p->key_frame = 1;
|
||
454 | |||
455 | frametype = buf[0];
|
||
456 | |||
457 | offset_gu = AV_RL32(buf + 1);
|
||
458 | offset_bv = AV_RL32(buf + 5);
|
||
459 | |||
460 | switch (frametype) {
|
||
461 | case FRAME_ARITH_YV12:
|
||
462 | avctx->pix_fmt = PIX_FMT_YUV420P; |
||
463 | |||
464 | if (avctx->get_buffer(avctx, p) < 0) { |
||
465 | av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
|
||
466 | return -1; |
||
467 | } |
||
468 | |||
469 | lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
|
||
470 | p->linesize[0], buf + offset_ry,
|
||
471 | buf_size); |
||
472 | lag_decode_arith_plane(l, p->data[2], avctx->width / 2, |
||
473 | avctx->height / 2, p->linesize[2], |
||
474 | buf + offset_gu, buf_size); |
||
475 | lag_decode_arith_plane(l, p->data[1], avctx->width / 2, |
||
476 | avctx->height / 2, p->linesize[1], |
||
477 | buf + offset_bv, buf_size); |
||
478 | break;
|
||
479 | default:
|
||
480 | av_log(avctx, AV_LOG_ERROR, |
||
481 | "Unsupported Lagarith frame type: %#x\n", frametype);
|
||
482 | return -1; |
||
483 | } |
||
484 | |||
485 | *picture = *p; |
||
486 | *data_size = sizeof(AVFrame);
|
||
487 | |||
488 | return buf_size;
|
||
489 | } |
||
490 | |||
491 | static av_cold int lag_decode_init(AVCodecContext *avctx) |
||
492 | { |
||
493 | LagarithContext *l = avctx->priv_data; |
||
494 | l->avctx = avctx; |
||
495 | |||
496 | dsputil_init(&l->dsp, avctx); |
||
497 | |||
498 | return 0; |
||
499 | } |
||
500 | |||
501 | static av_cold int lag_decode_end(AVCodecContext *avctx) |
||
502 | { |
||
503 | LagarithContext *l = avctx->priv_data; |
||
504 | |||
505 | if (l->picture.data[0]) |
||
506 | avctx->release_buffer(avctx, &l->picture); |
||
507 | |||
508 | return 0; |
||
509 | } |
||
510 | |||
511 | AVCodec lagarith_decoder = { |
||
512 | "lagarith",
|
||
513 | CODEC_TYPE_VIDEO, |
||
514 | CODEC_ID_LAGARITH, |
||
515 | sizeof(LagarithContext),
|
||
516 | lag_decode_init, |
||
517 | NULL,
|
||
518 | lag_decode_end, |
||
519 | lag_decode_frame, |
||
520 | CODEC_CAP_DR1, |
||
521 | .long_name = NULL_IF_CONFIG_SMALL("Lagarith lossless"),
|
||
522 | }; |