ffmpeg / libavcodec / ac3enc.c @ b2755007
History | View | Annotate | Download (39.3 KB)
1 |
/*
|
---|---|
2 |
* The simplest AC-3 encoder
|
3 |
* Copyright (c) 2000 Fabrice Bellard
|
4 |
*
|
5 |
* This file is part of FFmpeg.
|
6 |
*
|
7 |
* FFmpeg is free software; you can redistribute it and/or
|
8 |
* modify it under the terms of the GNU Lesser General Public
|
9 |
* License as published by the Free Software Foundation; either
|
10 |
* version 2.1 of the License, or (at your option) any later version.
|
11 |
*
|
12 |
* FFmpeg is distributed in the hope that it will be useful,
|
13 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
15 |
* Lesser General Public License for more details.
|
16 |
*
|
17 |
* You should have received a copy of the GNU Lesser General Public
|
18 |
* License along with FFmpeg; if not, write to the Free Software
|
19 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
20 |
*/
|
21 |
|
22 |
/**
|
23 |
* @file libavcodec/ac3enc.c
|
24 |
* The simplest AC-3 encoder.
|
25 |
*/
|
26 |
//#define DEBUG
|
27 |
//#define DEBUG_BITALLOC
|
28 |
#include "libavutil/crc.h" |
29 |
#include "avcodec.h" |
30 |
#include "bitstream.h" // for ff_reverse |
31 |
#include "put_bits.h" |
32 |
#include "ac3.h" |
33 |
|
34 |
typedef struct AC3EncodeContext { |
35 |
PutBitContext pb; |
36 |
int nb_channels;
|
37 |
int nb_all_channels;
|
38 |
int lfe_channel;
|
39 |
int bit_rate;
|
40 |
unsigned int sample_rate; |
41 |
unsigned int bitstream_id; |
42 |
unsigned int frame_size_min; /* minimum frame size in case rounding is necessary */ |
43 |
unsigned int frame_size; /* current frame size in words */ |
44 |
unsigned int bits_written; |
45 |
unsigned int samples_written; |
46 |
int sr_shift;
|
47 |
unsigned int frame_size_code; |
48 |
unsigned int sr_code; /* frequency */ |
49 |
unsigned int channel_mode; |
50 |
int lfe;
|
51 |
unsigned int bitstream_mode; |
52 |
short last_samples[AC3_MAX_CHANNELS][256]; |
53 |
unsigned int chbwcod[AC3_MAX_CHANNELS]; |
54 |
int nb_coefs[AC3_MAX_CHANNELS];
|
55 |
|
56 |
/* bitrate allocation control */
|
57 |
int slow_gain_code, slow_decay_code, fast_decay_code, db_per_bit_code, floor_code;
|
58 |
AC3BitAllocParameters bit_alloc; |
59 |
int coarse_snr_offset;
|
60 |
int fast_gain_code[AC3_MAX_CHANNELS];
|
61 |
int fine_snr_offset[AC3_MAX_CHANNELS];
|
62 |
/* mantissa encoding */
|
63 |
int mant1_cnt, mant2_cnt, mant4_cnt;
|
64 |
} AC3EncodeContext; |
65 |
|
66 |
static int16_t costab[64]; |
67 |
static int16_t sintab[64]; |
68 |
static int16_t xcos1[128]; |
69 |
static int16_t xsin1[128]; |
70 |
|
71 |
#define MDCT_NBITS 9 |
72 |
#define N (1 << MDCT_NBITS) |
73 |
|
74 |
/* new exponents are sent if their Norm 1 exceed this number */
|
75 |
#define EXP_DIFF_THRESHOLD 1000 |
76 |
|
77 |
static inline int16_t fix15(float a) |
78 |
{ |
79 |
int v;
|
80 |
v = (int)(a * (float)(1 << 15)); |
81 |
if (v < -32767) |
82 |
v = -32767;
|
83 |
else if (v > 32767) |
84 |
v = 32767;
|
85 |
return v;
|
86 |
} |
87 |
|
88 |
typedef struct IComplex { |
89 |
short re,im;
|
90 |
} IComplex; |
91 |
|
92 |
static av_cold void fft_init(int ln) |
93 |
{ |
94 |
int i, n;
|
95 |
float alpha;
|
96 |
|
97 |
n = 1 << ln;
|
98 |
|
99 |
for(i=0;i<(n/2);i++) { |
100 |
alpha = 2 * M_PI * (float)i / (float)n; |
101 |
costab[i] = fix15(cos(alpha)); |
102 |
sintab[i] = fix15(sin(alpha)); |
103 |
} |
104 |
} |
105 |
|
106 |
/* butter fly op */
|
107 |
#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
|
108 |
{\ |
109 |
int ax, ay, bx, by;\
|
110 |
bx=pre1;\ |
111 |
by=pim1;\ |
112 |
ax=qre1;\ |
113 |
ay=qim1;\ |
114 |
pre = (bx + ax) >> 1;\
|
115 |
pim = (by + ay) >> 1;\
|
116 |
qre = (bx - ax) >> 1;\
|
117 |
qim = (by - ay) >> 1;\
|
118 |
} |
119 |
|
120 |
#define CMUL(pre, pim, are, aim, bre, bim) \
|
121 |
{\ |
122 |
pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15;\
|
123 |
pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15;\
|
124 |
} |
125 |
|
126 |
|
127 |
/* do a 2^n point complex fft on 2^ln points. */
|
128 |
static void fft(IComplex *z, int ln) |
129 |
{ |
130 |
int j, l, np, np2;
|
131 |
int nblocks, nloops;
|
132 |
register IComplex *p,*q;
|
133 |
int tmp_re, tmp_im;
|
134 |
|
135 |
np = 1 << ln;
|
136 |
|
137 |
/* reverse */
|
138 |
for(j=0;j<np;j++) { |
139 |
int k = ff_reverse[j] >> (8 - ln); |
140 |
if (k < j)
|
141 |
FFSWAP(IComplex, z[k], z[j]); |
142 |
} |
143 |
|
144 |
/* pass 0 */
|
145 |
|
146 |
p=&z[0];
|
147 |
j=(np >> 1);
|
148 |
do {
|
149 |
BF(p[0].re, p[0].im, p[1].re, p[1].im, |
150 |
p[0].re, p[0].im, p[1].re, p[1].im); |
151 |
p+=2;
|
152 |
} while (--j != 0); |
153 |
|
154 |
/* pass 1 */
|
155 |
|
156 |
p=&z[0];
|
157 |
j=np >> 2;
|
158 |
do {
|
159 |
BF(p[0].re, p[0].im, p[2].re, p[2].im, |
160 |
p[0].re, p[0].im, p[2].re, p[2].im); |
161 |
BF(p[1].re, p[1].im, p[3].re, p[3].im, |
162 |
p[1].re, p[1].im, p[3].im, -p[3].re); |
163 |
p+=4;
|
164 |
} while (--j != 0); |
165 |
|
166 |
/* pass 2 .. ln-1 */
|
167 |
|
168 |
nblocks = np >> 3;
|
169 |
nloops = 1 << 2; |
170 |
np2 = np >> 1;
|
171 |
do {
|
172 |
p = z; |
173 |
q = z + nloops; |
174 |
for (j = 0; j < nblocks; ++j) { |
175 |
|
176 |
BF(p->re, p->im, q->re, q->im, |
177 |
p->re, p->im, q->re, q->im); |
178 |
|
179 |
p++; |
180 |
q++; |
181 |
for(l = nblocks; l < np2; l += nblocks) {
|
182 |
CMUL(tmp_re, tmp_im, costab[l], -sintab[l], q->re, q->im); |
183 |
BF(p->re, p->im, q->re, q->im, |
184 |
p->re, p->im, tmp_re, tmp_im); |
185 |
p++; |
186 |
q++; |
187 |
} |
188 |
p += nloops; |
189 |
q += nloops; |
190 |
} |
191 |
nblocks = nblocks >> 1;
|
192 |
nloops = nloops << 1;
|
193 |
} while (nblocks != 0); |
194 |
} |
195 |
|
196 |
/* do a 512 point mdct */
|
197 |
static void mdct512(int32_t *out, int16_t *in) |
198 |
{ |
199 |
int i, re, im, re1, im1;
|
200 |
int16_t rot[N]; |
201 |
IComplex x[N/4];
|
202 |
|
203 |
/* shift to simplify computations */
|
204 |
for(i=0;i<N/4;i++) |
205 |
rot[i] = -in[i + 3*N/4]; |
206 |
for(i=N/4;i<N;i++) |
207 |
rot[i] = in[i - N/4];
|
208 |
|
209 |
/* pre rotation */
|
210 |
for(i=0;i<N/4;i++) { |
211 |
re = ((int)rot[2*i] - (int)rot[N-1-2*i]) >> 1; |
212 |
im = -((int)rot[N/2+2*i] - (int)rot[N/2-1-2*i]) >> 1; |
213 |
CMUL(x[i].re, x[i].im, re, im, -xcos1[i], xsin1[i]); |
214 |
} |
215 |
|
216 |
fft(x, MDCT_NBITS - 2);
|
217 |
|
218 |
/* post rotation */
|
219 |
for(i=0;i<N/4;i++) { |
220 |
re = x[i].re; |
221 |
im = x[i].im; |
222 |
CMUL(re1, im1, re, im, xsin1[i], xcos1[i]); |
223 |
out[2*i] = im1;
|
224 |
out[N/2-1-2*i] = re1; |
225 |
} |
226 |
} |
227 |
|
228 |
/* XXX: use another norm ? */
|
229 |
static int calc_exp_diff(uint8_t *exp1, uint8_t *exp2, int n) |
230 |
{ |
231 |
int sum, i;
|
232 |
sum = 0;
|
233 |
for(i=0;i<n;i++) { |
234 |
sum += abs(exp1[i] - exp2[i]); |
235 |
} |
236 |
return sum;
|
237 |
} |
238 |
|
239 |
static void compute_exp_strategy(uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS], |
240 |
uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
|
241 |
int ch, int is_lfe) |
242 |
{ |
243 |
int i, j;
|
244 |
int exp_diff;
|
245 |
|
246 |
/* estimate if the exponent variation & decide if they should be
|
247 |
reused in the next frame */
|
248 |
exp_strategy[0][ch] = EXP_NEW;
|
249 |
for(i=1;i<NB_BLOCKS;i++) { |
250 |
exp_diff = calc_exp_diff(exp[i][ch], exp[i-1][ch], N/2); |
251 |
#ifdef DEBUG
|
252 |
av_log(NULL, AV_LOG_DEBUG, "exp_diff=%d\n", exp_diff); |
253 |
#endif
|
254 |
if (exp_diff > EXP_DIFF_THRESHOLD)
|
255 |
exp_strategy[i][ch] = EXP_NEW; |
256 |
else
|
257 |
exp_strategy[i][ch] = EXP_REUSE; |
258 |
} |
259 |
if (is_lfe)
|
260 |
return;
|
261 |
|
262 |
/* now select the encoding strategy type : if exponents are often
|
263 |
recoded, we use a coarse encoding */
|
264 |
i = 0;
|
265 |
while (i < NB_BLOCKS) {
|
266 |
j = i + 1;
|
267 |
while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE)
|
268 |
j++; |
269 |
switch(j - i) {
|
270 |
case 1: |
271 |
exp_strategy[i][ch] = EXP_D45; |
272 |
break;
|
273 |
case 2: |
274 |
case 3: |
275 |
exp_strategy[i][ch] = EXP_D25; |
276 |
break;
|
277 |
default:
|
278 |
exp_strategy[i][ch] = EXP_D15; |
279 |
break;
|
280 |
} |
281 |
i = j; |
282 |
} |
283 |
} |
284 |
|
285 |
/* set exp[i] to min(exp[i], exp1[i]) */
|
286 |
static void exponent_min(uint8_t exp[N/2], uint8_t exp1[N/2], int n) |
287 |
{ |
288 |
int i;
|
289 |
|
290 |
for(i=0;i<n;i++) { |
291 |
if (exp1[i] < exp[i])
|
292 |
exp[i] = exp1[i]; |
293 |
} |
294 |
} |
295 |
|
296 |
/* update the exponents so that they are the ones the decoder will
|
297 |
decode. Return the number of bits used to code the exponents */
|
298 |
static int encode_exp(uint8_t encoded_exp[N/2], |
299 |
uint8_t exp[N/2],
|
300 |
int nb_exps,
|
301 |
int exp_strategy)
|
302 |
{ |
303 |
int group_size, nb_groups, i, j, k, exp_min;
|
304 |
uint8_t exp1[N/2];
|
305 |
|
306 |
switch(exp_strategy) {
|
307 |
case EXP_D15:
|
308 |
group_size = 1;
|
309 |
break;
|
310 |
case EXP_D25:
|
311 |
group_size = 2;
|
312 |
break;
|
313 |
default:
|
314 |
case EXP_D45:
|
315 |
group_size = 4;
|
316 |
break;
|
317 |
} |
318 |
nb_groups = ((nb_exps + (group_size * 3) - 4) / (3 * group_size)) * 3; |
319 |
|
320 |
/* for each group, compute the minimum exponent */
|
321 |
exp1[0] = exp[0]; /* DC exponent is handled separately */ |
322 |
k = 1;
|
323 |
for(i=1;i<=nb_groups;i++) { |
324 |
exp_min = exp[k]; |
325 |
assert(exp_min >= 0 && exp_min <= 24); |
326 |
for(j=1;j<group_size;j++) { |
327 |
if (exp[k+j] < exp_min)
|
328 |
exp_min = exp[k+j]; |
329 |
} |
330 |
exp1[i] = exp_min; |
331 |
k += group_size; |
332 |
} |
333 |
|
334 |
/* constraint for DC exponent */
|
335 |
if (exp1[0] > 15) |
336 |
exp1[0] = 15; |
337 |
|
338 |
/* Decrease the delta between each groups to within 2
|
339 |
* so that they can be differentially encoded */
|
340 |
for (i=1;i<=nb_groups;i++) |
341 |
exp1[i] = FFMIN(exp1[i], exp1[i-1] + 2); |
342 |
for (i=nb_groups-1;i>=0;i--) |
343 |
exp1[i] = FFMIN(exp1[i], exp1[i+1] + 2); |
344 |
|
345 |
/* now we have the exponent values the decoder will see */
|
346 |
encoded_exp[0] = exp1[0]; |
347 |
k = 1;
|
348 |
for(i=1;i<=nb_groups;i++) { |
349 |
for(j=0;j<group_size;j++) { |
350 |
encoded_exp[k+j] = exp1[i]; |
351 |
} |
352 |
k += group_size; |
353 |
} |
354 |
|
355 |
#if defined(DEBUG)
|
356 |
av_log(NULL, AV_LOG_DEBUG, "exponents: strategy=%d\n", exp_strategy); |
357 |
for(i=0;i<=nb_groups * group_size;i++) { |
358 |
av_log(NULL, AV_LOG_DEBUG, "%d ", encoded_exp[i]); |
359 |
} |
360 |
av_log(NULL, AV_LOG_DEBUG, "\n"); |
361 |
#endif
|
362 |
|
363 |
return 4 + (nb_groups / 3) * 7; |
364 |
} |
365 |
|
366 |
/* return the size in bits taken by the mantissa */
|
367 |
static int compute_mantissa_size(AC3EncodeContext *s, uint8_t *m, int nb_coefs) |
368 |
{ |
369 |
int bits, mant, i;
|
370 |
|
371 |
bits = 0;
|
372 |
for(i=0;i<nb_coefs;i++) { |
373 |
mant = m[i]; |
374 |
switch(mant) {
|
375 |
case 0: |
376 |
/* nothing */
|
377 |
break;
|
378 |
case 1: |
379 |
/* 3 mantissa in 5 bits */
|
380 |
if (s->mant1_cnt == 0) |
381 |
bits += 5;
|
382 |
if (++s->mant1_cnt == 3) |
383 |
s->mant1_cnt = 0;
|
384 |
break;
|
385 |
case 2: |
386 |
/* 3 mantissa in 7 bits */
|
387 |
if (s->mant2_cnt == 0) |
388 |
bits += 7;
|
389 |
if (++s->mant2_cnt == 3) |
390 |
s->mant2_cnt = 0;
|
391 |
break;
|
392 |
case 3: |
393 |
bits += 3;
|
394 |
break;
|
395 |
case 4: |
396 |
/* 2 mantissa in 7 bits */
|
397 |
if (s->mant4_cnt == 0) |
398 |
bits += 7;
|
399 |
if (++s->mant4_cnt == 2) |
400 |
s->mant4_cnt = 0;
|
401 |
break;
|
402 |
case 14: |
403 |
bits += 14;
|
404 |
break;
|
405 |
case 15: |
406 |
bits += 16;
|
407 |
break;
|
408 |
default:
|
409 |
bits += mant - 1;
|
410 |
break;
|
411 |
} |
412 |
} |
413 |
return bits;
|
414 |
} |
415 |
|
416 |
|
417 |
static void bit_alloc_masking(AC3EncodeContext *s, |
418 |
uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
|
419 |
uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS], |
420 |
int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
|
421 |
int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50])
|
422 |
{ |
423 |
int blk, ch;
|
424 |
int16_t band_psd[NB_BLOCKS][AC3_MAX_CHANNELS][50];
|
425 |
|
426 |
for(blk=0; blk<NB_BLOCKS; blk++) { |
427 |
for(ch=0;ch<s->nb_all_channels;ch++) { |
428 |
if(exp_strategy[blk][ch] == EXP_REUSE) {
|
429 |
memcpy(psd[blk][ch], psd[blk-1][ch], (N/2)*sizeof(int16_t)); |
430 |
memcpy(mask[blk][ch], mask[blk-1][ch], 50*sizeof(int16_t)); |
431 |
} else {
|
432 |
ff_ac3_bit_alloc_calc_psd(encoded_exp[blk][ch], 0,
|
433 |
s->nb_coefs[ch], |
434 |
psd[blk][ch], band_psd[blk][ch]); |
435 |
ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, band_psd[blk][ch], |
436 |
0, s->nb_coefs[ch],
|
437 |
ff_ac3_fast_gain_tab[s->fast_gain_code[ch]], |
438 |
ch == s->lfe_channel, |
439 |
DBA_NONE, 0, NULL, NULL, NULL, |
440 |
mask[blk][ch]); |
441 |
} |
442 |
} |
443 |
} |
444 |
} |
445 |
|
446 |
static int bit_alloc(AC3EncodeContext *s, |
447 |
int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50],
|
448 |
int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
|
449 |
uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
|
450 |
int frame_bits, int coarse_snr_offset, int fine_snr_offset) |
451 |
{ |
452 |
int i, ch;
|
453 |
int snr_offset;
|
454 |
|
455 |
snr_offset = (((coarse_snr_offset - 15) << 4) + fine_snr_offset) << 2; |
456 |
|
457 |
/* compute size */
|
458 |
for(i=0;i<NB_BLOCKS;i++) { |
459 |
s->mant1_cnt = 0;
|
460 |
s->mant2_cnt = 0;
|
461 |
s->mant4_cnt = 0;
|
462 |
for(ch=0;ch<s->nb_all_channels;ch++) { |
463 |
ff_ac3_bit_alloc_calc_bap(mask[i][ch], psd[i][ch], 0,
|
464 |
s->nb_coefs[ch], snr_offset, |
465 |
s->bit_alloc.floor, ff_ac3_bap_tab, |
466 |
bap[i][ch]); |
467 |
frame_bits += compute_mantissa_size(s, bap[i][ch], |
468 |
s->nb_coefs[ch]); |
469 |
} |
470 |
} |
471 |
#if 0
|
472 |
printf("csnr=%d fsnr=%d frame_bits=%d diff=%d\n",
|
473 |
coarse_snr_offset, fine_snr_offset, frame_bits,
|
474 |
16 * s->frame_size - ((frame_bits + 7) & ~7));
|
475 |
#endif
|
476 |
return 16 * s->frame_size - frame_bits; |
477 |
} |
478 |
|
479 |
#define SNR_INC1 4 |
480 |
|
481 |
static int compute_bit_allocation(AC3EncodeContext *s, |
482 |
uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
|
483 |
uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
|
484 |
uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS], |
485 |
int frame_bits)
|
486 |
{ |
487 |
int i, ch;
|
488 |
int coarse_snr_offset, fine_snr_offset;
|
489 |
uint8_t bap1[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
|
490 |
int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
|
491 |
int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50];
|
492 |
static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 }; |
493 |
|
494 |
/* init default parameters */
|
495 |
s->slow_decay_code = 2;
|
496 |
s->fast_decay_code = 1;
|
497 |
s->slow_gain_code = 1;
|
498 |
s->db_per_bit_code = 2;
|
499 |
s->floor_code = 4;
|
500 |
for(ch=0;ch<s->nb_all_channels;ch++) |
501 |
s->fast_gain_code[ch] = 4;
|
502 |
|
503 |
/* compute real values */
|
504 |
s->bit_alloc.sr_code = s->sr_code; |
505 |
s->bit_alloc.sr_shift = s->sr_shift; |
506 |
s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->sr_shift; |
507 |
s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->sr_shift; |
508 |
s->bit_alloc.slow_gain = ff_ac3_slow_gain_tab[s->slow_gain_code]; |
509 |
s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code]; |
510 |
s->bit_alloc.floor = ff_ac3_floor_tab[s->floor_code]; |
511 |
|
512 |
/* header size */
|
513 |
frame_bits += 65;
|
514 |
// if (s->channel_mode == 2)
|
515 |
// frame_bits += 2;
|
516 |
frame_bits += frame_bits_inc[s->channel_mode]; |
517 |
|
518 |
/* audio blocks */
|
519 |
for(i=0;i<NB_BLOCKS;i++) { |
520 |
frame_bits += s->nb_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */ |
521 |
if (s->channel_mode == AC3_CHMODE_STEREO) {
|
522 |
frame_bits++; /* rematstr */
|
523 |
if(i==0) frame_bits += 4; |
524 |
} |
525 |
frame_bits += 2 * s->nb_channels; /* chexpstr[2] * c */ |
526 |
if (s->lfe)
|
527 |
frame_bits++; /* lfeexpstr */
|
528 |
for(ch=0;ch<s->nb_channels;ch++) { |
529 |
if (exp_strategy[i][ch] != EXP_REUSE)
|
530 |
frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */ |
531 |
} |
532 |
frame_bits++; /* baie */
|
533 |
frame_bits++; /* snr */
|
534 |
frame_bits += 2; /* delta / skip */ |
535 |
} |
536 |
frame_bits++; /* cplinu for block 0 */
|
537 |
/* bit alloc info */
|
538 |
/* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */
|
539 |
/* csnroffset[6] */
|
540 |
/* (fsnoffset[4] + fgaincod[4]) * c */
|
541 |
frame_bits += 2*4 + 3 + 6 + s->nb_all_channels * (4 + 3); |
542 |
|
543 |
/* auxdatae, crcrsv */
|
544 |
frame_bits += 2;
|
545 |
|
546 |
/* CRC */
|
547 |
frame_bits += 16;
|
548 |
|
549 |
/* calculate psd and masking curve before doing bit allocation */
|
550 |
bit_alloc_masking(s, encoded_exp, exp_strategy, psd, mask); |
551 |
|
552 |
/* now the big work begins : do the bit allocation. Modify the snr
|
553 |
offset until we can pack everything in the requested frame size */
|
554 |
|
555 |
coarse_snr_offset = s->coarse_snr_offset; |
556 |
while (coarse_snr_offset >= 0 && |
557 |
bit_alloc(s, mask, psd, bap, frame_bits, coarse_snr_offset, 0) < 0) |
558 |
coarse_snr_offset -= SNR_INC1; |
559 |
if (coarse_snr_offset < 0) { |
560 |
av_log(NULL, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n"); |
561 |
return -1; |
562 |
} |
563 |
while ((coarse_snr_offset + SNR_INC1) <= 63 && |
564 |
bit_alloc(s, mask, psd, bap1, frame_bits, |
565 |
coarse_snr_offset + SNR_INC1, 0) >= 0) { |
566 |
coarse_snr_offset += SNR_INC1; |
567 |
memcpy(bap, bap1, sizeof(bap1));
|
568 |
} |
569 |
while ((coarse_snr_offset + 1) <= 63 && |
570 |
bit_alloc(s, mask, psd, bap1, frame_bits, coarse_snr_offset + 1, 0) >= 0) { |
571 |
coarse_snr_offset++; |
572 |
memcpy(bap, bap1, sizeof(bap1));
|
573 |
} |
574 |
|
575 |
fine_snr_offset = 0;
|
576 |
while ((fine_snr_offset + SNR_INC1) <= 15 && |
577 |
bit_alloc(s, mask, psd, bap1, frame_bits, |
578 |
coarse_snr_offset, fine_snr_offset + SNR_INC1) >= 0) {
|
579 |
fine_snr_offset += SNR_INC1; |
580 |
memcpy(bap, bap1, sizeof(bap1));
|
581 |
} |
582 |
while ((fine_snr_offset + 1) <= 15 && |
583 |
bit_alloc(s, mask, psd, bap1, frame_bits, |
584 |
coarse_snr_offset, fine_snr_offset + 1) >= 0) { |
585 |
fine_snr_offset++; |
586 |
memcpy(bap, bap1, sizeof(bap1));
|
587 |
} |
588 |
|
589 |
s->coarse_snr_offset = coarse_snr_offset; |
590 |
for(ch=0;ch<s->nb_all_channels;ch++) |
591 |
s->fine_snr_offset[ch] = fine_snr_offset; |
592 |
#if defined(DEBUG_BITALLOC)
|
593 |
{ |
594 |
int j;
|
595 |
|
596 |
for(i=0;i<6;i++) { |
597 |
for(ch=0;ch<s->nb_all_channels;ch++) { |
598 |
printf("Block #%d Ch%d:\n", i, ch);
|
599 |
printf("bap=");
|
600 |
for(j=0;j<s->nb_coefs[ch];j++) { |
601 |
printf("%d ",bap[i][ch][j]);
|
602 |
} |
603 |
printf("\n");
|
604 |
} |
605 |
} |
606 |
} |
607 |
#endif
|
608 |
return 0; |
609 |
} |
610 |
|
611 |
static av_cold int AC3_encode_init(AVCodecContext *avctx) |
612 |
{ |
613 |
int freq = avctx->sample_rate;
|
614 |
int bitrate = avctx->bit_rate;
|
615 |
int channels = avctx->channels;
|
616 |
AC3EncodeContext *s = avctx->priv_data; |
617 |
int i, j, ch;
|
618 |
float alpha;
|
619 |
int bw_code;
|
620 |
static const uint8_t channel_mode_defs[6] = { |
621 |
0x01, /* C */ |
622 |
0x02, /* L R */ |
623 |
0x03, /* L C R */ |
624 |
0x06, /* L R SL SR */ |
625 |
0x07, /* L C R SL SR */ |
626 |
0x07, /* L C R SL SR (+LFE) */ |
627 |
}; |
628 |
|
629 |
avctx->frame_size = AC3_FRAME_SIZE; |
630 |
|
631 |
ac3_common_init(); |
632 |
|
633 |
/* number of channels */
|
634 |
if (channels < 1 || channels > 6) |
635 |
return -1; |
636 |
s->channel_mode = channel_mode_defs[channels - 1];
|
637 |
s->lfe = (channels == 6) ? 1 : 0; |
638 |
s->nb_all_channels = channels; |
639 |
s->nb_channels = channels > 5 ? 5 : channels; |
640 |
s->lfe_channel = s->lfe ? 5 : -1; |
641 |
|
642 |
/* frequency */
|
643 |
for(i=0;i<3;i++) { |
644 |
for(j=0;j<3;j++) |
645 |
if ((ff_ac3_sample_rate_tab[j] >> i) == freq)
|
646 |
goto found;
|
647 |
} |
648 |
return -1; |
649 |
found:
|
650 |
s->sample_rate = freq; |
651 |
s->sr_shift = i; |
652 |
s->sr_code = j; |
653 |
s->bitstream_id = 8 + s->sr_shift;
|
654 |
s->bitstream_mode = 0; /* complete main audio service */ |
655 |
|
656 |
/* bitrate & frame size */
|
657 |
for(i=0;i<19;i++) { |
658 |
if ((ff_ac3_bitrate_tab[i] >> s->sr_shift)*1000 == bitrate) |
659 |
break;
|
660 |
} |
661 |
if (i == 19) |
662 |
return -1; |
663 |
s->bit_rate = bitrate; |
664 |
s->frame_size_code = i << 1;
|
665 |
s->frame_size_min = ff_ac3_frame_size_tab[s->frame_size_code][s->sr_code]; |
666 |
s->bits_written = 0;
|
667 |
s->samples_written = 0;
|
668 |
s->frame_size = s->frame_size_min; |
669 |
|
670 |
/* bit allocation init */
|
671 |
if(avctx->cutoff) {
|
672 |
/* calculate bandwidth based on user-specified cutoff frequency */
|
673 |
int cutoff = av_clip(avctx->cutoff, 1, s->sample_rate >> 1); |
674 |
int fbw_coeffs = cutoff * 512 / s->sample_rate; |
675 |
bw_code = av_clip((fbw_coeffs - 73) / 3, 0, 60); |
676 |
} else {
|
677 |
/* use default bandwidth setting */
|
678 |
/* XXX: should compute the bandwidth according to the frame
|
679 |
size, so that we avoid annoying high frequency artifacts */
|
680 |
bw_code = 50;
|
681 |
} |
682 |
for(ch=0;ch<s->nb_channels;ch++) { |
683 |
/* bandwidth for each channel */
|
684 |
s->chbwcod[ch] = bw_code; |
685 |
s->nb_coefs[ch] = bw_code * 3 + 73; |
686 |
} |
687 |
if (s->lfe) {
|
688 |
s->nb_coefs[s->lfe_channel] = 7; /* fixed */ |
689 |
} |
690 |
/* initial snr offset */
|
691 |
s->coarse_snr_offset = 40;
|
692 |
|
693 |
/* mdct init */
|
694 |
fft_init(MDCT_NBITS - 2);
|
695 |
for(i=0;i<N/4;i++) { |
696 |
alpha = 2 * M_PI * (i + 1.0 / 8.0) / (float)N; |
697 |
xcos1[i] = fix15(-cos(alpha)); |
698 |
xsin1[i] = fix15(-sin(alpha)); |
699 |
} |
700 |
|
701 |
avctx->coded_frame= avcodec_alloc_frame(); |
702 |
avctx->coded_frame->key_frame= 1;
|
703 |
|
704 |
return 0; |
705 |
} |
706 |
|
707 |
/* output the AC-3 frame header */
|
708 |
static void output_frame_header(AC3EncodeContext *s, unsigned char *frame) |
709 |
{ |
710 |
init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE); |
711 |
|
712 |
put_bits(&s->pb, 16, 0x0b77); /* frame header */ |
713 |
put_bits(&s->pb, 16, 0); /* crc1: will be filled later */ |
714 |
put_bits(&s->pb, 2, s->sr_code);
|
715 |
put_bits(&s->pb, 6, s->frame_size_code + (s->frame_size - s->frame_size_min));
|
716 |
put_bits(&s->pb, 5, s->bitstream_id);
|
717 |
put_bits(&s->pb, 3, s->bitstream_mode);
|
718 |
put_bits(&s->pb, 3, s->channel_mode);
|
719 |
if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO) |
720 |
put_bits(&s->pb, 2, 1); /* XXX -4.5 dB */ |
721 |
if (s->channel_mode & 0x04) |
722 |
put_bits(&s->pb, 2, 1); /* XXX -6 dB */ |
723 |
if (s->channel_mode == AC3_CHMODE_STEREO)
|
724 |
put_bits(&s->pb, 2, 0); /* surround not indicated */ |
725 |
put_bits(&s->pb, 1, s->lfe); /* LFE */ |
726 |
put_bits(&s->pb, 5, 31); /* dialog norm: -31 db */ |
727 |
put_bits(&s->pb, 1, 0); /* no compression control word */ |
728 |
put_bits(&s->pb, 1, 0); /* no lang code */ |
729 |
put_bits(&s->pb, 1, 0); /* no audio production info */ |
730 |
put_bits(&s->pb, 1, 0); /* no copyright */ |
731 |
put_bits(&s->pb, 1, 1); /* original bitstream */ |
732 |
put_bits(&s->pb, 1, 0); /* no time code 1 */ |
733 |
put_bits(&s->pb, 1, 0); /* no time code 2 */ |
734 |
put_bits(&s->pb, 1, 0); /* no additional bit stream info */ |
735 |
} |
736 |
|
737 |
/* symetric quantization on 'levels' levels */
|
738 |
static inline int sym_quant(int c, int e, int levels) |
739 |
{ |
740 |
int v;
|
741 |
|
742 |
if (c >= 0) { |
743 |
v = (levels * (c << e)) >> 24;
|
744 |
v = (v + 1) >> 1; |
745 |
v = (levels >> 1) + v;
|
746 |
} else {
|
747 |
v = (levels * ((-c) << e)) >> 24;
|
748 |
v = (v + 1) >> 1; |
749 |
v = (levels >> 1) - v;
|
750 |
} |
751 |
assert (v >= 0 && v < levels);
|
752 |
return v;
|
753 |
} |
754 |
|
755 |
/* asymetric quantization on 2^qbits levels */
|
756 |
static inline int asym_quant(int c, int e, int qbits) |
757 |
{ |
758 |
int lshift, m, v;
|
759 |
|
760 |
lshift = e + qbits - 24;
|
761 |
if (lshift >= 0) |
762 |
v = c << lshift; |
763 |
else
|
764 |
v = c >> (-lshift); |
765 |
/* rounding */
|
766 |
v = (v + 1) >> 1; |
767 |
m = (1 << (qbits-1)); |
768 |
if (v >= m)
|
769 |
v = m - 1;
|
770 |
assert(v >= -m); |
771 |
return v & ((1 << qbits)-1); |
772 |
} |
773 |
|
774 |
/* Output one audio block. There are NB_BLOCKS audio blocks in one AC-3
|
775 |
frame */
|
776 |
static void output_audio_block(AC3EncodeContext *s, |
777 |
uint8_t exp_strategy[AC3_MAX_CHANNELS], |
778 |
uint8_t encoded_exp[AC3_MAX_CHANNELS][N/2],
|
779 |
uint8_t bap[AC3_MAX_CHANNELS][N/2],
|
780 |
int32_t mdct_coefs[AC3_MAX_CHANNELS][N/2],
|
781 |
int8_t global_exp[AC3_MAX_CHANNELS], |
782 |
int block_num)
|
783 |
{ |
784 |
int ch, nb_groups, group_size, i, baie, rbnd;
|
785 |
uint8_t *p; |
786 |
uint16_t qmant[AC3_MAX_CHANNELS][N/2];
|
787 |
int exp0, exp1;
|
788 |
int mant1_cnt, mant2_cnt, mant4_cnt;
|
789 |
uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; |
790 |
int delta0, delta1, delta2;
|
791 |
|
792 |
for(ch=0;ch<s->nb_channels;ch++) |
793 |
put_bits(&s->pb, 1, 0); /* 512 point MDCT */ |
794 |
for(ch=0;ch<s->nb_channels;ch++) |
795 |
put_bits(&s->pb, 1, 1); /* no dither */ |
796 |
put_bits(&s->pb, 1, 0); /* no dynamic range */ |
797 |
if (block_num == 0) { |
798 |
/* for block 0, even if no coupling, we must say it. This is a
|
799 |
waste of bit :-) */
|
800 |
put_bits(&s->pb, 1, 1); /* coupling strategy present */ |
801 |
put_bits(&s->pb, 1, 0); /* no coupling strategy */ |
802 |
} else {
|
803 |
put_bits(&s->pb, 1, 0); /* no new coupling strategy */ |
804 |
} |
805 |
|
806 |
if (s->channel_mode == AC3_CHMODE_STEREO)
|
807 |
{ |
808 |
if(block_num==0) |
809 |
{ |
810 |
/* first block must define rematrixing (rematstr) */
|
811 |
put_bits(&s->pb, 1, 1); |
812 |
|
813 |
/* dummy rematrixing rematflg(1:4)=0 */
|
814 |
for (rbnd=0;rbnd<4;rbnd++) |
815 |
put_bits(&s->pb, 1, 0); |
816 |
} |
817 |
else
|
818 |
{ |
819 |
/* no matrixing (but should be used in the future) */
|
820 |
put_bits(&s->pb, 1, 0); |
821 |
} |
822 |
} |
823 |
|
824 |
#if defined(DEBUG)
|
825 |
{ |
826 |
static int count = 0; |
827 |
av_log(NULL, AV_LOG_DEBUG, "Block #%d (%d)\n", block_num, count++); |
828 |
} |
829 |
#endif
|
830 |
/* exponent strategy */
|
831 |
for(ch=0;ch<s->nb_channels;ch++) { |
832 |
put_bits(&s->pb, 2, exp_strategy[ch]);
|
833 |
} |
834 |
|
835 |
if (s->lfe) {
|
836 |
put_bits(&s->pb, 1, exp_strategy[s->lfe_channel]);
|
837 |
} |
838 |
|
839 |
for(ch=0;ch<s->nb_channels;ch++) { |
840 |
if (exp_strategy[ch] != EXP_REUSE)
|
841 |
put_bits(&s->pb, 6, s->chbwcod[ch]);
|
842 |
} |
843 |
|
844 |
/* exponents */
|
845 |
for (ch = 0; ch < s->nb_all_channels; ch++) { |
846 |
switch(exp_strategy[ch]) {
|
847 |
case EXP_REUSE:
|
848 |
continue;
|
849 |
case EXP_D15:
|
850 |
group_size = 1;
|
851 |
break;
|
852 |
case EXP_D25:
|
853 |
group_size = 2;
|
854 |
break;
|
855 |
default:
|
856 |
case EXP_D45:
|
857 |
group_size = 4;
|
858 |
break;
|
859 |
} |
860 |
nb_groups = (s->nb_coefs[ch] + (group_size * 3) - 4) / (3 * group_size); |
861 |
p = encoded_exp[ch]; |
862 |
|
863 |
/* first exponent */
|
864 |
exp1 = *p++; |
865 |
put_bits(&s->pb, 4, exp1);
|
866 |
|
867 |
/* next ones are delta encoded */
|
868 |
for(i=0;i<nb_groups;i++) { |
869 |
/* merge three delta in one code */
|
870 |
exp0 = exp1; |
871 |
exp1 = p[0];
|
872 |
p += group_size; |
873 |
delta0 = exp1 - exp0 + 2;
|
874 |
|
875 |
exp0 = exp1; |
876 |
exp1 = p[0];
|
877 |
p += group_size; |
878 |
delta1 = exp1 - exp0 + 2;
|
879 |
|
880 |
exp0 = exp1; |
881 |
exp1 = p[0];
|
882 |
p += group_size; |
883 |
delta2 = exp1 - exp0 + 2;
|
884 |
|
885 |
put_bits(&s->pb, 7, ((delta0 * 5 + delta1) * 5) + delta2); |
886 |
} |
887 |
|
888 |
if (ch != s->lfe_channel)
|
889 |
put_bits(&s->pb, 2, 0); /* no gain range info */ |
890 |
} |
891 |
|
892 |
/* bit allocation info */
|
893 |
baie = (block_num == 0);
|
894 |
put_bits(&s->pb, 1, baie);
|
895 |
if (baie) {
|
896 |
put_bits(&s->pb, 2, s->slow_decay_code);
|
897 |
put_bits(&s->pb, 2, s->fast_decay_code);
|
898 |
put_bits(&s->pb, 2, s->slow_gain_code);
|
899 |
put_bits(&s->pb, 2, s->db_per_bit_code);
|
900 |
put_bits(&s->pb, 3, s->floor_code);
|
901 |
} |
902 |
|
903 |
/* snr offset */
|
904 |
put_bits(&s->pb, 1, baie); /* always present with bai */ |
905 |
if (baie) {
|
906 |
put_bits(&s->pb, 6, s->coarse_snr_offset);
|
907 |
for(ch=0;ch<s->nb_all_channels;ch++) { |
908 |
put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
|
909 |
put_bits(&s->pb, 3, s->fast_gain_code[ch]);
|
910 |
} |
911 |
} |
912 |
|
913 |
put_bits(&s->pb, 1, 0); /* no delta bit allocation */ |
914 |
put_bits(&s->pb, 1, 0); /* no data to skip */ |
915 |
|
916 |
/* mantissa encoding : we use two passes to handle the grouping. A
|
917 |
one pass method may be faster, but it would necessitate to
|
918 |
modify the output stream. */
|
919 |
|
920 |
/* first pass: quantize */
|
921 |
mant1_cnt = mant2_cnt = mant4_cnt = 0;
|
922 |
qmant1_ptr = qmant2_ptr = qmant4_ptr = NULL;
|
923 |
|
924 |
for (ch = 0; ch < s->nb_all_channels; ch++) { |
925 |
int b, c, e, v;
|
926 |
|
927 |
for(i=0;i<s->nb_coefs[ch];i++) { |
928 |
c = mdct_coefs[ch][i]; |
929 |
e = encoded_exp[ch][i] - global_exp[ch]; |
930 |
b = bap[ch][i]; |
931 |
switch(b) {
|
932 |
case 0: |
933 |
v = 0;
|
934 |
break;
|
935 |
case 1: |
936 |
v = sym_quant(c, e, 3);
|
937 |
switch(mant1_cnt) {
|
938 |
case 0: |
939 |
qmant1_ptr = &qmant[ch][i]; |
940 |
v = 9 * v;
|
941 |
mant1_cnt = 1;
|
942 |
break;
|
943 |
case 1: |
944 |
*qmant1_ptr += 3 * v;
|
945 |
mant1_cnt = 2;
|
946 |
v = 128;
|
947 |
break;
|
948 |
default:
|
949 |
*qmant1_ptr += v; |
950 |
mant1_cnt = 0;
|
951 |
v = 128;
|
952 |
break;
|
953 |
} |
954 |
break;
|
955 |
case 2: |
956 |
v = sym_quant(c, e, 5);
|
957 |
switch(mant2_cnt) {
|
958 |
case 0: |
959 |
qmant2_ptr = &qmant[ch][i]; |
960 |
v = 25 * v;
|
961 |
mant2_cnt = 1;
|
962 |
break;
|
963 |
case 1: |
964 |
*qmant2_ptr += 5 * v;
|
965 |
mant2_cnt = 2;
|
966 |
v = 128;
|
967 |
break;
|
968 |
default:
|
969 |
*qmant2_ptr += v; |
970 |
mant2_cnt = 0;
|
971 |
v = 128;
|
972 |
break;
|
973 |
} |
974 |
break;
|
975 |
case 3: |
976 |
v = sym_quant(c, e, 7);
|
977 |
break;
|
978 |
case 4: |
979 |
v = sym_quant(c, e, 11);
|
980 |
switch(mant4_cnt) {
|
981 |
case 0: |
982 |
qmant4_ptr = &qmant[ch][i]; |
983 |
v = 11 * v;
|
984 |
mant4_cnt = 1;
|
985 |
break;
|
986 |
default:
|
987 |
*qmant4_ptr += v; |
988 |
mant4_cnt = 0;
|
989 |
v = 128;
|
990 |
break;
|
991 |
} |
992 |
break;
|
993 |
case 5: |
994 |
v = sym_quant(c, e, 15);
|
995 |
break;
|
996 |
case 14: |
997 |
v = asym_quant(c, e, 14);
|
998 |
break;
|
999 |
case 15: |
1000 |
v = asym_quant(c, e, 16);
|
1001 |
break;
|
1002 |
default:
|
1003 |
v = asym_quant(c, e, b - 1);
|
1004 |
break;
|
1005 |
} |
1006 |
qmant[ch][i] = v; |
1007 |
} |
1008 |
} |
1009 |
|
1010 |
/* second pass : output the values */
|
1011 |
for (ch = 0; ch < s->nb_all_channels; ch++) { |
1012 |
int b, q;
|
1013 |
|
1014 |
for(i=0;i<s->nb_coefs[ch];i++) { |
1015 |
q = qmant[ch][i]; |
1016 |
b = bap[ch][i]; |
1017 |
switch(b) {
|
1018 |
case 0: |
1019 |
break;
|
1020 |
case 1: |
1021 |
if (q != 128) |
1022 |
put_bits(&s->pb, 5, q);
|
1023 |
break;
|
1024 |
case 2: |
1025 |
if (q != 128) |
1026 |
put_bits(&s->pb, 7, q);
|
1027 |
break;
|
1028 |
case 3: |
1029 |
put_bits(&s->pb, 3, q);
|
1030 |
break;
|
1031 |
case 4: |
1032 |
if (q != 128) |
1033 |
put_bits(&s->pb, 7, q);
|
1034 |
break;
|
1035 |
case 14: |
1036 |
put_bits(&s->pb, 14, q);
|
1037 |
break;
|
1038 |
case 15: |
1039 |
put_bits(&s->pb, 16, q);
|
1040 |
break;
|
1041 |
default:
|
1042 |
put_bits(&s->pb, b - 1, q);
|
1043 |
break;
|
1044 |
} |
1045 |
} |
1046 |
} |
1047 |
} |
1048 |
|
1049 |
#define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16)) |
1050 |
|
1051 |
static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly) |
1052 |
{ |
1053 |
unsigned int c; |
1054 |
|
1055 |
c = 0;
|
1056 |
while (a) {
|
1057 |
if (a & 1) |
1058 |
c ^= b; |
1059 |
a = a >> 1;
|
1060 |
b = b << 1;
|
1061 |
if (b & (1 << 16)) |
1062 |
b ^= poly; |
1063 |
} |
1064 |
return c;
|
1065 |
} |
1066 |
|
1067 |
static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly) |
1068 |
{ |
1069 |
unsigned int r; |
1070 |
r = 1;
|
1071 |
while (n) {
|
1072 |
if (n & 1) |
1073 |
r = mul_poly(r, a, poly); |
1074 |
a = mul_poly(a, a, poly); |
1075 |
n >>= 1;
|
1076 |
} |
1077 |
return r;
|
1078 |
} |
1079 |
|
1080 |
|
1081 |
/* compute log2(max(abs(tab[]))) */
|
1082 |
static int log2_tab(int16_t *tab, int n) |
1083 |
{ |
1084 |
int i, v;
|
1085 |
|
1086 |
v = 0;
|
1087 |
for(i=0;i<n;i++) { |
1088 |
v |= abs(tab[i]); |
1089 |
} |
1090 |
return av_log2(v);
|
1091 |
} |
1092 |
|
1093 |
static void lshift_tab(int16_t *tab, int n, int lshift) |
1094 |
{ |
1095 |
int i;
|
1096 |
|
1097 |
if (lshift > 0) { |
1098 |
for(i=0;i<n;i++) { |
1099 |
tab[i] <<= lshift; |
1100 |
} |
1101 |
} else if (lshift < 0) { |
1102 |
lshift = -lshift; |
1103 |
for(i=0;i<n;i++) { |
1104 |
tab[i] >>= lshift; |
1105 |
} |
1106 |
} |
1107 |
} |
1108 |
|
1109 |
/* fill the end of the frame and compute the two crcs */
|
1110 |
static int output_frame_end(AC3EncodeContext *s) |
1111 |
{ |
1112 |
int frame_size, frame_size_58, n, crc1, crc2, crc_inv;
|
1113 |
uint8_t *frame; |
1114 |
|
1115 |
frame_size = s->frame_size; /* frame size in words */
|
1116 |
/* align to 8 bits */
|
1117 |
flush_put_bits(&s->pb); |
1118 |
/* add zero bytes to reach the frame size */
|
1119 |
frame = s->pb.buf; |
1120 |
n = 2 * s->frame_size - (pbBufPtr(&s->pb) - frame) - 2; |
1121 |
assert(n >= 0);
|
1122 |
if(n>0) |
1123 |
memset(pbBufPtr(&s->pb), 0, n);
|
1124 |
|
1125 |
/* Now we must compute both crcs : this is not so easy for crc1
|
1126 |
because it is at the beginning of the data... */
|
1127 |
frame_size_58 = (frame_size >> 1) + (frame_size >> 3); |
1128 |
crc1 = bswap_16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
|
1129 |
frame + 4, 2 * frame_size_58 - 4)); |
1130 |
/* XXX: could precompute crc_inv */
|
1131 |
crc_inv = pow_poly((CRC16_POLY >> 1), (16 * frame_size_58) - 16, CRC16_POLY); |
1132 |
crc1 = mul_poly(crc_inv, crc1, CRC16_POLY); |
1133 |
AV_WB16(frame+2,crc1);
|
1134 |
|
1135 |
crc2 = bswap_16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
|
1136 |
frame + 2 * frame_size_58,
|
1137 |
(frame_size - frame_size_58) * 2 - 2)); |
1138 |
AV_WB16(frame+2*frame_size-2,crc2); |
1139 |
|
1140 |
// printf("n=%d frame_size=%d\n", n, frame_size);
|
1141 |
return frame_size * 2; |
1142 |
} |
1143 |
|
1144 |
static int AC3_encode_frame(AVCodecContext *avctx, |
1145 |
unsigned char *frame, int buf_size, void *data) |
1146 |
{ |
1147 |
AC3EncodeContext *s = avctx->priv_data; |
1148 |
int16_t *samples = data; |
1149 |
int i, j, k, v, ch;
|
1150 |
int16_t input_samples[N]; |
1151 |
int32_t mdct_coef[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
|
1152 |
uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
|
1153 |
uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS]; |
1154 |
uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
|
1155 |
uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
|
1156 |
int8_t exp_samples[NB_BLOCKS][AC3_MAX_CHANNELS]; |
1157 |
int frame_bits;
|
1158 |
|
1159 |
frame_bits = 0;
|
1160 |
for(ch=0;ch<s->nb_all_channels;ch++) { |
1161 |
/* fixed mdct to the six sub blocks & exponent computation */
|
1162 |
for(i=0;i<NB_BLOCKS;i++) { |
1163 |
int16_t *sptr; |
1164 |
int sinc;
|
1165 |
|
1166 |
/* compute input samples */
|
1167 |
memcpy(input_samples, s->last_samples[ch], N/2 * sizeof(int16_t)); |
1168 |
sinc = s->nb_all_channels; |
1169 |
sptr = samples + (sinc * (N/2) * i) + ch;
|
1170 |
for(j=0;j<N/2;j++) { |
1171 |
v = *sptr; |
1172 |
input_samples[j + N/2] = v;
|
1173 |
s->last_samples[ch][j] = v; |
1174 |
sptr += sinc; |
1175 |
} |
1176 |
|
1177 |
/* apply the MDCT window */
|
1178 |
for(j=0;j<N/2;j++) { |
1179 |
input_samples[j] = MUL16(input_samples[j], |
1180 |
ff_ac3_window[j]) >> 15;
|
1181 |
input_samples[N-j-1] = MUL16(input_samples[N-j-1], |
1182 |
ff_ac3_window[j]) >> 15;
|
1183 |
} |
1184 |
|
1185 |
/* Normalize the samples to use the maximum available
|
1186 |
precision */
|
1187 |
v = 14 - log2_tab(input_samples, N);
|
1188 |
if (v < 0) |
1189 |
v = 0;
|
1190 |
exp_samples[i][ch] = v - 9;
|
1191 |
lshift_tab(input_samples, N, v); |
1192 |
|
1193 |
/* do the MDCT */
|
1194 |
mdct512(mdct_coef[i][ch], input_samples); |
1195 |
|
1196 |
/* compute "exponents". We take into account the
|
1197 |
normalization there */
|
1198 |
for(j=0;j<N/2;j++) { |
1199 |
int e;
|
1200 |
v = abs(mdct_coef[i][ch][j]); |
1201 |
if (v == 0) |
1202 |
e = 24;
|
1203 |
else {
|
1204 |
e = 23 - av_log2(v) + exp_samples[i][ch];
|
1205 |
if (e >= 24) { |
1206 |
e = 24;
|
1207 |
mdct_coef[i][ch][j] = 0;
|
1208 |
} |
1209 |
} |
1210 |
exp[i][ch][j] = e; |
1211 |
} |
1212 |
} |
1213 |
|
1214 |
compute_exp_strategy(exp_strategy, exp, ch, ch == s->lfe_channel); |
1215 |
|
1216 |
/* compute the exponents as the decoder will see them. The
|
1217 |
EXP_REUSE case must be handled carefully : we select the
|
1218 |
min of the exponents */
|
1219 |
i = 0;
|
1220 |
while (i < NB_BLOCKS) {
|
1221 |
j = i + 1;
|
1222 |
while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE) {
|
1223 |
exponent_min(exp[i][ch], exp[j][ch], s->nb_coefs[ch]); |
1224 |
j++; |
1225 |
} |
1226 |
frame_bits += encode_exp(encoded_exp[i][ch], |
1227 |
exp[i][ch], s->nb_coefs[ch], |
1228 |
exp_strategy[i][ch]); |
1229 |
/* copy encoded exponents for reuse case */
|
1230 |
for(k=i+1;k<j;k++) { |
1231 |
memcpy(encoded_exp[k][ch], encoded_exp[i][ch], |
1232 |
s->nb_coefs[ch] * sizeof(uint8_t));
|
1233 |
} |
1234 |
i = j; |
1235 |
} |
1236 |
} |
1237 |
|
1238 |
/* adjust for fractional frame sizes */
|
1239 |
while(s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
|
1240 |
s->bits_written -= s->bit_rate; |
1241 |
s->samples_written -= s->sample_rate; |
1242 |
} |
1243 |
s->frame_size = s->frame_size_min + (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate); |
1244 |
s->bits_written += s->frame_size * 16;
|
1245 |
s->samples_written += AC3_FRAME_SIZE; |
1246 |
|
1247 |
compute_bit_allocation(s, bap, encoded_exp, exp_strategy, frame_bits); |
1248 |
/* everything is known... let's output the frame */
|
1249 |
output_frame_header(s, frame); |
1250 |
|
1251 |
for(i=0;i<NB_BLOCKS;i++) { |
1252 |
output_audio_block(s, exp_strategy[i], encoded_exp[i], |
1253 |
bap[i], mdct_coef[i], exp_samples[i], i); |
1254 |
} |
1255 |
return output_frame_end(s);
|
1256 |
} |
1257 |
|
1258 |
static av_cold int AC3_encode_close(AVCodecContext *avctx) |
1259 |
{ |
1260 |
av_freep(&avctx->coded_frame); |
1261 |
return 0; |
1262 |
} |
1263 |
|
1264 |
#if 0
|
1265 |
/*************************************************************************/
|
1266 |
/* TEST */
|
1267 |
|
1268 |
#undef random
|
1269 |
#define FN (N/4)
|
1270 |
|
1271 |
void fft_test(void)
|
1272 |
{
|
1273 |
IComplex in[FN], in1[FN];
|
1274 |
int k, n, i;
|
1275 |
float sum_re, sum_im, a;
|
1276 |
|
1277 |
/* FFT test */
|
1278 |
|
1279 |
for(i=0;i<FN;i++) {
|
1280 |
in[i].re = random() % 65535 - 32767;
|
1281 |
in[i].im = random() % 65535 - 32767;
|
1282 |
in1[i] = in[i];
|
1283 |
}
|
1284 |
fft(in, 7);
|
1285 |
|
1286 |
/* do it by hand */
|
1287 |
for(k=0;k<FN;k++) {
|
1288 |
sum_re = 0;
|
1289 |
sum_im = 0;
|
1290 |
for(n=0;n<FN;n++) {
|
1291 |
a = -2 * M_PI * (n * k) / FN;
|
1292 |
sum_re += in1[n].re * cos(a) - in1[n].im * sin(a);
|
1293 |
sum_im += in1[n].re * sin(a) + in1[n].im * cos(a);
|
1294 |
}
|
1295 |
printf("%3d: %6d,%6d %6.0f,%6.0f\n",
|
1296 |
k, in[k].re, in[k].im, sum_re / FN, sum_im / FN);
|
1297 |
}
|
1298 |
}
|
1299 |
|
1300 |
void mdct_test(void)
|
1301 |
{
|
1302 |
int16_t input[N];
|
1303 |
int32_t output[N/2];
|
1304 |
float input1[N];
|
1305 |
float output1[N/2];
|
1306 |
float s, a, err, e, emax;
|
1307 |
int i, k, n;
|
1308 |
|
1309 |
for(i=0;i<N;i++) {
|
1310 |
input[i] = (random() % 65535 - 32767) * 9 / 10;
|
1311 |
input1[i] = input[i];
|
1312 |
}
|
1313 |
|
1314 |
mdct512(output, input);
|
1315 |
|
1316 |
/* do it by hand */
|
1317 |
for(k=0;k<N/2;k++) {
|
1318 |
s = 0;
|
1319 |
for(n=0;n<N;n++) {
|
1320 |
a = (2*M_PI*(2*n+1+N/2)*(2*k+1) / (4 * N));
|
1321 |
s += input1[n] * cos(a);
|
1322 |
}
|
1323 |
output1[k] = -2 * s / N;
|
1324 |
}
|
1325 |
|
1326 |
err = 0;
|
1327 |
emax = 0;
|
1328 |
for(i=0;i<N/2;i++) {
|
1329 |
printf("%3d: %7d %7.0f\n", i, output[i], output1[i]);
|
1330 |
e = output[i] - output1[i];
|
1331 |
if (e > emax)
|
1332 |
emax = e;
|
1333 |
err += e * e;
|
1334 |
}
|
1335 |
printf("err2=%f emax=%f\n", err / (N/2), emax);
|
1336 |
}
|
1337 |
|
1338 |
void test_ac3(void)
|
1339 |
{
|
1340 |
AC3EncodeContext ctx;
|
1341 |
unsigned char frame[AC3_MAX_CODED_FRAME_SIZE];
|
1342 |
short samples[AC3_FRAME_SIZE];
|
1343 |
int ret, i;
|
1344 |
|
1345 |
AC3_encode_init(&ctx, 44100, 64000, 1);
|
1346 |
|
1347 |
fft_test();
|
1348 |
mdct_test();
|
1349 |
|
1350 |
for(i=0;i<AC3_FRAME_SIZE;i++)
|
1351 |
samples[i] = (int)(sin(2*M_PI*i*1000.0/44100) * 10000);
|
1352 |
ret = AC3_encode_frame(&ctx, frame, samples);
|
1353 |
printf("ret=%d\n", ret);
|
1354 |
}
|
1355 |
#endif
|
1356 |
|
1357 |
AVCodec ac3_encoder = { |
1358 |
"ac3",
|
1359 |
CODEC_TYPE_AUDIO, |
1360 |
CODEC_ID_AC3, |
1361 |
sizeof(AC3EncodeContext),
|
1362 |
AC3_encode_init, |
1363 |
AC3_encode_frame, |
1364 |
AC3_encode_close, |
1365 |
NULL,
|
1366 |
.sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
|
1367 |
.long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
|
1368 |
}; |