ffmpeg / libavcodec / aacdec.c @ b2ed95ec
History | View | Annotate | Download (82.1 KB)
1 |
/*
|
---|---|
2 |
* AAC decoder
|
3 |
* Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
|
4 |
* Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
|
5 |
*
|
6 |
* AAC LATM decoder
|
7 |
* Copyright (c) 2008-2010 Paul Kendall <paul@kcbbs.gen.nz>
|
8 |
* Copyright (c) 2010 Janne Grunau <janne-ffmpeg@jannau.net>
|
9 |
*
|
10 |
* This file is part of FFmpeg.
|
11 |
*
|
12 |
* FFmpeg is free software; you can redistribute it and/or
|
13 |
* modify it under the terms of the GNU Lesser General Public
|
14 |
* License as published by the Free Software Foundation; either
|
15 |
* version 2.1 of the License, or (at your option) any later version.
|
16 |
*
|
17 |
* FFmpeg is distributed in the hope that it will be useful,
|
18 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
19 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
20 |
* Lesser General Public License for more details.
|
21 |
*
|
22 |
* You should have received a copy of the GNU Lesser General Public
|
23 |
* License along with FFmpeg; if not, write to the Free Software
|
24 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
25 |
*/
|
26 |
|
27 |
/**
|
28 |
* @file
|
29 |
* AAC decoder
|
30 |
* @author Oded Shimon ( ods15 ods15 dyndns org )
|
31 |
* @author Maxim Gavrilov ( maxim.gavrilov gmail com )
|
32 |
*/
|
33 |
|
34 |
/*
|
35 |
* supported tools
|
36 |
*
|
37 |
* Support? Name
|
38 |
* N (code in SoC repo) gain control
|
39 |
* Y block switching
|
40 |
* Y window shapes - standard
|
41 |
* N window shapes - Low Delay
|
42 |
* Y filterbank - standard
|
43 |
* N (code in SoC repo) filterbank - Scalable Sample Rate
|
44 |
* Y Temporal Noise Shaping
|
45 |
* N (code in SoC repo) Long Term Prediction
|
46 |
* Y intensity stereo
|
47 |
* Y channel coupling
|
48 |
* Y frequency domain prediction
|
49 |
* Y Perceptual Noise Substitution
|
50 |
* Y Mid/Side stereo
|
51 |
* N Scalable Inverse AAC Quantization
|
52 |
* N Frequency Selective Switch
|
53 |
* N upsampling filter
|
54 |
* Y quantization & coding - AAC
|
55 |
* N quantization & coding - TwinVQ
|
56 |
* N quantization & coding - BSAC
|
57 |
* N AAC Error Resilience tools
|
58 |
* N Error Resilience payload syntax
|
59 |
* N Error Protection tool
|
60 |
* N CELP
|
61 |
* N Silence Compression
|
62 |
* N HVXC
|
63 |
* N HVXC 4kbits/s VR
|
64 |
* N Structured Audio tools
|
65 |
* N Structured Audio Sample Bank Format
|
66 |
* N MIDI
|
67 |
* N Harmonic and Individual Lines plus Noise
|
68 |
* N Text-To-Speech Interface
|
69 |
* Y Spectral Band Replication
|
70 |
* Y (not in this code) Layer-1
|
71 |
* Y (not in this code) Layer-2
|
72 |
* Y (not in this code) Layer-3
|
73 |
* N SinuSoidal Coding (Transient, Sinusoid, Noise)
|
74 |
* Y Parametric Stereo
|
75 |
* N Direct Stream Transfer
|
76 |
*
|
77 |
* Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
|
78 |
* - HE AAC v2 comprises LC AAC with Spectral Band Replication and
|
79 |
Parametric Stereo.
|
80 |
*/
|
81 |
|
82 |
|
83 |
#include "avcodec.h" |
84 |
#include "internal.h" |
85 |
#include "get_bits.h" |
86 |
#include "dsputil.h" |
87 |
#include "fft.h" |
88 |
#include "fmtconvert.h" |
89 |
#include "lpc.h" |
90 |
|
91 |
#include "aac.h" |
92 |
#include "aactab.h" |
93 |
#include "aacdectab.h" |
94 |
#include "cbrt_tablegen.h" |
95 |
#include "sbr.h" |
96 |
#include "aacsbr.h" |
97 |
#include "mpeg4audio.h" |
98 |
#include "aacadtsdec.h" |
99 |
|
100 |
#include <assert.h> |
101 |
#include <errno.h> |
102 |
#include <math.h> |
103 |
#include <string.h> |
104 |
|
105 |
#if ARCH_ARM
|
106 |
# include "arm/aac.h" |
107 |
#endif
|
108 |
|
109 |
union float754 {
|
110 |
float f;
|
111 |
uint32_t i; |
112 |
}; |
113 |
|
114 |
static VLC vlc_scalefactors;
|
115 |
static VLC vlc_spectral[11]; |
116 |
|
117 |
static const char overread_err[] = "Input buffer exhausted before END element found\n"; |
118 |
|
119 |
static ChannelElement *get_che(AACContext *ac, int type, int elem_id) |
120 |
{ |
121 |
// For PCE based channel configurations map the channels solely based on tags.
|
122 |
if (!ac->m4ac.chan_config) {
|
123 |
return ac->tag_che_map[type][elem_id];
|
124 |
} |
125 |
// For indexed channel configurations map the channels solely based on position.
|
126 |
switch (ac->m4ac.chan_config) {
|
127 |
case 7: |
128 |
if (ac->tags_mapped == 3 && type == TYPE_CPE) { |
129 |
ac->tags_mapped++; |
130 |
return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2]; |
131 |
} |
132 |
case 6: |
133 |
/* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
|
134 |
instead of SCE[0] CPE[0] CPE[1] LFE[0]. If we seem to have
|
135 |
encountered such a stream, transfer the LFE[0] element to the SCE[1]'s mapping */
|
136 |
if (ac->tags_mapped == tags_per_config[ac->m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) { |
137 |
ac->tags_mapped++; |
138 |
return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0]; |
139 |
} |
140 |
case 5: |
141 |
if (ac->tags_mapped == 2 && type == TYPE_CPE) { |
142 |
ac->tags_mapped++; |
143 |
return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1]; |
144 |
} |
145 |
case 4: |
146 |
if (ac->tags_mapped == 2 && ac->m4ac.chan_config == 4 && type == TYPE_SCE) { |
147 |
ac->tags_mapped++; |
148 |
return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1]; |
149 |
} |
150 |
case 3: |
151 |
case 2: |
152 |
if (ac->tags_mapped == (ac->m4ac.chan_config != 2) && type == TYPE_CPE) { |
153 |
ac->tags_mapped++; |
154 |
return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0]; |
155 |
} else if (ac->m4ac.chan_config == 2) { |
156 |
return NULL; |
157 |
} |
158 |
case 1: |
159 |
if (!ac->tags_mapped && type == TYPE_SCE) {
|
160 |
ac->tags_mapped++; |
161 |
return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0]; |
162 |
} |
163 |
default:
|
164 |
return NULL; |
165 |
} |
166 |
} |
167 |
|
168 |
/**
|
169 |
* Check for the channel element in the current channel position configuration.
|
170 |
* If it exists, make sure the appropriate element is allocated and map the
|
171 |
* channel order to match the internal FFmpeg channel layout.
|
172 |
*
|
173 |
* @param che_pos current channel position configuration
|
174 |
* @param type channel element type
|
175 |
* @param id channel element id
|
176 |
* @param channels count of the number of channels in the configuration
|
177 |
*
|
178 |
* @return Returns error status. 0 - OK, !0 - error
|
179 |
*/
|
180 |
static av_cold int che_configure(AACContext *ac, |
181 |
enum ChannelPosition che_pos[4][MAX_ELEM_ID], |
182 |
int type, int id, |
183 |
int *channels)
|
184 |
{ |
185 |
if (che_pos[type][id]) {
|
186 |
if (!ac->che[type][id] && !(ac->che[type][id] = av_mallocz(sizeof(ChannelElement)))) |
187 |
return AVERROR(ENOMEM);
|
188 |
ff_aac_sbr_ctx_init(&ac->che[type][id]->sbr); |
189 |
if (type != TYPE_CCE) {
|
190 |
ac->output_data[(*channels)++] = ac->che[type][id]->ch[0].ret;
|
191 |
if (type == TYPE_CPE ||
|
192 |
(type == TYPE_SCE && ac->m4ac.ps == 1)) {
|
193 |
ac->output_data[(*channels)++] = ac->che[type][id]->ch[1].ret;
|
194 |
} |
195 |
} |
196 |
} else {
|
197 |
if (ac->che[type][id])
|
198 |
ff_aac_sbr_ctx_close(&ac->che[type][id]->sbr); |
199 |
av_freep(&ac->che[type][id]); |
200 |
} |
201 |
return 0; |
202 |
} |
203 |
|
204 |
/**
|
205 |
* Configure output channel order based on the current program configuration element.
|
206 |
*
|
207 |
* @param che_pos current channel position configuration
|
208 |
* @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
|
209 |
*
|
210 |
* @return Returns error status. 0 - OK, !0 - error
|
211 |
*/
|
212 |
static av_cold int output_configure(AACContext *ac, |
213 |
enum ChannelPosition che_pos[4][MAX_ELEM_ID], |
214 |
enum ChannelPosition new_che_pos[4][MAX_ELEM_ID], |
215 |
int channel_config, enum OCStatus oc_type) |
216 |
{ |
217 |
AVCodecContext *avctx = ac->avctx; |
218 |
int i, type, channels = 0, ret; |
219 |
|
220 |
if (new_che_pos != che_pos)
|
221 |
memcpy(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0])); |
222 |
|
223 |
if (channel_config) {
|
224 |
for (i = 0; i < tags_per_config[channel_config]; i++) { |
225 |
if ((ret = che_configure(ac, che_pos,
|
226 |
aac_channel_layout_map[channel_config - 1][i][0], |
227 |
aac_channel_layout_map[channel_config - 1][i][1], |
228 |
&channels))) |
229 |
return ret;
|
230 |
} |
231 |
|
232 |
memset(ac->tag_che_map, 0, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0])); |
233 |
|
234 |
avctx->channel_layout = aac_channel_layout[channel_config - 1];
|
235 |
} else {
|
236 |
/* Allocate or free elements depending on if they are in the
|
237 |
* current program configuration.
|
238 |
*
|
239 |
* Set up default 1:1 output mapping.
|
240 |
*
|
241 |
* For a 5.1 stream the output order will be:
|
242 |
* [ Center ] [ Front Left ] [ Front Right ] [ LFE ] [ Surround Left ] [ Surround Right ]
|
243 |
*/
|
244 |
|
245 |
for (i = 0; i < MAX_ELEM_ID; i++) { |
246 |
for (type = 0; type < 4; type++) { |
247 |
if ((ret = che_configure(ac, che_pos, type, i, &channels)))
|
248 |
return ret;
|
249 |
} |
250 |
} |
251 |
|
252 |
memcpy(ac->tag_che_map, ac->che, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0])); |
253 |
|
254 |
avctx->channel_layout = 0;
|
255 |
} |
256 |
|
257 |
avctx->channels = channels; |
258 |
|
259 |
ac->output_configured = oc_type; |
260 |
|
261 |
return 0; |
262 |
} |
263 |
|
264 |
/**
|
265 |
* Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
|
266 |
*
|
267 |
* @param cpe_map Stereo (Channel Pair Element) map, NULL if stereo bit is not present.
|
268 |
* @param sce_map mono (Single Channel Element) map
|
269 |
* @param type speaker type/position for these channels
|
270 |
*/
|
271 |
static void decode_channel_map(enum ChannelPosition *cpe_map, |
272 |
enum ChannelPosition *sce_map,
|
273 |
enum ChannelPosition type,
|
274 |
GetBitContext *gb, int n)
|
275 |
{ |
276 |
while (n--) {
|
277 |
enum ChannelPosition *map = cpe_map && get_bits1(gb) ? cpe_map : sce_map; // stereo or mono map |
278 |
map[get_bits(gb, 4)] = type;
|
279 |
} |
280 |
} |
281 |
|
282 |
/**
|
283 |
* Decode program configuration element; reference: table 4.2.
|
284 |
*
|
285 |
* @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
|
286 |
*
|
287 |
* @return Returns error status. 0 - OK, !0 - error
|
288 |
*/
|
289 |
static int decode_pce(AVCodecContext *avctx, MPEG4AudioConfig *m4ac, |
290 |
enum ChannelPosition new_che_pos[4][MAX_ELEM_ID], |
291 |
GetBitContext *gb) |
292 |
{ |
293 |
int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc, sampling_index;
|
294 |
int comment_len;
|
295 |
|
296 |
skip_bits(gb, 2); // object_type |
297 |
|
298 |
sampling_index = get_bits(gb, 4);
|
299 |
if (m4ac->sampling_index != sampling_index)
|
300 |
av_log(avctx, AV_LOG_WARNING, "Sample rate index in program config element does not match the sample rate index configured by the container.\n");
|
301 |
|
302 |
num_front = get_bits(gb, 4);
|
303 |
num_side = get_bits(gb, 4);
|
304 |
num_back = get_bits(gb, 4);
|
305 |
num_lfe = get_bits(gb, 2);
|
306 |
num_assoc_data = get_bits(gb, 3);
|
307 |
num_cc = get_bits(gb, 4);
|
308 |
|
309 |
if (get_bits1(gb))
|
310 |
skip_bits(gb, 4); // mono_mixdown_tag |
311 |
if (get_bits1(gb))
|
312 |
skip_bits(gb, 4); // stereo_mixdown_tag |
313 |
|
314 |
if (get_bits1(gb))
|
315 |
skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround |
316 |
|
317 |
decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_FRONT, gb, num_front); |
318 |
decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_SIDE, gb, num_side ); |
319 |
decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_BACK, gb, num_back ); |
320 |
decode_channel_map(NULL, new_che_pos[TYPE_LFE], AAC_CHANNEL_LFE, gb, num_lfe );
|
321 |
|
322 |
skip_bits_long(gb, 4 * num_assoc_data);
|
323 |
|
324 |
decode_channel_map(new_che_pos[TYPE_CCE], new_che_pos[TYPE_CCE], AAC_CHANNEL_CC, gb, num_cc ); |
325 |
|
326 |
align_get_bits(gb); |
327 |
|
328 |
/* comment field, first byte is length */
|
329 |
comment_len = get_bits(gb, 8) * 8; |
330 |
if (get_bits_left(gb) < comment_len) {
|
331 |
av_log(avctx, AV_LOG_ERROR, overread_err); |
332 |
return -1; |
333 |
} |
334 |
skip_bits_long(gb, comment_len); |
335 |
return 0; |
336 |
} |
337 |
|
338 |
/**
|
339 |
* Set up channel positions based on a default channel configuration
|
340 |
* as specified in table 1.17.
|
341 |
*
|
342 |
* @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
|
343 |
*
|
344 |
* @return Returns error status. 0 - OK, !0 - error
|
345 |
*/
|
346 |
static av_cold int set_default_channel_config(AVCodecContext *avctx, |
347 |
enum ChannelPosition new_che_pos[4][MAX_ELEM_ID], |
348 |
int channel_config)
|
349 |
{ |
350 |
if (channel_config < 1 || channel_config > 7) { |
351 |
av_log(avctx, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
|
352 |
channel_config); |
353 |
return -1; |
354 |
} |
355 |
|
356 |
/* default channel configurations:
|
357 |
*
|
358 |
* 1ch : front center (mono)
|
359 |
* 2ch : L + R (stereo)
|
360 |
* 3ch : front center + L + R
|
361 |
* 4ch : front center + L + R + back center
|
362 |
* 5ch : front center + L + R + back stereo
|
363 |
* 6ch : front center + L + R + back stereo + LFE
|
364 |
* 7ch : front center + L + R + outer front left + outer front right + back stereo + LFE
|
365 |
*/
|
366 |
|
367 |
if (channel_config != 2) |
368 |
new_che_pos[TYPE_SCE][0] = AAC_CHANNEL_FRONT; // front center (or mono) |
369 |
if (channel_config > 1) |
370 |
new_che_pos[TYPE_CPE][0] = AAC_CHANNEL_FRONT; // L + R (or stereo) |
371 |
if (channel_config == 4) |
372 |
new_che_pos[TYPE_SCE][1] = AAC_CHANNEL_BACK; // back center |
373 |
if (channel_config > 4) |
374 |
new_che_pos[TYPE_CPE][(channel_config == 7) + 1] |
375 |
= AAC_CHANNEL_BACK; // back stereo
|
376 |
if (channel_config > 5) |
377 |
new_che_pos[TYPE_LFE][0] = AAC_CHANNEL_LFE; // LFE |
378 |
if (channel_config == 7) |
379 |
new_che_pos[TYPE_CPE][1] = AAC_CHANNEL_FRONT; // outer front left + outer front right |
380 |
|
381 |
return 0; |
382 |
} |
383 |
|
384 |
/**
|
385 |
* Decode GA "General Audio" specific configuration; reference: table 4.1.
|
386 |
*
|
387 |
* @param ac pointer to AACContext, may be null
|
388 |
* @param avctx pointer to AVCCodecContext, used for logging
|
389 |
*
|
390 |
* @return Returns error status. 0 - OK, !0 - error
|
391 |
*/
|
392 |
static int decode_ga_specific_config(AACContext *ac, AVCodecContext *avctx, |
393 |
GetBitContext *gb, |
394 |
MPEG4AudioConfig *m4ac, |
395 |
int channel_config)
|
396 |
{ |
397 |
enum ChannelPosition new_che_pos[4][MAX_ELEM_ID]; |
398 |
int extension_flag, ret;
|
399 |
|
400 |
if (get_bits1(gb)) { // frameLengthFlag |
401 |
av_log_missing_feature(avctx, "960/120 MDCT window is", 1); |
402 |
return -1; |
403 |
} |
404 |
|
405 |
if (get_bits1(gb)) // dependsOnCoreCoder |
406 |
skip_bits(gb, 14); // coreCoderDelay |
407 |
extension_flag = get_bits1(gb); |
408 |
|
409 |
if (m4ac->object_type == AOT_AAC_SCALABLE ||
|
410 |
m4ac->object_type == AOT_ER_AAC_SCALABLE) |
411 |
skip_bits(gb, 3); // layerNr |
412 |
|
413 |
memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0])); |
414 |
if (channel_config == 0) { |
415 |
skip_bits(gb, 4); // element_instance_tag |
416 |
if ((ret = decode_pce(avctx, m4ac, new_che_pos, gb)))
|
417 |
return ret;
|
418 |
} else {
|
419 |
if ((ret = set_default_channel_config(avctx, new_che_pos, channel_config)))
|
420 |
return ret;
|
421 |
} |
422 |
if (ac && (ret = output_configure(ac, ac->che_pos, new_che_pos, channel_config, OC_GLOBAL_HDR)))
|
423 |
return ret;
|
424 |
|
425 |
if (extension_flag) {
|
426 |
switch (m4ac->object_type) {
|
427 |
case AOT_ER_BSAC:
|
428 |
skip_bits(gb, 5); // numOfSubFrame |
429 |
skip_bits(gb, 11); // layer_length |
430 |
break;
|
431 |
case AOT_ER_AAC_LC:
|
432 |
case AOT_ER_AAC_LTP:
|
433 |
case AOT_ER_AAC_SCALABLE:
|
434 |
case AOT_ER_AAC_LD:
|
435 |
skip_bits(gb, 3); /* aacSectionDataResilienceFlag |
436 |
* aacScalefactorDataResilienceFlag
|
437 |
* aacSpectralDataResilienceFlag
|
438 |
*/
|
439 |
break;
|
440 |
} |
441 |
skip_bits1(gb); // extensionFlag3 (TBD in version 3)
|
442 |
} |
443 |
return 0; |
444 |
} |
445 |
|
446 |
/**
|
447 |
* Decode audio specific configuration; reference: table 1.13.
|
448 |
*
|
449 |
* @param ac pointer to AACContext, may be null
|
450 |
* @param avctx pointer to AVCCodecContext, used for logging
|
451 |
* @param m4ac pointer to MPEG4AudioConfig, used for parsing
|
452 |
* @param data pointer to AVCodecContext extradata
|
453 |
* @param data_size size of AVCCodecContext extradata
|
454 |
*
|
455 |
* @return Returns error status or number of consumed bits. <0 - error
|
456 |
*/
|
457 |
static int decode_audio_specific_config(AACContext *ac, |
458 |
AVCodecContext *avctx, |
459 |
MPEG4AudioConfig *m4ac, |
460 |
const uint8_t *data, int data_size) |
461 |
{ |
462 |
GetBitContext gb; |
463 |
int i;
|
464 |
|
465 |
init_get_bits(&gb, data, data_size * 8);
|
466 |
|
467 |
if ((i = ff_mpeg4audio_get_config(m4ac, data, data_size)) < 0) |
468 |
return -1; |
469 |
if (m4ac->sampling_index > 12) { |
470 |
av_log(avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", m4ac->sampling_index);
|
471 |
return -1; |
472 |
} |
473 |
if (m4ac->sbr == 1 && m4ac->ps == -1) |
474 |
m4ac->ps = 1;
|
475 |
|
476 |
skip_bits_long(&gb, i); |
477 |
|
478 |
switch (m4ac->object_type) {
|
479 |
case AOT_AAC_MAIN:
|
480 |
case AOT_AAC_LC:
|
481 |
if (decode_ga_specific_config(ac, avctx, &gb, m4ac, m4ac->chan_config))
|
482 |
return -1; |
483 |
break;
|
484 |
default:
|
485 |
av_log(avctx, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
|
486 |
m4ac->sbr == 1? "SBR+" : "", m4ac->object_type); |
487 |
return -1; |
488 |
} |
489 |
|
490 |
return get_bits_count(&gb);
|
491 |
} |
492 |
|
493 |
/**
|
494 |
* linear congruential pseudorandom number generator
|
495 |
*
|
496 |
* @param previous_val pointer to the current state of the generator
|
497 |
*
|
498 |
* @return Returns a 32-bit pseudorandom integer
|
499 |
*/
|
500 |
static av_always_inline int lcg_random(int previous_val) |
501 |
{ |
502 |
return previous_val * 1664525 + 1013904223; |
503 |
} |
504 |
|
505 |
static av_always_inline void reset_predict_state(PredictorState *ps) |
506 |
{ |
507 |
ps->r0 = 0.0f; |
508 |
ps->r1 = 0.0f; |
509 |
ps->cor0 = 0.0f; |
510 |
ps->cor1 = 0.0f; |
511 |
ps->var0 = 1.0f; |
512 |
ps->var1 = 1.0f; |
513 |
} |
514 |
|
515 |
static void reset_all_predictors(PredictorState *ps) |
516 |
{ |
517 |
int i;
|
518 |
for (i = 0; i < MAX_PREDICTORS; i++) |
519 |
reset_predict_state(&ps[i]); |
520 |
} |
521 |
|
522 |
static void reset_predictor_group(PredictorState *ps, int group_num) |
523 |
{ |
524 |
int i;
|
525 |
for (i = group_num - 1; i < MAX_PREDICTORS; i += 30) |
526 |
reset_predict_state(&ps[i]); |
527 |
} |
528 |
|
529 |
#define AAC_INIT_VLC_STATIC(num, size) \
|
530 |
INIT_VLC_STATIC(&vlc_spectral[num], 8, ff_aac_spectral_sizes[num], \
|
531 |
ff_aac_spectral_bits[num], sizeof( ff_aac_spectral_bits[num][0]), sizeof( ff_aac_spectral_bits[num][0]), \ |
532 |
ff_aac_spectral_codes[num], sizeof(ff_aac_spectral_codes[num][0]), sizeof(ff_aac_spectral_codes[num][0]), \ |
533 |
size); |
534 |
|
535 |
static av_cold int aac_decode_init(AVCodecContext *avctx) |
536 |
{ |
537 |
AACContext *ac = avctx->priv_data; |
538 |
|
539 |
ac->avctx = avctx; |
540 |
ac->m4ac.sample_rate = avctx->sample_rate; |
541 |
|
542 |
if (avctx->extradata_size > 0) { |
543 |
if (decode_audio_specific_config(ac, ac->avctx, &ac->m4ac,
|
544 |
avctx->extradata, |
545 |
avctx->extradata_size) < 0)
|
546 |
return -1; |
547 |
} |
548 |
|
549 |
avctx->sample_fmt = AV_SAMPLE_FMT_S16; |
550 |
|
551 |
AAC_INIT_VLC_STATIC( 0, 304); |
552 |
AAC_INIT_VLC_STATIC( 1, 270); |
553 |
AAC_INIT_VLC_STATIC( 2, 550); |
554 |
AAC_INIT_VLC_STATIC( 3, 300); |
555 |
AAC_INIT_VLC_STATIC( 4, 328); |
556 |
AAC_INIT_VLC_STATIC( 5, 294); |
557 |
AAC_INIT_VLC_STATIC( 6, 306); |
558 |
AAC_INIT_VLC_STATIC( 7, 268); |
559 |
AAC_INIT_VLC_STATIC( 8, 510); |
560 |
AAC_INIT_VLC_STATIC( 9, 366); |
561 |
AAC_INIT_VLC_STATIC(10, 462); |
562 |
|
563 |
ff_aac_sbr_init(); |
564 |
|
565 |
dsputil_init(&ac->dsp, avctx); |
566 |
ff_fmt_convert_init(&ac->fmt_conv, avctx); |
567 |
|
568 |
ac->random_state = 0x1f2e3d4c;
|
569 |
|
570 |
// -1024 - Compensate wrong IMDCT method.
|
571 |
// 60 - Required to scale values to the correct range [-32768,32767]
|
572 |
// for float to int16 conversion. (1 << (60 / 4)) == 32768
|
573 |
ac->sf_scale = 1. / -1024.; |
574 |
ac->sf_offset = 60;
|
575 |
|
576 |
ff_aac_tableinit(); |
577 |
|
578 |
INIT_VLC_STATIC(&vlc_scalefactors,7,FF_ARRAY_ELEMS(ff_aac_scalefactor_code),
|
579 |
ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]), |
580 |
ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]), |
581 |
352);
|
582 |
|
583 |
ff_mdct_init(&ac->mdct, 11, 1, 1.0); |
584 |
ff_mdct_init(&ac->mdct_small, 8, 1, 1.0); |
585 |
// window initialization
|
586 |
ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024); |
587 |
ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128); |
588 |
ff_init_ff_sine_windows(10);
|
589 |
ff_init_ff_sine_windows( 7);
|
590 |
|
591 |
cbrt_tableinit(); |
592 |
|
593 |
return 0; |
594 |
} |
595 |
|
596 |
/**
|
597 |
* Skip data_stream_element; reference: table 4.10.
|
598 |
*/
|
599 |
static int skip_data_stream_element(AACContext *ac, GetBitContext *gb) |
600 |
{ |
601 |
int byte_align = get_bits1(gb);
|
602 |
int count = get_bits(gb, 8); |
603 |
if (count == 255) |
604 |
count += get_bits(gb, 8);
|
605 |
if (byte_align)
|
606 |
align_get_bits(gb); |
607 |
|
608 |
if (get_bits_left(gb) < 8 * count) { |
609 |
av_log(ac->avctx, AV_LOG_ERROR, overread_err); |
610 |
return -1; |
611 |
} |
612 |
skip_bits_long(gb, 8 * count);
|
613 |
return 0; |
614 |
} |
615 |
|
616 |
static int decode_prediction(AACContext *ac, IndividualChannelStream *ics, |
617 |
GetBitContext *gb) |
618 |
{ |
619 |
int sfb;
|
620 |
if (get_bits1(gb)) {
|
621 |
ics->predictor_reset_group = get_bits(gb, 5);
|
622 |
if (ics->predictor_reset_group == 0 || ics->predictor_reset_group > 30) { |
623 |
av_log(ac->avctx, AV_LOG_ERROR, "Invalid Predictor Reset Group.\n");
|
624 |
return -1; |
625 |
} |
626 |
} |
627 |
for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->m4ac.sampling_index]); sfb++) { |
628 |
ics->prediction_used[sfb] = get_bits1(gb); |
629 |
} |
630 |
return 0; |
631 |
} |
632 |
|
633 |
/**
|
634 |
* Decode Individual Channel Stream info; reference: table 4.6.
|
635 |
*
|
636 |
* @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
|
637 |
*/
|
638 |
static int decode_ics_info(AACContext *ac, IndividualChannelStream *ics, |
639 |
GetBitContext *gb, int common_window)
|
640 |
{ |
641 |
if (get_bits1(gb)) {
|
642 |
av_log(ac->avctx, AV_LOG_ERROR, "Reserved bit set.\n");
|
643 |
memset(ics, 0, sizeof(IndividualChannelStream)); |
644 |
return -1; |
645 |
} |
646 |
ics->window_sequence[1] = ics->window_sequence[0]; |
647 |
ics->window_sequence[0] = get_bits(gb, 2); |
648 |
ics->use_kb_window[1] = ics->use_kb_window[0]; |
649 |
ics->use_kb_window[0] = get_bits1(gb);
|
650 |
ics->num_window_groups = 1;
|
651 |
ics->group_len[0] = 1; |
652 |
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
653 |
int i;
|
654 |
ics->max_sfb = get_bits(gb, 4);
|
655 |
for (i = 0; i < 7; i++) { |
656 |
if (get_bits1(gb)) {
|
657 |
ics->group_len[ics->num_window_groups - 1]++;
|
658 |
} else {
|
659 |
ics->num_window_groups++; |
660 |
ics->group_len[ics->num_window_groups - 1] = 1; |
661 |
} |
662 |
} |
663 |
ics->num_windows = 8;
|
664 |
ics->swb_offset = ff_swb_offset_128[ac->m4ac.sampling_index]; |
665 |
ics->num_swb = ff_aac_num_swb_128[ac->m4ac.sampling_index]; |
666 |
ics->tns_max_bands = ff_tns_max_bands_128[ac->m4ac.sampling_index]; |
667 |
ics->predictor_present = 0;
|
668 |
} else {
|
669 |
ics->max_sfb = get_bits(gb, 6);
|
670 |
ics->num_windows = 1;
|
671 |
ics->swb_offset = ff_swb_offset_1024[ac->m4ac.sampling_index]; |
672 |
ics->num_swb = ff_aac_num_swb_1024[ac->m4ac.sampling_index]; |
673 |
ics->tns_max_bands = ff_tns_max_bands_1024[ac->m4ac.sampling_index]; |
674 |
ics->predictor_present = get_bits1(gb); |
675 |
ics->predictor_reset_group = 0;
|
676 |
if (ics->predictor_present) {
|
677 |
if (ac->m4ac.object_type == AOT_AAC_MAIN) {
|
678 |
if (decode_prediction(ac, ics, gb)) {
|
679 |
memset(ics, 0, sizeof(IndividualChannelStream)); |
680 |
return -1; |
681 |
} |
682 |
} else if (ac->m4ac.object_type == AOT_AAC_LC) { |
683 |
av_log(ac->avctx, AV_LOG_ERROR, "Prediction is not allowed in AAC-LC.\n");
|
684 |
memset(ics, 0, sizeof(IndividualChannelStream)); |
685 |
return -1; |
686 |
} else {
|
687 |
av_log_missing_feature(ac->avctx, "Predictor bit set but LTP is", 1); |
688 |
memset(ics, 0, sizeof(IndividualChannelStream)); |
689 |
return -1; |
690 |
} |
691 |
} |
692 |
} |
693 |
|
694 |
if (ics->max_sfb > ics->num_swb) {
|
695 |
av_log(ac->avctx, AV_LOG_ERROR, |
696 |
"Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
|
697 |
ics->max_sfb, ics->num_swb); |
698 |
memset(ics, 0, sizeof(IndividualChannelStream)); |
699 |
return -1; |
700 |
} |
701 |
|
702 |
return 0; |
703 |
} |
704 |
|
705 |
/**
|
706 |
* Decode band types (section_data payload); reference: table 4.46.
|
707 |
*
|
708 |
* @param band_type array of the used band type
|
709 |
* @param band_type_run_end array of the last scalefactor band of a band type run
|
710 |
*
|
711 |
* @return Returns error status. 0 - OK, !0 - error
|
712 |
*/
|
713 |
static int decode_band_types(AACContext *ac, enum BandType band_type[120], |
714 |
int band_type_run_end[120], GetBitContext *gb, |
715 |
IndividualChannelStream *ics) |
716 |
{ |
717 |
int g, idx = 0; |
718 |
const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5; |
719 |
for (g = 0; g < ics->num_window_groups; g++) { |
720 |
int k = 0; |
721 |
while (k < ics->max_sfb) {
|
722 |
uint8_t sect_end = k; |
723 |
int sect_len_incr;
|
724 |
int sect_band_type = get_bits(gb, 4); |
725 |
if (sect_band_type == 12) { |
726 |
av_log(ac->avctx, AV_LOG_ERROR, "invalid band type\n");
|
727 |
return -1; |
728 |
} |
729 |
while ((sect_len_incr = get_bits(gb, bits)) == (1 << bits) - 1) |
730 |
sect_end += sect_len_incr; |
731 |
sect_end += sect_len_incr; |
732 |
if (get_bits_left(gb) < 0) { |
733 |
av_log(ac->avctx, AV_LOG_ERROR, overread_err); |
734 |
return -1; |
735 |
} |
736 |
if (sect_end > ics->max_sfb) {
|
737 |
av_log(ac->avctx, AV_LOG_ERROR, |
738 |
"Number of bands (%d) exceeds limit (%d).\n",
|
739 |
sect_end, ics->max_sfb); |
740 |
return -1; |
741 |
} |
742 |
for (; k < sect_end; k++) {
|
743 |
band_type [idx] = sect_band_type; |
744 |
band_type_run_end[idx++] = sect_end; |
745 |
} |
746 |
} |
747 |
} |
748 |
return 0; |
749 |
} |
750 |
|
751 |
/**
|
752 |
* Decode scalefactors; reference: table 4.47.
|
753 |
*
|
754 |
* @param global_gain first scalefactor value as scalefactors are differentially coded
|
755 |
* @param band_type array of the used band type
|
756 |
* @param band_type_run_end array of the last scalefactor band of a band type run
|
757 |
* @param sf array of scalefactors or intensity stereo positions
|
758 |
*
|
759 |
* @return Returns error status. 0 - OK, !0 - error
|
760 |
*/
|
761 |
static int decode_scalefactors(AACContext *ac, float sf[120], GetBitContext *gb, |
762 |
unsigned int global_gain, |
763 |
IndividualChannelStream *ics, |
764 |
enum BandType band_type[120], |
765 |
int band_type_run_end[120]) |
766 |
{ |
767 |
const int sf_offset = ac->sf_offset + (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE ? 12 : 0); |
768 |
int g, i, idx = 0; |
769 |
int offset[3] = { global_gain, global_gain - 90, 100 }; |
770 |
int noise_flag = 1; |
771 |
static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" }; |
772 |
for (g = 0; g < ics->num_window_groups; g++) { |
773 |
for (i = 0; i < ics->max_sfb;) { |
774 |
int run_end = band_type_run_end[idx];
|
775 |
if (band_type[idx] == ZERO_BT) {
|
776 |
for (; i < run_end; i++, idx++)
|
777 |
sf[idx] = 0.;
|
778 |
} else if ((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) { |
779 |
for (; i < run_end; i++, idx++) {
|
780 |
offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60; |
781 |
if (offset[2] > 255U) { |
782 |
av_log(ac->avctx, AV_LOG_ERROR, |
783 |
"%s (%d) out of range.\n", sf_str[2], offset[2]); |
784 |
return -1; |
785 |
} |
786 |
sf[idx] = ff_aac_pow2sf_tab[-offset[2] + 300]; |
787 |
} |
788 |
} else if (band_type[idx] == NOISE_BT) { |
789 |
for (; i < run_end; i++, idx++) {
|
790 |
if (noise_flag-- > 0) |
791 |
offset[1] += get_bits(gb, 9) - 256; |
792 |
else
|
793 |
offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60; |
794 |
if (offset[1] > 255U) { |
795 |
av_log(ac->avctx, AV_LOG_ERROR, |
796 |
"%s (%d) out of range.\n", sf_str[1], offset[1]); |
797 |
return -1; |
798 |
} |
799 |
sf[idx] = -ff_aac_pow2sf_tab[offset[1] + sf_offset + 100]; |
800 |
} |
801 |
} else {
|
802 |
for (; i < run_end; i++, idx++) {
|
803 |
offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60; |
804 |
if (offset[0] > 255U) { |
805 |
av_log(ac->avctx, AV_LOG_ERROR, |
806 |
"%s (%d) out of range.\n", sf_str[0], offset[0]); |
807 |
return -1; |
808 |
} |
809 |
sf[idx] = -ff_aac_pow2sf_tab[ offset[0] + sf_offset];
|
810 |
} |
811 |
} |
812 |
} |
813 |
} |
814 |
return 0; |
815 |
} |
816 |
|
817 |
/**
|
818 |
* Decode pulse data; reference: table 4.7.
|
819 |
*/
|
820 |
static int decode_pulses(Pulse *pulse, GetBitContext *gb, |
821 |
const uint16_t *swb_offset, int num_swb) |
822 |
{ |
823 |
int i, pulse_swb;
|
824 |
pulse->num_pulse = get_bits(gb, 2) + 1; |
825 |
pulse_swb = get_bits(gb, 6);
|
826 |
if (pulse_swb >= num_swb)
|
827 |
return -1; |
828 |
pulse->pos[0] = swb_offset[pulse_swb];
|
829 |
pulse->pos[0] += get_bits(gb, 5); |
830 |
if (pulse->pos[0] > 1023) |
831 |
return -1; |
832 |
pulse->amp[0] = get_bits(gb, 4); |
833 |
for (i = 1; i < pulse->num_pulse; i++) { |
834 |
pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i - 1]; |
835 |
if (pulse->pos[i] > 1023) |
836 |
return -1; |
837 |
pulse->amp[i] = get_bits(gb, 4);
|
838 |
} |
839 |
return 0; |
840 |
} |
841 |
|
842 |
/**
|
843 |
* Decode Temporal Noise Shaping data; reference: table 4.48.
|
844 |
*
|
845 |
* @return Returns error status. 0 - OK, !0 - error
|
846 |
*/
|
847 |
static int decode_tns(AACContext *ac, TemporalNoiseShaping *tns, |
848 |
GetBitContext *gb, const IndividualChannelStream *ics)
|
849 |
{ |
850 |
int w, filt, i, coef_len, coef_res, coef_compress;
|
851 |
const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE; |
852 |
const int tns_max_order = is8 ? 7 : ac->m4ac.object_type == AOT_AAC_MAIN ? 20 : 12; |
853 |
for (w = 0; w < ics->num_windows; w++) { |
854 |
if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) { |
855 |
coef_res = get_bits1(gb); |
856 |
|
857 |
for (filt = 0; filt < tns->n_filt[w]; filt++) { |
858 |
int tmp2_idx;
|
859 |
tns->length[w][filt] = get_bits(gb, 6 - 2 * is8); |
860 |
|
861 |
if ((tns->order[w][filt] = get_bits(gb, 5 - 2 * is8)) > tns_max_order) { |
862 |
av_log(ac->avctx, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.\n",
|
863 |
tns->order[w][filt], tns_max_order); |
864 |
tns->order[w][filt] = 0;
|
865 |
return -1; |
866 |
} |
867 |
if (tns->order[w][filt]) {
|
868 |
tns->direction[w][filt] = get_bits1(gb); |
869 |
coef_compress = get_bits1(gb); |
870 |
coef_len = coef_res + 3 - coef_compress;
|
871 |
tmp2_idx = 2 * coef_compress + coef_res;
|
872 |
|
873 |
for (i = 0; i < tns->order[w][filt]; i++) |
874 |
tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)]; |
875 |
} |
876 |
} |
877 |
} |
878 |
} |
879 |
return 0; |
880 |
} |
881 |
|
882 |
/**
|
883 |
* Decode Mid/Side data; reference: table 4.54.
|
884 |
*
|
885 |
* @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
|
886 |
* [1] mask is decoded from bitstream; [2] mask is all 1s;
|
887 |
* [3] reserved for scalable AAC
|
888 |
*/
|
889 |
static void decode_mid_side_stereo(ChannelElement *cpe, GetBitContext *gb, |
890 |
int ms_present)
|
891 |
{ |
892 |
int idx;
|
893 |
if (ms_present == 1) { |
894 |
for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++) |
895 |
cpe->ms_mask[idx] = get_bits1(gb); |
896 |
} else if (ms_present == 2) { |
897 |
memset(cpe->ms_mask, 1, cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb * sizeof(cpe->ms_mask[0])); |
898 |
} |
899 |
} |
900 |
|
901 |
#ifndef VMUL2
|
902 |
static inline float *VMUL2(float *dst, const float *v, unsigned idx, |
903 |
const float *scale) |
904 |
{ |
905 |
float s = *scale;
|
906 |
*dst++ = v[idx & 15] * s;
|
907 |
*dst++ = v[idx>>4 & 15] * s; |
908 |
return dst;
|
909 |
} |
910 |
#endif
|
911 |
|
912 |
#ifndef VMUL4
|
913 |
static inline float *VMUL4(float *dst, const float *v, unsigned idx, |
914 |
const float *scale) |
915 |
{ |
916 |
float s = *scale;
|
917 |
*dst++ = v[idx & 3] * s;
|
918 |
*dst++ = v[idx>>2 & 3] * s; |
919 |
*dst++ = v[idx>>4 & 3] * s; |
920 |
*dst++ = v[idx>>6 & 3] * s; |
921 |
return dst;
|
922 |
} |
923 |
#endif
|
924 |
|
925 |
#ifndef VMUL2S
|
926 |
static inline float *VMUL2S(float *dst, const float *v, unsigned idx, |
927 |
unsigned sign, const float *scale) |
928 |
{ |
929 |
union float754 s0, s1;
|
930 |
|
931 |
s0.f = s1.f = *scale; |
932 |
s0.i ^= sign >> 1 << 31; |
933 |
s1.i ^= sign << 31;
|
934 |
|
935 |
*dst++ = v[idx & 15] * s0.f;
|
936 |
*dst++ = v[idx>>4 & 15] * s1.f; |
937 |
|
938 |
return dst;
|
939 |
} |
940 |
#endif
|
941 |
|
942 |
#ifndef VMUL4S
|
943 |
static inline float *VMUL4S(float *dst, const float *v, unsigned idx, |
944 |
unsigned sign, const float *scale) |
945 |
{ |
946 |
unsigned nz = idx >> 12; |
947 |
union float754 s = { .f = *scale };
|
948 |
union float754 t;
|
949 |
|
950 |
t.i = s.i ^ (sign & 1<<31); |
951 |
*dst++ = v[idx & 3] * t.f;
|
952 |
|
953 |
sign <<= nz & 1; nz >>= 1; |
954 |
t.i = s.i ^ (sign & 1<<31); |
955 |
*dst++ = v[idx>>2 & 3] * t.f; |
956 |
|
957 |
sign <<= nz & 1; nz >>= 1; |
958 |
t.i = s.i ^ (sign & 1<<31); |
959 |
*dst++ = v[idx>>4 & 3] * t.f; |
960 |
|
961 |
sign <<= nz & 1; nz >>= 1; |
962 |
t.i = s.i ^ (sign & 1<<31); |
963 |
*dst++ = v[idx>>6 & 3] * t.f; |
964 |
|
965 |
return dst;
|
966 |
} |
967 |
#endif
|
968 |
|
969 |
/**
|
970 |
* Decode spectral data; reference: table 4.50.
|
971 |
* Dequantize and scale spectral data; reference: 4.6.3.3.
|
972 |
*
|
973 |
* @param coef array of dequantized, scaled spectral data
|
974 |
* @param sf array of scalefactors or intensity stereo positions
|
975 |
* @param pulse_present set if pulses are present
|
976 |
* @param pulse pointer to pulse data struct
|
977 |
* @param band_type array of the used band type
|
978 |
*
|
979 |
* @return Returns error status. 0 - OK, !0 - error
|
980 |
*/
|
981 |
static int decode_spectrum_and_dequant(AACContext *ac, float coef[1024], |
982 |
GetBitContext *gb, const float sf[120], |
983 |
int pulse_present, const Pulse *pulse, |
984 |
const IndividualChannelStream *ics,
|
985 |
enum BandType band_type[120]) |
986 |
{ |
987 |
int i, k, g, idx = 0; |
988 |
const int c = 1024 / ics->num_windows; |
989 |
const uint16_t *offsets = ics->swb_offset;
|
990 |
float *coef_base = coef;
|
991 |
|
992 |
for (g = 0; g < ics->num_windows; g++) |
993 |
memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float) * (c - offsets[ics->max_sfb])); |
994 |
|
995 |
for (g = 0; g < ics->num_window_groups; g++) { |
996 |
unsigned g_len = ics->group_len[g];
|
997 |
|
998 |
for (i = 0; i < ics->max_sfb; i++, idx++) { |
999 |
const unsigned cbt_m1 = band_type[idx] - 1; |
1000 |
float *cfo = coef + offsets[i];
|
1001 |
int off_len = offsets[i + 1] - offsets[i]; |
1002 |
int group;
|
1003 |
|
1004 |
if (cbt_m1 >= INTENSITY_BT2 - 1) { |
1005 |
for (group = 0; group < g_len; group++, cfo+=128) { |
1006 |
memset(cfo, 0, off_len * sizeof(float)); |
1007 |
} |
1008 |
} else if (cbt_m1 == NOISE_BT - 1) { |
1009 |
for (group = 0; group < g_len; group++, cfo+=128) { |
1010 |
float scale;
|
1011 |
float band_energy;
|
1012 |
|
1013 |
for (k = 0; k < off_len; k++) { |
1014 |
ac->random_state = lcg_random(ac->random_state); |
1015 |
cfo[k] = ac->random_state; |
1016 |
} |
1017 |
|
1018 |
band_energy = ac->dsp.scalarproduct_float(cfo, cfo, off_len); |
1019 |
scale = sf[idx] / sqrtf(band_energy); |
1020 |
ac->dsp.vector_fmul_scalar(cfo, cfo, scale, off_len); |
1021 |
} |
1022 |
} else {
|
1023 |
const float *vq = ff_aac_codebook_vector_vals[cbt_m1]; |
1024 |
const uint16_t *cb_vector_idx = ff_aac_codebook_vector_idx[cbt_m1];
|
1025 |
VLC_TYPE (*vlc_tab)[2] = vlc_spectral[cbt_m1].table;
|
1026 |
OPEN_READER(re, gb); |
1027 |
|
1028 |
switch (cbt_m1 >> 1) { |
1029 |
case 0: |
1030 |
for (group = 0; group < g_len; group++, cfo+=128) { |
1031 |
float *cf = cfo;
|
1032 |
int len = off_len;
|
1033 |
|
1034 |
do {
|
1035 |
int code;
|
1036 |
unsigned cb_idx;
|
1037 |
|
1038 |
UPDATE_CACHE(re, gb); |
1039 |
GET_VLC(code, re, gb, vlc_tab, 8, 2); |
1040 |
cb_idx = cb_vector_idx[code]; |
1041 |
cf = VMUL4(cf, vq, cb_idx, sf + idx); |
1042 |
} while (len -= 4); |
1043 |
} |
1044 |
break;
|
1045 |
|
1046 |
case 1: |
1047 |
for (group = 0; group < g_len; group++, cfo+=128) { |
1048 |
float *cf = cfo;
|
1049 |
int len = off_len;
|
1050 |
|
1051 |
do {
|
1052 |
int code;
|
1053 |
unsigned nnz;
|
1054 |
unsigned cb_idx;
|
1055 |
uint32_t bits; |
1056 |
|
1057 |
UPDATE_CACHE(re, gb); |
1058 |
GET_VLC(code, re, gb, vlc_tab, 8, 2); |
1059 |
cb_idx = cb_vector_idx[code]; |
1060 |
nnz = cb_idx >> 8 & 15; |
1061 |
bits = SHOW_UBITS(re, gb, nnz) << (32-nnz);
|
1062 |
LAST_SKIP_BITS(re, gb, nnz); |
1063 |
cf = VMUL4S(cf, vq, cb_idx, bits, sf + idx); |
1064 |
} while (len -= 4); |
1065 |
} |
1066 |
break;
|
1067 |
|
1068 |
case 2: |
1069 |
for (group = 0; group < g_len; group++, cfo+=128) { |
1070 |
float *cf = cfo;
|
1071 |
int len = off_len;
|
1072 |
|
1073 |
do {
|
1074 |
int code;
|
1075 |
unsigned cb_idx;
|
1076 |
|
1077 |
UPDATE_CACHE(re, gb); |
1078 |
GET_VLC(code, re, gb, vlc_tab, 8, 2); |
1079 |
cb_idx = cb_vector_idx[code]; |
1080 |
cf = VMUL2(cf, vq, cb_idx, sf + idx); |
1081 |
} while (len -= 2); |
1082 |
} |
1083 |
break;
|
1084 |
|
1085 |
case 3: |
1086 |
case 4: |
1087 |
for (group = 0; group < g_len; group++, cfo+=128) { |
1088 |
float *cf = cfo;
|
1089 |
int len = off_len;
|
1090 |
|
1091 |
do {
|
1092 |
int code;
|
1093 |
unsigned nnz;
|
1094 |
unsigned cb_idx;
|
1095 |
unsigned sign;
|
1096 |
|
1097 |
UPDATE_CACHE(re, gb); |
1098 |
GET_VLC(code, re, gb, vlc_tab, 8, 2); |
1099 |
cb_idx = cb_vector_idx[code]; |
1100 |
nnz = cb_idx >> 8 & 15; |
1101 |
sign = SHOW_UBITS(re, gb, nnz) << (cb_idx >> 12);
|
1102 |
LAST_SKIP_BITS(re, gb, nnz); |
1103 |
cf = VMUL2S(cf, vq, cb_idx, sign, sf + idx); |
1104 |
} while (len -= 2); |
1105 |
} |
1106 |
break;
|
1107 |
|
1108 |
default:
|
1109 |
for (group = 0; group < g_len; group++, cfo+=128) { |
1110 |
float *cf = cfo;
|
1111 |
uint32_t *icf = (uint32_t *) cf; |
1112 |
int len = off_len;
|
1113 |
|
1114 |
do {
|
1115 |
int code;
|
1116 |
unsigned nzt, nnz;
|
1117 |
unsigned cb_idx;
|
1118 |
uint32_t bits; |
1119 |
int j;
|
1120 |
|
1121 |
UPDATE_CACHE(re, gb); |
1122 |
GET_VLC(code, re, gb, vlc_tab, 8, 2); |
1123 |
|
1124 |
if (!code) {
|
1125 |
*icf++ = 0;
|
1126 |
*icf++ = 0;
|
1127 |
continue;
|
1128 |
} |
1129 |
|
1130 |
cb_idx = cb_vector_idx[code]; |
1131 |
nnz = cb_idx >> 12;
|
1132 |
nzt = cb_idx >> 8;
|
1133 |
bits = SHOW_UBITS(re, gb, nnz) << (32-nnz);
|
1134 |
LAST_SKIP_BITS(re, gb, nnz); |
1135 |
|
1136 |
for (j = 0; j < 2; j++) { |
1137 |
if (nzt & 1<<j) { |
1138 |
uint32_t b; |
1139 |
int n;
|
1140 |
/* The total length of escape_sequence must be < 22 bits according
|
1141 |
to the specification (i.e. max is 111111110xxxxxxxxxxxx). */
|
1142 |
UPDATE_CACHE(re, gb); |
1143 |
b = GET_CACHE(re, gb); |
1144 |
b = 31 - av_log2(~b);
|
1145 |
|
1146 |
if (b > 8) { |
1147 |
av_log(ac->avctx, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
|
1148 |
return -1; |
1149 |
} |
1150 |
|
1151 |
SKIP_BITS(re, gb, b + 1);
|
1152 |
b += 4;
|
1153 |
n = (1 << b) + SHOW_UBITS(re, gb, b);
|
1154 |
LAST_SKIP_BITS(re, gb, b); |
1155 |
*icf++ = cbrt_tab[n] | (bits & 1<<31); |
1156 |
bits <<= 1;
|
1157 |
} else {
|
1158 |
unsigned v = ((const uint32_t*)vq)[cb_idx & 15]; |
1159 |
*icf++ = (bits & 1<<31) | v; |
1160 |
bits <<= !!v; |
1161 |
} |
1162 |
cb_idx >>= 4;
|
1163 |
} |
1164 |
} while (len -= 2); |
1165 |
|
1166 |
ac->dsp.vector_fmul_scalar(cfo, cfo, sf[idx], off_len); |
1167 |
} |
1168 |
} |
1169 |
|
1170 |
CLOSE_READER(re, gb); |
1171 |
} |
1172 |
} |
1173 |
coef += g_len << 7;
|
1174 |
} |
1175 |
|
1176 |
if (pulse_present) {
|
1177 |
idx = 0;
|
1178 |
for (i = 0; i < pulse->num_pulse; i++) { |
1179 |
float co = coef_base[ pulse->pos[i] ];
|
1180 |
while (offsets[idx + 1] <= pulse->pos[i]) |
1181 |
idx++; |
1182 |
if (band_type[idx] != NOISE_BT && sf[idx]) {
|
1183 |
float ico = -pulse->amp[i];
|
1184 |
if (co) {
|
1185 |
co /= sf[idx]; |
1186 |
ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico);
|
1187 |
} |
1188 |
coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx]; |
1189 |
} |
1190 |
} |
1191 |
} |
1192 |
return 0; |
1193 |
} |
1194 |
|
1195 |
static av_always_inline float flt16_round(float pf) |
1196 |
{ |
1197 |
union float754 tmp;
|
1198 |
tmp.f = pf; |
1199 |
tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U; |
1200 |
return tmp.f;
|
1201 |
} |
1202 |
|
1203 |
static av_always_inline float flt16_even(float pf) |
1204 |
{ |
1205 |
union float754 tmp;
|
1206 |
tmp.f = pf; |
1207 |
tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U >> 16)) & 0xFFFF0000U; |
1208 |
return tmp.f;
|
1209 |
} |
1210 |
|
1211 |
static av_always_inline float flt16_trunc(float pf) |
1212 |
{ |
1213 |
union float754 pun;
|
1214 |
pun.f = pf; |
1215 |
pun.i &= 0xFFFF0000U;
|
1216 |
return pun.f;
|
1217 |
} |
1218 |
|
1219 |
static av_always_inline void predict(PredictorState *ps, float *coef, |
1220 |
float sf_scale, float inv_sf_scale, |
1221 |
int output_enable)
|
1222 |
{ |
1223 |
const float a = 0.953125; // 61.0 / 64 |
1224 |
const float alpha = 0.90625; // 29.0 / 32 |
1225 |
float e0, e1;
|
1226 |
float pv;
|
1227 |
float k1, k2;
|
1228 |
float r0 = ps->r0, r1 = ps->r1;
|
1229 |
float cor0 = ps->cor0, cor1 = ps->cor1;
|
1230 |
float var0 = ps->var0, var1 = ps->var1;
|
1231 |
|
1232 |
k1 = var0 > 1 ? cor0 * flt16_even(a / var0) : 0; |
1233 |
k2 = var1 > 1 ? cor1 * flt16_even(a / var1) : 0; |
1234 |
|
1235 |
pv = flt16_round(k1 * r0 + k2 * r1); |
1236 |
if (output_enable)
|
1237 |
*coef += pv * sf_scale; |
1238 |
|
1239 |
e0 = *coef * inv_sf_scale; |
1240 |
e1 = e0 - k1 * r0; |
1241 |
|
1242 |
ps->cor1 = flt16_trunc(alpha * cor1 + r1 * e1); |
1243 |
ps->var1 = flt16_trunc(alpha * var1 + 0.5f * (r1 * r1 + e1 * e1)); |
1244 |
ps->cor0 = flt16_trunc(alpha * cor0 + r0 * e0); |
1245 |
ps->var0 = flt16_trunc(alpha * var0 + 0.5f * (r0 * r0 + e0 * e0)); |
1246 |
|
1247 |
ps->r1 = flt16_trunc(a * (r0 - k1 * e0)); |
1248 |
ps->r0 = flt16_trunc(a * e0); |
1249 |
} |
1250 |
|
1251 |
/**
|
1252 |
* Apply AAC-Main style frequency domain prediction.
|
1253 |
*/
|
1254 |
static void apply_prediction(AACContext *ac, SingleChannelElement *sce) |
1255 |
{ |
1256 |
int sfb, k;
|
1257 |
float sf_scale = ac->sf_scale, inv_sf_scale = 1 / ac->sf_scale; |
1258 |
|
1259 |
if (!sce->ics.predictor_initialized) {
|
1260 |
reset_all_predictors(sce->predictor_state); |
1261 |
sce->ics.predictor_initialized = 1;
|
1262 |
} |
1263 |
|
1264 |
if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) { |
1265 |
for (sfb = 0; sfb < ff_aac_pred_sfb_max[ac->m4ac.sampling_index]; sfb++) { |
1266 |
for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) { |
1267 |
predict(&sce->predictor_state[k], &sce->coeffs[k], |
1268 |
sf_scale, inv_sf_scale, |
1269 |
sce->ics.predictor_present && sce->ics.prediction_used[sfb]); |
1270 |
} |
1271 |
} |
1272 |
if (sce->ics.predictor_reset_group)
|
1273 |
reset_predictor_group(sce->predictor_state, sce->ics.predictor_reset_group); |
1274 |
} else
|
1275 |
reset_all_predictors(sce->predictor_state); |
1276 |
} |
1277 |
|
1278 |
/**
|
1279 |
* Decode an individual_channel_stream payload; reference: table 4.44.
|
1280 |
*
|
1281 |
* @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
|
1282 |
* @param scale_flag scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
|
1283 |
*
|
1284 |
* @return Returns error status. 0 - OK, !0 - error
|
1285 |
*/
|
1286 |
static int decode_ics(AACContext *ac, SingleChannelElement *sce, |
1287 |
GetBitContext *gb, int common_window, int scale_flag) |
1288 |
{ |
1289 |
Pulse pulse; |
1290 |
TemporalNoiseShaping *tns = &sce->tns; |
1291 |
IndividualChannelStream *ics = &sce->ics; |
1292 |
float *out = sce->coeffs;
|
1293 |
int global_gain, pulse_present = 0; |
1294 |
|
1295 |
/* This assignment is to silence a GCC warning about the variable being used
|
1296 |
* uninitialized when in fact it always is.
|
1297 |
*/
|
1298 |
pulse.num_pulse = 0;
|
1299 |
|
1300 |
global_gain = get_bits(gb, 8);
|
1301 |
|
1302 |
if (!common_window && !scale_flag) {
|
1303 |
if (decode_ics_info(ac, ics, gb, 0) < 0) |
1304 |
return -1; |
1305 |
} |
1306 |
|
1307 |
if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0) |
1308 |
return -1; |
1309 |
if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0) |
1310 |
return -1; |
1311 |
|
1312 |
pulse_present = 0;
|
1313 |
if (!scale_flag) {
|
1314 |
if ((pulse_present = get_bits1(gb))) {
|
1315 |
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
1316 |
av_log(ac->avctx, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
|
1317 |
return -1; |
1318 |
} |
1319 |
if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) {
|
1320 |
av_log(ac->avctx, AV_LOG_ERROR, "Pulse data corrupt or invalid.\n");
|
1321 |
return -1; |
1322 |
} |
1323 |
} |
1324 |
if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
|
1325 |
return -1; |
1326 |
if (get_bits1(gb)) {
|
1327 |
av_log_missing_feature(ac->avctx, "SSR", 1); |
1328 |
return -1; |
1329 |
} |
1330 |
} |
1331 |
|
1332 |
if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0) |
1333 |
return -1; |
1334 |
|
1335 |
if (ac->m4ac.object_type == AOT_AAC_MAIN && !common_window)
|
1336 |
apply_prediction(ac, sce); |
1337 |
|
1338 |
return 0; |
1339 |
} |
1340 |
|
1341 |
/**
|
1342 |
* Mid/Side stereo decoding; reference: 4.6.8.1.3.
|
1343 |
*/
|
1344 |
static void apply_mid_side_stereo(AACContext *ac, ChannelElement *cpe) |
1345 |
{ |
1346 |
const IndividualChannelStream *ics = &cpe->ch[0].ics; |
1347 |
float *ch0 = cpe->ch[0].coeffs; |
1348 |
float *ch1 = cpe->ch[1].coeffs; |
1349 |
int g, i, group, idx = 0; |
1350 |
const uint16_t *offsets = ics->swb_offset;
|
1351 |
for (g = 0; g < ics->num_window_groups; g++) { |
1352 |
for (i = 0; i < ics->max_sfb; i++, idx++) { |
1353 |
if (cpe->ms_mask[idx] &&
|
1354 |
cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) { |
1355 |
for (group = 0; group < ics->group_len[g]; group++) { |
1356 |
ac->dsp.butterflies_float(ch0 + group * 128 + offsets[i],
|
1357 |
ch1 + group * 128 + offsets[i],
|
1358 |
offsets[i+1] - offsets[i]);
|
1359 |
} |
1360 |
} |
1361 |
} |
1362 |
ch0 += ics->group_len[g] * 128;
|
1363 |
ch1 += ics->group_len[g] * 128;
|
1364 |
} |
1365 |
} |
1366 |
|
1367 |
/**
|
1368 |
* intensity stereo decoding; reference: 4.6.8.2.3
|
1369 |
*
|
1370 |
* @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
|
1371 |
* [1] mask is decoded from bitstream; [2] mask is all 1s;
|
1372 |
* [3] reserved for scalable AAC
|
1373 |
*/
|
1374 |
static void apply_intensity_stereo(ChannelElement *cpe, int ms_present) |
1375 |
{ |
1376 |
const IndividualChannelStream *ics = &cpe->ch[1].ics; |
1377 |
SingleChannelElement *sce1 = &cpe->ch[1];
|
1378 |
float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs; |
1379 |
const uint16_t *offsets = ics->swb_offset;
|
1380 |
int g, group, i, k, idx = 0; |
1381 |
int c;
|
1382 |
float scale;
|
1383 |
for (g = 0; g < ics->num_window_groups; g++) { |
1384 |
for (i = 0; i < ics->max_sfb;) { |
1385 |
if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
|
1386 |
const int bt_run_end = sce1->band_type_run_end[idx]; |
1387 |
for (; i < bt_run_end; i++, idx++) {
|
1388 |
c = -1 + 2 * (sce1->band_type[idx] - 14); |
1389 |
if (ms_present)
|
1390 |
c *= 1 - 2 * cpe->ms_mask[idx]; |
1391 |
scale = c * sce1->sf[idx]; |
1392 |
for (group = 0; group < ics->group_len[g]; group++) |
1393 |
for (k = offsets[i]; k < offsets[i + 1]; k++) |
1394 |
coef1[group * 128 + k] = scale * coef0[group * 128 + k]; |
1395 |
} |
1396 |
} else {
|
1397 |
int bt_run_end = sce1->band_type_run_end[idx];
|
1398 |
idx += bt_run_end - i; |
1399 |
i = bt_run_end; |
1400 |
} |
1401 |
} |
1402 |
coef0 += ics->group_len[g] * 128;
|
1403 |
coef1 += ics->group_len[g] * 128;
|
1404 |
} |
1405 |
} |
1406 |
|
1407 |
/**
|
1408 |
* Decode a channel_pair_element; reference: table 4.4.
|
1409 |
*
|
1410 |
* @return Returns error status. 0 - OK, !0 - error
|
1411 |
*/
|
1412 |
static int decode_cpe(AACContext *ac, GetBitContext *gb, ChannelElement *cpe) |
1413 |
{ |
1414 |
int i, ret, common_window, ms_present = 0; |
1415 |
|
1416 |
common_window = get_bits1(gb); |
1417 |
if (common_window) {
|
1418 |
if (decode_ics_info(ac, &cpe->ch[0].ics, gb, 1)) |
1419 |
return -1; |
1420 |
i = cpe->ch[1].ics.use_kb_window[0]; |
1421 |
cpe->ch[1].ics = cpe->ch[0].ics; |
1422 |
cpe->ch[1].ics.use_kb_window[1] = i; |
1423 |
ms_present = get_bits(gb, 2);
|
1424 |
if (ms_present == 3) { |
1425 |
av_log(ac->avctx, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
|
1426 |
return -1; |
1427 |
} else if (ms_present) |
1428 |
decode_mid_side_stereo(cpe, gb, ms_present); |
1429 |
} |
1430 |
if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0))) |
1431 |
return ret;
|
1432 |
if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0))) |
1433 |
return ret;
|
1434 |
|
1435 |
if (common_window) {
|
1436 |
if (ms_present)
|
1437 |
apply_mid_side_stereo(ac, cpe); |
1438 |
if (ac->m4ac.object_type == AOT_AAC_MAIN) {
|
1439 |
apply_prediction(ac, &cpe->ch[0]);
|
1440 |
apply_prediction(ac, &cpe->ch[1]);
|
1441 |
} |
1442 |
} |
1443 |
|
1444 |
apply_intensity_stereo(cpe, ms_present); |
1445 |
return 0; |
1446 |
} |
1447 |
|
1448 |
static const float cce_scale[] = { |
1449 |
1.09050773266525765921, //2^(1/8) |
1450 |
1.18920711500272106672, //2^(1/4) |
1451 |
M_SQRT2, |
1452 |
2,
|
1453 |
}; |
1454 |
|
1455 |
/**
|
1456 |
* Decode coupling_channel_element; reference: table 4.8.
|
1457 |
*
|
1458 |
* @return Returns error status. 0 - OK, !0 - error
|
1459 |
*/
|
1460 |
static int decode_cce(AACContext *ac, GetBitContext *gb, ChannelElement *che) |
1461 |
{ |
1462 |
int num_gain = 0; |
1463 |
int c, g, sfb, ret;
|
1464 |
int sign;
|
1465 |
float scale;
|
1466 |
SingleChannelElement *sce = &che->ch[0];
|
1467 |
ChannelCoupling *coup = &che->coup; |
1468 |
|
1469 |
coup->coupling_point = 2 * get_bits1(gb);
|
1470 |
coup->num_coupled = get_bits(gb, 3);
|
1471 |
for (c = 0; c <= coup->num_coupled; c++) { |
1472 |
num_gain++; |
1473 |
coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE; |
1474 |
coup->id_select[c] = get_bits(gb, 4);
|
1475 |
if (coup->type[c] == TYPE_CPE) {
|
1476 |
coup->ch_select[c] = get_bits(gb, 2);
|
1477 |
if (coup->ch_select[c] == 3) |
1478 |
num_gain++; |
1479 |
} else
|
1480 |
coup->ch_select[c] = 2;
|
1481 |
} |
1482 |
coup->coupling_point += get_bits1(gb) || (coup->coupling_point >> 1);
|
1483 |
|
1484 |
sign = get_bits(gb, 1);
|
1485 |
scale = cce_scale[get_bits(gb, 2)];
|
1486 |
|
1487 |
if ((ret = decode_ics(ac, sce, gb, 0, 0))) |
1488 |
return ret;
|
1489 |
|
1490 |
for (c = 0; c < num_gain; c++) { |
1491 |
int idx = 0; |
1492 |
int cge = 1; |
1493 |
int gain = 0; |
1494 |
float gain_cache = 1.; |
1495 |
if (c) {
|
1496 |
cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
|
1497 |
gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0; |
1498 |
gain_cache = powf(scale, -gain); |
1499 |
} |
1500 |
if (coup->coupling_point == AFTER_IMDCT) {
|
1501 |
coup->gain[c][0] = gain_cache;
|
1502 |
} else {
|
1503 |
for (g = 0; g < sce->ics.num_window_groups; g++) { |
1504 |
for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) { |
1505 |
if (sce->band_type[idx] != ZERO_BT) {
|
1506 |
if (!cge) {
|
1507 |
int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60; |
1508 |
if (t) {
|
1509 |
int s = 1; |
1510 |
t = gain += t; |
1511 |
if (sign) {
|
1512 |
s -= 2 * (t & 0x1); |
1513 |
t >>= 1;
|
1514 |
} |
1515 |
gain_cache = powf(scale, -t) * s; |
1516 |
} |
1517 |
} |
1518 |
coup->gain[c][idx] = gain_cache; |
1519 |
} |
1520 |
} |
1521 |
} |
1522 |
} |
1523 |
} |
1524 |
return 0; |
1525 |
} |
1526 |
|
1527 |
/**
|
1528 |
* Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
|
1529 |
*
|
1530 |
* @return Returns number of bytes consumed.
|
1531 |
*/
|
1532 |
static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc, |
1533 |
GetBitContext *gb) |
1534 |
{ |
1535 |
int i;
|
1536 |
int num_excl_chan = 0; |
1537 |
|
1538 |
do {
|
1539 |
for (i = 0; i < 7; i++) |
1540 |
che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb); |
1541 |
} while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb)); |
1542 |
|
1543 |
return num_excl_chan / 7; |
1544 |
} |
1545 |
|
1546 |
/**
|
1547 |
* Decode dynamic range information; reference: table 4.52.
|
1548 |
*
|
1549 |
* @param cnt length of TYPE_FIL syntactic element in bytes
|
1550 |
*
|
1551 |
* @return Returns number of bytes consumed.
|
1552 |
*/
|
1553 |
static int decode_dynamic_range(DynamicRangeControl *che_drc, |
1554 |
GetBitContext *gb, int cnt)
|
1555 |
{ |
1556 |
int n = 1; |
1557 |
int drc_num_bands = 1; |
1558 |
int i;
|
1559 |
|
1560 |
/* pce_tag_present? */
|
1561 |
if (get_bits1(gb)) {
|
1562 |
che_drc->pce_instance_tag = get_bits(gb, 4);
|
1563 |
skip_bits(gb, 4); // tag_reserved_bits |
1564 |
n++; |
1565 |
} |
1566 |
|
1567 |
/* excluded_chns_present? */
|
1568 |
if (get_bits1(gb)) {
|
1569 |
n += decode_drc_channel_exclusions(che_drc, gb); |
1570 |
} |
1571 |
|
1572 |
/* drc_bands_present? */
|
1573 |
if (get_bits1(gb)) {
|
1574 |
che_drc->band_incr = get_bits(gb, 4);
|
1575 |
che_drc->interpolation_scheme = get_bits(gb, 4);
|
1576 |
n++; |
1577 |
drc_num_bands += che_drc->band_incr; |
1578 |
for (i = 0; i < drc_num_bands; i++) { |
1579 |
che_drc->band_top[i] = get_bits(gb, 8);
|
1580 |
n++; |
1581 |
} |
1582 |
} |
1583 |
|
1584 |
/* prog_ref_level_present? */
|
1585 |
if (get_bits1(gb)) {
|
1586 |
che_drc->prog_ref_level = get_bits(gb, 7);
|
1587 |
skip_bits1(gb); // prog_ref_level_reserved_bits
|
1588 |
n++; |
1589 |
} |
1590 |
|
1591 |
for (i = 0; i < drc_num_bands; i++) { |
1592 |
che_drc->dyn_rng_sgn[i] = get_bits1(gb); |
1593 |
che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
|
1594 |
n++; |
1595 |
} |
1596 |
|
1597 |
return n;
|
1598 |
} |
1599 |
|
1600 |
/**
|
1601 |
* Decode extension data (incomplete); reference: table 4.51.
|
1602 |
*
|
1603 |
* @param cnt length of TYPE_FIL syntactic element in bytes
|
1604 |
*
|
1605 |
* @return Returns number of bytes consumed
|
1606 |
*/
|
1607 |
static int decode_extension_payload(AACContext *ac, GetBitContext *gb, int cnt, |
1608 |
ChannelElement *che, enum RawDataBlockType elem_type)
|
1609 |
{ |
1610 |
int crc_flag = 0; |
1611 |
int res = cnt;
|
1612 |
switch (get_bits(gb, 4)) { // extension type |
1613 |
case EXT_SBR_DATA_CRC:
|
1614 |
crc_flag++; |
1615 |
case EXT_SBR_DATA:
|
1616 |
if (!che) {
|
1617 |
av_log(ac->avctx, AV_LOG_ERROR, "SBR was found before the first channel element.\n");
|
1618 |
return res;
|
1619 |
} else if (!ac->m4ac.sbr) { |
1620 |
av_log(ac->avctx, AV_LOG_ERROR, "SBR signaled to be not-present but was found in the bitstream.\n");
|
1621 |
skip_bits_long(gb, 8 * cnt - 4); |
1622 |
return res;
|
1623 |
} else if (ac->m4ac.sbr == -1 && ac->output_configured == OC_LOCKED) { |
1624 |
av_log(ac->avctx, AV_LOG_ERROR, "Implicit SBR was found with a first occurrence after the first frame.\n");
|
1625 |
skip_bits_long(gb, 8 * cnt - 4); |
1626 |
return res;
|
1627 |
} else if (ac->m4ac.ps == -1 && ac->output_configured < OC_LOCKED && ac->avctx->channels == 1) { |
1628 |
ac->m4ac.sbr = 1;
|
1629 |
ac->m4ac.ps = 1;
|
1630 |
output_configure(ac, ac->che_pos, ac->che_pos, ac->m4ac.chan_config, ac->output_configured); |
1631 |
} else {
|
1632 |
ac->m4ac.sbr = 1;
|
1633 |
} |
1634 |
res = ff_decode_sbr_extension(ac, &che->sbr, gb, crc_flag, cnt, elem_type); |
1635 |
break;
|
1636 |
case EXT_DYNAMIC_RANGE:
|
1637 |
res = decode_dynamic_range(&ac->che_drc, gb, cnt); |
1638 |
break;
|
1639 |
case EXT_FILL:
|
1640 |
case EXT_FILL_DATA:
|
1641 |
case EXT_DATA_ELEMENT:
|
1642 |
default:
|
1643 |
skip_bits_long(gb, 8 * cnt - 4); |
1644 |
break;
|
1645 |
}; |
1646 |
return res;
|
1647 |
} |
1648 |
|
1649 |
/**
|
1650 |
* Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
|
1651 |
*
|
1652 |
* @param decode 1 if tool is used normally, 0 if tool is used in LTP.
|
1653 |
* @param coef spectral coefficients
|
1654 |
*/
|
1655 |
static void apply_tns(float coef[1024], TemporalNoiseShaping *tns, |
1656 |
IndividualChannelStream *ics, int decode)
|
1657 |
{ |
1658 |
const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb); |
1659 |
int w, filt, m, i;
|
1660 |
int bottom, top, order, start, end, size, inc;
|
1661 |
float lpc[TNS_MAX_ORDER];
|
1662 |
|
1663 |
for (w = 0; w < ics->num_windows; w++) { |
1664 |
bottom = ics->num_swb; |
1665 |
for (filt = 0; filt < tns->n_filt[w]; filt++) { |
1666 |
top = bottom; |
1667 |
bottom = FFMAX(0, top - tns->length[w][filt]);
|
1668 |
order = tns->order[w][filt]; |
1669 |
if (order == 0) |
1670 |
continue;
|
1671 |
|
1672 |
// tns_decode_coef
|
1673 |
compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0); |
1674 |
|
1675 |
start = ics->swb_offset[FFMIN(bottom, mmm)]; |
1676 |
end = ics->swb_offset[FFMIN( top, mmm)]; |
1677 |
if ((size = end - start) <= 0) |
1678 |
continue;
|
1679 |
if (tns->direction[w][filt]) {
|
1680 |
inc = -1;
|
1681 |
start = end - 1;
|
1682 |
} else {
|
1683 |
inc = 1;
|
1684 |
} |
1685 |
start += w * 128;
|
1686 |
|
1687 |
// ar filter
|
1688 |
for (m = 0; m < size; m++, start += inc) |
1689 |
for (i = 1; i <= FFMIN(m, order); i++) |
1690 |
coef[start] -= coef[start - i * inc] * lpc[i - 1];
|
1691 |
} |
1692 |
} |
1693 |
} |
1694 |
|
1695 |
/**
|
1696 |
* Conduct IMDCT and windowing.
|
1697 |
*/
|
1698 |
static void imdct_and_windowing(AACContext *ac, SingleChannelElement *sce) |
1699 |
{ |
1700 |
IndividualChannelStream *ics = &sce->ics; |
1701 |
float *in = sce->coeffs;
|
1702 |
float *out = sce->ret;
|
1703 |
float *saved = sce->saved;
|
1704 |
const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128; |
1705 |
const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024; |
1706 |
const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128; |
1707 |
float *buf = ac->buf_mdct;
|
1708 |
float *temp = ac->temp;
|
1709 |
int i;
|
1710 |
|
1711 |
// imdct
|
1712 |
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
1713 |
for (i = 0; i < 1024; i += 128) |
1714 |
ff_imdct_half(&ac->mdct_small, buf + i, in + i); |
1715 |
} else
|
1716 |
ff_imdct_half(&ac->mdct, buf, in); |
1717 |
|
1718 |
/* window overlapping
|
1719 |
* NOTE: To simplify the overlapping code, all 'meaningless' short to long
|
1720 |
* and long to short transitions are considered to be short to short
|
1721 |
* transitions. This leaves just two cases (long to long and short to short)
|
1722 |
* with a little special sauce for EIGHT_SHORT_SEQUENCE.
|
1723 |
*/
|
1724 |
if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) && |
1725 |
(ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) { |
1726 |
ac->dsp.vector_fmul_window( out, saved, buf, lwindow_prev, 512);
|
1727 |
} else {
|
1728 |
memcpy( out, saved, 448 * sizeof(float)); |
1729 |
|
1730 |
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
1731 |
ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448, buf + 0*128, swindow_prev, 64); |
1732 |
ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow, 64); |
1733 |
ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow, 64); |
1734 |
ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow, 64); |
1735 |
ac->dsp.vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, swindow, 64); |
1736 |
memcpy( out + 448 + 4*128, temp, 64 * sizeof(float)); |
1737 |
} else {
|
1738 |
ac->dsp.vector_fmul_window(out + 448, saved + 448, buf, swindow_prev, 64); |
1739 |
memcpy( out + 576, buf + 64, 448 * sizeof(float)); |
1740 |
} |
1741 |
} |
1742 |
|
1743 |
// buffer update
|
1744 |
if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) { |
1745 |
memcpy( saved, temp + 64, 64 * sizeof(float)); |
1746 |
ac->dsp.vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, swindow, 64); |
1747 |
ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 64); |
1748 |
ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 64); |
1749 |
memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float)); |
1750 |
} else if (ics->window_sequence[0] == LONG_START_SEQUENCE) { |
1751 |
memcpy( saved, buf + 512, 448 * sizeof(float)); |
1752 |
memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float)); |
1753 |
} else { // LONG_STOP or ONLY_LONG |
1754 |
memcpy( saved, buf + 512, 512 * sizeof(float)); |
1755 |
} |
1756 |
} |
1757 |
|
1758 |
/**
|
1759 |
* Apply dependent channel coupling (applied before IMDCT).
|
1760 |
*
|
1761 |
* @param index index into coupling gain array
|
1762 |
*/
|
1763 |
static void apply_dependent_coupling(AACContext *ac, |
1764 |
SingleChannelElement *target, |
1765 |
ChannelElement *cce, int index)
|
1766 |
{ |
1767 |
IndividualChannelStream *ics = &cce->ch[0].ics;
|
1768 |
const uint16_t *offsets = ics->swb_offset;
|
1769 |
float *dest = target->coeffs;
|
1770 |
const float *src = cce->ch[0].coeffs; |
1771 |
int g, i, group, k, idx = 0; |
1772 |
if (ac->m4ac.object_type == AOT_AAC_LTP) {
|
1773 |
av_log(ac->avctx, AV_LOG_ERROR, |
1774 |
"Dependent coupling is not supported together with LTP\n");
|
1775 |
return;
|
1776 |
} |
1777 |
for (g = 0; g < ics->num_window_groups; g++) { |
1778 |
for (i = 0; i < ics->max_sfb; i++, idx++) { |
1779 |
if (cce->ch[0].band_type[idx] != ZERO_BT) { |
1780 |
const float gain = cce->coup.gain[index][idx]; |
1781 |
for (group = 0; group < ics->group_len[g]; group++) { |
1782 |
for (k = offsets[i]; k < offsets[i + 1]; k++) { |
1783 |
// XXX dsputil-ize
|
1784 |
dest[group * 128 + k] += gain * src[group * 128 + k]; |
1785 |
} |
1786 |
} |
1787 |
} |
1788 |
} |
1789 |
dest += ics->group_len[g] * 128;
|
1790 |
src += ics->group_len[g] * 128;
|
1791 |
} |
1792 |
} |
1793 |
|
1794 |
/**
|
1795 |
* Apply independent channel coupling (applied after IMDCT).
|
1796 |
*
|
1797 |
* @param index index into coupling gain array
|
1798 |
*/
|
1799 |
static void apply_independent_coupling(AACContext *ac, |
1800 |
SingleChannelElement *target, |
1801 |
ChannelElement *cce, int index)
|
1802 |
{ |
1803 |
int i;
|
1804 |
const float gain = cce->coup.gain[index][0]; |
1805 |
const float *src = cce->ch[0].ret; |
1806 |
float *dest = target->ret;
|
1807 |
const int len = 1024 << (ac->m4ac.sbr == 1); |
1808 |
|
1809 |
for (i = 0; i < len; i++) |
1810 |
dest[i] += gain * src[i]; |
1811 |
} |
1812 |
|
1813 |
/**
|
1814 |
* channel coupling transformation interface
|
1815 |
*
|
1816 |
* @param apply_coupling_method pointer to (in)dependent coupling function
|
1817 |
*/
|
1818 |
static void apply_channel_coupling(AACContext *ac, ChannelElement *cc, |
1819 |
enum RawDataBlockType type, int elem_id, |
1820 |
enum CouplingPoint coupling_point,
|
1821 |
void (*apply_coupling_method)(AACContext *ac, SingleChannelElement *target, ChannelElement *cce, int index)) |
1822 |
{ |
1823 |
int i, c;
|
1824 |
|
1825 |
for (i = 0; i < MAX_ELEM_ID; i++) { |
1826 |
ChannelElement *cce = ac->che[TYPE_CCE][i]; |
1827 |
int index = 0; |
1828 |
|
1829 |
if (cce && cce->coup.coupling_point == coupling_point) {
|
1830 |
ChannelCoupling *coup = &cce->coup; |
1831 |
|
1832 |
for (c = 0; c <= coup->num_coupled; c++) { |
1833 |
if (coup->type[c] == type && coup->id_select[c] == elem_id) {
|
1834 |
if (coup->ch_select[c] != 1) { |
1835 |
apply_coupling_method(ac, &cc->ch[0], cce, index);
|
1836 |
if (coup->ch_select[c] != 0) |
1837 |
index++; |
1838 |
} |
1839 |
if (coup->ch_select[c] != 2) |
1840 |
apply_coupling_method(ac, &cc->ch[1], cce, index++);
|
1841 |
} else
|
1842 |
index += 1 + (coup->ch_select[c] == 3); |
1843 |
} |
1844 |
} |
1845 |
} |
1846 |
} |
1847 |
|
1848 |
/**
|
1849 |
* Convert spectral data to float samples, applying all supported tools as appropriate.
|
1850 |
*/
|
1851 |
static void spectral_to_sample(AACContext *ac) |
1852 |
{ |
1853 |
int i, type;
|
1854 |
for (type = 3; type >= 0; type--) { |
1855 |
for (i = 0; i < MAX_ELEM_ID; i++) { |
1856 |
ChannelElement *che = ac->che[type][i]; |
1857 |
if (che) {
|
1858 |
if (type <= TYPE_CPE)
|
1859 |
apply_channel_coupling(ac, che, type, i, BEFORE_TNS, apply_dependent_coupling); |
1860 |
if (che->ch[0].tns.present) |
1861 |
apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1); |
1862 |
if (che->ch[1].tns.present) |
1863 |
apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1); |
1864 |
if (type <= TYPE_CPE)
|
1865 |
apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling); |
1866 |
if (type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT) {
|
1867 |
imdct_and_windowing(ac, &che->ch[0]);
|
1868 |
if (type == TYPE_CPE) {
|
1869 |
imdct_and_windowing(ac, &che->ch[1]);
|
1870 |
} |
1871 |
if (ac->m4ac.sbr > 0) { |
1872 |
ff_sbr_apply(ac, &che->sbr, type, che->ch[0].ret, che->ch[1].ret); |
1873 |
} |
1874 |
} |
1875 |
if (type <= TYPE_CCE)
|
1876 |
apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling); |
1877 |
} |
1878 |
} |
1879 |
} |
1880 |
} |
1881 |
|
1882 |
static int parse_adts_frame_header(AACContext *ac, GetBitContext *gb) |
1883 |
{ |
1884 |
int size;
|
1885 |
AACADTSHeaderInfo hdr_info; |
1886 |
|
1887 |
size = ff_aac_parse_header(gb, &hdr_info); |
1888 |
if (size > 0) { |
1889 |
if (ac->output_configured != OC_LOCKED && hdr_info.chan_config) {
|
1890 |
enum ChannelPosition new_che_pos[4][MAX_ELEM_ID]; |
1891 |
memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0])); |
1892 |
ac->m4ac.chan_config = hdr_info.chan_config; |
1893 |
if (set_default_channel_config(ac->avctx, new_che_pos, hdr_info.chan_config))
|
1894 |
return -7; |
1895 |
if (output_configure(ac, ac->che_pos, new_che_pos, hdr_info.chan_config, OC_TRIAL_FRAME))
|
1896 |
return -7; |
1897 |
} else if (ac->output_configured != OC_LOCKED) { |
1898 |
ac->output_configured = OC_NONE; |
1899 |
} |
1900 |
if (ac->output_configured != OC_LOCKED) {
|
1901 |
ac->m4ac.sbr = -1;
|
1902 |
ac->m4ac.ps = -1;
|
1903 |
} |
1904 |
ac->m4ac.sample_rate = hdr_info.sample_rate; |
1905 |
ac->m4ac.sampling_index = hdr_info.sampling_index; |
1906 |
ac->m4ac.object_type = hdr_info.object_type; |
1907 |
if (!ac->avctx->sample_rate)
|
1908 |
ac->avctx->sample_rate = hdr_info.sample_rate; |
1909 |
if (hdr_info.num_aac_frames == 1) { |
1910 |
if (!hdr_info.crc_absent)
|
1911 |
skip_bits(gb, 16);
|
1912 |
} else {
|
1913 |
av_log_missing_feature(ac->avctx, "More than one AAC RDB per ADTS frame is", 0); |
1914 |
return -1; |
1915 |
} |
1916 |
} |
1917 |
return size;
|
1918 |
} |
1919 |
|
1920 |
static int aac_decode_frame_int(AVCodecContext *avctx, void *data, |
1921 |
int *data_size, GetBitContext *gb)
|
1922 |
{ |
1923 |
AACContext *ac = avctx->priv_data; |
1924 |
ChannelElement *che = NULL, *che_prev = NULL; |
1925 |
enum RawDataBlockType elem_type, elem_type_prev = TYPE_END;
|
1926 |
int err, elem_id, data_size_tmp;
|
1927 |
int samples = 0, multiplier; |
1928 |
|
1929 |
if (show_bits(gb, 12) == 0xfff) { |
1930 |
if (parse_adts_frame_header(ac, gb) < 0) { |
1931 |
av_log(avctx, AV_LOG_ERROR, "Error decoding AAC frame header.\n");
|
1932 |
return -1; |
1933 |
} |
1934 |
if (ac->m4ac.sampling_index > 12) { |
1935 |
av_log(ac->avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
|
1936 |
return -1; |
1937 |
} |
1938 |
} |
1939 |
|
1940 |
ac->tags_mapped = 0;
|
1941 |
// parse
|
1942 |
while ((elem_type = get_bits(gb, 3)) != TYPE_END) { |
1943 |
elem_id = get_bits(gb, 4);
|
1944 |
|
1945 |
if (elem_type < TYPE_DSE) {
|
1946 |
if (!(che=get_che(ac, elem_type, elem_id))) {
|
1947 |
av_log(ac->avctx, AV_LOG_ERROR, "channel element %d.%d is not allocated\n",
|
1948 |
elem_type, elem_id); |
1949 |
return -1; |
1950 |
} |
1951 |
samples = 1024;
|
1952 |
} |
1953 |
|
1954 |
switch (elem_type) {
|
1955 |
|
1956 |
case TYPE_SCE:
|
1957 |
err = decode_ics(ac, &che->ch[0], gb, 0, 0); |
1958 |
break;
|
1959 |
|
1960 |
case TYPE_CPE:
|
1961 |
err = decode_cpe(ac, gb, che); |
1962 |
break;
|
1963 |
|
1964 |
case TYPE_CCE:
|
1965 |
err = decode_cce(ac, gb, che); |
1966 |
break;
|
1967 |
|
1968 |
case TYPE_LFE:
|
1969 |
err = decode_ics(ac, &che->ch[0], gb, 0, 0); |
1970 |
break;
|
1971 |
|
1972 |
case TYPE_DSE:
|
1973 |
err = skip_data_stream_element(ac, gb); |
1974 |
break;
|
1975 |
|
1976 |
case TYPE_PCE: {
|
1977 |
enum ChannelPosition new_che_pos[4][MAX_ELEM_ID]; |
1978 |
memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0])); |
1979 |
if ((err = decode_pce(avctx, &ac->m4ac, new_che_pos, gb)))
|
1980 |
break;
|
1981 |
if (ac->output_configured > OC_TRIAL_PCE)
|
1982 |
av_log(avctx, AV_LOG_ERROR, |
1983 |
"Not evaluating a further program_config_element as this construct is dubious at best.\n");
|
1984 |
else
|
1985 |
err = output_configure(ac, ac->che_pos, new_che_pos, 0, OC_TRIAL_PCE);
|
1986 |
break;
|
1987 |
} |
1988 |
|
1989 |
case TYPE_FIL:
|
1990 |
if (elem_id == 15) |
1991 |
elem_id += get_bits(gb, 8) - 1; |
1992 |
if (get_bits_left(gb) < 8 * elem_id) { |
1993 |
av_log(avctx, AV_LOG_ERROR, overread_err); |
1994 |
return -1; |
1995 |
} |
1996 |
while (elem_id > 0) |
1997 |
elem_id -= decode_extension_payload(ac, gb, elem_id, che_prev, elem_type_prev); |
1998 |
err = 0; /* FIXME */ |
1999 |
break;
|
2000 |
|
2001 |
default:
|
2002 |
err = -1; /* should not happen, but keeps compiler happy */ |
2003 |
break;
|
2004 |
} |
2005 |
|
2006 |
che_prev = che; |
2007 |
elem_type_prev = elem_type; |
2008 |
|
2009 |
if (err)
|
2010 |
return err;
|
2011 |
|
2012 |
if (get_bits_left(gb) < 3) { |
2013 |
av_log(avctx, AV_LOG_ERROR, overread_err); |
2014 |
return -1; |
2015 |
} |
2016 |
} |
2017 |
|
2018 |
spectral_to_sample(ac); |
2019 |
|
2020 |
multiplier = (ac->m4ac.sbr == 1) ? ac->m4ac.ext_sample_rate > ac->m4ac.sample_rate : 0; |
2021 |
samples <<= multiplier; |
2022 |
if (ac->output_configured < OC_LOCKED) {
|
2023 |
avctx->sample_rate = ac->m4ac.sample_rate << multiplier; |
2024 |
avctx->frame_size = samples; |
2025 |
} |
2026 |
|
2027 |
data_size_tmp = samples * avctx->channels * sizeof(int16_t);
|
2028 |
if (*data_size < data_size_tmp) {
|
2029 |
av_log(avctx, AV_LOG_ERROR, |
2030 |
"Output buffer too small (%d) or trying to output too many samples (%d) for this frame.\n",
|
2031 |
*data_size, data_size_tmp); |
2032 |
return -1; |
2033 |
} |
2034 |
*data_size = data_size_tmp; |
2035 |
|
2036 |
if (samples)
|
2037 |
ac->fmt_conv.float_to_int16_interleave(data, (const float **)ac->output_data, samples, avctx->channels); |
2038 |
|
2039 |
if (ac->output_configured)
|
2040 |
ac->output_configured = OC_LOCKED; |
2041 |
|
2042 |
return 0; |
2043 |
} |
2044 |
|
2045 |
static int aac_decode_frame(AVCodecContext *avctx, void *data, |
2046 |
int *data_size, AVPacket *avpkt)
|
2047 |
{ |
2048 |
const uint8_t *buf = avpkt->data;
|
2049 |
int buf_size = avpkt->size;
|
2050 |
GetBitContext gb; |
2051 |
int buf_consumed;
|
2052 |
int buf_offset;
|
2053 |
int err;
|
2054 |
|
2055 |
init_get_bits(&gb, buf, buf_size * 8);
|
2056 |
|
2057 |
if ((err = aac_decode_frame_int(avctx, data, data_size, &gb)) < 0) |
2058 |
return err;
|
2059 |
|
2060 |
buf_consumed = (get_bits_count(&gb) + 7) >> 3; |
2061 |
for (buf_offset = buf_consumed; buf_offset < buf_size; buf_offset++)
|
2062 |
if (buf[buf_offset])
|
2063 |
break;
|
2064 |
|
2065 |
return buf_size > buf_offset ? buf_consumed : buf_size;
|
2066 |
} |
2067 |
|
2068 |
static av_cold int aac_decode_close(AVCodecContext *avctx) |
2069 |
{ |
2070 |
AACContext *ac = avctx->priv_data; |
2071 |
int i, type;
|
2072 |
|
2073 |
for (i = 0; i < MAX_ELEM_ID; i++) { |
2074 |
for (type = 0; type < 4; type++) { |
2075 |
if (ac->che[type][i])
|
2076 |
ff_aac_sbr_ctx_close(&ac->che[type][i]->sbr); |
2077 |
av_freep(&ac->che[type][i]); |
2078 |
} |
2079 |
} |
2080 |
|
2081 |
ff_mdct_end(&ac->mdct); |
2082 |
ff_mdct_end(&ac->mdct_small); |
2083 |
return 0; |
2084 |
} |
2085 |
|
2086 |
|
2087 |
#define LOAS_SYNC_WORD 0x2b7 ///< 11 bits LOAS sync word |
2088 |
|
2089 |
struct LATMContext {
|
2090 |
AACContext aac_ctx; ///< containing AACContext
|
2091 |
int initialized; ///< initilized after a valid extradata was seen |
2092 |
|
2093 |
// parser data
|
2094 |
int audio_mux_version_A; ///< LATM syntax version |
2095 |
int frame_length_type; ///< 0/1 variable/fixed frame length |
2096 |
int frame_length; ///< frame length for fixed frame length |
2097 |
}; |
2098 |
|
2099 |
static inline uint32_t latm_get_value(GetBitContext *b) |
2100 |
{ |
2101 |
int length = get_bits(b, 2); |
2102 |
|
2103 |
return get_bits_long(b, (length+1)*8); |
2104 |
} |
2105 |
|
2106 |
static int latm_decode_audio_specific_config(struct LATMContext *latmctx, |
2107 |
GetBitContext *gb) |
2108 |
{ |
2109 |
AVCodecContext *avctx = latmctx->aac_ctx.avctx; |
2110 |
MPEG4AudioConfig m4ac; |
2111 |
int config_start_bit = get_bits_count(gb);
|
2112 |
int bits_consumed, esize;
|
2113 |
|
2114 |
if (config_start_bit % 8) { |
2115 |
av_log_missing_feature(latmctx->aac_ctx.avctx, "audio specific "
|
2116 |
"config not byte aligned.\n", 1); |
2117 |
return AVERROR_INVALIDDATA;
|
2118 |
} else {
|
2119 |
bits_consumed = |
2120 |
decode_audio_specific_config(NULL, avctx, &m4ac,
|
2121 |
gb->buffer + (config_start_bit / 8),
|
2122 |
get_bits_left(gb) / 8);
|
2123 |
|
2124 |
if (bits_consumed < 0) |
2125 |
return AVERROR_INVALIDDATA;
|
2126 |
|
2127 |
esize = (bits_consumed+7) / 8; |
2128 |
|
2129 |
if (avctx->extradata_size <= esize) {
|
2130 |
av_free(avctx->extradata); |
2131 |
avctx->extradata = av_malloc(esize + FF_INPUT_BUFFER_PADDING_SIZE); |
2132 |
if (!avctx->extradata)
|
2133 |
return AVERROR(ENOMEM);
|
2134 |
} |
2135 |
|
2136 |
avctx->extradata_size = esize; |
2137 |
memcpy(avctx->extradata, gb->buffer + (config_start_bit/8), esize);
|
2138 |
memset(avctx->extradata+esize, 0, FF_INPUT_BUFFER_PADDING_SIZE);
|
2139 |
|
2140 |
skip_bits_long(gb, bits_consumed); |
2141 |
} |
2142 |
|
2143 |
return bits_consumed;
|
2144 |
} |
2145 |
|
2146 |
static int read_stream_mux_config(struct LATMContext *latmctx, |
2147 |
GetBitContext *gb) |
2148 |
{ |
2149 |
int ret, audio_mux_version = get_bits(gb, 1); |
2150 |
|
2151 |
latmctx->audio_mux_version_A = 0;
|
2152 |
if (audio_mux_version)
|
2153 |
latmctx->audio_mux_version_A = get_bits(gb, 1);
|
2154 |
|
2155 |
if (!latmctx->audio_mux_version_A) {
|
2156 |
|
2157 |
if (audio_mux_version)
|
2158 |
latm_get_value(gb); // taraFullness
|
2159 |
|
2160 |
skip_bits(gb, 1); // allStreamSameTimeFraming |
2161 |
skip_bits(gb, 6); // numSubFrames |
2162 |
// numPrograms
|
2163 |
if (get_bits(gb, 4)) { // numPrograms |
2164 |
av_log_missing_feature(latmctx->aac_ctx.avctx, |
2165 |
"multiple programs are not supported\n", 1); |
2166 |
return AVERROR_PATCHWELCOME;
|
2167 |
} |
2168 |
|
2169 |
// for each program (which there is only on in DVB)
|
2170 |
|
2171 |
// for each layer (which there is only on in DVB)
|
2172 |
if (get_bits(gb, 3)) { // numLayer |
2173 |
av_log_missing_feature(latmctx->aac_ctx.avctx, |
2174 |
"multiple layers are not supported\n", 1); |
2175 |
return AVERROR_PATCHWELCOME;
|
2176 |
} |
2177 |
|
2178 |
// for all but first stream: use_same_config = get_bits(gb, 1);
|
2179 |
if (!audio_mux_version) {
|
2180 |
if ((ret = latm_decode_audio_specific_config(latmctx, gb)) < 0) |
2181 |
return ret;
|
2182 |
} else {
|
2183 |
int ascLen = latm_get_value(gb);
|
2184 |
if ((ret = latm_decode_audio_specific_config(latmctx, gb)) < 0) |
2185 |
return ret;
|
2186 |
ascLen -= ret; |
2187 |
skip_bits_long(gb, ascLen); |
2188 |
} |
2189 |
|
2190 |
latmctx->frame_length_type = get_bits(gb, 3);
|
2191 |
switch (latmctx->frame_length_type) {
|
2192 |
case 0: |
2193 |
skip_bits(gb, 8); // latmBufferFullness |
2194 |
break;
|
2195 |
case 1: |
2196 |
latmctx->frame_length = get_bits(gb, 9);
|
2197 |
break;
|
2198 |
case 3: |
2199 |
case 4: |
2200 |
case 5: |
2201 |
skip_bits(gb, 6); // CELP frame length table index |
2202 |
break;
|
2203 |
case 6: |
2204 |
case 7: |
2205 |
skip_bits(gb, 1); // HVXC frame length table index |
2206 |
break;
|
2207 |
} |
2208 |
|
2209 |
if (get_bits(gb, 1)) { // other data |
2210 |
if (audio_mux_version) {
|
2211 |
latm_get_value(gb); // other_data_bits
|
2212 |
} else {
|
2213 |
int esc;
|
2214 |
do {
|
2215 |
esc = get_bits(gb, 1);
|
2216 |
skip_bits(gb, 8);
|
2217 |
} while (esc);
|
2218 |
} |
2219 |
} |
2220 |
|
2221 |
if (get_bits(gb, 1)) // crc present |
2222 |
skip_bits(gb, 8); // config_crc |
2223 |
} |
2224 |
|
2225 |
return 0; |
2226 |
} |
2227 |
|
2228 |
static int read_payload_length_info(struct LATMContext *ctx, GetBitContext *gb) |
2229 |
{ |
2230 |
uint8_t tmp; |
2231 |
|
2232 |
if (ctx->frame_length_type == 0) { |
2233 |
int mux_slot_length = 0; |
2234 |
do {
|
2235 |
tmp = get_bits(gb, 8);
|
2236 |
mux_slot_length += tmp; |
2237 |
} while (tmp == 255); |
2238 |
return mux_slot_length;
|
2239 |
} else if (ctx->frame_length_type == 1) { |
2240 |
return ctx->frame_length;
|
2241 |
} else if (ctx->frame_length_type == 3 || |
2242 |
ctx->frame_length_type == 5 ||
|
2243 |
ctx->frame_length_type == 7) {
|
2244 |
skip_bits(gb, 2); // mux_slot_length_coded |
2245 |
} |
2246 |
return 0; |
2247 |
} |
2248 |
|
2249 |
static int read_audio_mux_element(struct LATMContext *latmctx, |
2250 |
GetBitContext *gb) |
2251 |
{ |
2252 |
int err;
|
2253 |
uint8_t use_same_mux = get_bits(gb, 1);
|
2254 |
if (!use_same_mux) {
|
2255 |
if ((err = read_stream_mux_config(latmctx, gb)) < 0) |
2256 |
return err;
|
2257 |
} else if (!latmctx->aac_ctx.avctx->extradata) { |
2258 |
av_log(latmctx->aac_ctx.avctx, AV_LOG_DEBUG, |
2259 |
"no decoder config found\n");
|
2260 |
return AVERROR(EAGAIN);
|
2261 |
} |
2262 |
if (latmctx->audio_mux_version_A == 0) { |
2263 |
int mux_slot_length_bytes = read_payload_length_info(latmctx, gb);
|
2264 |
if (mux_slot_length_bytes * 8 > get_bits_left(gb)) { |
2265 |
av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR, "incomplete frame\n");
|
2266 |
return AVERROR_INVALIDDATA;
|
2267 |
} else if (mux_slot_length_bytes * 8 + 256 < get_bits_left(gb)) { |
2268 |
av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR, |
2269 |
"frame length mismatch %d << %d\n",
|
2270 |
mux_slot_length_bytes * 8, get_bits_left(gb));
|
2271 |
return AVERROR_INVALIDDATA;
|
2272 |
} |
2273 |
} |
2274 |
return 0; |
2275 |
} |
2276 |
|
2277 |
|
2278 |
static int latm_decode_frame(AVCodecContext *avctx, void *out, int *out_size, |
2279 |
AVPacket *avpkt) |
2280 |
{ |
2281 |
struct LATMContext *latmctx = avctx->priv_data;
|
2282 |
int muxlength, err;
|
2283 |
GetBitContext gb; |
2284 |
|
2285 |
if (avpkt->size == 0) |
2286 |
return 0; |
2287 |
|
2288 |
init_get_bits(&gb, avpkt->data, avpkt->size * 8);
|
2289 |
|
2290 |
// check for LOAS sync word
|
2291 |
if (get_bits(&gb, 11) != LOAS_SYNC_WORD) |
2292 |
return AVERROR_INVALIDDATA;
|
2293 |
|
2294 |
muxlength = get_bits(&gb, 13) + 3; |
2295 |
// not enough data, the parser should have sorted this
|
2296 |
if (muxlength > avpkt->size)
|
2297 |
return AVERROR_INVALIDDATA;
|
2298 |
|
2299 |
if ((err = read_audio_mux_element(latmctx, &gb)) < 0) |
2300 |
return err;
|
2301 |
|
2302 |
if (!latmctx->initialized) {
|
2303 |
if (!avctx->extradata) {
|
2304 |
*out_size = 0;
|
2305 |
return avpkt->size;
|
2306 |
} else {
|
2307 |
if ((err = aac_decode_init(avctx)) < 0) |
2308 |
return err;
|
2309 |
latmctx->initialized = 1;
|
2310 |
} |
2311 |
} |
2312 |
|
2313 |
if (show_bits(&gb, 12) == 0xfff) { |
2314 |
av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR, |
2315 |
"ADTS header detected, probably as result of configuration "
|
2316 |
"misparsing\n");
|
2317 |
return AVERROR_INVALIDDATA;
|
2318 |
} |
2319 |
|
2320 |
if ((err = aac_decode_frame_int(avctx, out, out_size, &gb)) < 0) |
2321 |
return err;
|
2322 |
|
2323 |
return muxlength;
|
2324 |
} |
2325 |
|
2326 |
av_cold static int latm_decode_init(AVCodecContext *avctx) |
2327 |
{ |
2328 |
struct LATMContext *latmctx = avctx->priv_data;
|
2329 |
int ret;
|
2330 |
|
2331 |
ret = aac_decode_init(avctx); |
2332 |
|
2333 |
if (avctx->extradata_size > 0) { |
2334 |
latmctx->initialized = !ret; |
2335 |
} else {
|
2336 |
latmctx->initialized = 0;
|
2337 |
} |
2338 |
|
2339 |
return ret;
|
2340 |
} |
2341 |
|
2342 |
|
2343 |
AVCodec ff_aac_decoder = { |
2344 |
"aac",
|
2345 |
AVMEDIA_TYPE_AUDIO, |
2346 |
CODEC_ID_AAC, |
2347 |
sizeof(AACContext),
|
2348 |
aac_decode_init, |
2349 |
NULL,
|
2350 |
aac_decode_close, |
2351 |
aac_decode_frame, |
2352 |
.long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
|
2353 |
.sample_fmts = (const enum AVSampleFormat[]) { |
2354 |
AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE |
2355 |
}, |
2356 |
.channel_layouts = aac_channel_layout, |
2357 |
}; |
2358 |
|
2359 |
/*
|
2360 |
Note: This decoder filter is intended to decode LATM streams transferred
|
2361 |
in MPEG transport streams which only contain one program.
|
2362 |
To do a more complex LATM demuxing a separate LATM demuxer should be used.
|
2363 |
*/
|
2364 |
AVCodec ff_aac_latm_decoder = { |
2365 |
.name = "aac_latm",
|
2366 |
.type = AVMEDIA_TYPE_AUDIO, |
2367 |
.id = CODEC_ID_AAC_LATM, |
2368 |
.priv_data_size = sizeof(struct LATMContext), |
2369 |
.init = latm_decode_init, |
2370 |
.close = aac_decode_close, |
2371 |
.decode = latm_decode_frame, |
2372 |
.long_name = NULL_IF_CONFIG_SMALL("AAC LATM (Advanced Audio Codec LATM syntax)"),
|
2373 |
.sample_fmts = (const enum AVSampleFormat[]) { |
2374 |
AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE |
2375 |
}, |
2376 |
.channel_layouts = aac_channel_layout, |
2377 |
}; |