ffmpeg / libavcodec / lagarith.c @ b2ed95ec
History | View | Annotate | Download (14.9 KB)
1 |
/*
|
---|---|
2 |
* Lagarith lossless decoder
|
3 |
* Copyright (c) 2009 Nathan Caldwell <saintdev (at) gmail.com>
|
4 |
*
|
5 |
* This file is part of FFmpeg.
|
6 |
*
|
7 |
* FFmpeg is free software; you can redistribute it and/or
|
8 |
* modify it under the terms of the GNU Lesser General Public
|
9 |
* License as published by the Free Software Foundation; either
|
10 |
* version 2.1 of the License, or (at your option) any later version.
|
11 |
*
|
12 |
* FFmpeg is distributed in the hope that it will be useful,
|
13 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
15 |
* Lesser General Public License for more details.
|
16 |
*
|
17 |
* You should have received a copy of the GNU Lesser General Public
|
18 |
* License along with FFmpeg; if not, write to the Free Software
|
19 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
20 |
*/
|
21 |
|
22 |
/**
|
23 |
* @file libavcodec/lagarith.c
|
24 |
* Lagarith lossless decoder
|
25 |
* @author Nathan Caldwell
|
26 |
*/
|
27 |
|
28 |
#include "avcodec.h" |
29 |
#include "get_bits.h" |
30 |
#include "mathops.h" |
31 |
#include "dsputil.h" |
32 |
#include "lagarithrac.h" |
33 |
|
34 |
enum LagarithFrameType {
|
35 |
FRAME_RAW = 1, /*!< uncompressed */ |
36 |
FRAME_U_RGB24 = 2, /*!< unaligned RGB24 */ |
37 |
FRAME_ARITH_YUY2 = 3, /*!< arithmetic coded YUY2 */ |
38 |
FRAME_ARITH_RGB24 = 4, /*!< arithmetic coded RGB24 */ |
39 |
FRAME_SOLID_GRAY = 5, /*!< solid grayscale color frame */ |
40 |
FRAME_SOLID_COLOR = 6, /*!< solid non-grayscale color frame */ |
41 |
FRAME_OLD_ARITH_RGB = 7, /*!< obsolete arithmetic coded RGB (no longer encoded by upstream since version 1.1.0) */ |
42 |
FRAME_ARITH_RGBA = 8, /*!< arithmetic coded RGBA */ |
43 |
FRAME_SOLID_RGBA = 9, /*!< solid RGBA color frame */ |
44 |
FRAME_ARITH_YV12 = 10, /*!< arithmetic coded YV12 */ |
45 |
FRAME_REDUCED_RES = 11, /*!< reduced resolution YV12 frame */ |
46 |
}; |
47 |
|
48 |
typedef struct LagarithContext { |
49 |
AVCodecContext *avctx; |
50 |
AVFrame picture; |
51 |
DSPContext dsp; |
52 |
int zeros; /*!< number of consecutive zero bytes encountered */ |
53 |
int zeros_rem; /*!< number of zero bytes remaining to output */ |
54 |
} LagarithContext; |
55 |
|
56 |
/**
|
57 |
* Compute the 52bit mantissa of 1/(double)denom.
|
58 |
* This crazy format uses floats in an entropy coder and we have to match x86
|
59 |
* rounding exactly, thus ordinary floats aren't portable enough.
|
60 |
* @param denom denominator
|
61 |
* @return 52bit mantissa
|
62 |
* @see softfloat_mul
|
63 |
*/
|
64 |
static uint64_t softfloat_reciprocal(uint32_t denom)
|
65 |
{ |
66 |
int shift = av_log2(denom - 1) + 1; |
67 |
uint64_t ret = (1ULL << 52) / denom; |
68 |
uint64_t err = (1ULL << 52) - ret * denom; |
69 |
ret <<= shift; |
70 |
err <<= shift; |
71 |
err += denom / 2;
|
72 |
return ret + err / denom;
|
73 |
} |
74 |
|
75 |
/**
|
76 |
* (uint32_t)(x*f), where f has the given mantissa, and exponent 0
|
77 |
* Used in combination with softfloat_reciprocal computes x/(double)denom.
|
78 |
* @param x 32bit integer factor
|
79 |
* @param mantissa mantissa of f with exponent 0
|
80 |
* @return 32bit integer value (x*f)
|
81 |
* @see softfloat_reciprocal
|
82 |
*/
|
83 |
static uint32_t softfloat_mul(uint32_t x, uint64_t mantissa)
|
84 |
{ |
85 |
uint64_t l = x * (mantissa & 0xffffffff);
|
86 |
uint64_t h = x * (mantissa >> 32);
|
87 |
h += l >> 32;
|
88 |
l &= 0xffffffff;
|
89 |
l += 1 << av_log2(h >> 21); |
90 |
h += l >> 32;
|
91 |
return h >> 20; |
92 |
} |
93 |
|
94 |
static uint8_t lag_calc_zero_run(int8_t x)
|
95 |
{ |
96 |
return (x << 1) ^ (x >> 7); |
97 |
} |
98 |
|
99 |
static int lag_decode_prob(GetBitContext *gb, uint32_t *value) |
100 |
{ |
101 |
static const uint8_t series[] = { 1, 2, 3, 5, 8, 13, 21 }; |
102 |
int i;
|
103 |
int bit = 0; |
104 |
int bits = 0; |
105 |
int prevbit = 0; |
106 |
unsigned val;
|
107 |
|
108 |
for (i = 0; i < 7; i++) { |
109 |
if (prevbit && bit)
|
110 |
break;
|
111 |
prevbit = bit; |
112 |
bit = get_bits1(gb); |
113 |
if (bit && !prevbit)
|
114 |
bits += series[i]; |
115 |
} |
116 |
bits--; |
117 |
if (bits < 0 || bits > 31) { |
118 |
*value = 0;
|
119 |
return -1; |
120 |
} else if (bits == 0) { |
121 |
*value = 0;
|
122 |
return 0; |
123 |
} |
124 |
|
125 |
val = get_bits_long(gb, bits); |
126 |
val |= 1 << bits;
|
127 |
|
128 |
*value = val - 1;
|
129 |
|
130 |
return 0; |
131 |
} |
132 |
|
133 |
static int lag_read_prob_header(lag_rac *rac, GetBitContext *gb) |
134 |
{ |
135 |
int i, j, scale_factor;
|
136 |
unsigned prob, cumulative_target;
|
137 |
unsigned cumul_prob = 0; |
138 |
unsigned scaled_cumul_prob = 0; |
139 |
|
140 |
rac->prob[0] = 0; |
141 |
rac->prob[257] = UINT_MAX;
|
142 |
/* Read probabilities from bitstream */
|
143 |
for (i = 1; i < 257; i++) { |
144 |
if (lag_decode_prob(gb, &rac->prob[i]) < 0) { |
145 |
av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability encountered.\n");
|
146 |
return -1; |
147 |
} |
148 |
if ((uint64_t)cumul_prob + rac->prob[i] > UINT_MAX) {
|
149 |
av_log(rac->avctx, AV_LOG_ERROR, "Integer overflow encountered in cumulative probability calculation.\n");
|
150 |
return -1; |
151 |
} |
152 |
cumul_prob += rac->prob[i]; |
153 |
if (!rac->prob[i]) {
|
154 |
if (lag_decode_prob(gb, &prob)) {
|
155 |
av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability run encountered.\n");
|
156 |
return -1; |
157 |
} |
158 |
if (prob > 257 - i) |
159 |
prob = 257 - i;
|
160 |
for (j = 0; j < prob; j++) |
161 |
rac->prob[++i] = 0;
|
162 |
} |
163 |
} |
164 |
|
165 |
if (!cumul_prob) {
|
166 |
av_log(rac->avctx, AV_LOG_ERROR, "All probabilities are 0!\n");
|
167 |
return -1; |
168 |
} |
169 |
|
170 |
/* Scale probabilities so cumulative probability is an even power of 2. */
|
171 |
scale_factor = av_log2(cumul_prob); |
172 |
|
173 |
if (cumul_prob & (cumul_prob - 1)) { |
174 |
uint64_t mul = softfloat_reciprocal(cumul_prob); |
175 |
for (i = 1; i < 257; i++) { |
176 |
rac->prob[i] = softfloat_mul(rac->prob[i], mul); |
177 |
scaled_cumul_prob += rac->prob[i]; |
178 |
} |
179 |
|
180 |
scale_factor++; |
181 |
cumulative_target = 1 << scale_factor;
|
182 |
|
183 |
if (scaled_cumul_prob > cumulative_target) {
|
184 |
av_log(rac->avctx, AV_LOG_ERROR, |
185 |
"Scaled probabilities are larger than target!\n");
|
186 |
return -1; |
187 |
} |
188 |
|
189 |
scaled_cumul_prob = cumulative_target - scaled_cumul_prob; |
190 |
|
191 |
for (i = 1; scaled_cumul_prob; i = (i & 0x7f) + 1) { |
192 |
if (rac->prob[i]) {
|
193 |
rac->prob[i]++; |
194 |
scaled_cumul_prob--; |
195 |
} |
196 |
/* Comment from reference source:
|
197 |
* if (b & 0x80 == 0) { // order of operations is 'wrong'; it has been left this way
|
198 |
* // since the compression change is negligable and fixing it
|
199 |
* // breaks backwards compatibilty
|
200 |
* b =- (signed int)b;
|
201 |
* b &= 0xFF;
|
202 |
* } else {
|
203 |
* b++;
|
204 |
* b &= 0x7f;
|
205 |
* }
|
206 |
*/
|
207 |
} |
208 |
} |
209 |
|
210 |
rac->scale = scale_factor; |
211 |
|
212 |
/* Fill probability array with cumulative probability for each symbol. */
|
213 |
for (i = 1; i < 257; i++) |
214 |
rac->prob[i] += rac->prob[i - 1];
|
215 |
|
216 |
return 0; |
217 |
} |
218 |
|
219 |
static void add_lag_median_prediction(uint8_t *dst, uint8_t *src1, |
220 |
uint8_t *diff, int w, int *left, |
221 |
int *left_top)
|
222 |
{ |
223 |
/* This is almost identical to add_hfyu_median_prediction in dsputil.h.
|
224 |
* However the &0xFF on the gradient predictor yealds incorrect output
|
225 |
* for lagarith.
|
226 |
*/
|
227 |
int i;
|
228 |
uint8_t l, lt; |
229 |
|
230 |
l = *left; |
231 |
lt = *left_top; |
232 |
|
233 |
for (i = 0; i < w; i++) { |
234 |
l = mid_pred(l, src1[i], l + src1[i] - lt) + diff[i]; |
235 |
lt = src1[i]; |
236 |
dst[i] = l; |
237 |
} |
238 |
|
239 |
*left = l; |
240 |
*left_top = lt; |
241 |
} |
242 |
|
243 |
static void lag_pred_line(LagarithContext *l, uint8_t *buf, |
244 |
int width, int stride, int line) |
245 |
{ |
246 |
int L, TL;
|
247 |
|
248 |
if (!line) {
|
249 |
/* Left prediction only for first line */
|
250 |
L = l->dsp.add_hfyu_left_prediction(buf + 1, buf + 1, |
251 |
width - 1, buf[0]); |
252 |
return;
|
253 |
} else if (line == 1) { |
254 |
/* Second line, left predict first pixel, the rest of the line is median predicted */
|
255 |
/* FIXME: In the case of RGB this pixel is top predicted */
|
256 |
TL = buf[-stride]; |
257 |
} else {
|
258 |
/* Top left is 2 rows back, last pixel */
|
259 |
TL = buf[width - (2 * stride) - 1]; |
260 |
} |
261 |
/* Left pixel is actually prev_row[width] */
|
262 |
L = buf[width - stride - 1];
|
263 |
|
264 |
add_lag_median_prediction(buf, buf - stride, buf, |
265 |
width, &L, &TL); |
266 |
} |
267 |
|
268 |
static int lag_decode_line(LagarithContext *l, lag_rac *rac, |
269 |
uint8_t *dst, int width, int stride, |
270 |
int esc_count)
|
271 |
{ |
272 |
int i = 0; |
273 |
int ret = 0; |
274 |
|
275 |
if (!esc_count)
|
276 |
esc_count = -1;
|
277 |
|
278 |
/* Output any zeros remaining from the previous run */
|
279 |
handle_zeros:
|
280 |
if (l->zeros_rem) {
|
281 |
int count = FFMIN(l->zeros_rem, width - i);
|
282 |
memset(dst + i, 0, count);
|
283 |
i += count; |
284 |
l->zeros_rem -= count; |
285 |
} |
286 |
|
287 |
while (i < width) {
|
288 |
dst[i] = lag_get_rac(rac); |
289 |
ret++; |
290 |
|
291 |
if (dst[i])
|
292 |
l->zeros = 0;
|
293 |
else
|
294 |
l->zeros++; |
295 |
|
296 |
i++; |
297 |
if (l->zeros == esc_count) {
|
298 |
int index = lag_get_rac(rac);
|
299 |
ret++; |
300 |
|
301 |
l->zeros = 0;
|
302 |
|
303 |
l->zeros_rem = lag_calc_zero_run(index); |
304 |
goto handle_zeros;
|
305 |
} |
306 |
} |
307 |
return ret;
|
308 |
} |
309 |
|
310 |
static int lag_decode_zero_run_line(LagarithContext *l, uint8_t *dst, |
311 |
const uint8_t *src, int width, |
312 |
int esc_count)
|
313 |
{ |
314 |
int i = 0; |
315 |
int count;
|
316 |
uint8_t zero_run = 0;
|
317 |
const uint8_t *start = src;
|
318 |
uint8_t mask1 = -(esc_count < 2);
|
319 |
uint8_t mask2 = -(esc_count < 3);
|
320 |
uint8_t *end = dst + (width - 2);
|
321 |
|
322 |
output_zeros:
|
323 |
if (l->zeros_rem) {
|
324 |
count = FFMIN(l->zeros_rem, width - i); |
325 |
memset(dst, 0, count);
|
326 |
l->zeros_rem -= count; |
327 |
dst += count; |
328 |
} |
329 |
|
330 |
while (dst < end) {
|
331 |
i = 0;
|
332 |
while (!zero_run && dst + i < end) {
|
333 |
i++; |
334 |
zero_run = |
335 |
!(src[i] | (src[i + 1] & mask1) | (src[i + 2] & mask2)); |
336 |
} |
337 |
if (zero_run) {
|
338 |
zero_run = 0;
|
339 |
i += esc_count; |
340 |
memcpy(dst, src, i); |
341 |
dst += i; |
342 |
l->zeros_rem = lag_calc_zero_run(src[i]); |
343 |
|
344 |
src += i + 1;
|
345 |
goto output_zeros;
|
346 |
} else {
|
347 |
memcpy(dst, src, i); |
348 |
src += i; |
349 |
} |
350 |
} |
351 |
return start - src;
|
352 |
} |
353 |
|
354 |
|
355 |
|
356 |
static int lag_decode_arith_plane(LagarithContext *l, uint8_t *dst, |
357 |
int width, int height, int stride, |
358 |
const uint8_t *src, int src_size) |
359 |
{ |
360 |
int i = 0; |
361 |
int read = 0; |
362 |
uint32_t length; |
363 |
uint32_t offset = 1;
|
364 |
int esc_count = src[0]; |
365 |
GetBitContext gb; |
366 |
lag_rac rac; |
367 |
|
368 |
rac.avctx = l->avctx; |
369 |
l->zeros = 0;
|
370 |
|
371 |
if (esc_count < 4) { |
372 |
length = width * height; |
373 |
if (esc_count && AV_RL32(src + 1) < length) { |
374 |
length = AV_RL32(src + 1);
|
375 |
offset += 4;
|
376 |
} |
377 |
|
378 |
init_get_bits(&gb, src + offset, src_size * 8);
|
379 |
|
380 |
if (lag_read_prob_header(&rac, &gb) < 0) |
381 |
return -1; |
382 |
|
383 |
lag_rac_init(&rac, &gb, length - stride); |
384 |
|
385 |
for (i = 0; i < height; i++) |
386 |
read += lag_decode_line(l, &rac, dst + (i * stride), width, |
387 |
stride, esc_count); |
388 |
|
389 |
if (read > length)
|
390 |
av_log(l->avctx, AV_LOG_WARNING, |
391 |
"Output more bytes than length (%d of %d)\n", read,
|
392 |
length); |
393 |
} else if (esc_count < 8) { |
394 |
esc_count -= 4;
|
395 |
if (esc_count > 0) { |
396 |
/* Zero run coding only, no range coding. */
|
397 |
for (i = 0; i < height; i++) |
398 |
src += lag_decode_zero_run_line(l, dst + (i * stride), src, |
399 |
width, esc_count); |
400 |
} else {
|
401 |
/* Plane is stored uncompressed */
|
402 |
for (i = 0; i < height; i++) { |
403 |
memcpy(dst + (i * stride), src, width); |
404 |
src += width; |
405 |
} |
406 |
} |
407 |
} else if (esc_count == 0xff) { |
408 |
/* Plane is a solid run of given value */
|
409 |
for (i = 0; i < height; i++) |
410 |
memset(dst + i * stride, src[1], width);
|
411 |
/* Do not apply prediction.
|
412 |
Note: memset to 0 above, setting first value to src[1]
|
413 |
and applying prediction gives the same result. */
|
414 |
return 0; |
415 |
} else {
|
416 |
av_log(l->avctx, AV_LOG_ERROR, |
417 |
"Invalid zero run escape code! (%#x)\n", esc_count);
|
418 |
return -1; |
419 |
} |
420 |
|
421 |
for (i = 0; i < height; i++) { |
422 |
lag_pred_line(l, dst, width, stride, i); |
423 |
dst += stride; |
424 |
} |
425 |
|
426 |
return 0; |
427 |
} |
428 |
|
429 |
/**
|
430 |
* Decode a frame.
|
431 |
* @param avctx codec context
|
432 |
* @param data output AVFrame
|
433 |
* @param data_size size of output data or 0 if no picture is returned
|
434 |
* @param avpkt input packet
|
435 |
* @return number of consumed bytes on success or negative if decode fails
|
436 |
*/
|
437 |
static int lag_decode_frame(AVCodecContext *avctx, |
438 |
void *data, int *data_size, AVPacket *avpkt) |
439 |
{ |
440 |
const uint8_t *buf = avpkt->data;
|
441 |
int buf_size = avpkt->size;
|
442 |
LagarithContext *l = avctx->priv_data; |
443 |
AVFrame *const p = &l->picture;
|
444 |
uint8_t frametype = 0;
|
445 |
uint32_t offset_gu = 0, offset_bv = 0, offset_ry = 9; |
446 |
|
447 |
AVFrame *picture = data; |
448 |
|
449 |
if (p->data[0]) |
450 |
avctx->release_buffer(avctx, p); |
451 |
|
452 |
p->reference = 0;
|
453 |
p->key_frame = 1;
|
454 |
|
455 |
frametype = buf[0];
|
456 |
|
457 |
offset_gu = AV_RL32(buf + 1);
|
458 |
offset_bv = AV_RL32(buf + 5);
|
459 |
|
460 |
switch (frametype) {
|
461 |
case FRAME_ARITH_YV12:
|
462 |
avctx->pix_fmt = PIX_FMT_YUV420P; |
463 |
|
464 |
if (avctx->get_buffer(avctx, p) < 0) { |
465 |
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
|
466 |
return -1; |
467 |
} |
468 |
|
469 |
lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
|
470 |
p->linesize[0], buf + offset_ry,
|
471 |
buf_size); |
472 |
lag_decode_arith_plane(l, p->data[2], avctx->width / 2, |
473 |
avctx->height / 2, p->linesize[2], |
474 |
buf + offset_gu, buf_size); |
475 |
lag_decode_arith_plane(l, p->data[1], avctx->width / 2, |
476 |
avctx->height / 2, p->linesize[1], |
477 |
buf + offset_bv, buf_size); |
478 |
break;
|
479 |
default:
|
480 |
av_log(avctx, AV_LOG_ERROR, |
481 |
"Unsupported Lagarith frame type: %#x\n", frametype);
|
482 |
return -1; |
483 |
} |
484 |
|
485 |
*picture = *p; |
486 |
*data_size = sizeof(AVFrame);
|
487 |
|
488 |
return buf_size;
|
489 |
} |
490 |
|
491 |
static av_cold int lag_decode_init(AVCodecContext *avctx) |
492 |
{ |
493 |
LagarithContext *l = avctx->priv_data; |
494 |
l->avctx = avctx; |
495 |
|
496 |
dsputil_init(&l->dsp, avctx); |
497 |
|
498 |
return 0; |
499 |
} |
500 |
|
501 |
static av_cold int lag_decode_end(AVCodecContext *avctx) |
502 |
{ |
503 |
LagarithContext *l = avctx->priv_data; |
504 |
|
505 |
if (l->picture.data[0]) |
506 |
avctx->release_buffer(avctx, &l->picture); |
507 |
|
508 |
return 0; |
509 |
} |
510 |
|
511 |
AVCodec ff_lagarith_decoder = { |
512 |
"lagarith",
|
513 |
AVMEDIA_TYPE_VIDEO, |
514 |
CODEC_ID_LAGARITH, |
515 |
sizeof(LagarithContext),
|
516 |
lag_decode_init, |
517 |
NULL,
|
518 |
lag_decode_end, |
519 |
lag_decode_frame, |
520 |
CODEC_CAP_DR1, |
521 |
.long_name = NULL_IF_CONFIG_SMALL("Lagarith lossless"),
|
522 |
}; |