Statistics
| Branch: | Revision:

ffmpeg / libavcodec / h264.h @ b6303e6d

History | View | Annotate | Download (49.6 KB)

1
/*
2
 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3
 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21

    
22
/**
23
 * @file libavcodec/h264.h
24
 * H.264 / AVC / MPEG4 part10 codec.
25
 * @author Michael Niedermayer <michaelni@gmx.at>
26
 */
27

    
28
#ifndef AVCODEC_H264_H
29
#define AVCODEC_H264_H
30

    
31
#include "dsputil.h"
32
#include "cabac.h"
33
#include "mpegvideo.h"
34
#include "h264pred.h"
35
#include "rectangle.h"
36

    
37
#define interlaced_dct interlaced_dct_is_a_bad_name
38
#define mb_intra mb_intra_is_not_initialized_see_mb_type
39

    
40
#define LUMA_DC_BLOCK_INDEX   25
41
#define CHROMA_DC_BLOCK_INDEX 26
42

    
43
#define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
44
#define COEFF_TOKEN_VLC_BITS           8
45
#define TOTAL_ZEROS_VLC_BITS           9
46
#define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
47
#define RUN_VLC_BITS                   3
48
#define RUN7_VLC_BITS                  6
49

    
50
#define MAX_SPS_COUNT 32
51
#define MAX_PPS_COUNT 256
52

    
53
#define MAX_MMCO_COUNT 66
54

    
55
#define MAX_DELAYED_PIC_COUNT 16
56

    
57
/* Compiling in interlaced support reduces the speed
58
 * of progressive decoding by about 2%. */
59
#define ALLOW_INTERLACE
60

    
61
#define ALLOW_NOCHROMA
62

    
63
/**
64
 * The maximum number of slices supported by the decoder.
65
 * must be a power of 2
66
 */
67
#define MAX_SLICES 16
68

    
69
#ifdef ALLOW_INTERLACE
70
#define MB_MBAFF h->mb_mbaff
71
#define MB_FIELD h->mb_field_decoding_flag
72
#define FRAME_MBAFF h->mb_aff_frame
73
#define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
74
#else
75
#define MB_MBAFF 0
76
#define MB_FIELD 0
77
#define FRAME_MBAFF 0
78
#define FIELD_PICTURE 0
79
#undef  IS_INTERLACED
80
#define IS_INTERLACED(mb_type) 0
81
#endif
82
#define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
83

    
84
#ifdef ALLOW_NOCHROMA
85
#define CHROMA h->sps.chroma_format_idc
86
#else
87
#define CHROMA 1
88
#endif
89

    
90
#ifndef CABAC
91
#define CABAC h->pps.cabac
92
#endif
93

    
94
#define EXTENDED_SAR          255
95

    
96
#define MB_TYPE_REF0       MB_TYPE_ACPRED //dirty but it fits in 16 bit
97
#define MB_TYPE_8x8DCT     0x01000000
98
#define IS_REF0(a)         ((a) & MB_TYPE_REF0)
99
#define IS_8x8DCT(a)       ((a) & MB_TYPE_8x8DCT)
100

    
101
/**
102
 * Value of Picture.reference when Picture is not a reference picture, but
103
 * is held for delayed output.
104
 */
105
#define DELAYED_PIC_REF 4
106

    
107

    
108
/* NAL unit types */
109
enum {
110
    NAL_SLICE=1,
111
    NAL_DPA,
112
    NAL_DPB,
113
    NAL_DPC,
114
    NAL_IDR_SLICE,
115
    NAL_SEI,
116
    NAL_SPS,
117
    NAL_PPS,
118
    NAL_AUD,
119
    NAL_END_SEQUENCE,
120
    NAL_END_STREAM,
121
    NAL_FILLER_DATA,
122
    NAL_SPS_EXT,
123
    NAL_AUXILIARY_SLICE=19
124
};
125

    
126
/**
127
 * SEI message types
128
 */
129
typedef enum {
130
    SEI_BUFFERING_PERIOD             =  0, ///< buffering period (H.264, D.1.1)
131
    SEI_TYPE_PIC_TIMING              =  1, ///< picture timing
132
    SEI_TYPE_USER_DATA_UNREGISTERED  =  5, ///< unregistered user data
133
    SEI_TYPE_RECOVERY_POINT          =  6  ///< recovery point (frame # to decoder sync)
134
} SEI_Type;
135

    
136
/**
137
 * pic_struct in picture timing SEI message
138
 */
139
typedef enum {
140
    SEI_PIC_STRUCT_FRAME             = 0, ///<  0: %frame
141
    SEI_PIC_STRUCT_TOP_FIELD         = 1, ///<  1: top field
142
    SEI_PIC_STRUCT_BOTTOM_FIELD      = 2, ///<  2: bottom field
143
    SEI_PIC_STRUCT_TOP_BOTTOM        = 3, ///<  3: top field, bottom field, in that order
144
    SEI_PIC_STRUCT_BOTTOM_TOP        = 4, ///<  4: bottom field, top field, in that order
145
    SEI_PIC_STRUCT_TOP_BOTTOM_TOP    = 5, ///<  5: top field, bottom field, top field repeated, in that order
146
    SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///<  6: bottom field, top field, bottom field repeated, in that order
147
    SEI_PIC_STRUCT_FRAME_DOUBLING    = 7, ///<  7: %frame doubling
148
    SEI_PIC_STRUCT_FRAME_TRIPLING    = 8  ///<  8: %frame tripling
149
} SEI_PicStructType;
150

    
151
/**
152
 * Sequence parameter set
153
 */
154
typedef struct SPS{
155

    
156
    int profile_idc;
157
    int level_idc;
158
    int chroma_format_idc;
159
    int transform_bypass;              ///< qpprime_y_zero_transform_bypass_flag
160
    int log2_max_frame_num;            ///< log2_max_frame_num_minus4 + 4
161
    int poc_type;                      ///< pic_order_cnt_type
162
    int log2_max_poc_lsb;              ///< log2_max_pic_order_cnt_lsb_minus4
163
    int delta_pic_order_always_zero_flag;
164
    int offset_for_non_ref_pic;
165
    int offset_for_top_to_bottom_field;
166
    int poc_cycle_length;              ///< num_ref_frames_in_pic_order_cnt_cycle
167
    int ref_frame_count;               ///< num_ref_frames
168
    int gaps_in_frame_num_allowed_flag;
169
    int mb_width;                      ///< pic_width_in_mbs_minus1 + 1
170
    int mb_height;                     ///< pic_height_in_map_units_minus1 + 1
171
    int frame_mbs_only_flag;
172
    int mb_aff;                        ///<mb_adaptive_frame_field_flag
173
    int direct_8x8_inference_flag;
174
    int crop;                   ///< frame_cropping_flag
175
    unsigned int crop_left;            ///< frame_cropping_rect_left_offset
176
    unsigned int crop_right;           ///< frame_cropping_rect_right_offset
177
    unsigned int crop_top;             ///< frame_cropping_rect_top_offset
178
    unsigned int crop_bottom;          ///< frame_cropping_rect_bottom_offset
179
    int vui_parameters_present_flag;
180
    AVRational sar;
181
    int video_signal_type_present_flag;
182
    int full_range;
183
    int colour_description_present_flag;
184
    enum AVColorPrimaries color_primaries;
185
    enum AVColorTransferCharacteristic color_trc;
186
    enum AVColorSpace colorspace;
187
    int timing_info_present_flag;
188
    uint32_t num_units_in_tick;
189
    uint32_t time_scale;
190
    int fixed_frame_rate_flag;
191
    short offset_for_ref_frame[256]; //FIXME dyn aloc?
192
    int bitstream_restriction_flag;
193
    int num_reorder_frames;
194
    int scaling_matrix_present;
195
    uint8_t scaling_matrix4[6][16];
196
    uint8_t scaling_matrix8[2][64];
197
    int nal_hrd_parameters_present_flag;
198
    int vcl_hrd_parameters_present_flag;
199
    int pic_struct_present_flag;
200
    int time_offset_length;
201
    int cpb_cnt;                       ///< See H.264 E.1.2
202
    int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
203
    int cpb_removal_delay_length;      ///< cpb_removal_delay_length_minus1 + 1
204
    int dpb_output_delay_length;       ///< dpb_output_delay_length_minus1 + 1
205
    int bit_depth_luma;                ///< bit_depth_luma_minus8 + 8
206
    int bit_depth_chroma;              ///< bit_depth_chroma_minus8 + 8
207
    int residual_color_transform_flag; ///< residual_colour_transform_flag
208
}SPS;
209

    
210
/**
211
 * Picture parameter set
212
 */
213
typedef struct PPS{
214
    unsigned int sps_id;
215
    int cabac;                  ///< entropy_coding_mode_flag
216
    int pic_order_present;      ///< pic_order_present_flag
217
    int slice_group_count;      ///< num_slice_groups_minus1 + 1
218
    int mb_slice_group_map_type;
219
    unsigned int ref_count[2];  ///< num_ref_idx_l0/1_active_minus1 + 1
220
    int weighted_pred;          ///< weighted_pred_flag
221
    int weighted_bipred_idc;
222
    int init_qp;                ///< pic_init_qp_minus26 + 26
223
    int init_qs;                ///< pic_init_qs_minus26 + 26
224
    int chroma_qp_index_offset[2];
225
    int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
226
    int constrained_intra_pred; ///< constrained_intra_pred_flag
227
    int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
228
    int transform_8x8_mode;     ///< transform_8x8_mode_flag
229
    uint8_t scaling_matrix4[6][16];
230
    uint8_t scaling_matrix8[2][64];
231
    uint8_t chroma_qp_table[2][64];  ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
232
    int chroma_qp_diff;
233
}PPS;
234

    
235
/**
236
 * Memory management control operation opcode.
237
 */
238
typedef enum MMCOOpcode{
239
    MMCO_END=0,
240
    MMCO_SHORT2UNUSED,
241
    MMCO_LONG2UNUSED,
242
    MMCO_SHORT2LONG,
243
    MMCO_SET_MAX_LONG,
244
    MMCO_RESET,
245
    MMCO_LONG,
246
} MMCOOpcode;
247

    
248
/**
249
 * Memory management control operation.
250
 */
251
typedef struct MMCO{
252
    MMCOOpcode opcode;
253
    int short_pic_num;  ///< pic_num without wrapping (pic_num & max_pic_num)
254
    int long_arg;       ///< index, pic_num, or num long refs depending on opcode
255
} MMCO;
256

    
257
/**
258
 * H264Context
259
 */
260
typedef struct H264Context{
261
    MpegEncContext s;
262
    int nal_ref_idc;
263
    int nal_unit_type;
264
    uint8_t *rbsp_buffer[2];
265
    unsigned int rbsp_buffer_size[2];
266

    
267
    /**
268
      * Used to parse AVC variant of h264
269
      */
270
    int is_avc; ///< this flag is != 0 if codec is avc1
271
    int got_avcC; ///< flag used to parse avcC data only once
272
    int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
273

    
274
    int chroma_qp[2]; //QPc
275

    
276
    int qp_thresh;      ///< QP threshold to skip loopfilter
277

    
278
    int prev_mb_skipped;
279
    int next_mb_skipped;
280

    
281
    //prediction stuff
282
    int chroma_pred_mode;
283
    int intra16x16_pred_mode;
284

    
285
    int top_mb_xy;
286
    int left_mb_xy[2];
287

    
288
    int8_t intra4x4_pred_mode_cache[5*8];
289
    int8_t (*intra4x4_pred_mode)[8];
290
    H264PredContext hpc;
291
    unsigned int topleft_samples_available;
292
    unsigned int top_samples_available;
293
    unsigned int topright_samples_available;
294
    unsigned int left_samples_available;
295
    uint8_t (*top_borders[2])[16+2*8];
296
    uint8_t left_border[2*(17+2*9)];
297

    
298
    /**
299
     * non zero coeff count cache.
300
     * is 64 if not available.
301
     */
302
    DECLARE_ALIGNED_8(uint8_t, non_zero_count_cache[6*8]);
303

    
304
    /*
305
    .UU.YYYY
306
    .UU.YYYY
307
    .vv.YYYY
308
    .VV.YYYY
309
    */
310
    uint8_t (*non_zero_count)[32];
311

    
312
    /**
313
     * Motion vector cache.
314
     */
315
    DECLARE_ALIGNED_8(int16_t, mv_cache[2][5*8][2]);
316
    DECLARE_ALIGNED_8(int8_t, ref_cache[2][5*8]);
317
#define LIST_NOT_USED -1 //FIXME rename?
318
#define PART_NOT_AVAILABLE -2
319

    
320
    /**
321
     * is 1 if the specific list MV&references are set to 0,0,-2.
322
     */
323
    int mv_cache_clean[2];
324

    
325
    /**
326
     * number of neighbors (top and/or left) that used 8x8 dct
327
     */
328
    int neighbor_transform_size;
329

    
330
    /**
331
     * block_offset[ 0..23] for frame macroblocks
332
     * block_offset[24..47] for field macroblocks
333
     */
334
    int block_offset[2*(16+8)];
335

    
336
    uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
337
    uint32_t *mb2b8_xy;
338
    int b_stride; //FIXME use s->b4_stride
339
    int b8_stride;
340

    
341
    int mb_linesize;   ///< may be equal to s->linesize or s->linesize*2, for mbaff
342
    int mb_uvlinesize;
343

    
344
    int emu_edge_width;
345
    int emu_edge_height;
346

    
347
    int halfpel_flag;
348
    int thirdpel_flag;
349

    
350
    int unknown_svq3_flag;
351
    int next_slice_index;
352

    
353
    SPS *sps_buffers[MAX_SPS_COUNT];
354
    SPS sps; ///< current sps
355

    
356
    PPS *pps_buffers[MAX_PPS_COUNT];
357
    /**
358
     * current pps
359
     */
360
    PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
361

    
362
    uint32_t dequant4_buffer[6][52][16];
363
    uint32_t dequant8_buffer[2][52][64];
364
    uint32_t (*dequant4_coeff[6])[16];
365
    uint32_t (*dequant8_coeff[2])[64];
366
    int dequant_coeff_pps;     ///< reinit tables when pps changes
367

    
368
    int slice_num;
369
    uint16_t *slice_table_base;
370
    uint16_t *slice_table;     ///< slice_table_base + 2*mb_stride + 1
371
    int slice_type;
372
    int slice_type_nos;        ///< S free slice type (SI/SP are remapped to I/P)
373
    int slice_type_fixed;
374

    
375
    //interlacing specific flags
376
    int mb_aff_frame;
377
    int mb_field_decoding_flag;
378
    int mb_mbaff;              ///< mb_aff_frame && mb_field_decoding_flag
379

    
380
    DECLARE_ALIGNED_8(uint16_t, sub_mb_type[4]);
381

    
382
    //POC stuff
383
    int poc_lsb;
384
    int poc_msb;
385
    int delta_poc_bottom;
386
    int delta_poc[2];
387
    int frame_num;
388
    int prev_poc_msb;             ///< poc_msb of the last reference pic for POC type 0
389
    int prev_poc_lsb;             ///< poc_lsb of the last reference pic for POC type 0
390
    int frame_num_offset;         ///< for POC type 2
391
    int prev_frame_num_offset;    ///< for POC type 2
392
    int prev_frame_num;           ///< frame_num of the last pic for POC type 1/2
393

    
394
    /**
395
     * frame_num for frames or 2*frame_num+1 for field pics.
396
     */
397
    int curr_pic_num;
398

    
399
    /**
400
     * max_frame_num or 2*max_frame_num for field pics.
401
     */
402
    int max_pic_num;
403

    
404
    //Weighted pred stuff
405
    int use_weight;
406
    int use_weight_chroma;
407
    int luma_log2_weight_denom;
408
    int chroma_log2_weight_denom;
409
    int luma_weight[2][48];
410
    int luma_offset[2][48];
411
    int chroma_weight[2][48][2];
412
    int chroma_offset[2][48][2];
413
    int implicit_weight[48][48];
414

    
415
    //deblock
416
    int deblocking_filter;         ///< disable_deblocking_filter_idc with 1<->0
417
    int slice_alpha_c0_offset;
418
    int slice_beta_offset;
419

    
420
    int redundant_pic_count;
421

    
422
    int direct_spatial_mv_pred;
423
    int dist_scale_factor[16];
424
    int dist_scale_factor_field[2][32];
425
    int map_col_to_list0[2][16+32];
426
    int map_col_to_list0_field[2][2][16+32];
427

    
428
    /**
429
     * num_ref_idx_l0/1_active_minus1 + 1
430
     */
431
    unsigned int ref_count[2];   ///< counts frames or fields, depending on current mb mode
432
    unsigned int list_count;
433
    uint8_t *list_counts;            ///< Array of list_count per MB specifying the slice type
434
    Picture *short_ref[32];
435
    Picture *long_ref[32];
436
    Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
437
    Picture ref_list[2][48];         /**< 0..15: frame refs, 16..47: mbaff field refs.
438
                                          Reordered version of default_ref_list
439
                                          according to picture reordering in slice header */
440
    int ref2frm[MAX_SLICES][2][64];  ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
441
    Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
442
    int outputed_poc;
443

    
444
    /**
445
     * memory management control operations buffer.
446
     */
447
    MMCO mmco[MAX_MMCO_COUNT];
448
    int mmco_index;
449

    
450
    int long_ref_count;  ///< number of actual long term references
451
    int short_ref_count; ///< number of actual short term references
452

    
453
    //data partitioning
454
    GetBitContext intra_gb;
455
    GetBitContext inter_gb;
456
    GetBitContext *intra_gb_ptr;
457
    GetBitContext *inter_gb_ptr;
458

    
459
    DECLARE_ALIGNED_16(DCTELEM, mb[16*24]);
460
    DCTELEM mb_padding[256];        ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
461

    
462
    /**
463
     * Cabac
464
     */
465
    CABACContext cabac;
466
    uint8_t      cabac_state[460];
467
    int          cabac_init_idc;
468

    
469
    /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
470
    uint16_t     *cbp_table;
471
    int cbp;
472
    int top_cbp;
473
    int left_cbp;
474
    /* chroma_pred_mode for i4x4 or i16x16, else 0 */
475
    uint8_t     *chroma_pred_mode_table;
476
    int         last_qscale_diff;
477
    int16_t     (*mvd_table[2])[2];
478
    DECLARE_ALIGNED_8(int16_t, mvd_cache[2][5*8][2]);
479
    uint8_t     *direct_table;
480
    uint8_t     direct_cache[5*8];
481

    
482
    uint8_t zigzag_scan[16];
483
    uint8_t zigzag_scan8x8[64];
484
    uint8_t zigzag_scan8x8_cavlc[64];
485
    uint8_t field_scan[16];
486
    uint8_t field_scan8x8[64];
487
    uint8_t field_scan8x8_cavlc[64];
488
    const uint8_t *zigzag_scan_q0;
489
    const uint8_t *zigzag_scan8x8_q0;
490
    const uint8_t *zigzag_scan8x8_cavlc_q0;
491
    const uint8_t *field_scan_q0;
492
    const uint8_t *field_scan8x8_q0;
493
    const uint8_t *field_scan8x8_cavlc_q0;
494

    
495
    int x264_build;
496

    
497
    /**
498
     * @defgroup multithreading Members for slice based multithreading
499
     * @{
500
     */
501
    struct H264Context *thread_context[MAX_THREADS];
502

    
503
    /**
504
     * current slice number, used to initalize slice_num of each thread/context
505
     */
506
    int current_slice;
507

    
508
    /**
509
     * Max number of threads / contexts.
510
     * This is equal to AVCodecContext.thread_count unless
511
     * multithreaded decoding is impossible, in which case it is
512
     * reduced to 1.
513
     */
514
    int max_contexts;
515

    
516
    /**
517
     *  1 if the single thread fallback warning has already been
518
     *  displayed, 0 otherwise.
519
     */
520
    int single_decode_warning;
521

    
522
    int last_slice_type;
523
    /** @} */
524

    
525
    int mb_xy;
526

    
527
    uint32_t svq3_watermark_key;
528

    
529
    /**
530
     * pic_struct in picture timing SEI message
531
     */
532
    SEI_PicStructType sei_pic_struct;
533

    
534
    /**
535
     * Complement sei_pic_struct
536
     * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
537
     * However, soft telecined frames may have these values.
538
     * This is used in an attempt to flag soft telecine progressive.
539
     */
540
    int prev_interlaced_frame;
541

    
542
    /**
543
     * Bit set of clock types for fields/frames in picture timing SEI message.
544
     * For each found ct_type, appropriate bit is set (e.g., bit 1 for
545
     * interlaced).
546
     */
547
    int sei_ct_type;
548

    
549
    /**
550
     * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
551
     */
552
    int sei_dpb_output_delay;
553

    
554
    /**
555
     * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
556
     */
557
    int sei_cpb_removal_delay;
558

    
559
    /**
560
     * recovery_frame_cnt from SEI message
561
     *
562
     * Set to -1 if no recovery point SEI message found or to number of frames
563
     * before playback synchronizes. Frames having recovery point are key
564
     * frames.
565
     */
566
    int sei_recovery_frame_cnt;
567

    
568
    int is_complex;
569

    
570
    int luma_weight_flag[2];   ///< 7.4.3.2 luma_weight_lX_flag
571
    int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
572

    
573
    // Timestamp stuff
574
    int sei_buffering_period_present;  ///< Buffering period SEI flag
575
    int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
576
}H264Context;
577

    
578

    
579
extern const uint8_t ff_h264_chroma_qp[52];
580

    
581

    
582
/**
583
 * Decode SEI
584
 */
585
int ff_h264_decode_sei(H264Context *h);
586

    
587
/**
588
 * Decode SPS
589
 */
590
int ff_h264_decode_seq_parameter_set(H264Context *h);
591

    
592
/**
593
 * Decode PPS
594
 */
595
int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
596

    
597
/**
598
 * Decodes a network abstraction layer unit.
599
 * @param consumed is the number of bytes used as input
600
 * @param length is the length of the array
601
 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
602
 * @returns decoded bytes, might be src+1 if no escapes
603
 */
604
const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
605

    
606
/**
607
 * identifies the exact end of the bitstream
608
 * @return the length of the trailing, or 0 if damaged
609
 */
610
int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src);
611

    
612
/**
613
 * frees any data that may have been allocated in the H264 context like SPS, PPS etc.
614
 */
615
av_cold void ff_h264_free_context(H264Context *h);
616

    
617
/**
618
 * reconstructs bitstream slice_type.
619
 */
620
int ff_h264_get_slice_type(H264Context *h);
621

    
622
/**
623
 * allocates tables.
624
 * needs width/height
625
 */
626
int ff_h264_alloc_tables(H264Context *h);
627

    
628
/**
629
 * fills the default_ref_list.
630
 */
631
int ff_h264_fill_default_ref_list(H264Context *h);
632

    
633
int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
634
void ff_h264_fill_mbaff_ref_list(H264Context *h);
635
void ff_h264_remove_all_refs(H264Context *h);
636

    
637
/**
638
 * Executes the reference picture marking (memory management control operations).
639
 */
640
int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
641

    
642
int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
643

    
644

    
645
/**
646
 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
647
 */
648
int ff_h264_check_intra4x4_pred_mode(H264Context *h);
649

    
650
/**
651
 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
652
 */
653
int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
654

    
655
void ff_h264_write_back_intra_pred_mode(H264Context *h);
656
void ff_h264_hl_decode_mb(H264Context *h);
657
int ff_h264_frame_start(H264Context *h);
658
av_cold int ff_h264_decode_init(AVCodecContext *avctx);
659
av_cold int ff_h264_decode_end(AVCodecContext *avctx);
660
av_cold void ff_h264_decode_init_vlc(void);
661

    
662
/**
663
 * decodes a macroblock
664
 * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
665
 */
666
int ff_h264_decode_mb_cavlc(H264Context *h);
667

    
668
/**
669
 * decodes a CABAC coded macroblock
670
 * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
671
 */
672
int ff_h264_decode_mb_cabac(H264Context *h);
673

    
674
void ff_h264_init_cabac_states(H264Context *h);
675

    
676
void ff_h264_direct_dist_scale_factor(H264Context * const h);
677
void ff_h264_direct_ref_list_init(H264Context * const h);
678
void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
679

    
680
void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
681
void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
682

    
683
/**
684
 * Reset SEI values at the beginning of the frame.
685
 *
686
 * @param h H.264 context.
687
 */
688
void ff_h264_reset_sei(H264Context *h);
689

    
690

    
691
/*
692
o-o o-o
693
 / / /
694
o-o o-o
695
 ,---'
696
o-o o-o
697
 / / /
698
o-o o-o
699
*/
700
//This table must be here because scan8[constant] must be known at compiletime
701
static const uint8_t scan8[16 + 2*4]={
702
 4+1*8, 5+1*8, 4+2*8, 5+2*8,
703
 6+1*8, 7+1*8, 6+2*8, 7+2*8,
704
 4+3*8, 5+3*8, 4+4*8, 5+4*8,
705
 6+3*8, 7+3*8, 6+4*8, 7+4*8,
706
 1+1*8, 2+1*8,
707
 1+2*8, 2+2*8,
708
 1+4*8, 2+4*8,
709
 1+5*8, 2+5*8,
710
};
711

    
712
static av_always_inline uint32_t pack16to32(int a, int b){
713
#if HAVE_BIGENDIAN
714
   return (b&0xFFFF) + (a<<16);
715
#else
716
   return (a&0xFFFF) + (b<<16);
717
#endif
718
}
719

    
720
/**
721
 * gets the chroma qp.
722
 */
723
static inline int get_chroma_qp(H264Context *h, int t, int qscale){
724
    return h->pps.chroma_qp_table[t][qscale];
725
}
726

    
727
static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
728

    
729
static av_always_inline void fill_caches(H264Context *h, int mb_type, int for_deblock){
730
    MpegEncContext * const s = &h->s;
731
    const int mb_xy= h->mb_xy;
732
    int topleft_xy, top_xy, topright_xy, left_xy[2];
733
    int topleft_type, top_type, topright_type, left_type[2];
734
    const uint8_t * left_block;
735
    int topleft_partition= -1;
736
    int i;
737
    static const uint8_t left_block_options[4][16]={
738
        {0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8},
739
        {2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8},
740
        {0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8},
741
        {0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}
742
    };
743

    
744
    top_xy     = mb_xy  - (s->mb_stride << FIELD_PICTURE);
745

    
746
    //FIXME deblocking could skip the intra and nnz parts.
747
//     if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[top_xy]) && !FRAME_MBAFF)
748
//         return;
749

    
750
    /* Wow, what a mess, why didn't they simplify the interlacing & intra
751
     * stuff, I can't imagine that these complex rules are worth it. */
752

    
753
    topleft_xy = top_xy - 1;
754
    topright_xy= top_xy + 1;
755
    left_xy[1] = left_xy[0] = mb_xy-1;
756
    left_block = left_block_options[0];
757
    if(FRAME_MBAFF){
758
        const int pair_xy          = s->mb_x     + (s->mb_y & ~1)*s->mb_stride;
759
        const int top_pair_xy      = pair_xy     - s->mb_stride;
760
        const int topleft_pair_xy  = top_pair_xy - 1;
761
        const int topright_pair_xy = top_pair_xy + 1;
762
        const int topleft_mb_field_flag  = IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
763
        const int top_mb_field_flag      = IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
764
        const int topright_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
765
        const int left_mb_field_flag     = IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
766
        const int curr_mb_field_flag     = IS_INTERLACED(mb_type);
767
        const int bottom = (s->mb_y & 1);
768
        tprintf(s->avctx, "fill_caches: curr_mb_field_flag:%d, left_mb_field_flag:%d, topleft_mb_field_flag:%d, top_mb_field_flag:%d, topright_mb_field_flag:%d\n", curr_mb_field_flag, left_mb_field_flag, topleft_mb_field_flag, top_mb_field_flag, topright_mb_field_flag);
769

    
770
        if (curr_mb_field_flag && (bottom || top_mb_field_flag)){
771
            top_xy -= s->mb_stride;
772
        }
773
        if (curr_mb_field_flag && (bottom || topleft_mb_field_flag)){
774
            topleft_xy -= s->mb_stride;
775
        } else if(bottom && !curr_mb_field_flag && left_mb_field_flag) {
776
            topleft_xy += s->mb_stride;
777
            // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
778
            topleft_partition = 0;
779
        }
780
        if (curr_mb_field_flag && (bottom || topright_mb_field_flag)){
781
            topright_xy -= s->mb_stride;
782
        }
783
        if (left_mb_field_flag != curr_mb_field_flag) {
784
            left_xy[1] = left_xy[0] = pair_xy - 1;
785
            if (curr_mb_field_flag) {
786
                left_xy[1] += s->mb_stride;
787
                left_block = left_block_options[3];
788
            } else {
789
                left_block= left_block_options[2 - bottom];
790
            }
791
        }
792
    }
793

    
794
    h->top_mb_xy = top_xy;
795
    h->left_mb_xy[0] = left_xy[0];
796
    h->left_mb_xy[1] = left_xy[1];
797
    if(for_deblock){
798
        *((uint64_t*)&h->non_zero_count_cache[0+8*1])= *((uint64_t*)&h->non_zero_count[mb_xy][ 0]);
799
        *((uint64_t*)&h->non_zero_count_cache[0+8*2])= *((uint64_t*)&h->non_zero_count[mb_xy][ 8]);
800
        *((uint32_t*)&h->non_zero_count_cache[0+8*5])= *((uint32_t*)&h->non_zero_count[mb_xy][16]);
801
        *((uint32_t*)&h->non_zero_count_cache[4+8*3])= *((uint32_t*)&h->non_zero_count[mb_xy][20]);
802
        *((uint64_t*)&h->non_zero_count_cache[0+8*4])= *((uint64_t*)&h->non_zero_count[mb_xy][24]);
803

    
804
        topleft_type = 0;
805
        topright_type = 0;
806
        top_type     = h->slice_table[top_xy     ] < 0xFFFF ? s->current_picture.mb_type[top_xy]     : 0;
807
        left_type[0] = h->slice_table[left_xy[0] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[0]] : 0;
808
        left_type[1] = h->slice_table[left_xy[1] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[1]] : 0;
809

    
810
        if(!IS_INTRA(mb_type)){
811
            int list;
812
            for(list=0; list<h->list_count; list++){
813
                int8_t *ref;
814
                int y, b_xy;
815
                if(!USES_LIST(mb_type, list)){
816
                    fill_rectangle(  h->mv_cache[list][scan8[0]], 4, 4, 8, pack16to32(0,0), 4);
817
                    *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
818
                    *(uint32_t*)&h->ref_cache[list][scan8[ 2]] =
819
                    *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
820
                    *(uint32_t*)&h->ref_cache[list][scan8[10]] = ((LIST_NOT_USED)&0xFF)*0x01010101;
821
                    continue;
822
                }
823

    
824
                ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
825
                *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
826
                *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = (pack16to32(ref[0],ref[1])&0x00FF00FF)*0x0101;
827
                ref += h->b8_stride;
828
                *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
829
                *(uint32_t*)&h->ref_cache[list][scan8[10]] = (pack16to32(ref[0],ref[1])&0x00FF00FF)*0x0101;
830

    
831
                b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
832
                for(y=0; y<4; y++){
833
                    *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y]= *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride];
834
                    *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y]= *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride];
835
                }
836

    
837
            }
838
        }
839
    }else{
840
        topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
841
        top_type     = h->slice_table[top_xy     ] == h->slice_num ? s->current_picture.mb_type[top_xy]     : 0;
842
        topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
843
        left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
844
        left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
845

    
846
    if(IS_INTRA(mb_type) && !for_deblock){
847
        int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
848
        h->topleft_samples_available=
849
        h->top_samples_available=
850
        h->left_samples_available= 0xFFFF;
851
        h->topright_samples_available= 0xEEEA;
852

    
853
        if(!(top_type & type_mask)){
854
            h->topleft_samples_available= 0xB3FF;
855
            h->top_samples_available= 0x33FF;
856
            h->topright_samples_available= 0x26EA;
857
        }
858
        if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
859
            if(IS_INTERLACED(mb_type)){
860
                if(!(left_type[0] & type_mask)){
861
                    h->topleft_samples_available&= 0xDFFF;
862
                    h->left_samples_available&= 0x5FFF;
863
                }
864
                if(!(left_type[1] & type_mask)){
865
                    h->topleft_samples_available&= 0xFF5F;
866
                    h->left_samples_available&= 0xFF5F;
867
                }
868
            }else{
869
                int left_typei = h->slice_table[left_xy[0] + s->mb_stride ] == h->slice_num
870
                                ? s->current_picture.mb_type[left_xy[0] + s->mb_stride] : 0;
871
                assert(left_xy[0] == left_xy[1]);
872
                if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
873
                    h->topleft_samples_available&= 0xDF5F;
874
                    h->left_samples_available&= 0x5F5F;
875
                }
876
            }
877
        }else{
878
            if(!(left_type[0] & type_mask)){
879
                h->topleft_samples_available&= 0xDF5F;
880
                h->left_samples_available&= 0x5F5F;
881
            }
882
        }
883

    
884
        if(!(topleft_type & type_mask))
885
            h->topleft_samples_available&= 0x7FFF;
886

    
887
        if(!(topright_type & type_mask))
888
            h->topright_samples_available&= 0xFBFF;
889

    
890
        if(IS_INTRA4x4(mb_type)){
891
            if(IS_INTRA4x4(top_type)){
892
                h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
893
                h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
894
                h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
895
                h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
896
            }else{
897
                int pred;
898
                if(!(top_type & type_mask))
899
                    pred= -1;
900
                else{
901
                    pred= 2;
902
                }
903
                h->intra4x4_pred_mode_cache[4+8*0]=
904
                h->intra4x4_pred_mode_cache[5+8*0]=
905
                h->intra4x4_pred_mode_cache[6+8*0]=
906
                h->intra4x4_pred_mode_cache[7+8*0]= pred;
907
            }
908
            for(i=0; i<2; i++){
909
                if(IS_INTRA4x4(left_type[i])){
910
                    h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
911
                    h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
912
                }else{
913
                    int pred;
914
                    if(!(left_type[i] & type_mask))
915
                        pred= -1;
916
                    else{
917
                        pred= 2;
918
                    }
919
                    h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
920
                    h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
921
                }
922
            }
923
        }
924
    }
925
    }
926

    
927

    
928
/*
929
0 . T T. T T T T
930
1 L . .L . . . .
931
2 L . .L . . . .
932
3 . T TL . . . .
933
4 L . .L . . . .
934
5 L . .. . . . .
935
*/
936
//FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
937
    if(top_type){
938
        *(uint32_t*)&h->non_zero_count_cache[4+8*0]= *(uint32_t*)&h->non_zero_count[top_xy][4+3*8];
939

    
940
        h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8];
941
        h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8];
942

    
943
        h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8];
944
        h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8];
945

    
946
    }else{
947
        h->non_zero_count_cache[4+8*0]=
948
        h->non_zero_count_cache[5+8*0]=
949
        h->non_zero_count_cache[6+8*0]=
950
        h->non_zero_count_cache[7+8*0]=
951

    
952
        h->non_zero_count_cache[1+8*0]=
953
        h->non_zero_count_cache[2+8*0]=
954

    
955
        h->non_zero_count_cache[1+8*3]=
956
        h->non_zero_count_cache[2+8*3]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
957

    
958
    }
959

    
960
    for (i=0; i<2; i++) {
961
        if(left_type[i]){
962
            h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]];
963
            h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]];
964
            h->non_zero_count_cache[0+8*1 +   8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]];
965
            h->non_zero_count_cache[0+8*4 +   8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]];
966
        }else{
967
            h->non_zero_count_cache[3+8*1 + 2*8*i]=
968
            h->non_zero_count_cache[3+8*2 + 2*8*i]=
969
            h->non_zero_count_cache[0+8*1 +   8*i]=
970
            h->non_zero_count_cache[0+8*4 +   8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
971
        }
972
    }
973

    
974
    if( CABAC && !for_deblock) {
975
        // top_cbp
976
        if(top_type) {
977
            h->top_cbp = h->cbp_table[top_xy];
978
        } else if(IS_INTRA(mb_type)) {
979
            h->top_cbp = 0x1C0;
980
        } else {
981
            h->top_cbp = 0;
982
        }
983
        // left_cbp
984
        if (left_type[0]) {
985
            h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
986
        } else if(IS_INTRA(mb_type)) {
987
            h->left_cbp = 0x1C0;
988
        } else {
989
            h->left_cbp = 0;
990
        }
991
        if (left_type[0]) {
992
            h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
993
        }
994
        if (left_type[1]) {
995
            h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
996
        }
997
    }
998

    
999
#if 1
1000
    if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
1001
        int list;
1002
        for(list=0; list<h->list_count; list++){
1003
            if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
1004
                /*if(!h->mv_cache_clean[list]){
1005
                    memset(h->mv_cache [list],  0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
1006
                    memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
1007
                    h->mv_cache_clean[list]= 1;
1008
                }*/
1009
                continue;
1010
            }
1011
            h->mv_cache_clean[list]= 0;
1012

    
1013
            if(USES_LIST(top_type, list)){
1014
                const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
1015
                const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
1016
                *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
1017
                *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
1018
                *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
1019
                *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
1020
                h->ref_cache[list][scan8[0] + 0 - 1*8]=
1021
                h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
1022
                h->ref_cache[list][scan8[0] + 2 - 1*8]=
1023
                h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
1024
            }else{
1025
                *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
1026
                *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
1027
                *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
1028
                *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
1029
                *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
1030
            }
1031

    
1032
            for(i=0; i<2; i++){
1033
                int cache_idx = scan8[0] - 1 + i*2*8;
1034
                if(USES_LIST(left_type[i], list)){
1035
                    const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
1036
                    const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
1037
                    *(uint32_t*)h->mv_cache[list][cache_idx  ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
1038
                    *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
1039
                    h->ref_cache[list][cache_idx  ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
1040
                    h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
1041
                }else{
1042
                    *(uint32_t*)h->mv_cache [list][cache_idx  ]=
1043
                    *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
1044
                    h->ref_cache[list][cache_idx  ]=
1045
                    h->ref_cache[list][cache_idx+8]= left_type[i] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1046
                }
1047
            }
1048

    
1049
            if(for_deblock || ((IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred) && !FRAME_MBAFF))
1050
                continue;
1051

    
1052
            if(USES_LIST(topleft_type, list)){
1053
                const int b_xy = h->mb2b_xy[topleft_xy] + 3 + h->b_stride + (topleft_partition & 2*h->b_stride);
1054
                const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (topleft_partition & h->b8_stride);
1055
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
1056
                h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
1057
            }else{
1058
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
1059
                h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1060
            }
1061

    
1062
            if(USES_LIST(topright_type, list)){
1063
                const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
1064
                const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
1065
                *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
1066
                h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
1067
            }else{
1068
                *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
1069
                h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1070
            }
1071

    
1072
            if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
1073
                continue;
1074

    
1075
            h->ref_cache[list][scan8[5 ]+1] =
1076
            h->ref_cache[list][scan8[7 ]+1] =
1077
            h->ref_cache[list][scan8[13]+1] =  //FIXME remove past 3 (init somewhere else)
1078
            h->ref_cache[list][scan8[4 ]] =
1079
            h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
1080
            *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
1081
            *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
1082
            *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
1083
            *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
1084
            *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
1085

    
1086
            if( CABAC ) {
1087
                /* XXX beurk, Load mvd */
1088
                if(USES_LIST(top_type, list)){
1089
                    const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
1090
                    *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
1091
                    *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
1092
                    *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
1093
                    *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
1094
                }else{
1095
                    *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
1096
                    *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
1097
                    *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
1098
                    *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
1099
                }
1100
                if(USES_LIST(left_type[0], list)){
1101
                    const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
1102
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
1103
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
1104
                }else{
1105
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
1106
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
1107
                }
1108
                if(USES_LIST(left_type[1], list)){
1109
                    const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
1110
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
1111
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
1112
                }else{
1113
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
1114
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
1115
                }
1116
                *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
1117
                *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
1118
                *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
1119
                *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
1120
                *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
1121

    
1122
                if(h->slice_type_nos == FF_B_TYPE){
1123
                    fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
1124

    
1125
                    if(IS_DIRECT(top_type)){
1126
                        *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
1127
                    }else if(IS_8X8(top_type)){
1128
                        int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
1129
                        h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
1130
                        h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
1131
                    }else{
1132
                        *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
1133
                    }
1134

    
1135
                    if(IS_DIRECT(left_type[0]))
1136
                        h->direct_cache[scan8[0] - 1 + 0*8]= 1;
1137
                    else if(IS_8X8(left_type[0]))
1138
                        h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
1139
                    else
1140
                        h->direct_cache[scan8[0] - 1 + 0*8]= 0;
1141

    
1142
                    if(IS_DIRECT(left_type[1]))
1143
                        h->direct_cache[scan8[0] - 1 + 2*8]= 1;
1144
                    else if(IS_8X8(left_type[1]))
1145
                        h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
1146
                    else
1147
                        h->direct_cache[scan8[0] - 1 + 2*8]= 0;
1148
                }
1149
            }
1150

    
1151
            if(FRAME_MBAFF){
1152
#define MAP_MVS\
1153
                    MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
1154
                    MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
1155
                    MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
1156
                    MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
1157
                    MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
1158
                    MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
1159
                    MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
1160
                    MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
1161
                    MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
1162
                    MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
1163
                if(MB_FIELD){
1164
#define MAP_F2F(idx, mb_type)\
1165
                    if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1166
                        h->ref_cache[list][idx] <<= 1;\
1167
                        h->mv_cache[list][idx][1] /= 2;\
1168
                        h->mvd_cache[list][idx][1] /= 2;\
1169
                    }
1170
                    MAP_MVS
1171
#undef MAP_F2F
1172
                }else{
1173
#define MAP_F2F(idx, mb_type)\
1174
                    if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1175
                        h->ref_cache[list][idx] >>= 1;\
1176
                        h->mv_cache[list][idx][1] <<= 1;\
1177
                        h->mvd_cache[list][idx][1] <<= 1;\
1178
                    }
1179
                    MAP_MVS
1180
#undef MAP_F2F
1181
                }
1182
            }
1183
        }
1184
    }
1185
#endif
1186

    
1187
    if(!for_deblock)
1188
    h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
1189
}
1190

    
1191
static void fill_decode_caches(H264Context *h, int mb_type){
1192
    fill_caches(h, mb_type, 0);
1193
}
1194

    
1195
static void fill_filter_caches(H264Context *h, int mb_type){
1196
    fill_caches(h, mb_type, 1);
1197
}
1198

    
1199
/**
1200
 * gets the predicted intra4x4 prediction mode.
1201
 */
1202
static inline int pred_intra_mode(H264Context *h, int n){
1203
    const int index8= scan8[n];
1204
    const int left= h->intra4x4_pred_mode_cache[index8 - 1];
1205
    const int top = h->intra4x4_pred_mode_cache[index8 - 8];
1206
    const int min= FFMIN(left, top);
1207

    
1208
    tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
1209

    
1210
    if(min<0) return DC_PRED;
1211
    else      return min;
1212
}
1213

    
1214
static inline void write_back_non_zero_count(H264Context *h){
1215
    const int mb_xy= h->mb_xy;
1216

    
1217
    *((uint64_t*)&h->non_zero_count[mb_xy][ 0]) = *((uint64_t*)&h->non_zero_count_cache[0+8*1]);
1218
    *((uint64_t*)&h->non_zero_count[mb_xy][ 8]) = *((uint64_t*)&h->non_zero_count_cache[0+8*2]);
1219
    *((uint32_t*)&h->non_zero_count[mb_xy][16]) = *((uint32_t*)&h->non_zero_count_cache[0+8*5]);
1220
    *((uint32_t*)&h->non_zero_count[mb_xy][20]) = *((uint32_t*)&h->non_zero_count_cache[4+8*3]);
1221
    *((uint64_t*)&h->non_zero_count[mb_xy][24]) = *((uint64_t*)&h->non_zero_count_cache[0+8*4]);
1222
}
1223

    
1224
static inline void write_back_motion(H264Context *h, int mb_type){
1225
    MpegEncContext * const s = &h->s;
1226
    const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1227
    const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1228
    int list;
1229

    
1230
    if(!USES_LIST(mb_type, 0))
1231
        fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
1232

    
1233
    for(list=0; list<h->list_count; list++){
1234
        int y;
1235
        if(!USES_LIST(mb_type, list))
1236
            continue;
1237

    
1238
        for(y=0; y<4; y++){
1239
            *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
1240
            *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
1241
        }
1242
        if( CABAC ) {
1243
            if(IS_SKIP(mb_type))
1244
                fill_rectangle(h->mvd_table[list][b_xy], 4, 4, h->b_stride, 0, 4);
1245
            else
1246
            for(y=0; y<4; y++){
1247
                *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
1248
                *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
1249
            }
1250
        }
1251

    
1252
        {
1253
            int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
1254
            ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
1255
            ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
1256
            ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
1257
            ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
1258
        }
1259
    }
1260

    
1261
    if(h->slice_type_nos == FF_B_TYPE && CABAC){
1262
        if(IS_8X8(mb_type)){
1263
            uint8_t *direct_table = &h->direct_table[b8_xy];
1264
            direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
1265
            direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
1266
            direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
1267
        }
1268
    }
1269
}
1270

    
1271
static inline int get_dct8x8_allowed(H264Context *h){
1272
    if(h->sps.direct_8x8_inference_flag)
1273
        return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8                )*0x0001000100010001ULL));
1274
    else
1275
        return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
1276
}
1277

    
1278
static void predict_field_decoding_flag(H264Context *h){
1279
    MpegEncContext * const s = &h->s;
1280
    const int mb_xy= h->mb_xy;
1281
    int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
1282
                ? s->current_picture.mb_type[mb_xy-1]
1283
                : (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
1284
                ? s->current_picture.mb_type[mb_xy-s->mb_stride]
1285
                : 0;
1286
    h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
1287
}
1288

    
1289
/**
1290
 * decodes a P_SKIP or B_SKIP macroblock
1291
 */
1292
static void decode_mb_skip(H264Context *h){
1293
    MpegEncContext * const s = &h->s;
1294
    const int mb_xy= h->mb_xy;
1295
    int mb_type=0;
1296

    
1297
    memset(h->non_zero_count[mb_xy], 0, 32);
1298
    memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
1299

    
1300
    if(MB_FIELD)
1301
        mb_type|= MB_TYPE_INTERLACED;
1302

    
1303
    if( h->slice_type_nos == FF_B_TYPE )
1304
    {
1305
        // just for fill_caches. pred_direct_motion will set the real mb_type
1306
        mb_type|= MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
1307

    
1308
        fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1309
        ff_h264_pred_direct_motion(h, &mb_type);
1310
        mb_type|= MB_TYPE_SKIP;
1311
    }
1312
    else
1313
    {
1314
        int mx, my;
1315
        mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
1316

    
1317
        fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1318
        pred_pskip_motion(h, &mx, &my);
1319
        fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
1320
        fill_rectangle(  h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
1321
    }
1322

    
1323
    write_back_motion(h, mb_type);
1324
    s->current_picture.mb_type[mb_xy]= mb_type;
1325
    s->current_picture.qscale_table[mb_xy]= s->qscale;
1326
    h->slice_table[ mb_xy ]= h->slice_num;
1327
    h->prev_mb_skipped= 1;
1328
}
1329

    
1330
#include "h264_mvpred.h" //For pred_pskip_motion()
1331

    
1332
#endif /* AVCODEC_H264_H */