ffmpeg / libavutil / pca.c @ b76e3424
History | View | Annotate | Download (6.24 KB)
1 |
/*
|
---|---|
2 |
* Principal component analysis
|
3 |
* Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
|
4 |
*
|
5 |
* This file is part of FFmpeg.
|
6 |
*
|
7 |
* FFmpeg is free software; you can redistribute it and/or
|
8 |
* modify it under the terms of the GNU Lesser General Public
|
9 |
* License as published by the Free Software Foundation; either
|
10 |
* version 2.1 of the License, or (at your option) any later version.
|
11 |
*
|
12 |
* FFmpeg is distributed in the hope that it will be useful,
|
13 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
15 |
* Lesser General Public License for more details.
|
16 |
*
|
17 |
* You should have received a copy of the GNU Lesser General Public
|
18 |
* License along with FFmpeg; if not, write to the Free Software
|
19 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
20 |
*/
|
21 |
|
22 |
/**
|
23 |
* @file pca.c
|
24 |
* Principal component analysis
|
25 |
*/
|
26 |
|
27 |
#include "common.h" |
28 |
#include "pca.h" |
29 |
|
30 |
typedef struct PCA{ |
31 |
int count;
|
32 |
int n;
|
33 |
double *covariance;
|
34 |
double *mean;
|
35 |
}PCA; |
36 |
|
37 |
PCA *ff_pca_init(int n){
|
38 |
PCA *pca; |
39 |
if(n<=0) |
40 |
return NULL; |
41 |
|
42 |
pca= av_mallocz(sizeof(PCA));
|
43 |
pca->n= n; |
44 |
pca->count=0;
|
45 |
pca->covariance= av_mallocz(sizeof(double)*n*n); |
46 |
pca->mean= av_mallocz(sizeof(double)*n); |
47 |
|
48 |
return pca;
|
49 |
} |
50 |
|
51 |
void ff_pca_free(PCA *pca){
|
52 |
av_freep(&pca->covariance); |
53 |
av_freep(&pca->mean); |
54 |
av_free(pca); |
55 |
} |
56 |
|
57 |
void ff_pca_add(PCA *pca, double *v){ |
58 |
int i, j;
|
59 |
const int n= pca->n; |
60 |
|
61 |
for(i=0; i<n; i++){ |
62 |
pca->mean[i] += v[i]; |
63 |
for(j=i; j<n; j++)
|
64 |
pca->covariance[j + i*n] += v[i]*v[j]; |
65 |
} |
66 |
pca->count++; |
67 |
} |
68 |
|
69 |
int ff_pca(PCA *pca, double *eigenvector, double *eigenvalue){ |
70 |
int i, j, k, pass;
|
71 |
const int n= pca->n; |
72 |
double z[n];
|
73 |
|
74 |
memset(eigenvector, 0, sizeof(double)*n*n); |
75 |
|
76 |
for(j=0; j<n; j++){ |
77 |
pca->mean[j] /= pca->count; |
78 |
eigenvector[j + j*n] = 1.0; |
79 |
for(i=0; i<=j; i++){ |
80 |
pca->covariance[j + i*n] /= pca->count; |
81 |
pca->covariance[j + i*n] -= pca->mean[i] * pca->mean[j]; |
82 |
pca->covariance[i + j*n] = pca->covariance[j + i*n]; |
83 |
} |
84 |
eigenvalue[j]= pca->covariance[j + j*n]; |
85 |
z[j]= 0;
|
86 |
} |
87 |
|
88 |
for(pass=0; pass < 50; pass++){ |
89 |
double sum=0; |
90 |
|
91 |
for(i=0; i<n; i++) |
92 |
for(j=i+1; j<n; j++) |
93 |
sum += fabs(pca->covariance[j + i*n]); |
94 |
|
95 |
if(sum == 0){ |
96 |
for(i=0; i<n; i++){ |
97 |
double maxvalue= -1; |
98 |
for(j=i; j<n; j++){
|
99 |
if(eigenvalue[j] > maxvalue){
|
100 |
maxvalue= eigenvalue[j]; |
101 |
k= j; |
102 |
} |
103 |
} |
104 |
eigenvalue[k]= eigenvalue[i]; |
105 |
eigenvalue[i]= maxvalue; |
106 |
for(j=0; j<n; j++){ |
107 |
double tmp= eigenvector[k + j*n];
|
108 |
eigenvector[k + j*n]= eigenvector[i + j*n]; |
109 |
eigenvector[i + j*n]= tmp; |
110 |
} |
111 |
} |
112 |
return pass;
|
113 |
} |
114 |
|
115 |
for(i=0; i<n; i++){ |
116 |
for(j=i+1; j<n; j++){ |
117 |
double covar= pca->covariance[j + i*n];
|
118 |
double t,c,s,tau,theta, h;
|
119 |
|
120 |
if(pass < 3 && fabs(covar) < sum / (5*n*n)) //FIXME why pass < 3 |
121 |
continue;
|
122 |
if(fabs(covar) == 0.0) //FIXME shouldnt be needed |
123 |
continue;
|
124 |
if(pass >=3 && fabs((eigenvalue[j]+z[j])/covar) > (1LL<<32) && fabs((eigenvalue[i]+z[i])/covar) > (1LL<<32)){ |
125 |
pca->covariance[j + i*n]=0.0; |
126 |
continue;
|
127 |
} |
128 |
|
129 |
h= (eigenvalue[j]+z[j]) - (eigenvalue[i]+z[i]); |
130 |
theta=0.5*h/covar; |
131 |
t=1.0/(fabs(theta)+sqrt(1.0+theta*theta)); |
132 |
if(theta < 0.0) t = -t; |
133 |
|
134 |
c=1.0/sqrt(1+t*t); |
135 |
s=t*c; |
136 |
tau=s/(1.0+c); |
137 |
z[i] -= t*covar; |
138 |
z[j] += t*covar; |
139 |
|
140 |
#define ROTATE(a,i,j,k,l) {\
|
141 |
double g=a[j + i*n];\
|
142 |
double h=a[l + k*n];\
|
143 |
a[j + i*n]=g-s*(h+g*tau);\ |
144 |
a[l + k*n]=h+s*(g-h*tau); } |
145 |
for(k=0; k<n; k++) { |
146 |
if(k!=i && k!=j){
|
147 |
ROTATE(pca->covariance,FFMIN(k,i),FFMAX(k,i),FFMIN(k,j),FFMAX(k,j)) |
148 |
} |
149 |
ROTATE(eigenvector,k,i,k,j) |
150 |
} |
151 |
pca->covariance[j + i*n]=0.0; |
152 |
} |
153 |
} |
154 |
for (i=0; i<n; i++) { |
155 |
eigenvalue[i] += z[i]; |
156 |
z[i]=0.0; |
157 |
} |
158 |
} |
159 |
|
160 |
return -1; |
161 |
} |
162 |
|
163 |
#ifdef TEST
|
164 |
|
165 |
#undef printf
|
166 |
#undef random
|
167 |
#include <stdio.h> |
168 |
#include <stdlib.h> |
169 |
|
170 |
int main(){
|
171 |
PCA *pca; |
172 |
int i, j, k;
|
173 |
#define LEN 8 |
174 |
double eigenvector[LEN*LEN];
|
175 |
double eigenvalue[LEN];
|
176 |
|
177 |
pca= ff_pca_init(LEN); |
178 |
|
179 |
for(i=0; i<9000000; i++){ |
180 |
double v[2*LEN+100]; |
181 |
double sum=0; |
182 |
int pos= random()%LEN;
|
183 |
int v2= (random()%101) - 50; |
184 |
v[0]= (random()%101) - 50; |
185 |
for(j=1; j<8; j++){ |
186 |
if(j<=pos) v[j]= v[0]; |
187 |
else v[j]= v2;
|
188 |
sum += v[j]; |
189 |
} |
190 |
/* for(j=0; j<LEN; j++){
|
191 |
v[j] -= v[pos];
|
192 |
}*/
|
193 |
// sum += random()%10;
|
194 |
/* for(j=0; j<LEN; j++){
|
195 |
v[j] -= sum/LEN;
|
196 |
}*/
|
197 |
// lbt1(v+100,v+100,LEN);
|
198 |
ff_pca_add(pca, v); |
199 |
} |
200 |
|
201 |
|
202 |
ff_pca(pca, eigenvector, eigenvalue); |
203 |
for(i=0; i<LEN; i++){ |
204 |
pca->count= 1;
|
205 |
pca->mean[i]= 0;
|
206 |
|
207 |
// (0.5^|x|)^2 = 0.5^2|x| = 0.25^|x|
|
208 |
|
209 |
|
210 |
// pca.covariance[i + i*LEN]= pow(0.5, fabs
|
211 |
for(j=i; j<LEN; j++){
|
212 |
printf("%f ", pca->covariance[i + j*LEN]);
|
213 |
} |
214 |
printf("\n");
|
215 |
} |
216 |
|
217 |
#if 1 |
218 |
for(i=0; i<LEN; i++){ |
219 |
double v[LEN];
|
220 |
double error=0; |
221 |
memset(v, 0, sizeof(v)); |
222 |
for(j=0; j<LEN; j++){ |
223 |
for(k=0; k<LEN; k++){ |
224 |
v[j] += pca->covariance[FFMIN(k,j) + FFMAX(k,j)*LEN] * eigenvector[i + k*LEN]; |
225 |
} |
226 |
v[j] /= eigenvalue[i]; |
227 |
error += fabs(v[j] - eigenvector[i + j*LEN]); |
228 |
} |
229 |
printf("%f ", error);
|
230 |
} |
231 |
printf("\n");
|
232 |
#endif
|
233 |
for(i=0; i<LEN; i++){ |
234 |
for(j=0; j<LEN; j++){ |
235 |
printf("%9.6f ", eigenvector[i + j*LEN]);
|
236 |
} |
237 |
printf(" %9.1f %f\n", eigenvalue[i], eigenvalue[i]/eigenvalue[0]); |
238 |
} |
239 |
|
240 |
return 0; |
241 |
} |
242 |
#endif
|