Statistics
| Branch: | Revision:

ffmpeg / libavcodec / cook.c @ b7c24ff6

History | View | Annotate | Download (43.8 KB)

1
/*
2
 * COOK compatible decoder
3
 * Copyright (c) 2003 Sascha Sommer
4
 * Copyright (c) 2005 Benjamin Larsson
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 *
20
 */
21

    
22
/**
23
 * @file cook.c
24
 * Cook compatible decoder.
25
 * This decoder handles RealNetworks, RealAudio G2 data.
26
 * Cook is identified by the codec name cook in RM files.
27
 *
28
 * To use this decoder, a calling application must supply the extradata
29
 * bytes provided from the RM container; 8+ bytes for mono streams and
30
 * 16+ for stereo streams (maybe more).
31
 *
32
 * Codec technicalities (all this assume a buffer length of 1024):
33
 * Cook works with several different techniques to achieve its compression.
34
 * In the timedomain the buffer is divided into 8 pieces and quantized. If
35
 * two neighboring pieces have different quantization index a smooth
36
 * quantization curve is used to get a smooth overlap between the different
37
 * pieces.
38
 * To get to the transformdomain Cook uses a modulated lapped transform.
39
 * The transform domain has 50 subbands with 20 elements each. This
40
 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
41
 * available.
42
 */
43

    
44
#include <math.h>
45
#include <stddef.h>
46
#include <stdio.h>
47

    
48
#define ALT_BITSTREAM_READER
49
#include "avcodec.h"
50
#include "bitstream.h"
51
#include "dsputil.h"
52

    
53
#include "cookdata.h"
54

    
55
/* the different Cook versions */
56
#define MONO_COOK1      0x1000001
57
#define MONO_COOK2      0x1000002
58
#define JOINT_STEREO    0x1000003
59
#define MC_COOK         0x2000000   //multichannel Cook, not supported
60

    
61
#define SUBBAND_SIZE    20
62
//#define COOKDEBUG
63

    
64
typedef struct {
65
    int     size;
66
    int     qidx_table1[8];
67
    int     qidx_table2[8];
68
} COOKgain;
69

    
70
typedef struct __attribute__((__packed__)){
71
    /* codec data start */
72
    uint32_t cookversion;               //in network order, bigendian
73
    uint16_t samples_per_frame;         //amount of samples per frame per channel, bigendian
74
    uint16_t subbands;                  //amount of bands used in the frequency domain, bigendian
75
    /* Mono extradata ends here. */
76
    uint32_t unused;
77
    uint16_t js_subband_start;          //bigendian
78
    uint16_t js_vlc_bits;               //bigendian
79
    /* Stereo extradata ends here. */
80
} COOKextradata;
81

    
82

    
83
typedef struct {
84
    GetBitContext       gb;
85
    /* stream data */
86
    int                 nb_channels;
87
    int                 joint_stereo;
88
    int                 bit_rate;
89
    int                 sample_rate;
90
    int                 samples_per_channel;
91
    int                 samples_per_frame;
92
    int                 subbands;
93
    int                 numvector_bits;
94
    int                 numvector_size;                //1 << numvector_bits;
95
    int                 js_subband_start;
96
    int                 total_subbands;
97
    int                 num_vectors;
98
    int                 bits_per_subpacket;
99
    /* states */
100
    int                 random_state;
101

    
102
    /* transform data */
103
    FFTContext          fft_ctx;
104
    FFTSample           mlt_tmp[1024] __attribute__((aligned(16))); /* temporary storage for imlt */
105
    float*              mlt_window;
106
    float*              mlt_precos;
107
    float*              mlt_presin;
108
    float*              mlt_postcos;
109
    int                 fft_size;
110
    int                 fft_order;
111
    int                 mlt_size;       //modulated lapped transform size
112

    
113
    /* gain buffers */
114
    COOKgain*           gain_now_ptr;
115
    COOKgain*           gain_previous_ptr;
116
    COOKgain            gain_copy;
117
    COOKgain            gain_current;
118
    COOKgain            gain_now;
119
    COOKgain            gain_previous;
120

    
121
    /* VLC data */
122
    int                 js_vlc_bits;
123
    VLC                 envelope_quant_index[13];
124
    VLC                 sqvh[7];          //scalar quantization
125
    VLC                 ccpl;             //channel coupling
126

    
127
    /* generatable tables and related variables */
128
    int                 gain_size_factor;
129
    float               gain_table[23];
130
    float               pow2tab[127];
131
    float               rootpow2tab[127];
132

    
133
    /* data buffers */
134
    uint8_t*            frame_reorder_buffer;
135
    int*                frame_reorder_index;
136
    int                 frame_reorder_counter;
137
    int                 frame_reorder_complete;
138
    int                 frame_reorder_index_size;
139

    
140
    uint8_t*            decoded_bytes_buffer;
141
    float               mono_mdct_output[2048] __attribute__((aligned(16)));
142
    float*              previous_buffer_ptr[2];
143
    float               mono_previous_buffer1[1024];
144
    float               mono_previous_buffer2[1024];
145
    float*              decode_buf_ptr[4];
146
    float               decode_buffer_1[1024];
147
    float               decode_buffer_2[1024];
148
    float               decode_buffer_3[1024];
149
    float               decode_buffer_4[1024];
150
} COOKContext;
151

    
152
/* debug functions */
153

    
154
#ifdef COOKDEBUG
155
static void dump_float_table(float* table, int size, int delimiter) {
156
    int i=0;
157
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
158
    for (i=0 ; i<size ; i++) {
159
        av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
160
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
161
    }
162
}
163

    
164
static void dump_int_table(int* table, int size, int delimiter) {
165
    int i=0;
166
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
167
    for (i=0 ; i<size ; i++) {
168
        av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
169
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
170
    }
171
}
172

    
173
static void dump_short_table(short* table, int size, int delimiter) {
174
    int i=0;
175
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
176
    for (i=0 ; i<size ; i++) {
177
        av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
178
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
179
    }
180
}
181

    
182
#endif
183

    
184
/*************** init functions ***************/
185

    
186
/* table generator */
187
static void init_pow2table(COOKContext *q){
188
    int i;
189
    q->pow2tab[63] = 1.0;
190
    for (i=1 ; i<64 ; i++){
191
        q->pow2tab[63+i]=(float)pow(2.0,(double)i);
192
        q->pow2tab[63-i]=1.0/(float)pow(2.0,(double)i);
193
    }
194
}
195

    
196
/* table generator */
197
static void init_rootpow2table(COOKContext *q){
198
    int i;
199
    q->rootpow2tab[63] = 1.0;
200
    for (i=1 ; i<64 ; i++){
201
        q->rootpow2tab[63+i]=sqrt((float)powf(2.0,(float)i));
202
        q->rootpow2tab[63-i]=sqrt(1.0/(float)powf(2.0,(float)i));
203
    }
204
}
205

    
206
/* table generator */
207
static void init_gain_table(COOKContext *q) {
208
    int i;
209
    q->gain_size_factor = q->samples_per_channel/8;
210
    for (i=0 ; i<23 ; i++) {
211
        q->gain_table[i] = pow((double)q->pow2tab[i+52] ,
212
                               (1.0/(double)q->gain_size_factor));
213
    }
214
    memset(&q->gain_copy, 0, sizeof(COOKgain));
215
    memset(&q->gain_current, 0, sizeof(COOKgain));
216
    memset(&q->gain_now, 0, sizeof(COOKgain));
217
    memset(&q->gain_previous, 0, sizeof(COOKgain));
218
}
219

    
220

    
221
static int init_cook_vlc_tables(COOKContext *q) {
222
    int i, result;
223

    
224
    result = 0;
225
    for (i=0 ; i<13 ; i++) {
226
        result &= init_vlc (&q->envelope_quant_index[i], 9, 24,
227
            envelope_quant_index_huffbits[i], 1, 1,
228
            envelope_quant_index_huffcodes[i], 2, 2, 0);
229
    }
230
    av_log(NULL,AV_LOG_DEBUG,"sqvh VLC init\n");
231
    for (i=0 ; i<7 ; i++) {
232
        result &= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
233
            cvh_huffbits[i], 1, 1,
234
            cvh_huffcodes[i], 2, 2, 0);
235
    }
236

    
237
    if (q->nb_channels==2 && q->joint_stereo==1){
238
        result &= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1,
239
            ccpl_huffbits[q->js_vlc_bits-2], 1, 1,
240
            ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0);
241
        av_log(NULL,AV_LOG_DEBUG,"Joint-stereo VLC used.\n");
242
    }
243

    
244
    av_log(NULL,AV_LOG_DEBUG,"VLC tables initialized.\n");
245
    return result;
246
}
247

    
248
static int init_cook_mlt(COOKContext *q) {
249
    int j;
250
    float alpha;
251

    
252
    /* Allocate the buffers, could be replaced with a static [512]
253
       array if needed. */
254
    q->mlt_size = q->samples_per_channel;
255
    q->mlt_window = av_malloc(sizeof(float)*q->mlt_size);
256
    q->mlt_precos = av_malloc(sizeof(float)*q->mlt_size/2);
257
    q->mlt_presin = av_malloc(sizeof(float)*q->mlt_size/2);
258
    q->mlt_postcos = av_malloc(sizeof(float)*q->mlt_size/2);
259

    
260
    /* Initialize the MLT window: simple sine window. */
261
    alpha = M_PI / (2.0 * (float)q->mlt_size);
262
    for(j=0 ; j<q->mlt_size ; j++) {
263
        q->mlt_window[j] = sin((j + 512.0/(float)q->mlt_size) * alpha);
264
    }
265

    
266
    /* pre/post twiddle factors */
267
    for (j=0 ; j<q->mlt_size/2 ; j++){
268
        q->mlt_precos[j] = cos( ((j+0.25)*M_PI)/q->mlt_size);
269
        q->mlt_presin[j] = sin( ((j+0.25)*M_PI)/q->mlt_size);
270
        q->mlt_postcos[j] = (float)sqrt(2.0/(float)q->mlt_size)*cos( ((float)j*M_PI) /q->mlt_size); //sqrt(2/MLT_size) = scalefactor
271
    }
272

    
273
    /* Initialize the FFT. */
274
    ff_fft_init(&q->fft_ctx, av_log2(q->mlt_size)-1, 0);
275
    av_log(NULL,AV_LOG_DEBUG,"FFT initialized, order = %d.\n",
276
           av_log2(q->samples_per_channel)-1);
277

    
278
    return (int)(q->mlt_window && q->mlt_precos && q->mlt_presin && q->mlt_postcos);
279
}
280

    
281
/*************** init functions end ***********/
282

    
283
/**
284
 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
285
 * Why? No idea, some checksum/error detection method maybe.
286
 * Nice way to waste CPU cycles.
287
 *
288
 * @param in        pointer to 32bit array of indata
289
 * @param bits      amount of bits
290
 * @param out       pointer to 32bit array of outdata
291
 */
292

    
293
static inline void decode_bytes(uint8_t* inbuffer, uint8_t* out, int bytes){
294
    int i;
295
    uint32_t* buf = (uint32_t*) inbuffer;
296
    uint32_t* obuf = (uint32_t*) out;
297
    /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
298
     * I'm too lazy though, should be something like
299
     * for(i=0 ; i<bitamount/64 ; i++)
300
     *     (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
301
     * Buffer alignment needs to be checked. */
302

    
303

    
304
    for(i=0 ; i<bytes/4 ; i++){
305
#ifdef WORDS_BIGENDIAN
306
        obuf[i] = 0x37c511f2^buf[i];
307
#else
308
        obuf[i] = 0xf211c537^buf[i];
309
#endif
310
    }
311
}
312

    
313
/**
314
 * Cook uninit
315
 */
316

    
317
static int cook_decode_close(AVCodecContext *avctx)
318
{
319
    int i;
320
    COOKContext *q = avctx->priv_data;
321
    av_log(NULL,AV_LOG_DEBUG, "Deallocating memory.\n");
322

    
323
    /* Free allocated memory buffers. */
324
    av_free(q->mlt_window);
325
    av_free(q->mlt_precos);
326
    av_free(q->mlt_presin);
327
    av_free(q->mlt_postcos);
328
    av_free(q->frame_reorder_index);
329
    av_free(q->frame_reorder_buffer);
330
    av_free(q->decoded_bytes_buffer);
331

    
332
    /* Free the transform. */
333
    ff_fft_end(&q->fft_ctx);
334

    
335
    /* Free the VLC tables. */
336
    for (i=0 ; i<13 ; i++) {
337
        free_vlc(&q->envelope_quant_index[i]);
338
    }
339
    for (i=0 ; i<7 ; i++) {
340
        free_vlc(&q->sqvh[i]);
341
    }
342
    if(q->nb_channels==2 && q->joint_stereo==1 ){
343
        free_vlc(&q->ccpl);
344
    }
345

    
346
    av_log(NULL,AV_LOG_DEBUG,"Memory deallocated.\n");
347

    
348
    return 0;
349
}
350

    
351
/**
352
 * Fill the COOKgain structure for the timedomain quantization.
353
 *
354
 * @param q                 pointer to the COOKContext
355
 * @param gaininfo          pointer to the COOKgain
356
 */
357

    
358
static void decode_gain_info(GetBitContext *gb, COOKgain* gaininfo) {
359
    int i;
360

    
361
    while (get_bits1(gb)) {}
362

    
363
    gaininfo->size = get_bits_count(gb) - 1;     //amount of elements*2 to update
364

    
365
    if (get_bits_count(gb) - 1 <= 0) return;
366

    
367
    for (i=0 ; i<gaininfo->size ; i++){
368
        gaininfo->qidx_table1[i] = get_bits(gb,3);
369
        if (get_bits1(gb)) {
370
            gaininfo->qidx_table2[i] = get_bits(gb,4) - 7;  //convert to signed
371
        } else {
372
            gaininfo->qidx_table2[i] = -1;
373
        }
374
    }
375
}
376

    
377
/**
378
 * Create the quant index table needed for the envelope.
379
 *
380
 * @param q                 pointer to the COOKContext
381
 * @param quant_index_table pointer to the array
382
 */
383

    
384
static void decode_envelope(COOKContext *q, int* quant_index_table) {
385
    int i,j, vlc_index;
386
    int bitbias;
387

    
388
    bitbias = get_bits_count(&q->gb);
389
    quant_index_table[0]= get_bits(&q->gb,6) - 6;       //This is used later in categorize
390

    
391
    for (i=1 ; i < q->total_subbands ; i++){
392
        vlc_index=i;
393
        if (i >= q->js_subband_start * 2) {
394
            vlc_index-=q->js_subband_start;
395
        } else {
396
            vlc_index/=2;
397
            if(vlc_index < 1) vlc_index = 1;
398
        }
399
        if (vlc_index>13) vlc_index = 13;           //the VLC tables >13 are identical to No. 13
400

    
401
        j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
402
                     q->envelope_quant_index[vlc_index-1].bits,2);
403
        quant_index_table[i] = quant_index_table[i-1] + j - 12;    //differential encoding
404
    }
405
}
406

    
407
/**
408
 * Create the quant value table.
409
 *
410
 * @param q                 pointer to the COOKContext
411
 * @param quant_value_table pointer to the array
412
 */
413

    
414
static void inline dequant_envelope(COOKContext *q, int* quant_index_table,
415
                                    float* quant_value_table){
416

    
417
    int i;
418
    for(i=0 ; i < q->total_subbands ; i++){
419
        quant_value_table[i] = q->rootpow2tab[quant_index_table[i]+63];
420
    }
421
}
422

    
423
/**
424
 * Calculate the category and category_index vector.
425
 *
426
 * @param q                     pointer to the COOKContext
427
 * @param quant_index_table     pointer to the array
428
 * @param category              pointer to the category array
429
 * @param category_index        pointer to the category_index array
430
 */
431

    
432
static void categorize(COOKContext *q, int* quant_index_table,
433
                       int* category, int* category_index){
434
    int exp_idx, bias, tmpbias, bits_left, num_bits, index, v, i, j;
435
    int exp_index2[102];
436
    int exp_index1[102];
437

    
438
    int tmp_categorize_array1[128];
439
    int tmp_categorize_array1_idx=0;
440
    int tmp_categorize_array2[128];
441
    int tmp_categorize_array2_idx=0;
442
    int category_index_size=0;
443

    
444
    bits_left =  q->bits_per_subpacket - get_bits_count(&q->gb);
445

    
446
    if(bits_left > q->samples_per_channel) {
447
        bits_left = q->samples_per_channel +
448
                    ((bits_left - q->samples_per_channel)*5)/8;
449
        //av_log(NULL, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
450
    }
451

    
452
    memset(&exp_index1,0,102*sizeof(int));
453
    memset(&exp_index2,0,102*sizeof(int));
454
    memset(&tmp_categorize_array1,0,128*sizeof(int));
455
    memset(&tmp_categorize_array2,0,128*sizeof(int));
456

    
457
    bias=-32;
458

    
459
    /* Estimate bias. */
460
    for (i=32 ; i>0 ; i=i/2){
461
        num_bits = 0;
462
        index = 0;
463
        for (j=q->total_subbands ; j>0 ; j--){
464
            exp_idx = (i - quant_index_table[index] + bias) / 2;
465
            if (exp_idx<0){
466
                exp_idx=0;
467
            } else if(exp_idx >7) {
468
                exp_idx=7;
469
            }
470
            index++;
471
            num_bits+=expbits_tab[exp_idx];
472
        }
473
        if(num_bits >= bits_left - 32){
474
            bias+=i;
475
        }
476
    }
477

    
478
    /* Calculate total number of bits. */
479
    num_bits=0;
480
    for (i=0 ; i<q->total_subbands ; i++) {
481
        exp_idx = (bias - quant_index_table[i]) / 2;
482
        if (exp_idx<0) {
483
            exp_idx=0;
484
        } else if(exp_idx >7) {
485
            exp_idx=7;
486
        }
487
        num_bits += expbits_tab[exp_idx];
488
        exp_index1[i] = exp_idx;
489
        exp_index2[i] = exp_idx;
490
    }
491
    tmpbias = bias = num_bits;
492

    
493
    for (j = 1 ; j < q->numvector_size ; j++) {
494
        if (tmpbias + bias > 2*bits_left) {  /* ---> */
495
            int max = -999999;
496
            index=-1;
497
            for (i=0 ; i<q->total_subbands ; i++){
498
                if (exp_index1[i] < 7) {
499
                    v = (-2*exp_index1[i]) - quant_index_table[i] - 32;
500
                    if ( v >= max) {
501
                        max = v;
502
                        index = i;
503
                    }
504
                }
505
            }
506
            if(index==-1)break;
507
            tmp_categorize_array1[tmp_categorize_array1_idx++] = index;
508
            tmpbias -= expbits_tab[exp_index1[index]] -
509
                       expbits_tab[exp_index1[index]+1];
510
            ++exp_index1[index];
511
        } else {  /* <--- */
512
            int min = 999999;
513
            index=-1;
514
            for (i=0 ; i<q->total_subbands ; i++){
515
                if(exp_index2[i] > 0){
516
                    v = (-2*exp_index2[i])-quant_index_table[i];
517
                    if ( v < min) {
518
                        min = v;
519
                        index = i;
520
                    }
521
                }
522
            }
523
            if(index == -1)break;
524
            tmp_categorize_array2[tmp_categorize_array2_idx++] = index;
525
            tmpbias -= expbits_tab[exp_index2[index]] -
526
                       expbits_tab[exp_index2[index]-1];
527
            --exp_index2[index];
528
        }
529
    }
530

    
531
    for(i=0 ; i<q->total_subbands ; i++)
532
        category[i] = exp_index2[i];
533

    
534
    /* Concatenate the two arrays. */
535
    for(i=tmp_categorize_array2_idx-1 ; i >= 0; i--)
536
        category_index[category_index_size++] =  tmp_categorize_array2[i];
537

    
538
    for(i=0;i<tmp_categorize_array1_idx;i++)
539
        category_index[category_index_size++ ] =  tmp_categorize_array1[i];
540

    
541
    /* FIXME: mc_sich_ra8_20.rm triggers this, not sure with what we
542
       should fill the remaining bytes. */
543
    for(i=category_index_size;i<q->numvector_size;i++)
544
        category_index[i]=0;
545

    
546
}
547

    
548

    
549
/**
550
 * Expand the category vector.
551
 *
552
 * @param q                     pointer to the COOKContext
553
 * @param category              pointer to the category array
554
 * @param category_index        pointer to the category_index array
555
 */
556

    
557
static void inline expand_category(COOKContext *q, int* category,
558
                                   int* category_index){
559
    int i;
560
    for(i=0 ; i<q->num_vectors ; i++){
561
        ++category[category_index[i]];
562
    }
563
}
564

    
565
/**
566
 * The real requantization of the mltcoefs
567
 *
568
 * @param q                     pointer to the COOKContext
569
 * @param index                 index
570
 * @param band                  current subband
571
 * @param quant_value_table     pointer to the array
572
 * @param subband_coef_index    array of indexes to quant_centroid_tab
573
 * @param subband_coef_noise    use random noise instead of predetermined value
574
 * @param mlt_buffer            pointer to the mlt buffer
575
 */
576

    
577

    
578
static void scalar_dequant(COOKContext *q, int index, int band,
579
                           float* quant_value_table, int* subband_coef_index,
580
                           int* subband_coef_noise, float* mlt_buffer){
581
    int i;
582
    float f1;
583

    
584
    for(i=0 ; i<SUBBAND_SIZE ; i++) {
585
        if (subband_coef_index[i]) {
586
            if (subband_coef_noise[i]) {
587
                f1 = -quant_centroid_tab[index][subband_coef_index[i]];
588
            } else {
589
                f1 = quant_centroid_tab[index][subband_coef_index[i]];
590
            }
591
        } else {
592
            /* noise coding if subband_coef_noise[i] == 0 */
593
            q->random_state = q->random_state * 214013 + 2531011;    //typical RNG numbers
594
            f1 = randsign[(q->random_state/0x1000000)&1] * dither_tab[index]; //>>31
595
        }
596
        mlt_buffer[band*20+ i] = f1 * quant_value_table[band];
597
    }
598
}
599
/**
600
 * Unpack the subband_coef_index and subband_coef_noise vectors.
601
 *
602
 * @param q                     pointer to the COOKContext
603
 * @param category              pointer to the category array
604
 * @param subband_coef_index    array of indexes to quant_centroid_tab
605
 * @param subband_coef_noise    use random noise instead of predetermined value
606
 */
607

    
608
static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
609
                       int* subband_coef_noise) {
610
    int i,j;
611
    int vlc, vd ,tmp, result;
612
    int ub;
613
    int cb;
614

    
615
    vd = vd_tab[category];
616
    result = 0;
617
    for(i=0 ; i<vpr_tab[category] ; i++){
618
        ub = get_bits_count(&q->gb);
619
        vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
620
        cb = get_bits_count(&q->gb);
621
        if (q->bits_per_subpacket < get_bits_count(&q->gb)){
622
            vlc = 0;
623
            result = 1;
624
        }
625
        for(j=vd-1 ; j>=0 ; j--){
626
            tmp = (vlc * invradix_tab[category])/0x100000;
627
            subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
628
            vlc = tmp;
629
        }
630
        for(j=0 ; j<vd ; j++){
631
            if (subband_coef_index[i*vd + j]) {
632
                if(get_bits_count(&q->gb) < q->bits_per_subpacket){
633
                    subband_coef_noise[i*vd+j] = get_bits1(&q->gb);
634
                } else {
635
                    result=1;
636
                    subband_coef_noise[i*vd+j]=0;
637
                }
638
            } else {
639
                subband_coef_noise[i*vd+j]=0;
640
            }
641
        }
642
    }
643
    return result;
644
}
645

    
646

    
647
/**
648
 * Fill the mlt_buffer with mlt coefficients.
649
 *
650
 * @param q                 pointer to the COOKContext
651
 * @param category          pointer to the category array
652
 * @param quant_value_table pointer to the array
653
 * @param mlt_buffer        pointer to mlt coefficients
654
 */
655

    
656

    
657
static void decode_vectors(COOKContext* q, int* category,
658
                           float* quant_value_table, float* mlt_buffer){
659
    /* A zero in this table means that the subband coefficient is
660
       random noise coded. */
661
    int subband_coef_noise[SUBBAND_SIZE];
662
    /* A zero in this table means that the subband coefficient is a
663
       positive multiplicator. */
664
    int subband_coef_index[SUBBAND_SIZE];
665
    int band, j;
666
    int index=0;
667

    
668
    for(band=0 ; band<q->total_subbands ; band++){
669
        index = category[band];
670
        if(category[band] < 7){
671
            if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_noise)){
672
                index=7;
673
                for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7;
674
            }
675
        }
676
        if(index==7) {
677
            memset(subband_coef_index, 0, sizeof(subband_coef_index));
678
            memset(subband_coef_noise, 0, sizeof(subband_coef_noise));
679
        }
680
        scalar_dequant(q, index, band, quant_value_table, subband_coef_index,
681
                       subband_coef_noise, mlt_buffer);
682
    }
683

    
684
    if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
685
        return;
686
    }
687
}
688

    
689

    
690
/**
691
 * function for decoding mono data
692
 *
693
 * @param q                 pointer to the COOKContext
694
 * @param mlt_buffer1       pointer to left channel mlt coefficients
695
 * @param mlt_buffer2       pointer to right channel mlt coefficients
696
 */
697

    
698
static void mono_decode(COOKContext *q, float* mlt_buffer) {
699

    
700
    int category_index[128];
701
    float quant_value_table[102];
702
    int quant_index_table[102];
703
    int category[128];
704

    
705
    memset(&category, 0, 128*sizeof(int));
706
    memset(&quant_value_table, 0, 102*sizeof(int));
707
    memset(&category_index, 0, 128*sizeof(int));
708

    
709
    decode_envelope(q, quant_index_table);
710
    q->num_vectors = get_bits(&q->gb,q->numvector_bits);
711
    dequant_envelope(q, quant_index_table, quant_value_table);
712
    categorize(q, quant_index_table, category, category_index);
713
    expand_category(q, category, category_index);
714
    decode_vectors(q, category, quant_value_table, mlt_buffer);
715
}
716

    
717

    
718
/**
719
 * The modulated lapped transform, this takes transform coefficients
720
 * and transforms them into timedomain samples. This is done through
721
 * an FFT-based algorithm with pre- and postrotation steps.
722
 * A window and reorder step is also included.
723
 *
724
 * @param q                 pointer to the COOKContext
725
 * @param inbuffer          pointer to the mltcoefficients
726
 * @param outbuffer         pointer to the timedomain buffer
727
 * @param mlt_tmp           pointer to temporary storage space
728
 */
729

    
730
static void cook_imlt(COOKContext *q, float* inbuffer, float* outbuffer,
731
                      float* mlt_tmp){
732
    int i;
733

    
734
    /* prerotation */
735
    for(i=0 ; i<q->mlt_size ; i+=2){
736
        outbuffer[i] = (q->mlt_presin[i/2] * inbuffer[q->mlt_size-1-i]) +
737
                       (q->mlt_precos[i/2] * inbuffer[i]);
738
        outbuffer[i+1] = (q->mlt_precos[i/2] * inbuffer[q->mlt_size-1-i]) -
739
                         (q->mlt_presin[i/2] * inbuffer[i]);
740
    }
741

    
742
    /* FFT */
743
    ff_fft_permute(&q->fft_ctx, (FFTComplex *) outbuffer);
744
    ff_fft_calc (&q->fft_ctx, (FFTComplex *) outbuffer);
745

    
746
    /* postrotation */
747
    for(i=0 ; i<q->mlt_size ; i+=2){
748
        mlt_tmp[i] =               (q->mlt_postcos[(q->mlt_size-1-i)/2] * outbuffer[i+1]) +
749
                                   (q->mlt_postcos[i/2] * outbuffer[i]);
750
        mlt_tmp[q->mlt_size-1-i] = (q->mlt_postcos[(q->mlt_size-1-i)/2] * outbuffer[i]) -
751
                                   (q->mlt_postcos[i/2] * outbuffer[i+1]);
752
    }
753

    
754
    /* window and reorder */
755
    for(i=0 ; i<q->mlt_size/2 ; i++){
756
        outbuffer[i] = mlt_tmp[q->mlt_size/2-1-i] * q->mlt_window[i];
757
        outbuffer[q->mlt_size-1-i]= mlt_tmp[q->mlt_size/2-1-i] *
758
                                    q->mlt_window[q->mlt_size-1-i];
759
        outbuffer[q->mlt_size+i]= mlt_tmp[q->mlt_size/2+i] *
760
                                  q->mlt_window[q->mlt_size-1-i];
761
        outbuffer[2*q->mlt_size-1-i]= -(mlt_tmp[q->mlt_size/2+i] *
762
                                      q->mlt_window[i]);
763
    }
764
}
765

    
766

    
767
/**
768
 * the actual requantization of the timedomain samples
769
 *
770
 * @param q                 pointer to the COOKContext
771
 * @param buffer            pointer to the timedomain buffer
772
 * @param gain_index        index for the block multiplier
773
 * @param gain_index_next   index for the next block multiplier
774
 */
775

    
776
static void interpolate(COOKContext *q, float* buffer,
777
                        int gain_index, int gain_index_next){
778
    int i;
779
    float fc1, fc2;
780
    fc1 = q->pow2tab[gain_index+63];
781

    
782
    if(gain_index == gain_index_next){              //static gain
783
        for(i=0 ; i<q->gain_size_factor ; i++){
784
            buffer[i]*=fc1;
785
        }
786
        return;
787
    } else {                                        //smooth gain
788
        fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
789
        for(i=0 ; i<q->gain_size_factor ; i++){
790
            buffer[i]*=fc1;
791
            fc1*=fc2;
792
        }
793
        return;
794
    }
795
}
796

    
797
/**
798
 * timedomain requantization of the timedomain samples
799
 *
800
 * @param q                 pointer to the COOKContext
801
 * @param buffer            pointer to the timedomain buffer
802
 * @param gain_now          current gain structure
803
 * @param gain_previous     previous gain structure
804
 */
805

    
806
static void gain_window(COOKContext *q, float* buffer, COOKgain* gain_now,
807
                        COOKgain* gain_previous){
808
    int i, index;
809
    int gain_index[9];
810
    int tmp_gain_index;
811

    
812
    gain_index[8]=0;
813
    index = gain_previous->size;
814
    for (i=7 ; i>=0 ; i--) {
815
        if(index && gain_previous->qidx_table1[index-1]==i) {
816
            gain_index[i] = gain_previous->qidx_table2[index-1];
817
            index--;
818
        } else {
819
            gain_index[i]=gain_index[i+1];
820
        }
821
    }
822
    /* This is applied to the to be previous data buffer. */
823
    for(i=0;i<8;i++){
824
        interpolate(q, &buffer[q->samples_per_channel+q->gain_size_factor*i],
825
                    gain_index[i], gain_index[i+1]);
826
    }
827

    
828
    tmp_gain_index = gain_index[0];
829
    index = gain_now->size;
830
    for (i=7 ; i>=0 ; i--) {
831
        if(index && gain_now->qidx_table1[index-1]==i) {
832
            gain_index[i]= gain_now->qidx_table2[index-1];
833
            index--;
834
        } else {
835
            gain_index[i]=gain_index[i+1];
836
        }
837
    }
838

    
839
    /* This is applied to the to be current block. */
840
    for(i=0;i<8;i++){
841
        interpolate(q, &buffer[i*q->gain_size_factor],
842
                    tmp_gain_index+gain_index[i],
843
                    tmp_gain_index+gain_index[i+1]);
844
    }
845
}
846

    
847

    
848
/**
849
 * mlt overlapping and buffer management
850
 *
851
 * @param q                 pointer to the COOKContext
852
 * @param buffer            pointer to the timedomain buffer
853
 * @param gain_now          current gain structure
854
 * @param gain_previous     previous gain structure
855
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
856
 *
857
 */
858

    
859
static void gain_compensate(COOKContext *q, float* buffer, COOKgain* gain_now,
860
                            COOKgain* gain_previous, float* previous_buffer) {
861
    int i;
862
    if((gain_now->size  || gain_previous->size)) {
863
        gain_window(q, buffer, gain_now, gain_previous);
864
    }
865

    
866
    /* Overlap with the previous block. */
867
    for(i=0 ; i<q->samples_per_channel ; i++) buffer[i]+=previous_buffer[i];
868

    
869
    /* Save away the current to be previous block. */
870
    memcpy(previous_buffer, buffer+q->samples_per_channel,
871
           sizeof(float)*q->samples_per_channel);
872
}
873

    
874

    
875
/**
876
 * function for getting the jointstereo coupling information
877
 *
878
 * @param q                 pointer to the COOKContext
879
 * @param decouple_tab      decoupling array
880
 *
881
 */
882

    
883
static void decouple_info(COOKContext *q, int* decouple_tab){
884
    int length, i;
885

    
886
    if(get_bits1(&q->gb)) {
887
        if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
888

    
889
        length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
890
        for (i=0 ; i<length ; i++) {
891
            decouple_tab[cplband[q->js_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2);
892
        }
893
        return;
894
    }
895

    
896
    if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
897

    
898
    length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
899
    for (i=0 ; i<length ; i++) {
900
       decouple_tab[cplband[q->js_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits);
901
    }
902
    return;
903
}
904

    
905

    
906
/**
907
 * function for decoding joint stereo data
908
 *
909
 * @param q                 pointer to the COOKContext
910
 * @param mlt_buffer1       pointer to left channel mlt coefficients
911
 * @param mlt_buffer2       pointer to right channel mlt coefficients
912
 */
913

    
914
static void joint_decode(COOKContext *q, float* mlt_buffer1,
915
                         float* mlt_buffer2) {
916
    int i,j;
917
    int decouple_tab[SUBBAND_SIZE];
918
    float decode_buffer[2048];  //Only 1060 might be needed.
919
    int idx, cpl_tmp,tmp_idx;
920
    float f1,f2;
921
    float* cplscale;
922

    
923
    memset(decouple_tab, 0, sizeof(decouple_tab));
924
    memset(decode_buffer, 0, sizeof(decode_buffer));
925

    
926
    /* Make sure the buffers are zeroed out. */
927
    memset(mlt_buffer1,0, 1024*sizeof(float));
928
    memset(mlt_buffer2,0, 1024*sizeof(float));
929
    decouple_info(q, decouple_tab);
930
    mono_decode(q, decode_buffer);
931

    
932
    /* The two channels are stored interleaved in decode_buffer. */
933
    for (i=0 ; i<q->js_subband_start ; i++) {
934
        for (j=0 ; j<SUBBAND_SIZE ; j++) {
935
            mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
936
            mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
937
        }
938
    }
939

    
940
    /* When we reach js_subband_start (the higher frequencies)
941
       the coefficients are stored in a coupling scheme. */
942
    idx = (1 << q->js_vlc_bits) - 1;
943
    if (q->js_subband_start < q->subbands) {
944
        for (i=0 ; i<q->subbands ; i++) {
945
            cpl_tmp = cplband[i + q->js_subband_start];
946
            idx -=decouple_tab[cpl_tmp];
947
            cplscale = (float*)cplscales[q->js_vlc_bits-2];  //choose decoupler table
948
            f1 = cplscale[decouple_tab[cpl_tmp]];
949
            f2 = cplscale[idx-1];
950
            for (j=0 ; j<SUBBAND_SIZE ; j++) {
951
                tmp_idx = ((2*q->js_subband_start + i)*20)+j;
952
                mlt_buffer1[20*(i+q->js_subband_start) + j] = f1 * decode_buffer[tmp_idx];
953
                mlt_buffer2[20*(i+q->js_subband_start) + j] = f2 * decode_buffer[tmp_idx];
954
            }
955
            idx = (1 << q->js_vlc_bits) - 1;
956
        }
957
    }
958
}
959

    
960
/**
961
 * Cook subpacket decoding. This function returns one decoded subpacket,
962
 * usually 1024 samples per channel.
963
 *
964
 * @param q                 pointer to the COOKContext
965
 * @param inbuffer          pointer to the inbuffer
966
 * @param sub_packet_size   subpacket size
967
 * @param outbuffer         pointer to the outbuffer
968
 * @param pos               the subpacket number in the frame
969
 */
970

    
971

    
972
static int decode_subpacket(COOKContext *q, uint8_t *inbuffer,
973
                            int sub_packet_size, int16_t *outbuffer) {
974
    int i,j;
975
    int value;
976
    float* tmp_ptr;
977

    
978
    /* packet dump */
979
//    for (i=0 ; i<sub_packet_size ; i++) {
980
//        av_log(NULL, AV_LOG_ERROR, "%02x", inbuffer[i]);
981
//    }
982
//    av_log(NULL, AV_LOG_ERROR, "\n");
983

    
984
    decode_bytes(inbuffer, q->decoded_bytes_buffer, sub_packet_size);
985
    init_get_bits(&q->gb, q->decoded_bytes_buffer, sub_packet_size*8);
986
    decode_gain_info(&q->gb, &q->gain_current);
987
    memcpy(&q->gain_copy, &q->gain_current ,sizeof(COOKgain));  //This copy does not seem to be used. FIXME
988

    
989
    if(q->nb_channels==2 && q->joint_stereo==1){
990
        joint_decode(q, q->decode_buf_ptr[0], q->decode_buf_ptr[2]);
991

    
992
        /* Swap buffer pointers. */
993
        tmp_ptr = q->decode_buf_ptr[1];
994
        q->decode_buf_ptr[1] = q->decode_buf_ptr[0];
995
        q->decode_buf_ptr[0] = tmp_ptr;
996
        tmp_ptr = q->decode_buf_ptr[3];
997
        q->decode_buf_ptr[3] = q->decode_buf_ptr[2];
998
        q->decode_buf_ptr[2] = tmp_ptr;
999

    
1000
        /* FIXME: Rethink the gainbuffer handling, maybe a rename?
1001
           now/previous swap */
1002
        q->gain_now_ptr = &q->gain_now;
1003
        q->gain_previous_ptr = &q->gain_previous;
1004
        for (i=0 ; i<q->nb_channels ; i++){
1005

    
1006
            cook_imlt(q, q->decode_buf_ptr[i*2], q->mono_mdct_output, q->mlt_tmp);
1007
            gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
1008
                            q->gain_previous_ptr, q->previous_buffer_ptr[0]);
1009

    
1010
            /* Swap out the previous buffer. */
1011
            tmp_ptr = q->previous_buffer_ptr[0];
1012
            q->previous_buffer_ptr[0] = q->previous_buffer_ptr[1];
1013
            q->previous_buffer_ptr[1] = tmp_ptr;
1014

    
1015
            /* Clip and convert the floats to 16 bits. */
1016
            for (j=0 ; j<q->samples_per_frame ; j++){
1017
                value = lrintf(q->mono_mdct_output[j]);
1018
                if(value < -32768) value = -32768;
1019
                else if(value > 32767) value = 32767;
1020
                outbuffer[2*j+i] = value;
1021
            }
1022
        }
1023

    
1024
        memcpy(&q->gain_now, &q->gain_previous, sizeof(COOKgain));
1025
        memcpy(&q->gain_previous, &q->gain_current, sizeof(COOKgain));
1026

    
1027
    } else if (q->nb_channels==2 && q->joint_stereo==0) {
1028
            /* channel 0 */
1029
            mono_decode(q, q->decode_buf_ptr[0]);
1030

    
1031
            tmp_ptr = q->decode_buf_ptr[0];
1032
            q->decode_buf_ptr[0] = q->decode_buf_ptr[1];
1033
            q->decode_buf_ptr[1] = q->decode_buf_ptr[2];
1034
            q->decode_buf_ptr[2] = q->decode_buf_ptr[3];
1035
            q->decode_buf_ptr[3] = tmp_ptr;
1036

    
1037
            q->gain_now_ptr = &q->gain_now;
1038
            q->gain_previous_ptr = &q->gain_previous;
1039

    
1040
            cook_imlt(q, q->decode_buf_ptr[0], q->mono_mdct_output,q->mlt_tmp);
1041
            gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
1042
                            q->gain_previous_ptr, q->previous_buffer_ptr[0]);
1043
            /* Swap out the previous buffer. */
1044
            tmp_ptr = q->previous_buffer_ptr[0];
1045
            q->previous_buffer_ptr[0] = q->previous_buffer_ptr[1];
1046
            q->previous_buffer_ptr[1] = tmp_ptr;
1047

    
1048
            for (j=0 ; j<q->samples_per_frame ; j++){
1049
                value = lrintf(q->mono_mdct_output[j]);
1050
                if(value < -32768) value = -32768;
1051
                else if(value > 32767) value = 32767;
1052
                outbuffer[2*j+1] = value;
1053
            }
1054

    
1055
            /* channel 1 */
1056
            //av_log(NULL,AV_LOG_ERROR,"bits = %d\n",get_bits_count(&q->gb));
1057
            init_get_bits(&q->gb, q->decoded_bytes_buffer, sub_packet_size*8+q->bits_per_subpacket);
1058
            decode_gain_info(&q->gb, &q->gain_current);
1059
            //memcpy(&q->gain_copy, &q->gain_current ,sizeof(COOKgain));
1060
            mono_decode(q, q->decode_buf_ptr[0]);
1061
            tmp_ptr = q->decode_buf_ptr[0];
1062
            q->decode_buf_ptr[1] = q->decode_buf_ptr[2];
1063
            q->decode_buf_ptr[2] = q->decode_buf_ptr[3];
1064
            q->decode_buf_ptr[3] = tmp_ptr;
1065

    
1066
            q->gain_now_ptr = &q->gain_now;
1067
            q->gain_previous_ptr = &q->gain_previous;
1068

    
1069
            cook_imlt(q, q->decode_buf_ptr[0], q->mono_mdct_output,q->mlt_tmp);
1070
            gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr, q->gain_previous_ptr, q->previous_buffer_ptr[0]);
1071

    
1072
            /* Swap out the previous buffer. */
1073
            tmp_ptr = q->previous_buffer_ptr[0];
1074
            q->previous_buffer_ptr[0] = q->previous_buffer_ptr[1];
1075
            q->previous_buffer_ptr[1] = tmp_ptr;
1076

    
1077
            for (j=0 ; j<q->samples_per_frame ; j++){
1078
                value = lrintf(q->mono_mdct_output[j]);
1079
                if(value < -32768) value = -32768;
1080
                else if(value > 32767) value = 32767;
1081
                outbuffer[2*j] = value;
1082
            }
1083

    
1084

    
1085
            /* Swap out the previous buffer. */
1086
            memcpy(&q->gain_now, &q->gain_previous, sizeof(COOKgain));
1087
            memcpy(&q->gain_previous, &q->gain_current, sizeof(COOKgain));
1088

    
1089
    } else {
1090
        mono_decode(q, q->decode_buf_ptr[0]);
1091

    
1092
        /* Swap buffer pointers. */
1093
        tmp_ptr = q->decode_buf_ptr[1];
1094
        q->decode_buf_ptr[1] = q->decode_buf_ptr[0];
1095
        q->decode_buf_ptr[0] = tmp_ptr;
1096

    
1097
        /* FIXME: Rethink the gainbuffer handling, maybe a rename?
1098
           now/previous swap */
1099
        q->gain_now_ptr = &q->gain_now;
1100
        q->gain_previous_ptr = &q->gain_previous;
1101

    
1102
        cook_imlt(q, q->decode_buf_ptr[0], q->mono_mdct_output,q->mlt_tmp);
1103
        gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
1104
                        q->gain_previous_ptr, q->mono_previous_buffer1);
1105

    
1106
        /* Clip and convert the floats to 16 bits */
1107
        for (j=0 ; j<q->samples_per_frame ; j++){
1108
            value = lrintf(q->mono_mdct_output[j]);
1109
            if(value < -32768) value = -32768;
1110
            else if(value > 32767) value = 32767;
1111
            outbuffer[j] = value;
1112
        }
1113
        memcpy(&q->gain_now, &q->gain_previous, sizeof(COOKgain));
1114
        memcpy(&q->gain_previous, &q->gain_current, sizeof(COOKgain));
1115
    }
1116
    return q->samples_per_frame * sizeof(int16_t);
1117
}
1118

    
1119

    
1120
/**
1121
 * Cook frame decoding
1122
 *
1123
 * @param avctx     pointer to the AVCodecContext
1124
 */
1125

    
1126
static int cook_decode_frame(AVCodecContext *avctx,
1127
            void *data, int *data_size,
1128
            uint8_t *buf, int buf_size) {
1129
    COOKContext *q = avctx->priv_data;
1130

    
1131
    if (buf_size < avctx->block_align)
1132
        return buf_size;
1133

    
1134
    *data_size = decode_subpacket(q, buf, avctx->block_align, data);
1135

    
1136
    return avctx->block_align;
1137
}
1138
#ifdef COOKDEBUG
1139
static void dump_cook_context(COOKContext *q, COOKextradata *e)
1140
{
1141
    //int i=0;
1142
#define PRINT(a,b) av_log(NULL,AV_LOG_ERROR," %s = %d\n", a, b);
1143
    av_log(NULL,AV_LOG_ERROR,"COOKextradata\n");
1144
    av_log(NULL,AV_LOG_ERROR,"cookversion=%x\n",e->cookversion);
1145
    if (e->cookversion > MONO_COOK2) {
1146
        PRINT("js_subband_start",e->js_subband_start);
1147
        PRINT("js_vlc_bits",e->js_vlc_bits);
1148
    }
1149
    av_log(NULL,AV_LOG_ERROR,"COOKContext\n");
1150
    PRINT("nb_channels",q->nb_channels);
1151
    PRINT("bit_rate",q->bit_rate);
1152
    PRINT("sample_rate",q->sample_rate);
1153
    PRINT("samples_per_channel",q->samples_per_channel);
1154
    PRINT("samples_per_frame",q->samples_per_frame);
1155
    PRINT("subbands",q->subbands);
1156
    PRINT("random_state",q->random_state);
1157
    PRINT("mlt_size",q->mlt_size);
1158
    PRINT("js_subband_start",q->js_subband_start);
1159
    PRINT("numvector_bits",q->numvector_bits);
1160
    PRINT("numvector_size",q->numvector_size);
1161
    PRINT("total_subbands",q->total_subbands);
1162
    PRINT("frame_reorder_counter",q->frame_reorder_counter);
1163
    PRINT("frame_reorder_index_size",q->frame_reorder_index_size);
1164
}
1165
#endif
1166
/**
1167
 * Cook initialization
1168
 *
1169
 * @param avctx     pointer to the AVCodecContext
1170
 */
1171

    
1172
static int cook_decode_init(AVCodecContext *avctx)
1173
{
1174
    COOKextradata *e = avctx->extradata;
1175
    COOKContext *q = avctx->priv_data;
1176

    
1177
    /* Take care of the codec specific extradata. */
1178
    if (avctx->extradata_size <= 0) {
1179
        av_log(NULL,AV_LOG_ERROR,"Necessary extradata missing!\n");
1180
        return -1;
1181
    } else {
1182
        /* 8 for mono, 16 for stereo, ? for multichannel
1183
           Swap to right endianness so we don't need to care later on. */
1184
        av_log(NULL,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
1185
        if (avctx->extradata_size >= 8){
1186
            e->cookversion = be2me_32(e->cookversion);
1187
            e->samples_per_frame = be2me_16(e->samples_per_frame);
1188
            e->subbands = be2me_16(e->subbands);
1189
        }
1190
        if (avctx->extradata_size >= 16){
1191
            e->js_subband_start = be2me_16(e->js_subband_start);
1192
            e->js_vlc_bits = be2me_16(e->js_vlc_bits);
1193
        }
1194
    }
1195

    
1196
    /* Take data from the AVCodecContext (RM container). */
1197
    q->sample_rate = avctx->sample_rate;
1198
    q->nb_channels = avctx->channels;
1199
    q->bit_rate = avctx->bit_rate;
1200

    
1201
    /* Initialize state. */
1202
    q->random_state = 1;
1203

    
1204
    /* Initialize extradata related variables. */
1205
    q->samples_per_channel = e->samples_per_frame / q->nb_channels;
1206
    q->samples_per_frame = e->samples_per_frame;
1207
    q->subbands = e->subbands;
1208
    q->bits_per_subpacket = avctx->block_align * 8;
1209

    
1210
    /* Initialize default data states. */
1211
    q->js_subband_start = 0;
1212
    q->numvector_bits = 5;
1213
    q->total_subbands = q->subbands;
1214

    
1215
    /* Initialize version-dependent variables */
1216
    av_log(NULL,AV_LOG_DEBUG,"e->cookversion=%x\n",e->cookversion);
1217
    switch (e->cookversion) {
1218
        case MONO_COOK1:
1219
            if (q->nb_channels != 1) {
1220
                av_log(NULL,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
1221
                return -1;
1222
            }
1223
            av_log(NULL,AV_LOG_DEBUG,"MONO_COOK1\n");
1224
            break;
1225
        case MONO_COOK2:
1226
            if (q->nb_channels != 1) {
1227
                q->joint_stereo = 0;
1228
                av_log(NULL,AV_LOG_ERROR,"Non-joint-stereo files are decoded with wrong gain at the moment!\n");
1229
                q->bits_per_subpacket = q->bits_per_subpacket/2;
1230

    
1231
            }
1232
            av_log(NULL,AV_LOG_DEBUG,"MONO_COOK2\n");
1233
            break;
1234
        case JOINT_STEREO:
1235
            if (q->nb_channels != 2) {
1236
                av_log(NULL,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
1237
                return -1;
1238
            }
1239
            av_log(NULL,AV_LOG_DEBUG,"JOINT_STEREO\n");
1240
            if (avctx->extradata_size >= 16){
1241
                q->total_subbands = q->subbands + e->js_subband_start;
1242
                q->js_subband_start = e->js_subband_start;
1243
                q->joint_stereo = 1;
1244
                q->js_vlc_bits = e->js_vlc_bits;
1245
            }
1246
            if (q->samples_per_channel > 256) {
1247
                q->numvector_bits++;   // q->numvector_bits  = 6
1248
            }
1249
            if (q->samples_per_channel > 512) {
1250
                q->numvector_bits++;   // q->numvector_bits  = 7
1251
            }
1252
            break;
1253
        case MC_COOK:
1254
            av_log(NULL,AV_LOG_ERROR,"MC_COOK not supported!\n");
1255
            return -1;
1256
            break;
1257
        default:
1258
            av_log(NULL,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
1259
            return -1;
1260
            break;
1261
    }
1262

    
1263
    /* Initialize variable relations */
1264
    q->mlt_size = q->samples_per_channel;
1265
    q->numvector_size = (1 << q->numvector_bits);
1266

    
1267
    /* Generate tables */
1268
    init_rootpow2table(q);
1269
    init_pow2table(q);
1270
    init_gain_table(q);
1271

    
1272
    if (init_cook_vlc_tables(q) != 0)
1273
        return -1;
1274

    
1275
    /* Pad the databuffer with FF_INPUT_BUFFER_PADDING_SIZE,
1276
       this is for the bitstreamreader. */
1277
    if ((q->decoded_bytes_buffer = av_mallocz((avctx->block_align+(4-avctx->block_align%4) + FF_INPUT_BUFFER_PADDING_SIZE)*sizeof(uint8_t)))  == NULL)
1278
        return -1;
1279

    
1280
    q->decode_buf_ptr[0] = q->decode_buffer_1;
1281
    q->decode_buf_ptr[1] = q->decode_buffer_2;
1282
    q->decode_buf_ptr[2] = q->decode_buffer_3;
1283
    q->decode_buf_ptr[3] = q->decode_buffer_4;
1284

    
1285
    q->previous_buffer_ptr[0] = q->mono_previous_buffer1;
1286
    q->previous_buffer_ptr[1] = q->mono_previous_buffer2;
1287

    
1288
    memset(q->decode_buffer_1,0,1024*sizeof(float));
1289
    memset(q->decode_buffer_2,0,1024*sizeof(float));
1290
    memset(q->decode_buffer_3,0,1024*sizeof(float));
1291
    memset(q->decode_buffer_4,0,1024*sizeof(float));
1292

    
1293
    /* Initialize transform. */
1294
    if ( init_cook_mlt(q) == 0 )
1295
        return -1;
1296

    
1297
    //dump_cook_context(q,e);
1298
    return 0;
1299
}
1300

    
1301

    
1302
AVCodec cook_decoder =
1303
{
1304
    .name = "cook",
1305
    .type = CODEC_TYPE_AUDIO,
1306
    .id = CODEC_ID_COOK,
1307
    .priv_data_size = sizeof(COOKContext),
1308
    .init = cook_decode_init,
1309
    .close = cook_decode_close,
1310
    .decode = cook_decode_frame,
1311
};