ffmpeg / libavcodec / ra144enc.c @ b9f9e59a
History | View | Annotate | Download (17.2 KB)
1 |
/*
|
---|---|
2 |
* Real Audio 1.0 (14.4K) encoder
|
3 |
* Copyright (c) 2010 Francesco Lavra <francescolavra@interfree.it>
|
4 |
*
|
5 |
* This file is part of FFmpeg.
|
6 |
*
|
7 |
* FFmpeg is free software; you can redistribute it and/or
|
8 |
* modify it under the terms of the GNU Lesser General Public
|
9 |
* License as published by the Free Software Foundation; either
|
10 |
* version 2.1 of the License, or (at your option) any later version.
|
11 |
*
|
12 |
* FFmpeg is distributed in the hope that it will be useful,
|
13 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
15 |
* Lesser General Public License for more details.
|
16 |
*
|
17 |
* You should have received a copy of the GNU Lesser General Public
|
18 |
* License along with FFmpeg; if not, write to the Free Software
|
19 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
20 |
*/
|
21 |
|
22 |
/**
|
23 |
* @file
|
24 |
* Real Audio 1.0 (14.4K) encoder
|
25 |
* @author Francesco Lavra <francescolavra@interfree.it>
|
26 |
*/
|
27 |
|
28 |
#include <float.h> |
29 |
|
30 |
#include "avcodec.h" |
31 |
#include "put_bits.h" |
32 |
#include "lpc.h" |
33 |
#include "celp_filters.h" |
34 |
#include "ra144.h" |
35 |
|
36 |
|
37 |
static av_cold int ra144_encode_init(AVCodecContext * avctx) |
38 |
{ |
39 |
RA144Context *ractx; |
40 |
|
41 |
if (avctx->sample_fmt != SAMPLE_FMT_S16) {
|
42 |
av_log(avctx, AV_LOG_ERROR, "invalid sample format\n");
|
43 |
return -1; |
44 |
} |
45 |
if (avctx->channels != 1) { |
46 |
av_log(avctx, AV_LOG_ERROR, "invalid number of channels: %d\n",
|
47 |
avctx->channels); |
48 |
return -1; |
49 |
} |
50 |
avctx->frame_size = NBLOCKS * BLOCKSIZE; |
51 |
avctx->bit_rate = 8000;
|
52 |
ractx = avctx->priv_data; |
53 |
ractx->lpc_coef[0] = ractx->lpc_tables[0]; |
54 |
ractx->lpc_coef[1] = ractx->lpc_tables[1]; |
55 |
ractx->avctx = avctx; |
56 |
dsputil_init(&ractx->dsp, avctx); |
57 |
return 0; |
58 |
} |
59 |
|
60 |
|
61 |
/**
|
62 |
* Quantize a value by searching a sorted table for the element with the
|
63 |
* nearest value
|
64 |
*
|
65 |
* @param value value to quantize
|
66 |
* @param table array containing the quantization table
|
67 |
* @param size size of the quantization table
|
68 |
* @return index of the quantization table corresponding to the element with the
|
69 |
* nearest value
|
70 |
*/
|
71 |
static int quantize(int value, const int16_t *table, unsigned int size) |
72 |
{ |
73 |
unsigned int low = 0, high = size - 1; |
74 |
|
75 |
while (1) { |
76 |
int index = (low + high) >> 1; |
77 |
int error = table[index] - value;
|
78 |
|
79 |
if (index == low)
|
80 |
return table[high] + error > value ? low : high;
|
81 |
if (error > 0) { |
82 |
high = index; |
83 |
} else {
|
84 |
low = index; |
85 |
} |
86 |
} |
87 |
} |
88 |
|
89 |
|
90 |
/**
|
91 |
* Orthogonalize a vector to another vector
|
92 |
*
|
93 |
* @param v vector to orthogonalize
|
94 |
* @param u vector against which orthogonalization is performed
|
95 |
*/
|
96 |
static void orthogonalize(float *v, const float *u) |
97 |
{ |
98 |
int i;
|
99 |
float num = 0, den = 0; |
100 |
|
101 |
for (i = 0; i < BLOCKSIZE; i++) { |
102 |
num += v[i] * u[i]; |
103 |
den += u[i] * u[i]; |
104 |
} |
105 |
num /= den; |
106 |
for (i = 0; i < BLOCKSIZE; i++) |
107 |
v[i] -= num * u[i]; |
108 |
} |
109 |
|
110 |
|
111 |
/**
|
112 |
* Calculate match score and gain of an LPC-filtered vector with respect to
|
113 |
* input data, possibly othogonalizing it to up to 2 other vectors
|
114 |
*
|
115 |
* @param work array used to calculate the filtered vector
|
116 |
* @param coefs coefficients of the LPC filter
|
117 |
* @param vect original vector
|
118 |
* @param ortho1 first vector against which orthogonalization is performed
|
119 |
* @param ortho2 second vector against which orthogonalization is performed
|
120 |
* @param data input data
|
121 |
* @param score pointer to variable where match score is returned
|
122 |
* @param gain pointer to variable where gain is returned
|
123 |
*/
|
124 |
static void get_match_score(float *work, const float *coefs, float *vect, |
125 |
const float *ortho1, const float *ortho2, |
126 |
const float *data, float *score, float *gain) |
127 |
{ |
128 |
float c, g;
|
129 |
int i;
|
130 |
|
131 |
ff_celp_lp_synthesis_filterf(work, coefs, vect, BLOCKSIZE, LPC_ORDER); |
132 |
if (ortho1)
|
133 |
orthogonalize(work, ortho1); |
134 |
if (ortho2)
|
135 |
orthogonalize(work, ortho2); |
136 |
c = g = 0;
|
137 |
for (i = 0; i < BLOCKSIZE; i++) { |
138 |
g += work[i] * work[i]; |
139 |
c += data[i] * work[i]; |
140 |
} |
141 |
if (c <= 0) { |
142 |
*score = 0;
|
143 |
return;
|
144 |
} |
145 |
*gain = c / g; |
146 |
*score = *gain * c; |
147 |
} |
148 |
|
149 |
|
150 |
/**
|
151 |
* Create a vector from the adaptive codebook at a given lag value
|
152 |
*
|
153 |
* @param vect array where vector is stored
|
154 |
* @param cb adaptive codebook
|
155 |
* @param lag lag value
|
156 |
*/
|
157 |
static void create_adapt_vect(float *vect, const int16_t *cb, int lag) |
158 |
{ |
159 |
int i;
|
160 |
|
161 |
cb += BUFFERSIZE - lag; |
162 |
for (i = 0; i < FFMIN(BLOCKSIZE, lag); i++) |
163 |
vect[i] = cb[i]; |
164 |
if (lag < BLOCKSIZE)
|
165 |
for (i = 0; i < BLOCKSIZE - lag; i++) |
166 |
vect[lag + i] = cb[i]; |
167 |
} |
168 |
|
169 |
|
170 |
/**
|
171 |
* Search the adaptive codebook for the best entry and gain and remove its
|
172 |
* contribution from input data
|
173 |
*
|
174 |
* @param adapt_cb array from which the adaptive codebook is extracted
|
175 |
* @param work array used to calculate LPC-filtered vectors
|
176 |
* @param coefs coefficients of the LPC filter
|
177 |
* @param data input data
|
178 |
* @return index of the best entry of the adaptive codebook
|
179 |
*/
|
180 |
static int adaptive_cb_search(const int16_t *adapt_cb, float *work, |
181 |
const float *coefs, float *data) |
182 |
{ |
183 |
int i, best_vect;
|
184 |
float score, gain, best_score, best_gain;
|
185 |
float exc[BLOCKSIZE];
|
186 |
|
187 |
gain = best_score = 0;
|
188 |
for (i = BLOCKSIZE / 2; i <= BUFFERSIZE; i++) { |
189 |
create_adapt_vect(exc, adapt_cb, i); |
190 |
get_match_score(work, coefs, exc, NULL, NULL, data, &score, &gain); |
191 |
if (score > best_score) {
|
192 |
best_score = score; |
193 |
best_vect = i; |
194 |
best_gain = gain; |
195 |
} |
196 |
} |
197 |
if (!best_score)
|
198 |
return 0; |
199 |
|
200 |
/**
|
201 |
* Re-calculate the filtered vector from the vector with maximum match score
|
202 |
* and remove its contribution from input data.
|
203 |
*/
|
204 |
create_adapt_vect(exc, adapt_cb, best_vect); |
205 |
ff_celp_lp_synthesis_filterf(work, coefs, exc, BLOCKSIZE, LPC_ORDER); |
206 |
for (i = 0; i < BLOCKSIZE; i++) |
207 |
data[i] -= best_gain * work[i]; |
208 |
return (best_vect - BLOCKSIZE / 2 + 1); |
209 |
} |
210 |
|
211 |
|
212 |
/**
|
213 |
* Find the best vector of a fixed codebook by applying an LPC filter to
|
214 |
* codebook entries, possibly othogonalizing them to up to 2 other vectors and
|
215 |
* matching the results with input data
|
216 |
*
|
217 |
* @param work array used to calculate the filtered vectors
|
218 |
* @param coefs coefficients of the LPC filter
|
219 |
* @param cb fixed codebook
|
220 |
* @param ortho1 first vector against which orthogonalization is performed
|
221 |
* @param ortho2 second vector against which orthogonalization is performed
|
222 |
* @param data input data
|
223 |
* @param idx pointer to variable where the index of the best codebook entry is
|
224 |
* returned
|
225 |
* @param gain pointer to variable where the gain of the best codebook entry is
|
226 |
* returned
|
227 |
*/
|
228 |
static void find_best_vect(float *work, const float *coefs, |
229 |
const int8_t cb[][BLOCKSIZE], const float *ortho1, |
230 |
const float *ortho2, float *data, int *idx, |
231 |
float *gain)
|
232 |
{ |
233 |
int i, j;
|
234 |
float g, score, best_score;
|
235 |
float vect[BLOCKSIZE];
|
236 |
|
237 |
*idx = *gain = best_score = 0;
|
238 |
for (i = 0; i < FIXED_CB_SIZE; i++) { |
239 |
for (j = 0; j < BLOCKSIZE; j++) |
240 |
vect[j] = cb[i][j]; |
241 |
get_match_score(work, coefs, vect, ortho1, ortho2, data, &score, &g); |
242 |
if (score > best_score) {
|
243 |
best_score = score; |
244 |
*idx = i; |
245 |
*gain = g; |
246 |
} |
247 |
} |
248 |
} |
249 |
|
250 |
|
251 |
/**
|
252 |
* Search the two fixed codebooks for the best entry and gain
|
253 |
*
|
254 |
* @param work array used to calculate LPC-filtered vectors
|
255 |
* @param coefs coefficients of the LPC filter
|
256 |
* @param data input data
|
257 |
* @param cba_idx index of the best entry of the adaptive codebook
|
258 |
* @param cb1_idx pointer to variable where the index of the best entry of the
|
259 |
* first fixed codebook is returned
|
260 |
* @param cb2_idx pointer to variable where the index of the best entry of the
|
261 |
* second fixed codebook is returned
|
262 |
*/
|
263 |
static void fixed_cb_search(float *work, const float *coefs, float *data, |
264 |
int cba_idx, int *cb1_idx, int *cb2_idx) |
265 |
{ |
266 |
int i, ortho_cb1;
|
267 |
float gain;
|
268 |
float cba_vect[BLOCKSIZE], cb1_vect[BLOCKSIZE];
|
269 |
float vect[BLOCKSIZE];
|
270 |
|
271 |
/**
|
272 |
* The filtered vector from the adaptive codebook can be retrieved from
|
273 |
* work, because this function is called just after adaptive_cb_search().
|
274 |
*/
|
275 |
if (cba_idx)
|
276 |
memcpy(cba_vect, work, sizeof(cba_vect));
|
277 |
|
278 |
find_best_vect(work, coefs, ff_cb1_vects, cba_idx ? cba_vect : NULL, NULL, |
279 |
data, cb1_idx, &gain); |
280 |
|
281 |
/**
|
282 |
* Re-calculate the filtered vector from the vector with maximum match score
|
283 |
* and remove its contribution from input data.
|
284 |
*/
|
285 |
if (gain) {
|
286 |
for (i = 0; i < BLOCKSIZE; i++) |
287 |
vect[i] = ff_cb1_vects[*cb1_idx][i]; |
288 |
ff_celp_lp_synthesis_filterf(work, coefs, vect, BLOCKSIZE, LPC_ORDER); |
289 |
if (cba_idx)
|
290 |
orthogonalize(work, cba_vect); |
291 |
for (i = 0; i < BLOCKSIZE; i++) |
292 |
data[i] -= gain * work[i]; |
293 |
memcpy(cb1_vect, work, sizeof(cb1_vect));
|
294 |
ortho_cb1 = 1;
|
295 |
} else
|
296 |
ortho_cb1 = 0;
|
297 |
|
298 |
find_best_vect(work, coefs, ff_cb2_vects, cba_idx ? cba_vect : NULL,
|
299 |
ortho_cb1 ? cb1_vect : NULL, data, cb2_idx, &gain);
|
300 |
} |
301 |
|
302 |
|
303 |
/**
|
304 |
* Encode a subblock of the current frame
|
305 |
*
|
306 |
* @param ractx encoder context
|
307 |
* @param sblock_data input data of the subblock
|
308 |
* @param lpc_coefs coefficients of the LPC filter
|
309 |
* @param rms RMS of the reflection coefficients
|
310 |
* @param pb pointer to PutBitContext of the current frame
|
311 |
*/
|
312 |
static void ra144_encode_subblock(RA144Context *ractx, |
313 |
const int16_t *sblock_data,
|
314 |
const int16_t *lpc_coefs, unsigned int rms, |
315 |
PutBitContext *pb) |
316 |
{ |
317 |
float data[BLOCKSIZE], work[LPC_ORDER + BLOCKSIZE];
|
318 |
float coefs[LPC_ORDER];
|
319 |
float zero[BLOCKSIZE], cba[BLOCKSIZE], cb1[BLOCKSIZE], cb2[BLOCKSIZE];
|
320 |
int16_t cba_vect[BLOCKSIZE]; |
321 |
int cba_idx, cb1_idx, cb2_idx, gain;
|
322 |
int i, n, m[3]; |
323 |
float g[3]; |
324 |
float error, best_error;
|
325 |
|
326 |
for (i = 0; i < LPC_ORDER; i++) { |
327 |
work[i] = ractx->curr_sblock[BLOCKSIZE + i]; |
328 |
coefs[i] = lpc_coefs[i] * (1/4096.0); |
329 |
} |
330 |
|
331 |
/**
|
332 |
* Calculate the zero-input response of the LPC filter and subtract it from
|
333 |
* input data.
|
334 |
*/
|
335 |
memset(data, 0, sizeof(data)); |
336 |
ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, data, BLOCKSIZE, |
337 |
LPC_ORDER); |
338 |
for (i = 0; i < BLOCKSIZE; i++) { |
339 |
zero[i] = work[LPC_ORDER + i]; |
340 |
data[i] = sblock_data[i] - zero[i]; |
341 |
} |
342 |
|
343 |
/**
|
344 |
* Codebook search is performed without taking into account the contribution
|
345 |
* of the previous subblock, since it has been just subtracted from input
|
346 |
* data.
|
347 |
*/
|
348 |
memset(work, 0, LPC_ORDER * sizeof(*work)); |
349 |
|
350 |
cba_idx = adaptive_cb_search(ractx->adapt_cb, work + LPC_ORDER, coefs, |
351 |
data); |
352 |
if (cba_idx) {
|
353 |
/**
|
354 |
* The filtered vector from the adaptive codebook can be retrieved from
|
355 |
* work, see implementation of adaptive_cb_search().
|
356 |
*/
|
357 |
memcpy(cba, work + LPC_ORDER, sizeof(cba));
|
358 |
|
359 |
ff_copy_and_dup(cba_vect, ractx->adapt_cb, cba_idx + BLOCKSIZE / 2 - 1); |
360 |
m[0] = (ff_irms(cba_vect) * rms) >> 12; |
361 |
} |
362 |
fixed_cb_search(work + LPC_ORDER, coefs, data, cba_idx, &cb1_idx, &cb2_idx); |
363 |
for (i = 0; i < BLOCKSIZE; i++) { |
364 |
cb1[i] = ff_cb1_vects[cb1_idx][i]; |
365 |
cb2[i] = ff_cb2_vects[cb2_idx][i]; |
366 |
} |
367 |
ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, cb1, BLOCKSIZE, |
368 |
LPC_ORDER); |
369 |
memcpy(cb1, work + LPC_ORDER, sizeof(cb1));
|
370 |
m[1] = (ff_cb1_base[cb1_idx] * rms) >> 8; |
371 |
ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, cb2, BLOCKSIZE, |
372 |
LPC_ORDER); |
373 |
memcpy(cb2, work + LPC_ORDER, sizeof(cb2));
|
374 |
m[2] = (ff_cb2_base[cb2_idx] * rms) >> 8; |
375 |
best_error = FLT_MAX; |
376 |
gain = 0;
|
377 |
for (n = 0; n < 256; n++) { |
378 |
g[1] = ((ff_gain_val_tab[n][1] * m[1]) >> ff_gain_exp_tab[n]) * |
379 |
(1/4096.0); |
380 |
g[2] = ((ff_gain_val_tab[n][2] * m[2]) >> ff_gain_exp_tab[n]) * |
381 |
(1/4096.0); |
382 |
error = 0;
|
383 |
if (cba_idx) {
|
384 |
g[0] = ((ff_gain_val_tab[n][0] * m[0]) >> ff_gain_exp_tab[n]) * |
385 |
(1/4096.0); |
386 |
for (i = 0; i < BLOCKSIZE; i++) { |
387 |
data[i] = zero[i] + g[0] * cba[i] + g[1] * cb1[i] + |
388 |
g[2] * cb2[i];
|
389 |
error += (data[i] - sblock_data[i]) * |
390 |
(data[i] - sblock_data[i]); |
391 |
} |
392 |
} else {
|
393 |
for (i = 0; i < BLOCKSIZE; i++) { |
394 |
data[i] = zero[i] + g[1] * cb1[i] + g[2] * cb2[i]; |
395 |
error += (data[i] - sblock_data[i]) * |
396 |
(data[i] - sblock_data[i]); |
397 |
} |
398 |
} |
399 |
if (error < best_error) {
|
400 |
best_error = error; |
401 |
gain = n; |
402 |
} |
403 |
} |
404 |
put_bits(pb, 7, cba_idx);
|
405 |
put_bits(pb, 8, gain);
|
406 |
put_bits(pb, 7, cb1_idx);
|
407 |
put_bits(pb, 7, cb2_idx);
|
408 |
ff_subblock_synthesis(ractx, lpc_coefs, cba_idx, cb1_idx, cb2_idx, rms, |
409 |
gain); |
410 |
} |
411 |
|
412 |
|
413 |
static int ra144_encode_frame(AVCodecContext *avctx, uint8_t *frame, |
414 |
int buf_size, void *data) |
415 |
{ |
416 |
static const uint8_t sizes[LPC_ORDER] = {64, 32, 32, 16, 16, 8, 8, 8, 8, 4}; |
417 |
static const uint8_t bit_sizes[LPC_ORDER] = {6, 5, 5, 4, 4, 3, 3, 3, 3, 2}; |
418 |
RA144Context *ractx; |
419 |
PutBitContext pb; |
420 |
int32_t lpc_data[NBLOCKS * BLOCKSIZE]; |
421 |
int32_t lpc_coefs[LPC_ORDER][MAX_LPC_ORDER]; |
422 |
int shift[LPC_ORDER];
|
423 |
int16_t block_coefs[NBLOCKS][LPC_ORDER]; |
424 |
int lpc_refl[LPC_ORDER]; /**< reflection coefficients of the frame */ |
425 |
unsigned int refl_rms[NBLOCKS]; /**< RMS of the reflection coefficients */ |
426 |
int energy = 0; |
427 |
int i, idx;
|
428 |
|
429 |
if (buf_size < FRAMESIZE) {
|
430 |
av_log(avctx, AV_LOG_ERROR, "output buffer too small\n");
|
431 |
return 0; |
432 |
} |
433 |
ractx = avctx->priv_data; |
434 |
|
435 |
/**
|
436 |
* Since the LPC coefficients are calculated on a frame centered over the
|
437 |
* fourth subframe, to encode a given frame, data from the next frame is
|
438 |
* needed. In each call to this function, the previous frame (whose data are
|
439 |
* saved in the encoder context) is encoded, and data from the current frame
|
440 |
* are saved in the encoder context to be used in the next function call.
|
441 |
*/
|
442 |
for (i = 0; i < (2 * BLOCKSIZE + BLOCKSIZE / 2); i++) { |
443 |
lpc_data[i] = ractx->curr_block[BLOCKSIZE + BLOCKSIZE / 2 + i];
|
444 |
energy += (lpc_data[i] * lpc_data[i]) >> 4;
|
445 |
} |
446 |
for (i = 2 * BLOCKSIZE + BLOCKSIZE / 2; i < NBLOCKS * BLOCKSIZE; i++) { |
447 |
lpc_data[i] = *((int16_t *)data + i - 2 * BLOCKSIZE - BLOCKSIZE / 2) >> |
448 |
2;
|
449 |
energy += (lpc_data[i] * lpc_data[i]) >> 4;
|
450 |
} |
451 |
energy = ff_energy_tab[quantize(ff_t_sqrt(energy >> 5) >> 10, ff_energy_tab, |
452 |
32)];
|
453 |
|
454 |
ff_lpc_calc_coefs(&ractx->dsp, lpc_data, NBLOCKS * BLOCKSIZE, LPC_ORDER, |
455 |
LPC_ORDER, 16, lpc_coefs, shift, AV_LPC_TYPE_LEVINSON,
|
456 |
0, ORDER_METHOD_EST, 12, 0); |
457 |
for (i = 0; i < LPC_ORDER; i++) |
458 |
block_coefs[NBLOCKS - 1][i] = -(lpc_coefs[LPC_ORDER - 1][i] << |
459 |
(12 - shift[LPC_ORDER - 1])); |
460 |
|
461 |
/**
|
462 |
* TODO: apply perceptual weighting of the input speech through bandwidth
|
463 |
* expansion of the LPC filter.
|
464 |
*/
|
465 |
|
466 |
if (ff_eval_refl(lpc_refl, block_coefs[NBLOCKS - 1], avctx)) { |
467 |
/**
|
468 |
* The filter is unstable: use the coefficients of the previous frame.
|
469 |
*/
|
470 |
ff_int_to_int16(block_coefs[NBLOCKS - 1], ractx->lpc_coef[1]); |
471 |
ff_eval_refl(lpc_refl, block_coefs[NBLOCKS - 1], avctx);
|
472 |
} |
473 |
init_put_bits(&pb, frame, buf_size); |
474 |
for (i = 0; i < LPC_ORDER; i++) { |
475 |
idx = quantize(lpc_refl[i], ff_lpc_refl_cb[i], sizes[i]); |
476 |
put_bits(&pb, bit_sizes[i], idx); |
477 |
lpc_refl[i] = ff_lpc_refl_cb[i][idx]; |
478 |
} |
479 |
ractx->lpc_refl_rms[0] = ff_rms(lpc_refl);
|
480 |
ff_eval_coefs(ractx->lpc_coef[0], lpc_refl);
|
481 |
refl_rms[0] = ff_interp(ractx, block_coefs[0], 1, 1, ractx->old_energy); |
482 |
refl_rms[1] = ff_interp(ractx, block_coefs[1], 2, |
483 |
energy <= ractx->old_energy, |
484 |
ff_t_sqrt(energy * ractx->old_energy) >> 12);
|
485 |
refl_rms[2] = ff_interp(ractx, block_coefs[2], 3, 0, energy); |
486 |
refl_rms[3] = ff_rescale_rms(ractx->lpc_refl_rms[0], energy); |
487 |
ff_int_to_int16(block_coefs[NBLOCKS - 1], ractx->lpc_coef[0]); |
488 |
put_bits(&pb, 5, quantize(energy, ff_energy_tab, 32)); |
489 |
for (i = 0; i < NBLOCKS; i++) |
490 |
ra144_encode_subblock(ractx, ractx->curr_block + i * BLOCKSIZE, |
491 |
block_coefs[i], refl_rms[i], &pb); |
492 |
flush_put_bits(&pb); |
493 |
ractx->old_energy = energy; |
494 |
ractx->lpc_refl_rms[1] = ractx->lpc_refl_rms[0]; |
495 |
FFSWAP(unsigned int *, ractx->lpc_coef[0], ractx->lpc_coef[1]); |
496 |
for (i = 0; i < NBLOCKS * BLOCKSIZE; i++) |
497 |
ractx->curr_block[i] = *((int16_t *)data + i) >> 2;
|
498 |
return FRAMESIZE;
|
499 |
} |
500 |
|
501 |
|
502 |
AVCodec ra_144_encoder = |
503 |
{ |
504 |
"real_144",
|
505 |
AVMEDIA_TYPE_AUDIO, |
506 |
CODEC_ID_RA_144, |
507 |
sizeof(RA144Context),
|
508 |
ra144_encode_init, |
509 |
ra144_encode_frame, |
510 |
.long_name = NULL_IF_CONFIG_SMALL("RealAudio 1.0 (14.4K) encoder"),
|
511 |
}; |