ffmpeg / libavcodec / acelp_vectors.c @ bb2dd9ef
History  View  Annotate  Download (6.9 KB)
1 
/*


2 
* adaptive and fixed codebook vector operations for ACELPbased codecs

3 
*

4 
* Copyright (c) 2008 Vladimir Voroshilov

5 
*

6 
* This file is part of FFmpeg.

7 
*

8 
* FFmpeg is free software; you can redistribute it and/or

9 
* modify it under the terms of the GNU Lesser General Public

10 
* License as published by the Free Software Foundation; either

11 
* version 2.1 of the License, or (at your option) any later version.

12 
*

13 
* FFmpeg is distributed in the hope that it will be useful,

14 
* but WITHOUT ANY WARRANTY; without even the implied warranty of

15 
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

16 
* Lesser General Public License for more details.

17 
*

18 
* You should have received a copy of the GNU Lesser General Public

19 
* License along with FFmpeg; if not, write to the Free Software

20 
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 021101301 USA

21 
*/

22  
23 
#include <inttypes.h> 
24 
#include "avcodec.h" 
25 
#include "acelp_vectors.h" 
26 
#include "celp_math.h" 
27  
28 
const uint8_t ff_fc_2pulses_9bits_track1[16] = 
29 
{ 
30 
1, 3, 
31 
6, 8, 
32 
11, 13, 
33 
16, 18, 
34 
21, 23, 
35 
26, 28, 
36 
31, 33, 
37 
36, 38 
38 
}; 
39 
const uint8_t ff_fc_2pulses_9bits_track1_gray[16] = 
40 
{ 
41 
1, 3, 
42 
8, 6, 
43 
18, 16, 
44 
11, 13, 
45 
38, 36, 
46 
31, 33, 
47 
21, 23, 
48 
28, 26, 
49 
}; 
50  
51 
const uint8_t ff_fc_2pulses_9bits_track2_gray[32] = 
52 
{ 
53 
0, 2, 
54 
5, 4, 
55 
12, 10, 
56 
7, 9, 
57 
25, 24, 
58 
20, 22, 
59 
14, 15, 
60 
19, 17, 
61 
36, 31, 
62 
21, 26, 
63 
1, 6, 
64 
16, 11, 
65 
27, 29, 
66 
32, 30, 
67 
39, 37, 
68 
34, 35, 
69 
}; 
70  
71 
const uint8_t ff_fc_4pulses_8bits_tracks_13[16] = 
72 
{ 
73 
0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 
74 
}; 
75  
76 
const uint8_t ff_fc_4pulses_8bits_track_4[32] = 
77 
{ 
78 
3, 4, 
79 
8, 9, 
80 
13, 14, 
81 
18, 19, 
82 
23, 24, 
83 
28, 29, 
84 
33, 34, 
85 
38, 39, 
86 
43, 44, 
87 
48, 49, 
88 
53, 54, 
89 
58, 59, 
90 
63, 64, 
91 
68, 69, 
92 
73, 74, 
93 
78, 79, 
94 
}; 
95  
96 
#if 0

97 
static uint8_t gray_decode[32] =

98 
{

99 
0, 1, 3, 2, 7, 6, 4, 5,

100 
15, 14, 12, 13, 8, 9, 11, 10,

101 
31, 30, 28, 29, 24, 25, 27, 26,

102 
16, 17, 19, 18, 23, 22, 20, 21

103 
};

104 
#endif

105  
106 
const float ff_pow_0_7[10] = { 
107 
0.700000, 0.490000, 0.343000, 0.240100, 0.168070, 
108 
0.117649, 0.082354, 0.057648, 0.040354, 0.028248 
109 
}; 
110  
111 
const float ff_pow_0_75[10] = { 
112 
0.750000, 0.562500, 0.421875, 0.316406, 0.237305, 
113 
0.177979, 0.133484, 0.100113, 0.075085, 0.056314 
114 
}; 
115  
116 
const float ff_pow_0_55[10] = { 
117 
0.550000, 0.302500, 0.166375, 0.091506, 0.050328, 
118 
0.027681, 0.015224, 0.008373, 0.004605, 0.002533 
119 
}; 
120  
121 
const float ff_b60_sinc[61] = { 
122 
0.898529 , 0.865051 , 0.769257 , 0.624054 , 0.448639 , 0.265289 , 
123 
0.0959167 , 0.0412598 , 0.134338 , 0.178986 , 0.178528 , 0.142609 , 
124 
0.0849304 , 0.0205078 , 0.0369568 , 0.0773926 , 0.0955200 , 0.0912781 , 
125 
0.0689392 , 0.0357056 , 0. , 0.0305481 , 0.0504150 , 0.0570068 , 
126 
0.0508423 , 0.0350037 , 0.0141602 , 0.00665283, 0.0230713 , 0.0323486 , 
127 
0.0335388 , 0.0275879 , 0.0167847 , 0.00411987, 0.00747681, 0.0156860 , 
128 
0.0193481 , 0.0183716 , 0.0137634 , 0.00704956, 0. , 0.00582886 , 
129 
0.00939941, 0.0103760 , 0.00903320, 0.00604248, 0.00238037, 0.00109863 , 
130 
0.00366211, 0.00497437, 0.00503540, 0.00402832, 0.00241089, 0.000579834, 
131 
0.00103760, 0.00222778, 0.00277710, 0.00271606, 0.00213623, 0.00115967 , 
132 
0.

133 
}; 
134  
135 
void ff_acelp_fc_pulse_per_track(

136 
int16_t* fc_v, 
137 
const uint8_t *tab1,

138 
const uint8_t *tab2,

139 
int pulse_indexes,

140 
int pulse_signs,

141 
int pulse_count,

142 
int bits)

143 
{ 
144 
int mask = (1 << bits)  1; 
145 
int i;

146  
147 
for(i=0; i<pulse_count; i++) 
148 
{ 
149 
fc_v[i + tab1[pulse_indexes & mask]] += 
150 
(pulse_signs & 1) ? 8191 : 8192; // +/1 in (2.13) 
151  
152 
pulse_indexes >>= bits; 
153 
pulse_signs >>= 1;

154 
} 
155  
156 
fc_v[tab2[pulse_indexes]] += (pulse_signs & 1) ? 8191 : 8192; 
157 
} 
158  
159 
void ff_decode_10_pulses_35bits(const int16_t *fixed_index, 
160 
AMRFixed *fixed_sparse, 
161 
const uint8_t *gray_decode,

162 
int half_pulse_count, int bits) 
163 
{ 
164 
int i;

165 
int mask = (1 << bits)  1; 
166  
167 
fixed_sparse>no_repeat_mask = 0;

168 
fixed_sparse>n = 2 * half_pulse_count;

169 
for (i = 0; i < half_pulse_count; i++) { 
170 
const int pos1 = gray_decode[fixed_index[2*i+1] & mask] + i; 
171 
const int pos2 = gray_decode[fixed_index[2*i ] & mask] + i; 
172 
const float sign = (fixed_index[2*i+1] & (1 << bits)) ? 1.0 : 1.0; 
173 
fixed_sparse>x[2*i+1] = pos1; 
174 
fixed_sparse>x[2*i ] = pos2;

175 
fixed_sparse>y[2*i+1] = sign; 
176 
fixed_sparse>y[2*i ] = pos2 < pos1 ? sign : sign;

177 
} 
178 
} 
179  
180 
void ff_acelp_weighted_vector_sum(

181 
int16_t* out, 
182 
const int16_t *in_a,

183 
const int16_t *in_b,

184 
int16_t weight_coeff_a, 
185 
int16_t weight_coeff_b, 
186 
int16_t rounder, 
187 
int shift,

188 
int length)

189 
{ 
190 
int i;

191  
192 
// Clipping required here; breaks OVERFLOW test.

193 
for(i=0; i<length; i++) 
194 
out[i] = av_clip_int16(( 
195 
in_a[i] * weight_coeff_a + 
196 
in_b[i] * weight_coeff_b + 
197 
rounder) >> shift); 
198 
} 
199  
200 
void ff_weighted_vector_sumf(float *out, const float *in_a, const float *in_b, 
201 
float weight_coeff_a, float weight_coeff_b, int length) 
202 
{ 
203 
int i;

204  
205 
for(i=0; i<length; i++) 
206 
out[i] = weight_coeff_a * in_a[i] 
207 
+ weight_coeff_b * in_b[i]; 
208 
} 
209  
210 
void ff_adaptive_gain_control(float *out, const float *in, float speech_energ, 
211 
int size, float alpha, float *gain_mem) 
212 
{ 
213 
int i;

214 
float postfilter_energ = ff_dot_productf(in, in, size);

215 
float gain_scale_factor = 1.0; 
216 
float mem = *gain_mem;

217  
218 
if (postfilter_energ)

219 
gain_scale_factor = sqrt(speech_energ / postfilter_energ); 
220  
221 
gain_scale_factor *= 1.0  alpha; 
222  
223 
for (i = 0; i < size; i++) { 
224 
mem = alpha * mem + gain_scale_factor; 
225 
out[i] = in[i] * mem; 
226 
} 
227  
228 
*gain_mem = mem; 
229 
} 
230  
231 
void ff_scale_vector_to_given_sum_of_squares(float *out, const float *in, 
232 
float sum_of_squares, const int n) 
233 
{ 
234 
int i;

235 
float scalefactor = ff_dot_productf(in, in, n);

236 
if (scalefactor)

237 
scalefactor = sqrt(sum_of_squares / scalefactor); 
238 
for (i = 0; i < n; i++) 
239 
out[i] = in[i] * scalefactor; 
240 
} 
241  
242 
void ff_set_fixed_vector(float *out, const AMRFixed *in, float scale, int size) 
243 
{ 
244 
int i;

245  
246 
for (i=0; i < in>n; i++) { 
247 
int x = in>x[i], repeats = !((in>no_repeat_mask >> i) & 1); 
248 
float y = in>y[i] * scale;

249  
250 
do {

251 
out[x] += y; 
252 
y *= in>pitch_fac; 
253 
x += in>pitch_lag; 
254 
} while (x < size && repeats);

255 
} 
256 
} 
257  
258 
void ff_clear_fixed_vector(float *out, const AMRFixed *in, int size) 
259 
{ 
260 
int i;

261  
262 
for (i=0; i < in>n; i++) { 
263 
int x = in>x[i], repeats = !((in>no_repeat_mask >> i) & 1); 
264  
265 
do {

266 
out[x] = 0.0; 
267 
x += in>pitch_lag; 
268 
} while (x < size && repeats);

269 
} 
270 
} 