ffmpeg / libavutil / lls.c @ bc02bc86
History | View | Annotate | Download (3.97 KB)
1 |
/*
|
---|---|
2 |
* linear least squares model
|
3 |
*
|
4 |
* Copyright (c) 2006 Michael Niedermayer <michaelni@gmx.at>
|
5 |
*
|
6 |
* This file is part of FFmpeg.
|
7 |
*
|
8 |
* FFmpeg is free software; you can redistribute it and/or
|
9 |
* modify it under the terms of the GNU Lesser General Public
|
10 |
* License as published by the Free Software Foundation; either
|
11 |
* version 2.1 of the License, or (at your option) any later version.
|
12 |
*
|
13 |
* FFmpeg is distributed in the hope that it will be useful,
|
14 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
16 |
* Lesser General Public License for more details.
|
17 |
*
|
18 |
* You should have received a copy of the GNU Lesser General Public
|
19 |
* License along with FFmpeg; if not, write to the Free Software
|
20 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
21 |
*/
|
22 |
|
23 |
/**
|
24 |
* @file lls.c
|
25 |
* linear least squares model
|
26 |
*/
|
27 |
|
28 |
#include <math.h> |
29 |
#include <string.h> |
30 |
|
31 |
#include "lls.h" |
32 |
|
33 |
void av_init_lls(LLSModel *m, int indep_count){ |
34 |
memset(m, 0, sizeof(LLSModel)); |
35 |
|
36 |
m->indep_count= indep_count; |
37 |
} |
38 |
|
39 |
void av_update_lls(LLSModel *m, double *var, double decay){ |
40 |
int i,j;
|
41 |
|
42 |
for(i=0; i<=m->indep_count; i++){ |
43 |
for(j=i; j<=m->indep_count; j++){
|
44 |
m->covariance[i][j] *= decay; |
45 |
m->covariance[i][j] += var[i]*var[j]; |
46 |
} |
47 |
} |
48 |
} |
49 |
|
50 |
void av_solve_lls(LLSModel *m, double threshold, int min_order){ |
51 |
int i,j,k;
|
52 |
double (*factor)[MAX_VARS+1]= (void*)&m->covariance[1][0]; |
53 |
double (*covar )[MAX_VARS+1]= (void*)&m->covariance[1][1]; |
54 |
double *covar_y = m->covariance[0]; |
55 |
int count= m->indep_count;
|
56 |
|
57 |
for(i=0; i<count; i++){ |
58 |
for(j=i; j<count; j++){
|
59 |
double sum= covar[i][j];
|
60 |
|
61 |
for(k=i-1; k>=0; k--) |
62 |
sum -= factor[i][k]*factor[j][k]; |
63 |
|
64 |
if(i==j){
|
65 |
if(sum < threshold)
|
66 |
sum= 1.0; |
67 |
factor[i][i]= sqrt(sum); |
68 |
}else
|
69 |
factor[j][i]= sum / factor[i][i]; |
70 |
} |
71 |
} |
72 |
for(i=0; i<count; i++){ |
73 |
double sum= covar_y[i+1]; |
74 |
for(k=i-1; k>=0; k--) |
75 |
sum -= factor[i][k]*m->coeff[0][k];
|
76 |
m->coeff[0][i]= sum / factor[i][i];
|
77 |
} |
78 |
|
79 |
for(j=count-1; j>=min_order; j--){ |
80 |
for(i=j; i>=0; i--){ |
81 |
double sum= m->coeff[0][i]; |
82 |
for(k=i+1; k<=j; k++) |
83 |
sum -= factor[k][i]*m->coeff[j][k]; |
84 |
m->coeff[j][i]= sum / factor[i][i]; |
85 |
} |
86 |
|
87 |
m->variance[j]= covar_y[0];
|
88 |
for(i=0; i<=j; i++){ |
89 |
double sum= m->coeff[j][i]*covar[i][i] - 2*covar_y[i+1]; |
90 |
for(k=0; k<i; k++) |
91 |
sum += 2*m->coeff[j][k]*covar[k][i];
|
92 |
m->variance[j] += m->coeff[j][i]*sum; |
93 |
} |
94 |
} |
95 |
} |
96 |
|
97 |
double av_evaluate_lls(LLSModel *m, double *param, int order){ |
98 |
int i;
|
99 |
double out= 0; |
100 |
|
101 |
for(i=0; i<=order; i++) |
102 |
out+= param[i]*m->coeff[order][i]; |
103 |
|
104 |
return out;
|
105 |
} |
106 |
|
107 |
#ifdef TEST
|
108 |
|
109 |
#include <stdlib.h> |
110 |
#include <stdio.h> |
111 |
|
112 |
int main(void){ |
113 |
LLSModel m; |
114 |
int i, order;
|
115 |
|
116 |
av_init_lls(&m, 3);
|
117 |
|
118 |
for(i=0; i<100; i++){ |
119 |
double var[4]; |
120 |
double eval;
|
121 |
#if 0
|
122 |
var[1] = rand() / (double)RAND_MAX;
|
123 |
var[2] = rand() / (double)RAND_MAX;
|
124 |
var[3] = rand() / (double)RAND_MAX;
|
125 |
|
126 |
var[2]= var[1] + var[3]/2;
|
127 |
|
128 |
var[0] = var[1] + var[2] + var[3] + var[1]*var[2]/100;
|
129 |
#else
|
130 |
var[0] = (rand() / (double)RAND_MAX - 0.5)*2; |
131 |
var[1] = var[0] + rand() / (double)RAND_MAX - 0.5; |
132 |
var[2] = var[1] + rand() / (double)RAND_MAX - 0.5; |
133 |
var[3] = var[2] + rand() / (double)RAND_MAX - 0.5; |
134 |
#endif
|
135 |
av_update_lls(&m, var, 0.99); |
136 |
av_solve_lls(&m, 0.001, 0); |
137 |
for(order=0; order<3; order++){ |
138 |
eval= av_evaluate_lls(&m, var+1, order);
|
139 |
printf("real:%f order:%d pred:%f var:%f coeffs:%f %f %f\n",
|
140 |
var[0], order, eval, sqrt(m.variance[order] / (i+1)), |
141 |
m.coeff[order][0], m.coeff[order][1], m.coeff[order][2]); |
142 |
} |
143 |
} |
144 |
return 0; |
145 |
} |
146 |
|
147 |
#endif
|