ffmpeg / libavcodec / jfdctfst.c @ be898457
History | View | Annotate | Download (11 KB)
1 |
/*
|
---|---|
2 |
* jfdctfst.c
|
3 |
*
|
4 |
* This file is part of the Independent JPEG Group's software.
|
5 |
*
|
6 |
* The authors make NO WARRANTY or representation, either express or implied,
|
7 |
* with respect to this software, its quality, accuracy, merchantability, or
|
8 |
* fitness for a particular purpose. This software is provided "AS IS", and
|
9 |
* you, its user, assume the entire risk as to its quality and accuracy.
|
10 |
*
|
11 |
* This software is copyright (C) 1994-1996, Thomas G. Lane.
|
12 |
* All Rights Reserved except as specified below.
|
13 |
*
|
14 |
* Permission is hereby granted to use, copy, modify, and distribute this
|
15 |
* software (or portions thereof) for any purpose, without fee, subject to
|
16 |
* these conditions:
|
17 |
* (1) If any part of the source code for this software is distributed, then
|
18 |
* this README file must be included, with this copyright and no-warranty
|
19 |
* notice unaltered; and any additions, deletions, or changes to the original
|
20 |
* files must be clearly indicated in accompanying documentation.
|
21 |
* (2) If only executable code is distributed, then the accompanying
|
22 |
* documentation must state that "this software is based in part on the work
|
23 |
* of the Independent JPEG Group".
|
24 |
* (3) Permission for use of this software is granted only if the user accepts
|
25 |
* full responsibility for any undesirable consequences; the authors accept
|
26 |
* NO LIABILITY for damages of any kind.
|
27 |
*
|
28 |
* These conditions apply to any software derived from or based on the IJG
|
29 |
* code, not just to the unmodified library. If you use our work, you ought
|
30 |
* to acknowledge us.
|
31 |
*
|
32 |
* Permission is NOT granted for the use of any IJG author's name or company
|
33 |
* name in advertising or publicity relating to this software or products
|
34 |
* derived from it. This software may be referred to only as "the Independent
|
35 |
* JPEG Group's software".
|
36 |
*
|
37 |
* We specifically permit and encourage the use of this software as the basis
|
38 |
* of commercial products, provided that all warranty or liability claims are
|
39 |
* assumed by the product vendor.
|
40 |
*
|
41 |
* This file contains a fast, not so accurate integer implementation of the
|
42 |
* forward DCT (Discrete Cosine Transform).
|
43 |
*
|
44 |
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
|
45 |
* on each column. Direct algorithms are also available, but they are
|
46 |
* much more complex and seem not to be any faster when reduced to code.
|
47 |
*
|
48 |
* This implementation is based on Arai, Agui, and Nakajima's algorithm for
|
49 |
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
|
50 |
* Japanese, but the algorithm is described in the Pennebaker & Mitchell
|
51 |
* JPEG textbook (see REFERENCES section in file README). The following code
|
52 |
* is based directly on figure 4-8 in P&M.
|
53 |
* While an 8-point DCT cannot be done in less than 11 multiplies, it is
|
54 |
* possible to arrange the computation so that many of the multiplies are
|
55 |
* simple scalings of the final outputs. These multiplies can then be
|
56 |
* folded into the multiplications or divisions by the JPEG quantization
|
57 |
* table entries. The AA&N method leaves only 5 multiplies and 29 adds
|
58 |
* to be done in the DCT itself.
|
59 |
* The primary disadvantage of this method is that with fixed-point math,
|
60 |
* accuracy is lost due to imprecise representation of the scaled
|
61 |
* quantization values. The smaller the quantization table entry, the less
|
62 |
* precise the scaled value, so this implementation does worse with high-
|
63 |
* quality-setting files than with low-quality ones.
|
64 |
*/
|
65 |
|
66 |
/**
|
67 |
* @file
|
68 |
* Independent JPEG Group's fast AAN dct.
|
69 |
*/
|
70 |
|
71 |
#include <stdlib.h> |
72 |
#include <stdio.h> |
73 |
#include "libavutil/common.h" |
74 |
#include "dsputil.h" |
75 |
|
76 |
#define DCTSIZE 8 |
77 |
#define GLOBAL(x) x
|
78 |
#define RIGHT_SHIFT(x, n) ((x) >> (n))
|
79 |
|
80 |
/*
|
81 |
* This module is specialized to the case DCTSIZE = 8.
|
82 |
*/
|
83 |
|
84 |
#if DCTSIZE != 8 |
85 |
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ |
86 |
#endif
|
87 |
|
88 |
|
89 |
/* Scaling decisions are generally the same as in the LL&M algorithm;
|
90 |
* see jfdctint.c for more details. However, we choose to descale
|
91 |
* (right shift) multiplication products as soon as they are formed,
|
92 |
* rather than carrying additional fractional bits into subsequent additions.
|
93 |
* This compromises accuracy slightly, but it lets us save a few shifts.
|
94 |
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
|
95 |
* everywhere except in the multiplications proper; this saves a good deal
|
96 |
* of work on 16-bit-int machines.
|
97 |
*
|
98 |
* Again to save a few shifts, the intermediate results between pass 1 and
|
99 |
* pass 2 are not upscaled, but are represented only to integral precision.
|
100 |
*
|
101 |
* A final compromise is to represent the multiplicative constants to only
|
102 |
* 8 fractional bits, rather than 13. This saves some shifting work on some
|
103 |
* machines, and may also reduce the cost of multiplication (since there
|
104 |
* are fewer one-bits in the constants).
|
105 |
*/
|
106 |
|
107 |
#define CONST_BITS 8 |
108 |
|
109 |
|
110 |
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
|
111 |
* causing a lot of useless floating-point operations at run time.
|
112 |
* To get around this we use the following pre-calculated constants.
|
113 |
* If you change CONST_BITS you may want to add appropriate values.
|
114 |
* (With a reasonable C compiler, you can just rely on the FIX() macro...)
|
115 |
*/
|
116 |
|
117 |
#if CONST_BITS == 8 |
118 |
#define FIX_0_382683433 ((int32_t) 98) /* FIX(0.382683433) */ |
119 |
#define FIX_0_541196100 ((int32_t) 139) /* FIX(0.541196100) */ |
120 |
#define FIX_0_707106781 ((int32_t) 181) /* FIX(0.707106781) */ |
121 |
#define FIX_1_306562965 ((int32_t) 334) /* FIX(1.306562965) */ |
122 |
#else
|
123 |
#define FIX_0_382683433 FIX(0.382683433) |
124 |
#define FIX_0_541196100 FIX(0.541196100) |
125 |
#define FIX_0_707106781 FIX(0.707106781) |
126 |
#define FIX_1_306562965 FIX(1.306562965) |
127 |
#endif
|
128 |
|
129 |
|
130 |
/* We can gain a little more speed, with a further compromise in accuracy,
|
131 |
* by omitting the addition in a descaling shift. This yields an incorrectly
|
132 |
* rounded result half the time...
|
133 |
*/
|
134 |
|
135 |
#ifndef USE_ACCURATE_ROUNDING
|
136 |
#undef DESCALE
|
137 |
#define DESCALE(x,n) RIGHT_SHIFT(x, n)
|
138 |
#endif
|
139 |
|
140 |
|
141 |
/* Multiply a DCTELEM variable by an int32_t constant, and immediately
|
142 |
* descale to yield a DCTELEM result.
|
143 |
*/
|
144 |
|
145 |
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) |
146 |
|
147 |
static av_always_inline void row_fdct(DCTELEM * data){ |
148 |
int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
149 |
int tmp10, tmp11, tmp12, tmp13;
|
150 |
int z1, z2, z3, z4, z5, z11, z13;
|
151 |
DCTELEM *dataptr; |
152 |
int ctr;
|
153 |
|
154 |
/* Pass 1: process rows. */
|
155 |
|
156 |
dataptr = data; |
157 |
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
158 |
tmp0 = dataptr[0] + dataptr[7]; |
159 |
tmp7 = dataptr[0] - dataptr[7]; |
160 |
tmp1 = dataptr[1] + dataptr[6]; |
161 |
tmp6 = dataptr[1] - dataptr[6]; |
162 |
tmp2 = dataptr[2] + dataptr[5]; |
163 |
tmp5 = dataptr[2] - dataptr[5]; |
164 |
tmp3 = dataptr[3] + dataptr[4]; |
165 |
tmp4 = dataptr[3] - dataptr[4]; |
166 |
|
167 |
/* Even part */
|
168 |
|
169 |
tmp10 = tmp0 + tmp3; /* phase 2 */
|
170 |
tmp13 = tmp0 - tmp3; |
171 |
tmp11 = tmp1 + tmp2; |
172 |
tmp12 = tmp1 - tmp2; |
173 |
|
174 |
dataptr[0] = tmp10 + tmp11; /* phase 3 */ |
175 |
dataptr[4] = tmp10 - tmp11;
|
176 |
|
177 |
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
|
178 |
dataptr[2] = tmp13 + z1; /* phase 5 */ |
179 |
dataptr[6] = tmp13 - z1;
|
180 |
|
181 |
/* Odd part */
|
182 |
|
183 |
tmp10 = tmp4 + tmp5; /* phase 2 */
|
184 |
tmp11 = tmp5 + tmp6; |
185 |
tmp12 = tmp6 + tmp7; |
186 |
|
187 |
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
188 |
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
|
189 |
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
|
190 |
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
|
191 |
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
|
192 |
|
193 |
z11 = tmp7 + z3; /* phase 5 */
|
194 |
z13 = tmp7 - z3; |
195 |
|
196 |
dataptr[5] = z13 + z2; /* phase 6 */ |
197 |
dataptr[3] = z13 - z2;
|
198 |
dataptr[1] = z11 + z4;
|
199 |
dataptr[7] = z11 - z4;
|
200 |
|
201 |
dataptr += DCTSIZE; /* advance pointer to next row */
|
202 |
} |
203 |
} |
204 |
|
205 |
/*
|
206 |
* Perform the forward DCT on one block of samples.
|
207 |
*/
|
208 |
|
209 |
GLOBAL(void)
|
210 |
fdct_ifast (DCTELEM * data) |
211 |
{ |
212 |
int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
213 |
int tmp10, tmp11, tmp12, tmp13;
|
214 |
int z1, z2, z3, z4, z5, z11, z13;
|
215 |
DCTELEM *dataptr; |
216 |
int ctr;
|
217 |
|
218 |
row_fdct(data); |
219 |
|
220 |
/* Pass 2: process columns. */
|
221 |
|
222 |
dataptr = data; |
223 |
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
224 |
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; |
225 |
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; |
226 |
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; |
227 |
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; |
228 |
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; |
229 |
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; |
230 |
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; |
231 |
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; |
232 |
|
233 |
/* Even part */
|
234 |
|
235 |
tmp10 = tmp0 + tmp3; /* phase 2 */
|
236 |
tmp13 = tmp0 - tmp3; |
237 |
tmp11 = tmp1 + tmp2; |
238 |
tmp12 = tmp1 - tmp2; |
239 |
|
240 |
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ |
241 |
dataptr[DCTSIZE*4] = tmp10 - tmp11;
|
242 |
|
243 |
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
|
244 |
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ |
245 |
dataptr[DCTSIZE*6] = tmp13 - z1;
|
246 |
|
247 |
/* Odd part */
|
248 |
|
249 |
tmp10 = tmp4 + tmp5; /* phase 2 */
|
250 |
tmp11 = tmp5 + tmp6; |
251 |
tmp12 = tmp6 + tmp7; |
252 |
|
253 |
/* The rotator is modified from fig 4-8 to avoid extra negations. */
|
254 |
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
|
255 |
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
|
256 |
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
|
257 |
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
|
258 |
|
259 |
z11 = tmp7 + z3; /* phase 5 */
|
260 |
z13 = tmp7 - z3; |
261 |
|
262 |
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ |
263 |
dataptr[DCTSIZE*3] = z13 - z2;
|
264 |
dataptr[DCTSIZE*1] = z11 + z4;
|
265 |
dataptr[DCTSIZE*7] = z11 - z4;
|
266 |
|
267 |
dataptr++; /* advance pointer to next column */
|
268 |
} |
269 |
} |
270 |
|
271 |
/*
|
272 |
* Perform the forward 2-4-8 DCT on one block of samples.
|
273 |
*/
|
274 |
|
275 |
GLOBAL(void)
|
276 |
fdct_ifast248 (DCTELEM * data) |
277 |
{ |
278 |
int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
|
279 |
int tmp10, tmp11, tmp12, tmp13;
|
280 |
int z1;
|
281 |
DCTELEM *dataptr; |
282 |
int ctr;
|
283 |
|
284 |
row_fdct(data); |
285 |
|
286 |
/* Pass 2: process columns. */
|
287 |
|
288 |
dataptr = data; |
289 |
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
290 |
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*1]; |
291 |
tmp1 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3]; |
292 |
tmp2 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5]; |
293 |
tmp3 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7]; |
294 |
tmp4 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*1]; |
295 |
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3]; |
296 |
tmp6 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5]; |
297 |
tmp7 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7]; |
298 |
|
299 |
/* Even part */
|
300 |
|
301 |
tmp10 = tmp0 + tmp3; |
302 |
tmp11 = tmp1 + tmp2; |
303 |
tmp12 = tmp1 - tmp2; |
304 |
tmp13 = tmp0 - tmp3; |
305 |
|
306 |
dataptr[DCTSIZE*0] = tmp10 + tmp11;
|
307 |
dataptr[DCTSIZE*4] = tmp10 - tmp11;
|
308 |
|
309 |
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); |
310 |
dataptr[DCTSIZE*2] = tmp13 + z1;
|
311 |
dataptr[DCTSIZE*6] = tmp13 - z1;
|
312 |
|
313 |
tmp10 = tmp4 + tmp7; |
314 |
tmp11 = tmp5 + tmp6; |
315 |
tmp12 = tmp5 - tmp6; |
316 |
tmp13 = tmp4 - tmp7; |
317 |
|
318 |
dataptr[DCTSIZE*1] = tmp10 + tmp11;
|
319 |
dataptr[DCTSIZE*5] = tmp10 - tmp11;
|
320 |
|
321 |
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); |
322 |
dataptr[DCTSIZE*3] = tmp13 + z1;
|
323 |
dataptr[DCTSIZE*7] = tmp13 - z1;
|
324 |
|
325 |
dataptr++; /* advance pointer to next column */
|
326 |
} |
327 |
} |
328 |
|
329 |
|
330 |
#undef GLOBAL
|
331 |
#undef CONST_BITS
|
332 |
#undef DESCALE
|
333 |
#undef FIX_0_541196100
|
334 |
#undef FIX_1_306562965
|