Statistics
| Branch: | Revision:

ffmpeg / libavcodec / jfdctfst.c @ be898457

History | View | Annotate | Download (11 KB)

1
/*
2
 * jfdctfst.c
3
 *
4
 * This file is part of the Independent JPEG Group's software.
5
 *
6
 * The authors make NO WARRANTY or representation, either express or implied,
7
 * with respect to this software, its quality, accuracy, merchantability, or
8
 * fitness for a particular purpose.  This software is provided "AS IS", and
9
 * you, its user, assume the entire risk as to its quality and accuracy.
10
 *
11
 * This software is copyright (C) 1994-1996, Thomas G. Lane.
12
 * All Rights Reserved except as specified below.
13
 *
14
 * Permission is hereby granted to use, copy, modify, and distribute this
15
 * software (or portions thereof) for any purpose, without fee, subject to
16
 * these conditions:
17
 * (1) If any part of the source code for this software is distributed, then
18
 * this README file must be included, with this copyright and no-warranty
19
 * notice unaltered; and any additions, deletions, or changes to the original
20
 * files must be clearly indicated in accompanying documentation.
21
 * (2) If only executable code is distributed, then the accompanying
22
 * documentation must state that "this software is based in part on the work
23
 * of the Independent JPEG Group".
24
 * (3) Permission for use of this software is granted only if the user accepts
25
 * full responsibility for any undesirable consequences; the authors accept
26
 * NO LIABILITY for damages of any kind.
27
 *
28
 * These conditions apply to any software derived from or based on the IJG
29
 * code, not just to the unmodified library.  If you use our work, you ought
30
 * to acknowledge us.
31
 *
32
 * Permission is NOT granted for the use of any IJG author's name or company
33
 * name in advertising or publicity relating to this software or products
34
 * derived from it.  This software may be referred to only as "the Independent
35
 * JPEG Group's software".
36
 *
37
 * We specifically permit and encourage the use of this software as the basis
38
 * of commercial products, provided that all warranty or liability claims are
39
 * assumed by the product vendor.
40
 *
41
 * This file contains a fast, not so accurate integer implementation of the
42
 * forward DCT (Discrete Cosine Transform).
43
 *
44
 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
45
 * on each column.  Direct algorithms are also available, but they are
46
 * much more complex and seem not to be any faster when reduced to code.
47
 *
48
 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
49
 * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
50
 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
51
 * JPEG textbook (see REFERENCES section in file README).  The following code
52
 * is based directly on figure 4-8 in P&M.
53
 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
54
 * possible to arrange the computation so that many of the multiplies are
55
 * simple scalings of the final outputs.  These multiplies can then be
56
 * folded into the multiplications or divisions by the JPEG quantization
57
 * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
58
 * to be done in the DCT itself.
59
 * The primary disadvantage of this method is that with fixed-point math,
60
 * accuracy is lost due to imprecise representation of the scaled
61
 * quantization values.  The smaller the quantization table entry, the less
62
 * precise the scaled value, so this implementation does worse with high-
63
 * quality-setting files than with low-quality ones.
64
 */
65

    
66
/**
67
 * @file
68
 * Independent JPEG Group's fast AAN dct.
69
 */
70

    
71
#include <stdlib.h>
72
#include <stdio.h>
73
#include "libavutil/common.h"
74
#include "dsputil.h"
75

    
76
#define DCTSIZE 8
77
#define GLOBAL(x) x
78
#define RIGHT_SHIFT(x, n) ((x) >> (n))
79

    
80
/*
81
 * This module is specialized to the case DCTSIZE = 8.
82
 */
83

    
84
#if DCTSIZE != 8
85
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
86
#endif
87

    
88

    
89
/* Scaling decisions are generally the same as in the LL&M algorithm;
90
 * see jfdctint.c for more details.  However, we choose to descale
91
 * (right shift) multiplication products as soon as they are formed,
92
 * rather than carrying additional fractional bits into subsequent additions.
93
 * This compromises accuracy slightly, but it lets us save a few shifts.
94
 * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
95
 * everywhere except in the multiplications proper; this saves a good deal
96
 * of work on 16-bit-int machines.
97
 *
98
 * Again to save a few shifts, the intermediate results between pass 1 and
99
 * pass 2 are not upscaled, but are represented only to integral precision.
100
 *
101
 * A final compromise is to represent the multiplicative constants to only
102
 * 8 fractional bits, rather than 13.  This saves some shifting work on some
103
 * machines, and may also reduce the cost of multiplication (since there
104
 * are fewer one-bits in the constants).
105
 */
106

    
107
#define CONST_BITS  8
108

    
109

    
110
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
111
 * causing a lot of useless floating-point operations at run time.
112
 * To get around this we use the following pre-calculated constants.
113
 * If you change CONST_BITS you may want to add appropriate values.
114
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
115
 */
116

    
117
#if CONST_BITS == 8
118
#define FIX_0_382683433  ((int32_t)   98)       /* FIX(0.382683433) */
119
#define FIX_0_541196100  ((int32_t)  139)       /* FIX(0.541196100) */
120
#define FIX_0_707106781  ((int32_t)  181)       /* FIX(0.707106781) */
121
#define FIX_1_306562965  ((int32_t)  334)       /* FIX(1.306562965) */
122
#else
123
#define FIX_0_382683433  FIX(0.382683433)
124
#define FIX_0_541196100  FIX(0.541196100)
125
#define FIX_0_707106781  FIX(0.707106781)
126
#define FIX_1_306562965  FIX(1.306562965)
127
#endif
128

    
129

    
130
/* We can gain a little more speed, with a further compromise in accuracy,
131
 * by omitting the addition in a descaling shift.  This yields an incorrectly
132
 * rounded result half the time...
133
 */
134

    
135
#ifndef USE_ACCURATE_ROUNDING
136
#undef DESCALE
137
#define DESCALE(x,n)  RIGHT_SHIFT(x, n)
138
#endif
139

    
140

    
141
/* Multiply a DCTELEM variable by an int32_t constant, and immediately
142
 * descale to yield a DCTELEM result.
143
 */
144

    
145
#define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
146

    
147
static av_always_inline void row_fdct(DCTELEM * data){
148
  int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
149
  int tmp10, tmp11, tmp12, tmp13;
150
  int z1, z2, z3, z4, z5, z11, z13;
151
  DCTELEM *dataptr;
152
  int ctr;
153

    
154
  /* Pass 1: process rows. */
155

    
156
  dataptr = data;
157
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
158
    tmp0 = dataptr[0] + dataptr[7];
159
    tmp7 = dataptr[0] - dataptr[7];
160
    tmp1 = dataptr[1] + dataptr[6];
161
    tmp6 = dataptr[1] - dataptr[6];
162
    tmp2 = dataptr[2] + dataptr[5];
163
    tmp5 = dataptr[2] - dataptr[5];
164
    tmp3 = dataptr[3] + dataptr[4];
165
    tmp4 = dataptr[3] - dataptr[4];
166

    
167
    /* Even part */
168

    
169
    tmp10 = tmp0 + tmp3;        /* phase 2 */
170
    tmp13 = tmp0 - tmp3;
171
    tmp11 = tmp1 + tmp2;
172
    tmp12 = tmp1 - tmp2;
173

    
174
    dataptr[0] = tmp10 + tmp11; /* phase 3 */
175
    dataptr[4] = tmp10 - tmp11;
176

    
177
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
178
    dataptr[2] = tmp13 + z1;    /* phase 5 */
179
    dataptr[6] = tmp13 - z1;
180

    
181
    /* Odd part */
182

    
183
    tmp10 = tmp4 + tmp5;        /* phase 2 */
184
    tmp11 = tmp5 + tmp6;
185
    tmp12 = tmp6 + tmp7;
186

    
187
    /* The rotator is modified from fig 4-8 to avoid extra negations. */
188
    z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
189
    z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5;    /* c2-c6 */
190
    z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5;    /* c2+c6 */
191
    z3 = MULTIPLY(tmp11, FIX_0_707106781);         /* c4 */
192

    
193
    z11 = tmp7 + z3;            /* phase 5 */
194
    z13 = tmp7 - z3;
195

    
196
    dataptr[5] = z13 + z2;      /* phase 6 */
197
    dataptr[3] = z13 - z2;
198
    dataptr[1] = z11 + z4;
199
    dataptr[7] = z11 - z4;
200

    
201
    dataptr += DCTSIZE;         /* advance pointer to next row */
202
  }
203
}
204

    
205
/*
206
 * Perform the forward DCT on one block of samples.
207
 */
208

    
209
GLOBAL(void)
210
fdct_ifast (DCTELEM * data)
211
{
212
  int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
213
  int tmp10, tmp11, tmp12, tmp13;
214
  int z1, z2, z3, z4, z5, z11, z13;
215
  DCTELEM *dataptr;
216
  int ctr;
217

    
218
  row_fdct(data);
219

    
220
  /* Pass 2: process columns. */
221

    
222
  dataptr = data;
223
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
224
    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
225
    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
226
    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
227
    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
228
    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
229
    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
230
    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
231
    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
232

    
233
    /* Even part */
234

    
235
    tmp10 = tmp0 + tmp3;        /* phase 2 */
236
    tmp13 = tmp0 - tmp3;
237
    tmp11 = tmp1 + tmp2;
238
    tmp12 = tmp1 - tmp2;
239

    
240
    dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
241
    dataptr[DCTSIZE*4] = tmp10 - tmp11;
242

    
243
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */
244
    dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
245
    dataptr[DCTSIZE*6] = tmp13 - z1;
246

    
247
    /* Odd part */
248

    
249
    tmp10 = tmp4 + tmp5;        /* phase 2 */
250
    tmp11 = tmp5 + tmp6;
251
    tmp12 = tmp6 + tmp7;
252

    
253
    /* The rotator is modified from fig 4-8 to avoid extra negations. */
254
    z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */
255
    z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */
256
    z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */
257
    z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */
258

    
259
    z11 = tmp7 + z3;            /* phase 5 */
260
    z13 = tmp7 - z3;
261

    
262
    dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
263
    dataptr[DCTSIZE*3] = z13 - z2;
264
    dataptr[DCTSIZE*1] = z11 + z4;
265
    dataptr[DCTSIZE*7] = z11 - z4;
266

    
267
    dataptr++;                  /* advance pointer to next column */
268
  }
269
}
270

    
271
/*
272
 * Perform the forward 2-4-8 DCT on one block of samples.
273
 */
274

    
275
GLOBAL(void)
276
fdct_ifast248 (DCTELEM * data)
277
{
278
  int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
279
  int tmp10, tmp11, tmp12, tmp13;
280
  int z1;
281
  DCTELEM *dataptr;
282
  int ctr;
283

    
284
  row_fdct(data);
285

    
286
  /* Pass 2: process columns. */
287

    
288
  dataptr = data;
289
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
290
    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*1];
291
    tmp1 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
292
    tmp2 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
293
    tmp3 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
294
    tmp4 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*1];
295
    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
296
    tmp6 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
297
    tmp7 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
298

    
299
    /* Even part */
300

    
301
    tmp10 = tmp0 + tmp3;
302
    tmp11 = tmp1 + tmp2;
303
    tmp12 = tmp1 - tmp2;
304
    tmp13 = tmp0 - tmp3;
305

    
306
    dataptr[DCTSIZE*0] = tmp10 + tmp11;
307
    dataptr[DCTSIZE*4] = tmp10 - tmp11;
308

    
309
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781);
310
    dataptr[DCTSIZE*2] = tmp13 + z1;
311
    dataptr[DCTSIZE*6] = tmp13 - z1;
312

    
313
    tmp10 = tmp4 + tmp7;
314
    tmp11 = tmp5 + tmp6;
315
    tmp12 = tmp5 - tmp6;
316
    tmp13 = tmp4 - tmp7;
317

    
318
    dataptr[DCTSIZE*1] = tmp10 + tmp11;
319
    dataptr[DCTSIZE*5] = tmp10 - tmp11;
320

    
321
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781);
322
    dataptr[DCTSIZE*3] = tmp13 + z1;
323
    dataptr[DCTSIZE*7] = tmp13 - z1;
324

    
325
    dataptr++;                        /* advance pointer to next column */
326
  }
327
}
328

    
329

    
330
#undef GLOBAL
331
#undef CONST_BITS
332
#undef DESCALE
333
#undef FIX_0_541196100
334
#undef FIX_1_306562965