Statistics
| Branch: | Revision:

ffmpeg / libavcodec / jfdctint.c @ be898457

History | View | Annotate | Download (15.6 KB)

1
/*
2
 * jfdctint.c
3
 *
4
 * This file is part of the Independent JPEG Group's software.
5
 *
6
 * The authors make NO WARRANTY or representation, either express or implied,
7
 * with respect to this software, its quality, accuracy, merchantability, or
8
 * fitness for a particular purpose.  This software is provided "AS IS", and
9
 * you, its user, assume the entire risk as to its quality and accuracy.
10
 *
11
 * This software is copyright (C) 1991-1996, Thomas G. Lane.
12
 * All Rights Reserved except as specified below.
13
 *
14
 * Permission is hereby granted to use, copy, modify, and distribute this
15
 * software (or portions thereof) for any purpose, without fee, subject to
16
 * these conditions:
17
 * (1) If any part of the source code for this software is distributed, then
18
 * this README file must be included, with this copyright and no-warranty
19
 * notice unaltered; and any additions, deletions, or changes to the original
20
 * files must be clearly indicated in accompanying documentation.
21
 * (2) If only executable code is distributed, then the accompanying
22
 * documentation must state that "this software is based in part on the work
23
 * of the Independent JPEG Group".
24
 * (3) Permission for use of this software is granted only if the user accepts
25
 * full responsibility for any undesirable consequences; the authors accept
26
 * NO LIABILITY for damages of any kind.
27
 *
28
 * These conditions apply to any software derived from or based on the IJG
29
 * code, not just to the unmodified library.  If you use our work, you ought
30
 * to acknowledge us.
31
 *
32
 * Permission is NOT granted for the use of any IJG author's name or company
33
 * name in advertising or publicity relating to this software or products
34
 * derived from it.  This software may be referred to only as "the Independent
35
 * JPEG Group's software".
36
 *
37
 * We specifically permit and encourage the use of this software as the basis
38
 * of commercial products, provided that all warranty or liability claims are
39
 * assumed by the product vendor.
40
 *
41
 * This file contains a slow-but-accurate integer implementation of the
42
 * forward DCT (Discrete Cosine Transform).
43
 *
44
 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
45
 * on each column.  Direct algorithms are also available, but they are
46
 * much more complex and seem not to be any faster when reduced to code.
47
 *
48
 * This implementation is based on an algorithm described in
49
 *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
50
 *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
51
 *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
52
 * The primary algorithm described there uses 11 multiplies and 29 adds.
53
 * We use their alternate method with 12 multiplies and 32 adds.
54
 * The advantage of this method is that no data path contains more than one
55
 * multiplication; this allows a very simple and accurate implementation in
56
 * scaled fixed-point arithmetic, with a minimal number of shifts.
57
 */
58

    
59
/**
60
 * @file
61
 * Independent JPEG Group's slow & accurate dct.
62
 */
63

    
64
#include <stdlib.h>
65
#include <stdio.h>
66
#include "libavutil/common.h"
67
#include "dsputil.h"
68

    
69
#define DCTSIZE 8
70
#define BITS_IN_JSAMPLE 8
71
#define GLOBAL(x) x
72
#define RIGHT_SHIFT(x, n) ((x) >> (n))
73
#define MULTIPLY16C16(var,const) ((var)*(const))
74

    
75
#if 1 //def USE_ACCURATE_ROUNDING
76
#define DESCALE(x,n)  RIGHT_SHIFT((x) + (1 << ((n) - 1)), n)
77
#else
78
#define DESCALE(x,n)  RIGHT_SHIFT(x, n)
79
#endif
80

    
81

    
82
/*
83
 * This module is specialized to the case DCTSIZE = 8.
84
 */
85

    
86
#if DCTSIZE != 8
87
  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
88
#endif
89

    
90

    
91
/*
92
 * The poop on this scaling stuff is as follows:
93
 *
94
 * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
95
 * larger than the true DCT outputs.  The final outputs are therefore
96
 * a factor of N larger than desired; since N=8 this can be cured by
97
 * a simple right shift at the end of the algorithm.  The advantage of
98
 * this arrangement is that we save two multiplications per 1-D DCT,
99
 * because the y0 and y4 outputs need not be divided by sqrt(N).
100
 * In the IJG code, this factor of 8 is removed by the quantization step
101
 * (in jcdctmgr.c), NOT in this module.
102
 *
103
 * We have to do addition and subtraction of the integer inputs, which
104
 * is no problem, and multiplication by fractional constants, which is
105
 * a problem to do in integer arithmetic.  We multiply all the constants
106
 * by CONST_SCALE and convert them to integer constants (thus retaining
107
 * CONST_BITS bits of precision in the constants).  After doing a
108
 * multiplication we have to divide the product by CONST_SCALE, with proper
109
 * rounding, to produce the correct output.  This division can be done
110
 * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
111
 * as long as possible so that partial sums can be added together with
112
 * full fractional precision.
113
 *
114
 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
115
 * they are represented to better-than-integral precision.  These outputs
116
 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
117
 * with the recommended scaling.  (For 12-bit sample data, the intermediate
118
 * array is int32_t anyway.)
119
 *
120
 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
121
 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
122
 * shows that the values given below are the most effective.
123
 */
124

    
125
#if BITS_IN_JSAMPLE == 8
126
#define CONST_BITS  13
127
#define PASS1_BITS  4   /* set this to 2 if 16x16 multiplies are faster */
128
#else
129
#define CONST_BITS  13
130
#define PASS1_BITS  1   /* lose a little precision to avoid overflow */
131
#endif
132

    
133
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
134
 * causing a lot of useless floating-point operations at run time.
135
 * To get around this we use the following pre-calculated constants.
136
 * If you change CONST_BITS you may want to add appropriate values.
137
 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
138
 */
139

    
140
#if CONST_BITS == 13
141
#define FIX_0_298631336  ((int32_t)  2446)      /* FIX(0.298631336) */
142
#define FIX_0_390180644  ((int32_t)  3196)      /* FIX(0.390180644) */
143
#define FIX_0_541196100  ((int32_t)  4433)      /* FIX(0.541196100) */
144
#define FIX_0_765366865  ((int32_t)  6270)      /* FIX(0.765366865) */
145
#define FIX_0_899976223  ((int32_t)  7373)      /* FIX(0.899976223) */
146
#define FIX_1_175875602  ((int32_t)  9633)      /* FIX(1.175875602) */
147
#define FIX_1_501321110  ((int32_t)  12299)     /* FIX(1.501321110) */
148
#define FIX_1_847759065  ((int32_t)  15137)     /* FIX(1.847759065) */
149
#define FIX_1_961570560  ((int32_t)  16069)     /* FIX(1.961570560) */
150
#define FIX_2_053119869  ((int32_t)  16819)     /* FIX(2.053119869) */
151
#define FIX_2_562915447  ((int32_t)  20995)     /* FIX(2.562915447) */
152
#define FIX_3_072711026  ((int32_t)  25172)     /* FIX(3.072711026) */
153
#else
154
#define FIX_0_298631336  FIX(0.298631336)
155
#define FIX_0_390180644  FIX(0.390180644)
156
#define FIX_0_541196100  FIX(0.541196100)
157
#define FIX_0_765366865  FIX(0.765366865)
158
#define FIX_0_899976223  FIX(0.899976223)
159
#define FIX_1_175875602  FIX(1.175875602)
160
#define FIX_1_501321110  FIX(1.501321110)
161
#define FIX_1_847759065  FIX(1.847759065)
162
#define FIX_1_961570560  FIX(1.961570560)
163
#define FIX_2_053119869  FIX(2.053119869)
164
#define FIX_2_562915447  FIX(2.562915447)
165
#define FIX_3_072711026  FIX(3.072711026)
166
#endif
167

    
168

    
169
/* Multiply an int32_t variable by an int32_t constant to yield an int32_t result.
170
 * For 8-bit samples with the recommended scaling, all the variable
171
 * and constant values involved are no more than 16 bits wide, so a
172
 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
173
 * For 12-bit samples, a full 32-bit multiplication will be needed.
174
 */
175

    
176
#if BITS_IN_JSAMPLE == 8 && CONST_BITS<=13 && PASS1_BITS<=2
177
#define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
178
#else
179
#define MULTIPLY(var,const)  ((var) * (const))
180
#endif
181

    
182

    
183
static av_always_inline void row_fdct(DCTELEM * data){
184
  int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
185
  int tmp10, tmp11, tmp12, tmp13;
186
  int z1, z2, z3, z4, z5;
187
  DCTELEM *dataptr;
188
  int ctr;
189

    
190
  /* Pass 1: process rows. */
191
  /* Note results are scaled up by sqrt(8) compared to a true DCT; */
192
  /* furthermore, we scale the results by 2**PASS1_BITS. */
193

    
194
  dataptr = data;
195
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
196
    tmp0 = dataptr[0] + dataptr[7];
197
    tmp7 = dataptr[0] - dataptr[7];
198
    tmp1 = dataptr[1] + dataptr[6];
199
    tmp6 = dataptr[1] - dataptr[6];
200
    tmp2 = dataptr[2] + dataptr[5];
201
    tmp5 = dataptr[2] - dataptr[5];
202
    tmp3 = dataptr[3] + dataptr[4];
203
    tmp4 = dataptr[3] - dataptr[4];
204

    
205
    /* Even part per LL&M figure 1 --- note that published figure is faulty;
206
     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
207
     */
208

    
209
    tmp10 = tmp0 + tmp3;
210
    tmp13 = tmp0 - tmp3;
211
    tmp11 = tmp1 + tmp2;
212
    tmp12 = tmp1 - tmp2;
213

    
214
    dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
215
    dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
216

    
217
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
218
    dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
219
                                   CONST_BITS-PASS1_BITS);
220
    dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
221
                                   CONST_BITS-PASS1_BITS);
222

    
223
    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
224
     * cK represents cos(K*pi/16).
225
     * i0..i3 in the paper are tmp4..tmp7 here.
226
     */
227

    
228
    z1 = tmp4 + tmp7;
229
    z2 = tmp5 + tmp6;
230
    z3 = tmp4 + tmp6;
231
    z4 = tmp5 + tmp7;
232
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
233

    
234
    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
235
    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
236
    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
237
    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
238
    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
239
    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
240
    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
241
    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
242

    
243
    z3 += z5;
244
    z4 += z5;
245

    
246
    dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
247
    dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
248
    dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
249
    dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
250

    
251
    dataptr += DCTSIZE;         /* advance pointer to next row */
252
  }
253
}
254

    
255
/*
256
 * Perform the forward DCT on one block of samples.
257
 */
258

    
259
GLOBAL(void)
260
ff_jpeg_fdct_islow (DCTELEM * data)
261
{
262
  int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
263
  int tmp10, tmp11, tmp12, tmp13;
264
  int z1, z2, z3, z4, z5;
265
  DCTELEM *dataptr;
266
  int ctr;
267

    
268
  row_fdct(data);
269

    
270
  /* Pass 2: process columns.
271
   * We remove the PASS1_BITS scaling, but leave the results scaled up
272
   * by an overall factor of 8.
273
   */
274

    
275
  dataptr = data;
276
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
277
    tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
278
    tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
279
    tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
280
    tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
281
    tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
282
    tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
283
    tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
284
    tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
285

    
286
    /* Even part per LL&M figure 1 --- note that published figure is faulty;
287
     * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
288
     */
289

    
290
    tmp10 = tmp0 + tmp3;
291
    tmp13 = tmp0 - tmp3;
292
    tmp11 = tmp1 + tmp2;
293
    tmp12 = tmp1 - tmp2;
294

    
295
    dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
296
    dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
297

    
298
    z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
299
    dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
300
                                           CONST_BITS+PASS1_BITS);
301
    dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
302
                                           CONST_BITS+PASS1_BITS);
303

    
304
    /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
305
     * cK represents cos(K*pi/16).
306
     * i0..i3 in the paper are tmp4..tmp7 here.
307
     */
308

    
309
    z1 = tmp4 + tmp7;
310
    z2 = tmp5 + tmp6;
311
    z3 = tmp4 + tmp6;
312
    z4 = tmp5 + tmp7;
313
    z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
314

    
315
    tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
316
    tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
317
    tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
318
    tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
319
    z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
320
    z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
321
    z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
322
    z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
323

    
324
    z3 += z5;
325
    z4 += z5;
326

    
327
    dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,
328
                                           CONST_BITS+PASS1_BITS);
329
    dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,
330
                                           CONST_BITS+PASS1_BITS);
331
    dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,
332
                                           CONST_BITS+PASS1_BITS);
333
    dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,
334
                                           CONST_BITS+PASS1_BITS);
335

    
336
    dataptr++;                  /* advance pointer to next column */
337
  }
338
}
339

    
340
/*
341
 * The secret of DCT2-4-8 is really simple -- you do the usual 1-DCT
342
 * on the rows and then, instead of doing even and odd, part on the colums
343
 * you do even part two times.
344
 */
345
GLOBAL(void)
346
ff_fdct248_islow (DCTELEM * data)
347
{
348
  int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
349
  int tmp10, tmp11, tmp12, tmp13;
350
  int z1;
351
  DCTELEM *dataptr;
352
  int ctr;
353

    
354
  row_fdct(data);
355

    
356
  /* Pass 2: process columns.
357
   * We remove the PASS1_BITS scaling, but leave the results scaled up
358
   * by an overall factor of 8.
359
   */
360

    
361
  dataptr = data;
362
  for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
363
     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*1];
364
     tmp1 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
365
     tmp2 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
366
     tmp3 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
367
     tmp4 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*1];
368
     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
369
     tmp6 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
370
     tmp7 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
371

    
372
     tmp10 = tmp0 + tmp3;
373
     tmp11 = tmp1 + tmp2;
374
     tmp12 = tmp1 - tmp2;
375
     tmp13 = tmp0 - tmp3;
376

    
377
     dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
378
     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
379

    
380
     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
381
     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
382
                                            CONST_BITS+PASS1_BITS);
383
     dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
384
                                            CONST_BITS+PASS1_BITS);
385

    
386
     tmp10 = tmp4 + tmp7;
387
     tmp11 = tmp5 + tmp6;
388
     tmp12 = tmp5 - tmp6;
389
     tmp13 = tmp4 - tmp7;
390

    
391
     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);
392
     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS);
393

    
394
     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
395
     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
396
                                            CONST_BITS+PASS1_BITS);
397
     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
398
                                            CONST_BITS+PASS1_BITS);
399

    
400
     dataptr++;                 /* advance pointer to next column */
401
  }
402
}