ffmpeg / libavcodec / ac3dec.c @ bfeca7be
History | View | Annotate | Download (47.8 KB)
1 |
/*
|
---|---|
2 |
* AC-3 Audio Decoder
|
3 |
* This code was developed as part of Google Summer of Code 2006.
|
4 |
* E-AC-3 support was added as part of Google Summer of Code 2007.
|
5 |
*
|
6 |
* Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com)
|
7 |
* Copyright (c) 2007-2008 Bartlomiej Wolowiec <bartek.wolowiec@gmail.com>
|
8 |
* Copyright (c) 2007 Justin Ruggles <justin.ruggles@gmail.com>
|
9 |
*
|
10 |
* Portions of this code are derived from liba52
|
11 |
* http://liba52.sourceforge.net
|
12 |
* Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
|
13 |
* Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
|
14 |
*
|
15 |
* This file is part of FFmpeg.
|
16 |
*
|
17 |
* FFmpeg is free software; you can redistribute it and/or
|
18 |
* modify it under the terms of the GNU General Public
|
19 |
* License as published by the Free Software Foundation; either
|
20 |
* version 2 of the License, or (at your option) any later version.
|
21 |
*
|
22 |
* FFmpeg is distributed in the hope that it will be useful,
|
23 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
24 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
25 |
* General Public License for more details.
|
26 |
*
|
27 |
* You should have received a copy of the GNU General Public
|
28 |
* License along with FFmpeg; if not, write to the Free Software
|
29 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
30 |
*/
|
31 |
|
32 |
#include <stdio.h> |
33 |
#include <stddef.h> |
34 |
#include <math.h> |
35 |
#include <string.h> |
36 |
|
37 |
#include "libavutil/crc.h" |
38 |
#include "internal.h" |
39 |
#include "aac_ac3_parser.h" |
40 |
#include "ac3_parser.h" |
41 |
#include "ac3dec.h" |
42 |
#include "ac3dec_data.h" |
43 |
|
44 |
/** Large enough for maximum possible frame size when the specification limit is ignored */
|
45 |
#define AC3_FRAME_BUFFER_SIZE 32768 |
46 |
|
47 |
/**
|
48 |
* table for ungrouping 3 values in 7 bits.
|
49 |
* used for exponents and bap=2 mantissas
|
50 |
*/
|
51 |
static uint8_t ungroup_3_in_7_bits_tab[128][3]; |
52 |
|
53 |
|
54 |
/** tables for ungrouping mantissas */
|
55 |
static int b1_mantissas[32][3]; |
56 |
static int b2_mantissas[128][3]; |
57 |
static int b3_mantissas[8]; |
58 |
static int b4_mantissas[128][2]; |
59 |
static int b5_mantissas[16]; |
60 |
|
61 |
/**
|
62 |
* Quantization table: levels for symmetric. bits for asymmetric.
|
63 |
* reference: Table 7.18 Mapping of bap to Quantizer
|
64 |
*/
|
65 |
static const uint8_t quantization_tab[16] = { |
66 |
0, 3, 5, 7, 11, 15, |
67 |
5, 6, 7, 8, 9, 10, 11, 12, 14, 16 |
68 |
}; |
69 |
|
70 |
/** dynamic range table. converts codes to scale factors. */
|
71 |
static float dynamic_range_tab[256]; |
72 |
|
73 |
/** Adjustments in dB gain */
|
74 |
#define LEVEL_PLUS_3DB 1.4142135623730950 |
75 |
#define LEVEL_PLUS_1POINT5DB 1.1892071150027209 |
76 |
#define LEVEL_MINUS_1POINT5DB 0.8408964152537145 |
77 |
#define LEVEL_MINUS_3DB 0.7071067811865476 |
78 |
#define LEVEL_MINUS_4POINT5DB 0.5946035575013605 |
79 |
#define LEVEL_MINUS_6DB 0.5000000000000000 |
80 |
#define LEVEL_MINUS_9DB 0.3535533905932738 |
81 |
#define LEVEL_ZERO 0.0000000000000000 |
82 |
#define LEVEL_ONE 1.0000000000000000 |
83 |
|
84 |
static const float gain_levels[9] = { |
85 |
LEVEL_PLUS_3DB, |
86 |
LEVEL_PLUS_1POINT5DB, |
87 |
LEVEL_ONE, |
88 |
LEVEL_MINUS_1POINT5DB, |
89 |
LEVEL_MINUS_3DB, |
90 |
LEVEL_MINUS_4POINT5DB, |
91 |
LEVEL_MINUS_6DB, |
92 |
LEVEL_ZERO, |
93 |
LEVEL_MINUS_9DB |
94 |
}; |
95 |
|
96 |
/**
|
97 |
* Table for center mix levels
|
98 |
* reference: Section 5.4.2.4 cmixlev
|
99 |
*/
|
100 |
static const uint8_t center_levels[4] = { 4, 5, 6, 5 }; |
101 |
|
102 |
/**
|
103 |
* Table for surround mix levels
|
104 |
* reference: Section 5.4.2.5 surmixlev
|
105 |
*/
|
106 |
static const uint8_t surround_levels[4] = { 4, 6, 7, 6 }; |
107 |
|
108 |
/**
|
109 |
* Table for default stereo downmixing coefficients
|
110 |
* reference: Section 7.8.2 Downmixing Into Two Channels
|
111 |
*/
|
112 |
static const uint8_t ac3_default_coeffs[8][5][2] = { |
113 |
{ { 2, 7 }, { 7, 2 }, }, |
114 |
{ { 4, 4 }, }, |
115 |
{ { 2, 7 }, { 7, 2 }, }, |
116 |
{ { 2, 7 }, { 5, 5 }, { 7, 2 }, }, |
117 |
{ { 2, 7 }, { 7, 2 }, { 6, 6 }, }, |
118 |
{ { 2, 7 }, { 5, 5 }, { 7, 2 }, { 8, 8 }, }, |
119 |
{ { 2, 7 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, }, |
120 |
{ { 2, 7 }, { 5, 5 }, { 7, 2 }, { 6, 7 }, { 7, 6 }, }, |
121 |
}; |
122 |
|
123 |
/**
|
124 |
* Symmetrical Dequantization
|
125 |
* reference: Section 7.3.3 Expansion of Mantissas for Symmetrical Quantization
|
126 |
* Tables 7.19 to 7.23
|
127 |
*/
|
128 |
static inline int |
129 |
symmetric_dequant(int code, int levels) |
130 |
{ |
131 |
return ((code - (levels >> 1)) << 24) / levels; |
132 |
} |
133 |
|
134 |
/*
|
135 |
* Initialize tables at runtime.
|
136 |
*/
|
137 |
static av_cold void ac3_tables_init(void) |
138 |
{ |
139 |
int i;
|
140 |
|
141 |
/* generate table for ungrouping 3 values in 7 bits
|
142 |
reference: Section 7.1.3 Exponent Decoding */
|
143 |
for(i=0; i<128; i++) { |
144 |
ungroup_3_in_7_bits_tab[i][0] = i / 25; |
145 |
ungroup_3_in_7_bits_tab[i][1] = (i % 25) / 5; |
146 |
ungroup_3_in_7_bits_tab[i][2] = (i % 25) % 5; |
147 |
} |
148 |
|
149 |
/* generate grouped mantissa tables
|
150 |
reference: Section 7.3.5 Ungrouping of Mantissas */
|
151 |
for(i=0; i<32; i++) { |
152 |
/* bap=1 mantissas */
|
153 |
b1_mantissas[i][0] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][0], 3); |
154 |
b1_mantissas[i][1] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][1], 3); |
155 |
b1_mantissas[i][2] = symmetric_dequant(ff_ac3_ungroup_3_in_5_bits_tab[i][2], 3); |
156 |
} |
157 |
for(i=0; i<128; i++) { |
158 |
/* bap=2 mantissas */
|
159 |
b2_mantissas[i][0] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][0], 5); |
160 |
b2_mantissas[i][1] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][1], 5); |
161 |
b2_mantissas[i][2] = symmetric_dequant(ungroup_3_in_7_bits_tab[i][2], 5); |
162 |
|
163 |
/* bap=4 mantissas */
|
164 |
b4_mantissas[i][0] = symmetric_dequant(i / 11, 11); |
165 |
b4_mantissas[i][1] = symmetric_dequant(i % 11, 11); |
166 |
} |
167 |
/* generate ungrouped mantissa tables
|
168 |
reference: Tables 7.21 and 7.23 */
|
169 |
for(i=0; i<7; i++) { |
170 |
/* bap=3 mantissas */
|
171 |
b3_mantissas[i] = symmetric_dequant(i, 7);
|
172 |
} |
173 |
for(i=0; i<15; i++) { |
174 |
/* bap=5 mantissas */
|
175 |
b5_mantissas[i] = symmetric_dequant(i, 15);
|
176 |
} |
177 |
|
178 |
/* generate dynamic range table
|
179 |
reference: Section 7.7.1 Dynamic Range Control */
|
180 |
for(i=0; i<256; i++) { |
181 |
int v = (i >> 5) - ((i >> 7) << 3) - 5; |
182 |
dynamic_range_tab[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20); |
183 |
} |
184 |
} |
185 |
|
186 |
|
187 |
/**
|
188 |
* AVCodec initialization
|
189 |
*/
|
190 |
static av_cold int ac3_decode_init(AVCodecContext *avctx) |
191 |
{ |
192 |
AC3DecodeContext *s = avctx->priv_data; |
193 |
s->avctx = avctx; |
194 |
|
195 |
ac3_common_init(); |
196 |
ac3_tables_init(); |
197 |
ff_mdct_init(&s->imdct_256, 8, 1); |
198 |
ff_mdct_init(&s->imdct_512, 9, 1); |
199 |
ff_kbd_window_init(s->window, 5.0, 256); |
200 |
dsputil_init(&s->dsp, avctx); |
201 |
av_lfg_init(&s->dith_state, 0);
|
202 |
|
203 |
/* set bias values for float to int16 conversion */
|
204 |
if(s->dsp.float_to_int16_interleave == ff_float_to_int16_interleave_c) {
|
205 |
s->add_bias = 385.0f; |
206 |
s->mul_bias = 1.0f; |
207 |
} else {
|
208 |
s->add_bias = 0.0f; |
209 |
s->mul_bias = 32767.0f; |
210 |
} |
211 |
|
212 |
/* allow downmixing to stereo or mono */
|
213 |
if (avctx->channels > 0 && avctx->request_channels > 0 && |
214 |
avctx->request_channels < avctx->channels && |
215 |
avctx->request_channels <= 2) {
|
216 |
avctx->channels = avctx->request_channels; |
217 |
} |
218 |
s->downmixed = 1;
|
219 |
|
220 |
/* allocate context input buffer */
|
221 |
if (avctx->error_recognition >= FF_ER_CAREFUL) {
|
222 |
s->input_buffer = av_mallocz(AC3_FRAME_BUFFER_SIZE + FF_INPUT_BUFFER_PADDING_SIZE); |
223 |
if (!s->input_buffer)
|
224 |
return AVERROR_NOMEM;
|
225 |
} |
226 |
|
227 |
avctx->sample_fmt = SAMPLE_FMT_S16; |
228 |
return 0; |
229 |
} |
230 |
|
231 |
/**
|
232 |
* Parse the 'sync info' and 'bit stream info' from the AC-3 bitstream.
|
233 |
* GetBitContext within AC3DecodeContext must point to
|
234 |
* the start of the synchronized AC-3 bitstream.
|
235 |
*/
|
236 |
static int ac3_parse_header(AC3DecodeContext *s) |
237 |
{ |
238 |
GetBitContext *gbc = &s->gbc; |
239 |
int i;
|
240 |
|
241 |
/* read the rest of the bsi. read twice for dual mono mode. */
|
242 |
i = !(s->channel_mode); |
243 |
do {
|
244 |
skip_bits(gbc, 5); // skip dialog normalization |
245 |
if (get_bits1(gbc))
|
246 |
skip_bits(gbc, 8); //skip compression |
247 |
if (get_bits1(gbc))
|
248 |
skip_bits(gbc, 8); //skip language code |
249 |
if (get_bits1(gbc))
|
250 |
skip_bits(gbc, 7); //skip audio production information |
251 |
} while (i--);
|
252 |
|
253 |
skip_bits(gbc, 2); //skip copyright bit and original bitstream bit |
254 |
|
255 |
/* skip the timecodes (or extra bitstream information for Alternate Syntax)
|
256 |
TODO: read & use the xbsi1 downmix levels */
|
257 |
if (get_bits1(gbc))
|
258 |
skip_bits(gbc, 14); //skip timecode1 / xbsi1 |
259 |
if (get_bits1(gbc))
|
260 |
skip_bits(gbc, 14); //skip timecode2 / xbsi2 |
261 |
|
262 |
/* skip additional bitstream info */
|
263 |
if (get_bits1(gbc)) {
|
264 |
i = get_bits(gbc, 6);
|
265 |
do {
|
266 |
skip_bits(gbc, 8);
|
267 |
} while(i--);
|
268 |
} |
269 |
|
270 |
return 0; |
271 |
} |
272 |
|
273 |
/**
|
274 |
* Common function to parse AC-3 or E-AC-3 frame header
|
275 |
*/
|
276 |
static int parse_frame_header(AC3DecodeContext *s) |
277 |
{ |
278 |
AC3HeaderInfo hdr; |
279 |
int err;
|
280 |
|
281 |
err = ff_ac3_parse_header(&s->gbc, &hdr); |
282 |
if(err)
|
283 |
return err;
|
284 |
|
285 |
/* get decoding parameters from header info */
|
286 |
s->bit_alloc_params.sr_code = hdr.sr_code; |
287 |
s->channel_mode = hdr.channel_mode; |
288 |
s->channel_layout = hdr.channel_layout; |
289 |
s->lfe_on = hdr.lfe_on; |
290 |
s->bit_alloc_params.sr_shift = hdr.sr_shift; |
291 |
s->sample_rate = hdr.sample_rate; |
292 |
s->bit_rate = hdr.bit_rate; |
293 |
s->channels = hdr.channels; |
294 |
s->fbw_channels = s->channels - s->lfe_on; |
295 |
s->lfe_ch = s->fbw_channels + 1;
|
296 |
s->frame_size = hdr.frame_size; |
297 |
s->center_mix_level = hdr.center_mix_level; |
298 |
s->surround_mix_level = hdr.surround_mix_level; |
299 |
s->num_blocks = hdr.num_blocks; |
300 |
s->frame_type = hdr.frame_type; |
301 |
s->substreamid = hdr.substreamid; |
302 |
|
303 |
if(s->lfe_on) {
|
304 |
s->start_freq[s->lfe_ch] = 0;
|
305 |
s->end_freq[s->lfe_ch] = 7;
|
306 |
s->num_exp_groups[s->lfe_ch] = 2;
|
307 |
s->channel_in_cpl[s->lfe_ch] = 0;
|
308 |
} |
309 |
|
310 |
if (hdr.bitstream_id <= 10) { |
311 |
s->eac3 = 0;
|
312 |
s->snr_offset_strategy = 2;
|
313 |
s->block_switch_syntax = 1;
|
314 |
s->dither_flag_syntax = 1;
|
315 |
s->bit_allocation_syntax = 1;
|
316 |
s->fast_gain_syntax = 0;
|
317 |
s->first_cpl_leak = 0;
|
318 |
s->dba_syntax = 1;
|
319 |
s->skip_syntax = 1;
|
320 |
memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht)); |
321 |
return ac3_parse_header(s);
|
322 |
} else {
|
323 |
s->eac3 = 1;
|
324 |
return ff_eac3_parse_header(s);
|
325 |
} |
326 |
} |
327 |
|
328 |
/**
|
329 |
* Set stereo downmixing coefficients based on frame header info.
|
330 |
* reference: Section 7.8.2 Downmixing Into Two Channels
|
331 |
*/
|
332 |
static void set_downmix_coeffs(AC3DecodeContext *s) |
333 |
{ |
334 |
int i;
|
335 |
float cmix = gain_levels[center_levels[s->center_mix_level]];
|
336 |
float smix = gain_levels[surround_levels[s->surround_mix_level]];
|
337 |
float norm0, norm1;
|
338 |
|
339 |
for(i=0; i<s->fbw_channels; i++) { |
340 |
s->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[s->channel_mode][i][0]]; |
341 |
s->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[s->channel_mode][i][1]]; |
342 |
} |
343 |
if(s->channel_mode > 1 && s->channel_mode & 1) { |
344 |
s->downmix_coeffs[1][0] = s->downmix_coeffs[1][1] = cmix; |
345 |
} |
346 |
if(s->channel_mode == AC3_CHMODE_2F1R || s->channel_mode == AC3_CHMODE_3F1R) {
|
347 |
int nf = s->channel_mode - 2; |
348 |
s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf][1] = smix * LEVEL_MINUS_3DB; |
349 |
} |
350 |
if(s->channel_mode == AC3_CHMODE_2F2R || s->channel_mode == AC3_CHMODE_3F2R) {
|
351 |
int nf = s->channel_mode - 4; |
352 |
s->downmix_coeffs[nf][0] = s->downmix_coeffs[nf+1][1] = smix; |
353 |
} |
354 |
|
355 |
/* renormalize */
|
356 |
norm0 = norm1 = 0.0; |
357 |
for(i=0; i<s->fbw_channels; i++) { |
358 |
norm0 += s->downmix_coeffs[i][0];
|
359 |
norm1 += s->downmix_coeffs[i][1];
|
360 |
} |
361 |
norm0 = 1.0f / norm0; |
362 |
norm1 = 1.0f / norm1; |
363 |
for(i=0; i<s->fbw_channels; i++) { |
364 |
s->downmix_coeffs[i][0] *= norm0;
|
365 |
s->downmix_coeffs[i][1] *= norm1;
|
366 |
} |
367 |
|
368 |
if(s->output_mode == AC3_CHMODE_MONO) {
|
369 |
for(i=0; i<s->fbw_channels; i++) |
370 |
s->downmix_coeffs[i][0] = (s->downmix_coeffs[i][0] + s->downmix_coeffs[i][1]) * LEVEL_MINUS_3DB; |
371 |
} |
372 |
} |
373 |
|
374 |
/**
|
375 |
* Decode the grouped exponents according to exponent strategy.
|
376 |
* reference: Section 7.1.3 Exponent Decoding
|
377 |
*/
|
378 |
static int decode_exponents(GetBitContext *gbc, int exp_strategy, int ngrps, |
379 |
uint8_t absexp, int8_t *dexps) |
380 |
{ |
381 |
int i, j, grp, group_size;
|
382 |
int dexp[256]; |
383 |
int expacc, prevexp;
|
384 |
|
385 |
/* unpack groups */
|
386 |
group_size = exp_strategy + (exp_strategy == EXP_D45); |
387 |
for(grp=0,i=0; grp<ngrps; grp++) { |
388 |
expacc = get_bits(gbc, 7);
|
389 |
dexp[i++] = ungroup_3_in_7_bits_tab[expacc][0];
|
390 |
dexp[i++] = ungroup_3_in_7_bits_tab[expacc][1];
|
391 |
dexp[i++] = ungroup_3_in_7_bits_tab[expacc][2];
|
392 |
} |
393 |
|
394 |
/* convert to absolute exps and expand groups */
|
395 |
prevexp = absexp; |
396 |
for(i=0,j=0; i<ngrps*3; i++) { |
397 |
prevexp += dexp[i] - 2;
|
398 |
if (prevexp > 24U) |
399 |
return -1; |
400 |
switch (group_size) {
|
401 |
case 4: dexps[j++] = prevexp; |
402 |
dexps[j++] = prevexp; |
403 |
case 2: dexps[j++] = prevexp; |
404 |
case 1: dexps[j++] = prevexp; |
405 |
} |
406 |
} |
407 |
return 0; |
408 |
} |
409 |
|
410 |
/**
|
411 |
* Generate transform coefficients for each coupled channel in the coupling
|
412 |
* range using the coupling coefficients and coupling coordinates.
|
413 |
* reference: Section 7.4.3 Coupling Coordinate Format
|
414 |
*/
|
415 |
static void calc_transform_coeffs_cpl(AC3DecodeContext *s) |
416 |
{ |
417 |
int i, j, ch, bnd, subbnd;
|
418 |
|
419 |
subbnd = -1;
|
420 |
i = s->start_freq[CPL_CH]; |
421 |
for(bnd=0; bnd<s->num_cpl_bands; bnd++) { |
422 |
do {
|
423 |
subbnd++; |
424 |
for(j=0; j<12; j++) { |
425 |
for(ch=1; ch<=s->fbw_channels; ch++) { |
426 |
if(s->channel_in_cpl[ch]) {
|
427 |
s->fixed_coeffs[ch][i] = ((int64_t)s->fixed_coeffs[CPL_CH][i] * (int64_t)s->cpl_coords[ch][bnd]) >> 23;
|
428 |
if (ch == 2 && s->phase_flags[bnd]) |
429 |
s->fixed_coeffs[ch][i] = -s->fixed_coeffs[ch][i]; |
430 |
} |
431 |
} |
432 |
i++; |
433 |
} |
434 |
} while(s->cpl_band_struct[subbnd]);
|
435 |
} |
436 |
} |
437 |
|
438 |
/**
|
439 |
* Grouped mantissas for 3-level 5-level and 11-level quantization
|
440 |
*/
|
441 |
typedef struct { |
442 |
int b1_mant[3]; |
443 |
int b2_mant[3]; |
444 |
int b4_mant[2]; |
445 |
int b1ptr;
|
446 |
int b2ptr;
|
447 |
int b4ptr;
|
448 |
} mant_groups; |
449 |
|
450 |
/**
|
451 |
* Decode the transform coefficients for a particular channel
|
452 |
* reference: Section 7.3 Quantization and Decoding of Mantissas
|
453 |
*/
|
454 |
static void ac3_decode_transform_coeffs_ch(AC3DecodeContext *s, int ch_index, mant_groups *m) |
455 |
{ |
456 |
GetBitContext *gbc = &s->gbc; |
457 |
int i, gcode, tbap, start, end;
|
458 |
uint8_t *exps; |
459 |
uint8_t *bap; |
460 |
int *coeffs;
|
461 |
|
462 |
exps = s->dexps[ch_index]; |
463 |
bap = s->bap[ch_index]; |
464 |
coeffs = s->fixed_coeffs[ch_index]; |
465 |
start = s->start_freq[ch_index]; |
466 |
end = s->end_freq[ch_index]; |
467 |
|
468 |
for (i = start; i < end; i++) {
|
469 |
tbap = bap[i]; |
470 |
switch (tbap) {
|
471 |
case 0: |
472 |
coeffs[i] = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000; |
473 |
break;
|
474 |
|
475 |
case 1: |
476 |
if(m->b1ptr > 2) { |
477 |
gcode = get_bits(gbc, 5);
|
478 |
m->b1_mant[0] = b1_mantissas[gcode][0]; |
479 |
m->b1_mant[1] = b1_mantissas[gcode][1]; |
480 |
m->b1_mant[2] = b1_mantissas[gcode][2]; |
481 |
m->b1ptr = 0;
|
482 |
} |
483 |
coeffs[i] = m->b1_mant[m->b1ptr++]; |
484 |
break;
|
485 |
|
486 |
case 2: |
487 |
if(m->b2ptr > 2) { |
488 |
gcode = get_bits(gbc, 7);
|
489 |
m->b2_mant[0] = b2_mantissas[gcode][0]; |
490 |
m->b2_mant[1] = b2_mantissas[gcode][1]; |
491 |
m->b2_mant[2] = b2_mantissas[gcode][2]; |
492 |
m->b2ptr = 0;
|
493 |
} |
494 |
coeffs[i] = m->b2_mant[m->b2ptr++]; |
495 |
break;
|
496 |
|
497 |
case 3: |
498 |
coeffs[i] = b3_mantissas[get_bits(gbc, 3)];
|
499 |
break;
|
500 |
|
501 |
case 4: |
502 |
if(m->b4ptr > 1) { |
503 |
gcode = get_bits(gbc, 7);
|
504 |
m->b4_mant[0] = b4_mantissas[gcode][0]; |
505 |
m->b4_mant[1] = b4_mantissas[gcode][1]; |
506 |
m->b4ptr = 0;
|
507 |
} |
508 |
coeffs[i] = m->b4_mant[m->b4ptr++]; |
509 |
break;
|
510 |
|
511 |
case 5: |
512 |
coeffs[i] = b5_mantissas[get_bits(gbc, 4)];
|
513 |
break;
|
514 |
|
515 |
default: {
|
516 |
/* asymmetric dequantization */
|
517 |
int qlevel = quantization_tab[tbap];
|
518 |
coeffs[i] = get_sbits(gbc, qlevel) << (24 - qlevel);
|
519 |
break;
|
520 |
} |
521 |
} |
522 |
coeffs[i] >>= exps[i]; |
523 |
} |
524 |
} |
525 |
|
526 |
/**
|
527 |
* Remove random dithering from coefficients with zero-bit mantissas
|
528 |
* reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
|
529 |
*/
|
530 |
static void remove_dithering(AC3DecodeContext *s) { |
531 |
int ch, i;
|
532 |
int end=0; |
533 |
int *coeffs;
|
534 |
uint8_t *bap; |
535 |
|
536 |
for(ch=1; ch<=s->fbw_channels; ch++) { |
537 |
if(!s->dither_flag[ch]) {
|
538 |
coeffs = s->fixed_coeffs[ch]; |
539 |
bap = s->bap[ch]; |
540 |
if(s->channel_in_cpl[ch])
|
541 |
end = s->start_freq[CPL_CH]; |
542 |
else
|
543 |
end = s->end_freq[ch]; |
544 |
for(i=0; i<end; i++) { |
545 |
if(!bap[i])
|
546 |
coeffs[i] = 0;
|
547 |
} |
548 |
if(s->channel_in_cpl[ch]) {
|
549 |
bap = s->bap[CPL_CH]; |
550 |
for(; i<s->end_freq[CPL_CH]; i++) {
|
551 |
if(!bap[i])
|
552 |
coeffs[i] = 0;
|
553 |
} |
554 |
} |
555 |
} |
556 |
} |
557 |
} |
558 |
|
559 |
static void decode_transform_coeffs_ch(AC3DecodeContext *s, int blk, int ch, |
560 |
mant_groups *m) |
561 |
{ |
562 |
if (!s->channel_uses_aht[ch]) {
|
563 |
ac3_decode_transform_coeffs_ch(s, ch, m); |
564 |
} else {
|
565 |
/* if AHT is used, mantissas for all blocks are encoded in the first
|
566 |
block of the frame. */
|
567 |
int bin;
|
568 |
if (!blk)
|
569 |
ff_eac3_decode_transform_coeffs_aht_ch(s, ch); |
570 |
for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
|
571 |
s->fixed_coeffs[ch][bin] = s->pre_mantissa[ch][bin][blk] >> s->dexps[ch][bin]; |
572 |
} |
573 |
} |
574 |
} |
575 |
|
576 |
/**
|
577 |
* Decode the transform coefficients.
|
578 |
*/
|
579 |
static void decode_transform_coeffs(AC3DecodeContext *s, int blk) |
580 |
{ |
581 |
int ch, end;
|
582 |
int got_cplchan = 0; |
583 |
mant_groups m; |
584 |
|
585 |
m.b1ptr = m.b2ptr = m.b4ptr = 3;
|
586 |
|
587 |
for (ch = 1; ch <= s->channels; ch++) { |
588 |
/* transform coefficients for full-bandwidth channel */
|
589 |
decode_transform_coeffs_ch(s, blk, ch, &m); |
590 |
/* tranform coefficients for coupling channel come right after the
|
591 |
coefficients for the first coupled channel*/
|
592 |
if (s->channel_in_cpl[ch]) {
|
593 |
if (!got_cplchan) {
|
594 |
decode_transform_coeffs_ch(s, blk, CPL_CH, &m); |
595 |
calc_transform_coeffs_cpl(s); |
596 |
got_cplchan = 1;
|
597 |
} |
598 |
end = s->end_freq[CPL_CH]; |
599 |
} else {
|
600 |
end = s->end_freq[ch]; |
601 |
} |
602 |
do
|
603 |
s->fixed_coeffs[ch][end] = 0;
|
604 |
while(++end < 256); |
605 |
} |
606 |
|
607 |
/* zero the dithered coefficients for appropriate channels */
|
608 |
remove_dithering(s); |
609 |
} |
610 |
|
611 |
/**
|
612 |
* Stereo rematrixing.
|
613 |
* reference: Section 7.5.4 Rematrixing : Decoding Technique
|
614 |
*/
|
615 |
static void do_rematrixing(AC3DecodeContext *s) |
616 |
{ |
617 |
int bnd, i;
|
618 |
int end, bndend;
|
619 |
int tmp0, tmp1;
|
620 |
|
621 |
end = FFMIN(s->end_freq[1], s->end_freq[2]); |
622 |
|
623 |
for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) { |
624 |
if(s->rematrixing_flags[bnd]) {
|
625 |
bndend = FFMIN(end, ff_ac3_rematrix_band_tab[bnd+1]);
|
626 |
for(i=ff_ac3_rematrix_band_tab[bnd]; i<bndend; i++) {
|
627 |
tmp0 = s->fixed_coeffs[1][i];
|
628 |
tmp1 = s->fixed_coeffs[2][i];
|
629 |
s->fixed_coeffs[1][i] = tmp0 + tmp1;
|
630 |
s->fixed_coeffs[2][i] = tmp0 - tmp1;
|
631 |
} |
632 |
} |
633 |
} |
634 |
} |
635 |
|
636 |
/**
|
637 |
* Inverse MDCT Transform.
|
638 |
* Convert frequency domain coefficients to time-domain audio samples.
|
639 |
* reference: Section 7.9.4 Transformation Equations
|
640 |
*/
|
641 |
static inline void do_imdct(AC3DecodeContext *s, int channels) |
642 |
{ |
643 |
int ch;
|
644 |
float add_bias = s->add_bias;
|
645 |
if(s->out_channels==1 && channels>1) |
646 |
add_bias *= LEVEL_MINUS_3DB; // compensate for the gain in downmix
|
647 |
|
648 |
for (ch=1; ch<=channels; ch++) { |
649 |
if (s->block_switch[ch]) {
|
650 |
int i;
|
651 |
float *x = s->tmp_output+128; |
652 |
for(i=0; i<128; i++) |
653 |
x[i] = s->transform_coeffs[ch][2*i];
|
654 |
ff_imdct_half(&s->imdct_256, s->tmp_output, x); |
655 |
s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128); |
656 |
for(i=0; i<128; i++) |
657 |
x[i] = s->transform_coeffs[ch][2*i+1]; |
658 |
ff_imdct_half(&s->imdct_256, s->delay[ch-1], x);
|
659 |
} else {
|
660 |
ff_imdct_half(&s->imdct_512, s->tmp_output, s->transform_coeffs[ch]); |
661 |
s->dsp.vector_fmul_window(s->output[ch-1], s->delay[ch-1], s->tmp_output, s->window, add_bias, 128); |
662 |
memcpy(s->delay[ch-1], s->tmp_output+128, 128*sizeof(float)); |
663 |
} |
664 |
} |
665 |
} |
666 |
|
667 |
/**
|
668 |
* Downmix the output to mono or stereo.
|
669 |
*/
|
670 |
void ff_ac3_downmix_c(float (*samples)[256], float (*matrix)[2], int out_ch, int in_ch, int len) |
671 |
{ |
672 |
int i, j;
|
673 |
float v0, v1;
|
674 |
if(out_ch == 2) { |
675 |
for(i=0; i<len; i++) { |
676 |
v0 = v1 = 0.0f; |
677 |
for(j=0; j<in_ch; j++) { |
678 |
v0 += samples[j][i] * matrix[j][0];
|
679 |
v1 += samples[j][i] * matrix[j][1];
|
680 |
} |
681 |
samples[0][i] = v0;
|
682 |
samples[1][i] = v1;
|
683 |
} |
684 |
} else if(out_ch == 1) { |
685 |
for(i=0; i<len; i++) { |
686 |
v0 = 0.0f; |
687 |
for(j=0; j<in_ch; j++) |
688 |
v0 += samples[j][i] * matrix[j][0];
|
689 |
samples[0][i] = v0;
|
690 |
} |
691 |
} |
692 |
} |
693 |
|
694 |
/**
|
695 |
* Upmix delay samples from stereo to original channel layout.
|
696 |
*/
|
697 |
static void ac3_upmix_delay(AC3DecodeContext *s) |
698 |
{ |
699 |
int channel_data_size = sizeof(s->delay[0]); |
700 |
switch(s->channel_mode) {
|
701 |
case AC3_CHMODE_DUALMONO:
|
702 |
case AC3_CHMODE_STEREO:
|
703 |
/* upmix mono to stereo */
|
704 |
memcpy(s->delay[1], s->delay[0], channel_data_size); |
705 |
break;
|
706 |
case AC3_CHMODE_2F2R:
|
707 |
memset(s->delay[3], 0, channel_data_size); |
708 |
case AC3_CHMODE_2F1R:
|
709 |
memset(s->delay[2], 0, channel_data_size); |
710 |
break;
|
711 |
case AC3_CHMODE_3F2R:
|
712 |
memset(s->delay[4], 0, channel_data_size); |
713 |
case AC3_CHMODE_3F1R:
|
714 |
memset(s->delay[3], 0, channel_data_size); |
715 |
case AC3_CHMODE_3F:
|
716 |
memcpy(s->delay[2], s->delay[1], channel_data_size); |
717 |
memset(s->delay[1], 0, channel_data_size); |
718 |
break;
|
719 |
} |
720 |
} |
721 |
|
722 |
/**
|
723 |
* Decode band structure for coupling, spectral extension, or enhanced coupling.
|
724 |
* @param[in] gbc bit reader context
|
725 |
* @param[in] blk block number
|
726 |
* @param[in] eac3 flag to indicate E-AC-3
|
727 |
* @param[in] ecpl flag to indicate enhanced coupling
|
728 |
* @param[in] start_subband subband number for start of range
|
729 |
* @param[in] end_subband subband number for end of range
|
730 |
* @param[in] default_band_struct default band structure table
|
731 |
* @param[out] band_struct decoded band structure
|
732 |
* @param[out] num_subbands number of subbands (optionally NULL)
|
733 |
* @param[out] num_bands number of bands (optionally NULL)
|
734 |
* @param[out] band_sizes array containing the number of bins in each band (optionally NULL)
|
735 |
*/
|
736 |
static void decode_band_structure(GetBitContext *gbc, int blk, int eac3, |
737 |
int ecpl, int start_subband, int end_subband, |
738 |
const uint8_t *default_band_struct,
|
739 |
uint8_t *band_struct, int *num_subbands,
|
740 |
int *num_bands, uint8_t *band_sizes)
|
741 |
{ |
742 |
int subbnd, bnd, n_subbands, n_bands=0; |
743 |
uint8_t bnd_sz[22];
|
744 |
|
745 |
n_subbands = end_subband - start_subband; |
746 |
|
747 |
/* decode band structure from bitstream or use default */
|
748 |
if (!eac3 || get_bits1(gbc)) {
|
749 |
for (subbnd = 0; subbnd < n_subbands - 1; subbnd++) { |
750 |
band_struct[subbnd] = get_bits1(gbc); |
751 |
} |
752 |
} else if (!blk) { |
753 |
memcpy(band_struct, |
754 |
&default_band_struct[start_subband+1],
|
755 |
n_subbands-1);
|
756 |
} |
757 |
band_struct[n_subbands-1] = 0; |
758 |
|
759 |
/* calculate number of bands and band sizes based on band structure.
|
760 |
note that the first 4 subbands in enhanced coupling span only 6 bins
|
761 |
instead of 12. */
|
762 |
if (num_bands || band_sizes ) {
|
763 |
n_bands = n_subbands; |
764 |
bnd_sz[0] = ecpl ? 6 : 12; |
765 |
for (bnd = 0, subbnd = 1; subbnd < n_subbands; subbnd++) { |
766 |
int subbnd_size = (ecpl && subbnd < 4) ? 6 : 12; |
767 |
if (band_struct[subbnd-1]) { |
768 |
n_bands--; |
769 |
bnd_sz[bnd] += subbnd_size; |
770 |
} else {
|
771 |
bnd_sz[++bnd] = subbnd_size; |
772 |
} |
773 |
} |
774 |
} |
775 |
|
776 |
/* set optional output params */
|
777 |
if (num_subbands)
|
778 |
*num_subbands = n_subbands; |
779 |
if (num_bands)
|
780 |
*num_bands = n_bands; |
781 |
if (band_sizes)
|
782 |
memcpy(band_sizes, bnd_sz, n_bands); |
783 |
} |
784 |
|
785 |
/**
|
786 |
* Decode a single audio block from the AC-3 bitstream.
|
787 |
*/
|
788 |
static int decode_audio_block(AC3DecodeContext *s, int blk) |
789 |
{ |
790 |
int fbw_channels = s->fbw_channels;
|
791 |
int channel_mode = s->channel_mode;
|
792 |
int i, bnd, seg, ch;
|
793 |
int different_transforms;
|
794 |
int downmix_output;
|
795 |
int cpl_in_use;
|
796 |
GetBitContext *gbc = &s->gbc; |
797 |
uint8_t bit_alloc_stages[AC3_MAX_CHANNELS]; |
798 |
|
799 |
memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);
|
800 |
|
801 |
/* block switch flags */
|
802 |
different_transforms = 0;
|
803 |
if (s->block_switch_syntax) {
|
804 |
for (ch = 1; ch <= fbw_channels; ch++) { |
805 |
s->block_switch[ch] = get_bits1(gbc); |
806 |
if(ch > 1 && s->block_switch[ch] != s->block_switch[1]) |
807 |
different_transforms = 1;
|
808 |
} |
809 |
} |
810 |
|
811 |
/* dithering flags */
|
812 |
if (s->dither_flag_syntax) {
|
813 |
for (ch = 1; ch <= fbw_channels; ch++) { |
814 |
s->dither_flag[ch] = get_bits1(gbc); |
815 |
} |
816 |
} |
817 |
|
818 |
/* dynamic range */
|
819 |
i = !(s->channel_mode); |
820 |
do {
|
821 |
if(get_bits1(gbc)) {
|
822 |
s->dynamic_range[i] = ((dynamic_range_tab[get_bits(gbc, 8)]-1.0) * |
823 |
s->avctx->drc_scale)+1.0; |
824 |
} else if(blk == 0) { |
825 |
s->dynamic_range[i] = 1.0f; |
826 |
} |
827 |
} while(i--);
|
828 |
|
829 |
/* spectral extension strategy */
|
830 |
if (s->eac3 && (!blk || get_bits1(gbc))) {
|
831 |
if (get_bits1(gbc)) {
|
832 |
ff_log_missing_feature(s->avctx, "Spectral extension", 1); |
833 |
return -1; |
834 |
} |
835 |
/* TODO: parse spectral extension strategy info */
|
836 |
} |
837 |
|
838 |
/* TODO: spectral extension coordinates */
|
839 |
|
840 |
/* coupling strategy */
|
841 |
if (s->eac3 ? s->cpl_strategy_exists[blk] : get_bits1(gbc)) {
|
842 |
memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
|
843 |
if (!s->eac3)
|
844 |
s->cpl_in_use[blk] = get_bits1(gbc); |
845 |
if (s->cpl_in_use[blk]) {
|
846 |
/* coupling in use */
|
847 |
int cpl_start_subband, cpl_end_subband;
|
848 |
|
849 |
if (channel_mode < AC3_CHMODE_STEREO) {
|
850 |
av_log(s->avctx, AV_LOG_ERROR, "coupling not allowed in mono or dual-mono\n");
|
851 |
return -1; |
852 |
} |
853 |
|
854 |
/* check for enhanced coupling */
|
855 |
if (s->eac3 && get_bits1(gbc)) {
|
856 |
/* TODO: parse enhanced coupling strategy info */
|
857 |
ff_log_missing_feature(s->avctx, "Enhanced coupling", 1); |
858 |
return -1; |
859 |
} |
860 |
|
861 |
/* determine which channels are coupled */
|
862 |
if (s->eac3 && s->channel_mode == AC3_CHMODE_STEREO) {
|
863 |
s->channel_in_cpl[1] = 1; |
864 |
s->channel_in_cpl[2] = 1; |
865 |
} else {
|
866 |
for (ch = 1; ch <= fbw_channels; ch++) |
867 |
s->channel_in_cpl[ch] = get_bits1(gbc); |
868 |
} |
869 |
|
870 |
/* phase flags in use */
|
871 |
if (channel_mode == AC3_CHMODE_STEREO)
|
872 |
s->phase_flags_in_use = get_bits1(gbc); |
873 |
|
874 |
/* coupling frequency range */
|
875 |
/* TODO: modify coupling end freq if spectral extension is used */
|
876 |
cpl_start_subband = get_bits(gbc, 4);
|
877 |
cpl_end_subband = get_bits(gbc, 4) + 3; |
878 |
s->num_cpl_subbands = cpl_end_subband - cpl_start_subband; |
879 |
if (s->num_cpl_subbands < 0) { |
880 |
av_log(s->avctx, AV_LOG_ERROR, "invalid coupling range (%d > %d)\n",
|
881 |
cpl_start_subband, cpl_end_subband); |
882 |
return -1; |
883 |
} |
884 |
s->start_freq[CPL_CH] = cpl_start_subband * 12 + 37; |
885 |
s->end_freq[CPL_CH] = cpl_end_subband * 12 + 37; |
886 |
|
887 |
decode_band_structure(gbc, blk, s->eac3, 0,
|
888 |
cpl_start_subband, cpl_end_subband, |
889 |
ff_eac3_default_cpl_band_struct, |
890 |
s->cpl_band_struct, &s->num_cpl_subbands, |
891 |
&s->num_cpl_bands, NULL);
|
892 |
} else {
|
893 |
/* coupling not in use */
|
894 |
for (ch = 1; ch <= fbw_channels; ch++) { |
895 |
s->channel_in_cpl[ch] = 0;
|
896 |
s->first_cpl_coords[ch] = 1;
|
897 |
} |
898 |
s->first_cpl_leak = s->eac3; |
899 |
s->phase_flags_in_use = 0;
|
900 |
} |
901 |
} else if (!s->eac3) { |
902 |
if(!blk) {
|
903 |
av_log(s->avctx, AV_LOG_ERROR, "new coupling strategy must be present in block 0\n");
|
904 |
return -1; |
905 |
} else {
|
906 |
s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
|
907 |
} |
908 |
} |
909 |
cpl_in_use = s->cpl_in_use[blk]; |
910 |
|
911 |
/* coupling coordinates */
|
912 |
if (cpl_in_use) {
|
913 |
int cpl_coords_exist = 0; |
914 |
|
915 |
for (ch = 1; ch <= fbw_channels; ch++) { |
916 |
if (s->channel_in_cpl[ch]) {
|
917 |
if ((s->eac3 && s->first_cpl_coords[ch]) || get_bits1(gbc)) {
|
918 |
int master_cpl_coord, cpl_coord_exp, cpl_coord_mant;
|
919 |
s->first_cpl_coords[ch] = 0;
|
920 |
cpl_coords_exist = 1;
|
921 |
master_cpl_coord = 3 * get_bits(gbc, 2); |
922 |
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) { |
923 |
cpl_coord_exp = get_bits(gbc, 4);
|
924 |
cpl_coord_mant = get_bits(gbc, 4);
|
925 |
if (cpl_coord_exp == 15) |
926 |
s->cpl_coords[ch][bnd] = cpl_coord_mant << 22;
|
927 |
else
|
928 |
s->cpl_coords[ch][bnd] = (cpl_coord_mant + 16) << 21; |
929 |
s->cpl_coords[ch][bnd] >>= (cpl_coord_exp + master_cpl_coord); |
930 |
} |
931 |
} else if (!blk) { |
932 |
av_log(s->avctx, AV_LOG_ERROR, "new coupling coordinates must be present in block 0\n");
|
933 |
return -1; |
934 |
} |
935 |
} else {
|
936 |
/* channel not in coupling */
|
937 |
s->first_cpl_coords[ch] = 1;
|
938 |
} |
939 |
} |
940 |
/* phase flags */
|
941 |
if (channel_mode == AC3_CHMODE_STEREO && cpl_coords_exist) {
|
942 |
for (bnd = 0; bnd < s->num_cpl_bands; bnd++) { |
943 |
s->phase_flags[bnd] = s->phase_flags_in_use? get_bits1(gbc) : 0;
|
944 |
} |
945 |
} |
946 |
} |
947 |
|
948 |
/* stereo rematrixing strategy and band structure */
|
949 |
if (channel_mode == AC3_CHMODE_STEREO) {
|
950 |
if ((s->eac3 && !blk) || get_bits1(gbc)) {
|
951 |
s->num_rematrixing_bands = 4;
|
952 |
if(cpl_in_use && s->start_freq[CPL_CH] <= 61) |
953 |
s->num_rematrixing_bands -= 1 + (s->start_freq[CPL_CH] == 37); |
954 |
for(bnd=0; bnd<s->num_rematrixing_bands; bnd++) |
955 |
s->rematrixing_flags[bnd] = get_bits1(gbc); |
956 |
} else if (!blk) { |
957 |
av_log(s->avctx, AV_LOG_ERROR, "new rematrixing strategy must be present in block 0\n");
|
958 |
return -1; |
959 |
} |
960 |
} |
961 |
|
962 |
/* exponent strategies for each channel */
|
963 |
for (ch = !cpl_in_use; ch <= s->channels; ch++) {
|
964 |
if (!s->eac3)
|
965 |
s->exp_strategy[blk][ch] = get_bits(gbc, 2 - (ch == s->lfe_ch));
|
966 |
if(s->exp_strategy[blk][ch] != EXP_REUSE)
|
967 |
bit_alloc_stages[ch] = 3;
|
968 |
} |
969 |
|
970 |
/* channel bandwidth */
|
971 |
for (ch = 1; ch <= fbw_channels; ch++) { |
972 |
s->start_freq[ch] = 0;
|
973 |
if (s->exp_strategy[blk][ch] != EXP_REUSE) {
|
974 |
int group_size;
|
975 |
int prev = s->end_freq[ch];
|
976 |
if (s->channel_in_cpl[ch])
|
977 |
s->end_freq[ch] = s->start_freq[CPL_CH]; |
978 |
else {
|
979 |
int bandwidth_code = get_bits(gbc, 6); |
980 |
if (bandwidth_code > 60) { |
981 |
av_log(s->avctx, AV_LOG_ERROR, "bandwidth code = %d > 60\n", bandwidth_code);
|
982 |
return -1; |
983 |
} |
984 |
s->end_freq[ch] = bandwidth_code * 3 + 73; |
985 |
} |
986 |
group_size = 3 << (s->exp_strategy[blk][ch] - 1); |
987 |
s->num_exp_groups[ch] = (s->end_freq[ch]+group_size-4) / group_size;
|
988 |
if(blk > 0 && s->end_freq[ch] != prev) |
989 |
memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
|
990 |
} |
991 |
} |
992 |
if (cpl_in_use && s->exp_strategy[blk][CPL_CH] != EXP_REUSE) {
|
993 |
s->num_exp_groups[CPL_CH] = (s->end_freq[CPL_CH] - s->start_freq[CPL_CH]) / |
994 |
(3 << (s->exp_strategy[blk][CPL_CH] - 1)); |
995 |
} |
996 |
|
997 |
/* decode exponents for each channel */
|
998 |
for (ch = !cpl_in_use; ch <= s->channels; ch++) {
|
999 |
if (s->exp_strategy[blk][ch] != EXP_REUSE) {
|
1000 |
s->dexps[ch][0] = get_bits(gbc, 4) << !ch; |
1001 |
if (decode_exponents(gbc, s->exp_strategy[blk][ch],
|
1002 |
s->num_exp_groups[ch], s->dexps[ch][0],
|
1003 |
&s->dexps[ch][s->start_freq[ch]+!!ch])) { |
1004 |
av_log(s->avctx, AV_LOG_ERROR, "exponent out-of-range\n");
|
1005 |
return -1; |
1006 |
} |
1007 |
if(ch != CPL_CH && ch != s->lfe_ch)
|
1008 |
skip_bits(gbc, 2); /* skip gainrng */ |
1009 |
} |
1010 |
} |
1011 |
|
1012 |
/* bit allocation information */
|
1013 |
if (s->bit_allocation_syntax) {
|
1014 |
if (get_bits1(gbc)) {
|
1015 |
s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
|
1016 |
s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[get_bits(gbc, 2)] >> s->bit_alloc_params.sr_shift;
|
1017 |
s->bit_alloc_params.slow_gain = ff_ac3_slow_gain_tab[get_bits(gbc, 2)];
|
1018 |
s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[get_bits(gbc, 2)];
|
1019 |
s->bit_alloc_params.floor = ff_ac3_floor_tab[get_bits(gbc, 3)];
|
1020 |
for(ch=!cpl_in_use; ch<=s->channels; ch++)
|
1021 |
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
|
1022 |
} else if (!blk) { |
1023 |
av_log(s->avctx, AV_LOG_ERROR, "new bit allocation info must be present in block 0\n");
|
1024 |
return -1; |
1025 |
} |
1026 |
} |
1027 |
|
1028 |
/* signal-to-noise ratio offsets and fast gains (signal-to-mask ratios) */
|
1029 |
if(!s->eac3 || !blk){
|
1030 |
if(s->snr_offset_strategy && get_bits1(gbc)) {
|
1031 |
int snr = 0; |
1032 |
int csnr;
|
1033 |
csnr = (get_bits(gbc, 6) - 15) << 4; |
1034 |
for (i = ch = !cpl_in_use; ch <= s->channels; ch++) {
|
1035 |
/* snr offset */
|
1036 |
if (ch == i || s->snr_offset_strategy == 2) |
1037 |
snr = (csnr + get_bits(gbc, 4)) << 2; |
1038 |
/* run at least last bit allocation stage if snr offset changes */
|
1039 |
if(blk && s->snr_offset[ch] != snr) {
|
1040 |
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 1);
|
1041 |
} |
1042 |
s->snr_offset[ch] = snr; |
1043 |
|
1044 |
/* fast gain (normal AC-3 only) */
|
1045 |
if (!s->eac3) {
|
1046 |
int prev = s->fast_gain[ch];
|
1047 |
s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
|
1048 |
/* run last 2 bit allocation stages if fast gain changes */
|
1049 |
if(blk && prev != s->fast_gain[ch])
|
1050 |
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
|
1051 |
} |
1052 |
} |
1053 |
} else if (!s->eac3 && !blk) { |
1054 |
av_log(s->avctx, AV_LOG_ERROR, "new snr offsets must be present in block 0\n");
|
1055 |
return -1; |
1056 |
} |
1057 |
} |
1058 |
|
1059 |
/* fast gain (E-AC-3 only) */
|
1060 |
if (s->fast_gain_syntax && get_bits1(gbc)) {
|
1061 |
for (ch = !cpl_in_use; ch <= s->channels; ch++) {
|
1062 |
int prev = s->fast_gain[ch];
|
1063 |
s->fast_gain[ch] = ff_ac3_fast_gain_tab[get_bits(gbc, 3)];
|
1064 |
/* run last 2 bit allocation stages if fast gain changes */
|
1065 |
if(blk && prev != s->fast_gain[ch])
|
1066 |
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
|
1067 |
} |
1068 |
} else if (s->eac3 && !blk) { |
1069 |
for (ch = !cpl_in_use; ch <= s->channels; ch++)
|
1070 |
s->fast_gain[ch] = ff_ac3_fast_gain_tab[4];
|
1071 |
} |
1072 |
|
1073 |
/* E-AC-3 to AC-3 converter SNR offset */
|
1074 |
if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT && get_bits1(gbc)) {
|
1075 |
skip_bits(gbc, 10); // skip converter snr offset |
1076 |
} |
1077 |
|
1078 |
/* coupling leak information */
|
1079 |
if (cpl_in_use) {
|
1080 |
if (s->first_cpl_leak || get_bits1(gbc)) {
|
1081 |
int fl = get_bits(gbc, 3); |
1082 |
int sl = get_bits(gbc, 3); |
1083 |
/* run last 2 bit allocation stages for coupling channel if
|
1084 |
coupling leak changes */
|
1085 |
if(blk && (fl != s->bit_alloc_params.cpl_fast_leak ||
|
1086 |
sl != s->bit_alloc_params.cpl_slow_leak)) { |
1087 |
bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
|
1088 |
} |
1089 |
s->bit_alloc_params.cpl_fast_leak = fl; |
1090 |
s->bit_alloc_params.cpl_slow_leak = sl; |
1091 |
} else if (!s->eac3 && !blk) { |
1092 |
av_log(s->avctx, AV_LOG_ERROR, "new coupling leak info must be present in block 0\n");
|
1093 |
return -1; |
1094 |
} |
1095 |
s->first_cpl_leak = 0;
|
1096 |
} |
1097 |
|
1098 |
/* delta bit allocation information */
|
1099 |
if (s->dba_syntax && get_bits1(gbc)) {
|
1100 |
/* delta bit allocation exists (strategy) */
|
1101 |
for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
|
1102 |
s->dba_mode[ch] = get_bits(gbc, 2);
|
1103 |
if (s->dba_mode[ch] == DBA_RESERVED) {
|
1104 |
av_log(s->avctx, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
|
1105 |
return -1; |
1106 |
} |
1107 |
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
|
1108 |
} |
1109 |
/* channel delta offset, len and bit allocation */
|
1110 |
for (ch = !cpl_in_use; ch <= fbw_channels; ch++) {
|
1111 |
if (s->dba_mode[ch] == DBA_NEW) {
|
1112 |
s->dba_nsegs[ch] = get_bits(gbc, 3);
|
1113 |
for (seg = 0; seg <= s->dba_nsegs[ch]; seg++) { |
1114 |
s->dba_offsets[ch][seg] = get_bits(gbc, 5);
|
1115 |
s->dba_lengths[ch][seg] = get_bits(gbc, 4);
|
1116 |
s->dba_values[ch][seg] = get_bits(gbc, 3);
|
1117 |
} |
1118 |
/* run last 2 bit allocation stages if new dba values */
|
1119 |
bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
|
1120 |
} |
1121 |
} |
1122 |
} else if(blk == 0) { |
1123 |
for(ch=0; ch<=s->channels; ch++) { |
1124 |
s->dba_mode[ch] = DBA_NONE; |
1125 |
} |
1126 |
} |
1127 |
|
1128 |
/* Bit allocation */
|
1129 |
for(ch=!cpl_in_use; ch<=s->channels; ch++) {
|
1130 |
if(bit_alloc_stages[ch] > 2) { |
1131 |
/* Exponent mapping into PSD and PSD integration */
|
1132 |
ff_ac3_bit_alloc_calc_psd(s->dexps[ch], |
1133 |
s->start_freq[ch], s->end_freq[ch], |
1134 |
s->psd[ch], s->band_psd[ch]); |
1135 |
} |
1136 |
if(bit_alloc_stages[ch] > 1) { |
1137 |
/* Compute excitation function, Compute masking curve, and
|
1138 |
Apply delta bit allocation */
|
1139 |
if (ff_ac3_bit_alloc_calc_mask(&s->bit_alloc_params, s->band_psd[ch],
|
1140 |
s->start_freq[ch], s->end_freq[ch], |
1141 |
s->fast_gain[ch], (ch == s->lfe_ch), |
1142 |
s->dba_mode[ch], s->dba_nsegs[ch], |
1143 |
s->dba_offsets[ch], s->dba_lengths[ch], |
1144 |
s->dba_values[ch], s->mask[ch])) { |
1145 |
av_log(s->avctx, AV_LOG_ERROR, "error in bit allocation\n");
|
1146 |
return -1; |
1147 |
} |
1148 |
} |
1149 |
if(bit_alloc_stages[ch] > 0) { |
1150 |
/* Compute bit allocation */
|
1151 |
const uint8_t *bap_tab = s->channel_uses_aht[ch] ?
|
1152 |
ff_eac3_hebap_tab : ff_ac3_bap_tab; |
1153 |
ff_ac3_bit_alloc_calc_bap(s->mask[ch], s->psd[ch], |
1154 |
s->start_freq[ch], s->end_freq[ch], |
1155 |
s->snr_offset[ch], |
1156 |
s->bit_alloc_params.floor, |
1157 |
bap_tab, s->bap[ch]); |
1158 |
} |
1159 |
} |
1160 |
|
1161 |
/* unused dummy data */
|
1162 |
if (s->skip_syntax && get_bits1(gbc)) {
|
1163 |
int skipl = get_bits(gbc, 9); |
1164 |
while(skipl--)
|
1165 |
skip_bits(gbc, 8);
|
1166 |
} |
1167 |
|
1168 |
/* unpack the transform coefficients
|
1169 |
this also uncouples channels if coupling is in use. */
|
1170 |
decode_transform_coeffs(s, blk); |
1171 |
|
1172 |
/* TODO: generate enhanced coupling coordinates and uncouple */
|
1173 |
|
1174 |
/* TODO: apply spectral extension */
|
1175 |
|
1176 |
/* recover coefficients if rematrixing is in use */
|
1177 |
if(s->channel_mode == AC3_CHMODE_STEREO)
|
1178 |
do_rematrixing(s); |
1179 |
|
1180 |
/* apply scaling to coefficients (headroom, dynrng) */
|
1181 |
for(ch=1; ch<=s->channels; ch++) { |
1182 |
float gain = s->mul_bias / 4194304.0f; |
1183 |
if(s->channel_mode == AC3_CHMODE_DUALMONO) {
|
1184 |
gain *= s->dynamic_range[ch-1];
|
1185 |
} else {
|
1186 |
gain *= s->dynamic_range[0];
|
1187 |
} |
1188 |
s->dsp.int32_to_float_fmul_scalar(s->transform_coeffs[ch], s->fixed_coeffs[ch], gain, 256);
|
1189 |
} |
1190 |
|
1191 |
/* downmix and MDCT. order depends on whether block switching is used for
|
1192 |
any channel in this block. this is because coefficients for the long
|
1193 |
and short transforms cannot be mixed. */
|
1194 |
downmix_output = s->channels != s->out_channels && |
1195 |
!((s->output_mode & AC3_OUTPUT_LFEON) && |
1196 |
s->fbw_channels == s->out_channels); |
1197 |
if(different_transforms) {
|
1198 |
/* the delay samples have already been downmixed, so we upmix the delay
|
1199 |
samples in order to reconstruct all channels before downmixing. */
|
1200 |
if(s->downmixed) {
|
1201 |
s->downmixed = 0;
|
1202 |
ac3_upmix_delay(s); |
1203 |
} |
1204 |
|
1205 |
do_imdct(s, s->channels); |
1206 |
|
1207 |
if(downmix_output) {
|
1208 |
s->dsp.ac3_downmix(s->output, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256);
|
1209 |
} |
1210 |
} else {
|
1211 |
if(downmix_output) {
|
1212 |
s->dsp.ac3_downmix(s->transform_coeffs+1, s->downmix_coeffs, s->out_channels, s->fbw_channels, 256); |
1213 |
} |
1214 |
|
1215 |
if(downmix_output && !s->downmixed) {
|
1216 |
s->downmixed = 1;
|
1217 |
s->dsp.ac3_downmix(s->delay, s->downmix_coeffs, s->out_channels, s->fbw_channels, 128);
|
1218 |
} |
1219 |
|
1220 |
do_imdct(s, s->out_channels); |
1221 |
} |
1222 |
|
1223 |
return 0; |
1224 |
} |
1225 |
|
1226 |
/**
|
1227 |
* Decode a single AC-3 frame.
|
1228 |
*/
|
1229 |
static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, |
1230 |
AVPacket *avpkt) |
1231 |
{ |
1232 |
const uint8_t *buf = avpkt->data;
|
1233 |
int buf_size = avpkt->size;
|
1234 |
AC3DecodeContext *s = avctx->priv_data; |
1235 |
int16_t *out_samples = (int16_t *)data; |
1236 |
int blk, ch, err;
|
1237 |
const uint8_t *channel_map;
|
1238 |
|
1239 |
/* initialize the GetBitContext with the start of valid AC-3 Frame */
|
1240 |
if (s->input_buffer) {
|
1241 |
/* copy input buffer to decoder context to avoid reading past the end
|
1242 |
of the buffer, which can be caused by a damaged input stream. */
|
1243 |
memcpy(s->input_buffer, buf, FFMIN(buf_size, AC3_FRAME_BUFFER_SIZE)); |
1244 |
init_get_bits(&s->gbc, s->input_buffer, buf_size * 8);
|
1245 |
} else {
|
1246 |
init_get_bits(&s->gbc, buf, buf_size * 8);
|
1247 |
} |
1248 |
|
1249 |
/* parse the syncinfo */
|
1250 |
*data_size = 0;
|
1251 |
err = parse_frame_header(s); |
1252 |
|
1253 |
/* check that reported frame size fits in input buffer */
|
1254 |
if(s->frame_size > buf_size) {
|
1255 |
av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
|
1256 |
err = AAC_AC3_PARSE_ERROR_FRAME_SIZE; |
1257 |
} |
1258 |
|
1259 |
/* check for crc mismatch */
|
1260 |
if(err != AAC_AC3_PARSE_ERROR_FRAME_SIZE && avctx->error_recognition >= FF_ER_CAREFUL) {
|
1261 |
if(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, &buf[2], s->frame_size-2)) { |
1262 |
av_log(avctx, AV_LOG_ERROR, "frame CRC mismatch\n");
|
1263 |
err = AAC_AC3_PARSE_ERROR_CRC; |
1264 |
} |
1265 |
} |
1266 |
|
1267 |
if(err && err != AAC_AC3_PARSE_ERROR_CRC) {
|
1268 |
switch(err) {
|
1269 |
case AAC_AC3_PARSE_ERROR_SYNC:
|
1270 |
av_log(avctx, AV_LOG_ERROR, "frame sync error\n");
|
1271 |
return -1; |
1272 |
case AAC_AC3_PARSE_ERROR_BSID:
|
1273 |
av_log(avctx, AV_LOG_ERROR, "invalid bitstream id\n");
|
1274 |
break;
|
1275 |
case AAC_AC3_PARSE_ERROR_SAMPLE_RATE:
|
1276 |
av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
|
1277 |
break;
|
1278 |
case AAC_AC3_PARSE_ERROR_FRAME_SIZE:
|
1279 |
av_log(avctx, AV_LOG_ERROR, "invalid frame size\n");
|
1280 |
break;
|
1281 |
case AAC_AC3_PARSE_ERROR_FRAME_TYPE:
|
1282 |
/* skip frame if CRC is ok. otherwise use error concealment. */
|
1283 |
/* TODO: add support for substreams and dependent frames */
|
1284 |
if(s->frame_type == EAC3_FRAME_TYPE_DEPENDENT || s->substreamid) {
|
1285 |
av_log(avctx, AV_LOG_ERROR, "unsupported frame type : skipping frame\n");
|
1286 |
return s->frame_size;
|
1287 |
} else {
|
1288 |
av_log(avctx, AV_LOG_ERROR, "invalid frame type\n");
|
1289 |
} |
1290 |
break;
|
1291 |
default:
|
1292 |
av_log(avctx, AV_LOG_ERROR, "invalid header\n");
|
1293 |
break;
|
1294 |
} |
1295 |
} |
1296 |
|
1297 |
/* if frame is ok, set audio parameters */
|
1298 |
if (!err) {
|
1299 |
avctx->sample_rate = s->sample_rate; |
1300 |
avctx->bit_rate = s->bit_rate; |
1301 |
|
1302 |
/* channel config */
|
1303 |
s->out_channels = s->channels; |
1304 |
s->output_mode = s->channel_mode; |
1305 |
if(s->lfe_on)
|
1306 |
s->output_mode |= AC3_OUTPUT_LFEON; |
1307 |
if (avctx->request_channels > 0 && avctx->request_channels <= 2 && |
1308 |
avctx->request_channels < s->channels) { |
1309 |
s->out_channels = avctx->request_channels; |
1310 |
s->output_mode = avctx->request_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
|
1311 |
s->channel_layout = ff_ac3_channel_layout_tab[s->output_mode]; |
1312 |
} |
1313 |
avctx->channels = s->out_channels; |
1314 |
avctx->channel_layout = s->channel_layout; |
1315 |
|
1316 |
/* set downmixing coefficients if needed */
|
1317 |
if(s->channels != s->out_channels && !((s->output_mode & AC3_OUTPUT_LFEON) &&
|
1318 |
s->fbw_channels == s->out_channels)) { |
1319 |
set_downmix_coeffs(s); |
1320 |
} |
1321 |
} else if (!s->out_channels) { |
1322 |
s->out_channels = avctx->channels; |
1323 |
if(s->out_channels < s->channels)
|
1324 |
s->output_mode = s->out_channels == 1 ? AC3_CHMODE_MONO : AC3_CHMODE_STEREO;
|
1325 |
} |
1326 |
|
1327 |
/* decode the audio blocks */
|
1328 |
channel_map = ff_ac3_dec_channel_map[s->output_mode & ~AC3_OUTPUT_LFEON][s->lfe_on]; |
1329 |
for (blk = 0; blk < s->num_blocks; blk++) { |
1330 |
const float *output[s->out_channels]; |
1331 |
if (!err && decode_audio_block(s, blk)) {
|
1332 |
av_log(avctx, AV_LOG_ERROR, "error decoding the audio block\n");
|
1333 |
err = 1;
|
1334 |
} |
1335 |
for (ch = 0; ch < s->out_channels; ch++) |
1336 |
output[ch] = s->output[channel_map[ch]]; |
1337 |
s->dsp.float_to_int16_interleave(out_samples, output, 256, s->out_channels);
|
1338 |
out_samples += 256 * s->out_channels;
|
1339 |
} |
1340 |
*data_size = s->num_blocks * 256 * avctx->channels * sizeof (int16_t); |
1341 |
return s->frame_size;
|
1342 |
} |
1343 |
|
1344 |
/**
|
1345 |
* Uninitialize the AC-3 decoder.
|
1346 |
*/
|
1347 |
static av_cold int ac3_decode_end(AVCodecContext *avctx) |
1348 |
{ |
1349 |
AC3DecodeContext *s = avctx->priv_data; |
1350 |
ff_mdct_end(&s->imdct_512); |
1351 |
ff_mdct_end(&s->imdct_256); |
1352 |
|
1353 |
av_freep(&s->input_buffer); |
1354 |
|
1355 |
return 0; |
1356 |
} |
1357 |
|
1358 |
AVCodec ac3_decoder = { |
1359 |
.name = "ac3",
|
1360 |
.type = CODEC_TYPE_AUDIO, |
1361 |
.id = CODEC_ID_AC3, |
1362 |
.priv_data_size = sizeof (AC3DecodeContext),
|
1363 |
.init = ac3_decode_init, |
1364 |
.close = ac3_decode_end, |
1365 |
.decode = ac3_decode_frame, |
1366 |
.long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
|
1367 |
}; |
1368 |
|
1369 |
AVCodec eac3_decoder = { |
1370 |
.name = "eac3",
|
1371 |
.type = CODEC_TYPE_AUDIO, |
1372 |
.id = CODEC_ID_EAC3, |
1373 |
.priv_data_size = sizeof (AC3DecodeContext),
|
1374 |
.init = ac3_decode_init, |
1375 |
.close = ac3_decode_end, |
1376 |
.decode = ac3_decode_frame, |
1377 |
.long_name = NULL_IF_CONFIG_SMALL("ATSC A/52B (AC-3, E-AC-3)"),
|
1378 |
}; |