Statistics
| Branch: | Revision:

ffmpeg / libavcodec / wmaprodec.c @ c5c20ae4

History | View | Annotate | Download (60.5 KB)

1 31c57185 Sascha Sommer
/*
2
 * Wmapro compatible decoder
3
 * Copyright (c) 2007 Baptiste Coudurier, Benjamin Larsson, Ulion
4
 * Copyright (c) 2008 - 2009 Sascha Sommer, Benjamin Larsson
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22
23
/**
24
 * @file  libavcodec/wmaprodec.c
25
 * @brief wmapro decoder implementation
26
 * Wmapro is an MDCT based codec comparable to wma standard or AAC.
27
 * The decoding therefore consists of the following steps:
28
 * - bitstream decoding
29
 * - reconstruction of per-channel data
30
 * - rescaling and inverse quantization
31
 * - IMDCT
32
 * - windowing and overlapp-add
33
 *
34
 * The compressed wmapro bitstream is split into individual packets.
35
 * Every such packet contains one or more wma frames.
36
 * The compressed frames may have a variable length and frames may
37
 * cross packet boundaries.
38
 * Common to all wmapro frames is the number of samples that are stored in
39
 * a frame.
40
 * The number of samples and a few other decode flags are stored
41
 * as extradata that has to be passed to the decoder.
42
 *
43
 * The wmapro frames themselves are again split into a variable number of
44
 * subframes. Every subframe contains the data for 2^N time domain samples
45
 * where N varies between 7 and 12.
46
 *
47
 * Example wmapro bitstream (in samples):
48
 *
49
 * ||   packet 0           || packet 1 || packet 2      packets
50
 * ---------------------------------------------------
51
 * || frame 0      || frame 1       || frame 2    ||    frames
52
 * ---------------------------------------------------
53
 * ||   |      |   ||   |   |   |   ||            ||    subframes of channel 0
54
 * ---------------------------------------------------
55
 * ||      |   |   ||   |   |   |   ||            ||    subframes of channel 1
56
 * ---------------------------------------------------
57
 *
58
 * The frame layouts for the individual channels of a wma frame does not need
59
 * to be the same.
60
 *
61
 * However, if the offsets and lengths of several subframes of a frame are the
62
 * same, the subframes of the channels can be grouped.
63
 * Every group may then use special coding techniques like M/S stereo coding
64
 * to improve the compression ratio. These channel transformations do not
65
 * need to be applied to a whole subframe. Instead, they can also work on
66
 * individual scale factor bands (see below).
67
 * The coefficients that carry the audio signal in the frequency domain
68
 * are transmitted as huffman-coded vectors with 4, 2 and 1 elements.
69
 * In addition to that, the encoder can switch to a runlevel coding scheme
70
 * by transmitting subframe_length / 128 zero coefficients.
71
 *
72
 * Before the audio signal can be converted to the time domain, the
73
 * coefficients have to be rescaled and inverse quantized.
74
 * A subframe is therefore split into several scale factor bands that get
75
 * scaled individually.
76
 * Scale factors are submitted for every frame but they might be shared
77
 * between the subframes of a channel. Scale factors are initially DPCM-coded.
78
 * Once scale factors are shared, the differences are transmitted as runlevel
79
 * codes.
80
 * Every subframe length and offset combination in the frame layout shares a
81
 * common quantization factor that can be adjusted for every channel by a
82
 * modifier.
83
 * After the inverse quantization, the coefficients get processed by an IMDCT.
84
 * The resulting values are then windowed with a sine window and the first half
85
 * of the values are added to the second half of the output from the previous
86
 * subframe in order to reconstruct the output samples.
87
 */
88
89 c1061cc7 Sascha Sommer
#include "avcodec.h"
90
#include "internal.h"
91
#include "get_bits.h"
92
#include "put_bits.h"
93
#include "wmaprodata.h"
94
#include "dsputil.h"
95
#include "wma.h"
96
97
/** current decoder limitations */
98
#define WMAPRO_MAX_CHANNELS    8                             ///< max number of handled channels
99
#define MAX_SUBFRAMES  32                                    ///< max number of subframes per channel
100
#define MAX_BANDS      29                                    ///< max number of scale factor bands
101 aac4b0a4 Sascha Sommer
#define MAX_FRAMESIZE  32768                                 ///< maximum compressed frame size
102 c1061cc7 Sascha Sommer
103
#define WMAPRO_BLOCK_MAX_BITS 12                                           ///< log2 of max block size
104
#define WMAPRO_BLOCK_MAX_SIZE (1 << WMAPRO_BLOCK_MAX_BITS)                 ///< maximum block size
105
#define WMAPRO_BLOCK_SIZES    (WMAPRO_BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1) ///< possible block sizes
106
107
108
#define VLCBITS            9
109
#define SCALEVLCBITS       8
110
#define VEC4MAXDEPTH    ((HUFF_VEC4_MAXBITS+VLCBITS-1)/VLCBITS)
111
#define VEC2MAXDEPTH    ((HUFF_VEC2_MAXBITS+VLCBITS-1)/VLCBITS)
112
#define VEC1MAXDEPTH    ((HUFF_VEC1_MAXBITS+VLCBITS-1)/VLCBITS)
113
#define SCALEMAXDEPTH   ((HUFF_SCALE_MAXBITS+SCALEVLCBITS-1)/SCALEVLCBITS)
114
#define SCALERLMAXDEPTH ((HUFF_SCALE_RL_MAXBITS+VLCBITS-1)/VLCBITS)
115
116
static VLC              sf_vlc;           ///< scale factor DPCM vlc
117
static VLC              sf_rl_vlc;        ///< scale factor run length vlc
118
static VLC              vec4_vlc;         ///< 4 coefficients per symbol
119
static VLC              vec2_vlc;         ///< 2 coefficients per symbol
120
static VLC              vec1_vlc;         ///< 1 coefficient per symbol
121
static VLC              coef_vlc[2];      ///< coefficient run length vlc codes
122
static float            sin64[33];        ///< sinus table for decorrelation
123
124
/**
125
 * @brief frame specific decoder context for a single channel
126
 */
127
typedef struct {
128
    int16_t  prev_block_len;                          ///< length of the previous block
129
    uint8_t  transmit_coefs;
130
    uint8_t  num_subframes;
131
    uint16_t subframe_len[MAX_SUBFRAMES];             ///< subframe length in samples
132
    uint16_t subframe_offset[MAX_SUBFRAMES];          ///< subframe positions in the current frame
133
    uint8_t  cur_subframe;                            ///< current subframe number
134
    uint16_t decoded_samples;                         ///< number of already processed samples
135
    uint8_t  grouped;                                 ///< channel is part of a group
136
    int      quant_step;                              ///< quantization step for the current subframe
137
    int8_t   reuse_sf;                                ///< share scale factors between subframes
138
    int8_t   scale_factor_step;                       ///< scaling step for the current subframe
139
    int      max_scale_factor;                        ///< maximum scale factor for the current subframe
140 7dca334d Sascha Sommer
    int      saved_scale_factors[2][MAX_BANDS];       ///< resampled and (previously) transmitted scale factor values
141
    int8_t   scale_factor_idx;                        ///< index for the transmitted scale factor values (used for resampling)
142
    int*     scale_factors;                           ///< pointer to the scale factor values used for decoding
143 c1061cc7 Sascha Sommer
    uint8_t  table_idx;                               ///< index in sf_offsets for the scale factor reference block
144
    float*   coeffs;                                  ///< pointer to the subframe decode buffer
145 84dc2d8a Måns Rullgård
    DECLARE_ALIGNED(16, float, out)[WMAPRO_BLOCK_MAX_SIZE + WMAPRO_BLOCK_MAX_SIZE / 2]; ///< output buffer
146 c1061cc7 Sascha Sommer
} WMAProChannelCtx;
147
148
/**
149
 * @brief channel group for channel transformations
150
 */
151
typedef struct {
152
    uint8_t num_channels;                                     ///< number of channels in the group
153
    int8_t  transform;                                        ///< transform on / off
154
    int8_t  transform_band[MAX_BANDS];                        ///< controls if the transform is enabled for a certain band
155
    float   decorrelation_matrix[WMAPRO_MAX_CHANNELS*WMAPRO_MAX_CHANNELS];
156
    float*  channel_data[WMAPRO_MAX_CHANNELS];                ///< transformation coefficients
157
} WMAProChannelGrp;
158
159
/**
160
 * @brief main decoder context
161
 */
162
typedef struct WMAProDecodeCtx {
163
    /* generic decoder variables */
164
    AVCodecContext*  avctx;                         ///< codec context for av_log
165
    DSPContext       dsp;                           ///< accelerated DSP functions
166
    uint8_t          frame_data[MAX_FRAMESIZE +
167
                      FF_INPUT_BUFFER_PADDING_SIZE];///< compressed frame data
168
    PutBitContext    pb;                            ///< context for filling the frame_data buffer
169 01b22147 Måns Rullgård
    FFTContext       mdct_ctx[WMAPRO_BLOCK_SIZES];  ///< MDCT context per block size
170 84dc2d8a Måns Rullgård
    DECLARE_ALIGNED(16, float, tmp)[WMAPRO_BLOCK_MAX_SIZE]; ///< IMDCT output buffer
171 c1061cc7 Sascha Sommer
    float*           windows[WMAPRO_BLOCK_SIZES];   ///< windows for the different block sizes
172
173
    /* frame size dependent frame information (set during initialization) */
174
    uint32_t         decode_flags;                  ///< used compression features
175
    uint8_t          len_prefix;                    ///< frame is prefixed with its length
176
    uint8_t          dynamic_range_compression;     ///< frame contains DRC data
177
    uint8_t          bits_per_sample;               ///< integer audio sample size for the unscaled IMDCT output (used to scale to [-1.0, 1.0])
178
    uint16_t         samples_per_frame;             ///< number of samples to output
179
    uint16_t         log2_frame_size;
180
    int8_t           num_channels;                  ///< number of channels in the stream (same as AVCodecContext.num_channels)
181
    int8_t           lfe_channel;                   ///< lfe channel index
182
    uint8_t          max_num_subframes;
183
    uint8_t          subframe_len_bits;             ///< number of bits used for the subframe length
184
    uint8_t          max_subframe_len_bit;          ///< flag indicating that the subframe is of maximum size when the first subframe length bit is 1
185
    uint16_t         min_samples_per_subframe;
186
    int8_t           num_sfb[WMAPRO_BLOCK_SIZES];   ///< scale factor bands per block size
187
    int16_t          sfb_offsets[WMAPRO_BLOCK_SIZES][MAX_BANDS];                    ///< scale factor band offsets (multiples of 4)
188
    int8_t           sf_offsets[WMAPRO_BLOCK_SIZES][WMAPRO_BLOCK_SIZES][MAX_BANDS]; ///< scale factor resample matrix
189
    int16_t          subwoofer_cutoffs[WMAPRO_BLOCK_SIZES]; ///< subwoofer cutoff values
190
191
    /* packet decode state */
192 20169324 Sascha Sommer
    GetBitContext    pgb;                           ///< bitstream reader context for the packet
193 bc7f96b1 Sascha Sommer
    uint8_t          packet_offset;                 ///< frame offset in the packet
194 c1061cc7 Sascha Sommer
    uint8_t          packet_sequence_number;        ///< current packet number
195
    int              num_saved_bits;                ///< saved number of bits
196
    int              frame_offset;                  ///< frame offset in the bit reservoir
197
    int              subframe_offset;               ///< subframe offset in the bit reservoir
198
    uint8_t          packet_loss;                   ///< set in case of bitstream error
199 5f28b5e7 Sascha Sommer
    uint8_t          packet_done;                   ///< set when a packet is fully decoded
200 c1061cc7 Sascha Sommer
201
    /* frame decode state */
202
    uint32_t         frame_num;                     ///< current frame number (not used for decoding)
203
    GetBitContext    gb;                            ///< bitstream reader context
204
    int              buf_bit_size;                  ///< buffer size in bits
205
    float*           samples;                       ///< current samplebuffer pointer
206
    float*           samples_end;                   ///< maximum samplebuffer pointer
207
    uint8_t          drc_gain;                      ///< gain for the DRC tool
208
    int8_t           skip_frame;                    ///< skip output step
209
    int8_t           parsed_all_subframes;          ///< all subframes decoded?
210
211
    /* subframe/block decode state */
212
    int16_t          subframe_len;                  ///< current subframe length
213
    int8_t           channels_for_cur_subframe;     ///< number of channels that contain the subframe
214
    int8_t           channel_indexes_for_cur_subframe[WMAPRO_MAX_CHANNELS];
215
    int8_t           num_bands;                     ///< number of scale factor bands
216
    int16_t*         cur_sfb_offsets;               ///< sfb offsets for the current block
217
    uint8_t          table_idx;                     ///< index for the num_sfb, sfb_offsets, sf_offsets and subwoofer_cutoffs tables
218
    int8_t           esc_len;                       ///< length of escaped coefficients
219
220
    uint8_t          num_chgroups;                  ///< number of channel groups
221
    WMAProChannelGrp chgroup[WMAPRO_MAX_CHANNELS];  ///< channel group information
222
223
    WMAProChannelCtx channel[WMAPRO_MAX_CHANNELS];  ///< per channel data
224
} WMAProDecodeCtx;
225
226
227
/**
228
 *@brief helper function to print the most important members of the context
229
 *@param s context
230
 */
231
static void av_cold dump_context(WMAProDecodeCtx *s)
232
{
233
#define PRINT(a, b)     av_log(s->avctx, AV_LOG_DEBUG, " %s = %d\n", a, b);
234
#define PRINT_HEX(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %x\n", a, b);
235
236
    PRINT("ed sample bit depth", s->bits_per_sample);
237
    PRINT_HEX("ed decode flags", s->decode_flags);
238
    PRINT("samples per frame",   s->samples_per_frame);
239
    PRINT("log2 frame size",     s->log2_frame_size);
240
    PRINT("max num subframes",   s->max_num_subframes);
241
    PRINT("len prefix",          s->len_prefix);
242
    PRINT("num channels",        s->num_channels);
243
}
244
245 da136c7e Sascha Sommer
/**
246
 *@brief Uninitialize the decoder and free all resources.
247
 *@param avctx codec context
248
 *@return 0 on success, < 0 otherwise
249
 */
250
static av_cold int decode_end(AVCodecContext *avctx)
251
{
252 c1061cc7 Sascha Sommer
    WMAProDecodeCtx *s = avctx->priv_data;
253 da136c7e Sascha Sommer
    int i;
254
255 b979e4a2 Diego Biurrun
    for (i = 0; i < WMAPRO_BLOCK_SIZES; i++)
256 da136c7e Sascha Sommer
        ff_mdct_end(&s->mdct_ctx[i]);
257
258
    return 0;
259
}
260
261
/**
262 c1061cc7 Sascha Sommer
 *@brief Initialize the decoder.
263
 *@param avctx codec context
264
 *@return 0 on success, -1 otherwise
265
 */
266
static av_cold int decode_init(AVCodecContext *avctx)
267
{
268
    WMAProDecodeCtx *s = avctx->priv_data;
269 e0b1d660 Diego Biurrun
    uint8_t *edata_ptr = avctx->extradata;
270 c1061cc7 Sascha Sommer
    unsigned int channel_mask;
271
    int i;
272
    int log2_max_num_subframes;
273
    int num_possible_block_sizes;
274
275
    s->avctx = avctx;
276
    dsputil_init(&s->dsp, avctx);
277
    init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE);
278
279
    avctx->sample_fmt = SAMPLE_FMT_FLT;
280
281
    if (avctx->extradata_size >= 18) {
282
        s->decode_flags    = AV_RL16(edata_ptr+14);
283
        channel_mask       = AV_RL32(edata_ptr+2);
284
        s->bits_per_sample = AV_RL16(edata_ptr);
285
        /** dump the extradata */
286
        for (i = 0; i < avctx->extradata_size; i++)
287
            dprintf(avctx, "[%x] ", avctx->extradata[i]);
288
        dprintf(avctx, "\n");
289
290
    } else {
291
        av_log_ask_for_sample(avctx, "Unknown extradata size\n");
292
        return AVERROR_INVALIDDATA;
293
    }
294
295
    /** generic init */
296
    s->log2_frame_size = av_log2(avctx->block_align) + 4;
297
298
    /** frame info */
299
    s->skip_frame  = 1; /** skip first frame */
300
    s->packet_loss = 1;
301
    s->len_prefix  = (s->decode_flags & 0x40);
302
303
    if (!s->len_prefix) {
304
        av_log_ask_for_sample(avctx, "no length prefix\n");
305
        return AVERROR_INVALIDDATA;
306
    }
307
308
    /** get frame len */
309
    s->samples_per_frame = 1 << ff_wma_get_frame_len_bits(avctx->sample_rate,
310
                                                          3, s->decode_flags);
311
312
    /** init previous block len */
313
    for (i = 0; i < avctx->channels; i++)
314
        s->channel[i].prev_block_len = s->samples_per_frame;
315
316
    /** subframe info */
317
    log2_max_num_subframes       = ((s->decode_flags & 0x38) >> 3);
318
    s->max_num_subframes         = 1 << log2_max_num_subframes;
319
    if (s->max_num_subframes == 16)
320
        s->max_subframe_len_bit = 1;
321
    s->subframe_len_bits = av_log2(log2_max_num_subframes) + 1;
322
323
    num_possible_block_sizes     = log2_max_num_subframes + 1;
324
    s->min_samples_per_subframe  = s->samples_per_frame / s->max_num_subframes;
325
    s->dynamic_range_compression = (s->decode_flags & 0x80);
326
327
    if (s->max_num_subframes > MAX_SUBFRAMES) {
328
        av_log(avctx, AV_LOG_ERROR, "invalid number of subframes %i\n",
329
               s->max_num_subframes);
330
        return AVERROR_INVALIDDATA;
331
    }
332
333
    s->num_channels = avctx->channels;
334
335
    /** extract lfe channel position */
336
    s->lfe_channel = -1;
337
338
    if (channel_mask & 8) {
339
        unsigned int mask;
340
        for (mask = 1; mask < 16; mask <<= 1) {
341
            if (channel_mask & mask)
342
                ++s->lfe_channel;
343
        }
344
    }
345
346 c5c20ae4 Stefano Sabatini
    if (s->num_channels < 0) {
347
        av_log(avctx, AV_LOG_ERROR, "invalid number of channels %d\n", s->num_channels);
348
        return AVERROR_INVALIDDATA;
349
    } else if (s->num_channels > WMAPRO_MAX_CHANNELS) {
350
        av_log_ask_for_sample(avctx, "unsupported number of channels\n");
351
        return AVERROR_PATCHWELCOME;
352 c1061cc7 Sascha Sommer
    }
353
354
    INIT_VLC_STATIC(&sf_vlc, SCALEVLCBITS, HUFF_SCALE_SIZE,
355
                    scale_huffbits, 1, 1,
356
                    scale_huffcodes, 2, 2, 616);
357
358
    INIT_VLC_STATIC(&sf_rl_vlc, VLCBITS, HUFF_SCALE_RL_SIZE,
359
                    scale_rl_huffbits, 1, 1,
360
                    scale_rl_huffcodes, 4, 4, 1406);
361
362
    INIT_VLC_STATIC(&coef_vlc[0], VLCBITS, HUFF_COEF0_SIZE,
363
                    coef0_huffbits, 1, 1,
364
                    coef0_huffcodes, 4, 4, 2108);
365
366
    INIT_VLC_STATIC(&coef_vlc[1], VLCBITS, HUFF_COEF1_SIZE,
367
                    coef1_huffbits, 1, 1,
368
                    coef1_huffcodes, 4, 4, 3912);
369
370
    INIT_VLC_STATIC(&vec4_vlc, VLCBITS, HUFF_VEC4_SIZE,
371
                    vec4_huffbits, 1, 1,
372
                    vec4_huffcodes, 2, 2, 604);
373
374
    INIT_VLC_STATIC(&vec2_vlc, VLCBITS, HUFF_VEC2_SIZE,
375
                    vec2_huffbits, 1, 1,
376
                    vec2_huffcodes, 2, 2, 562);
377
378
    INIT_VLC_STATIC(&vec1_vlc, VLCBITS, HUFF_VEC1_SIZE,
379
                    vec1_huffbits, 1, 1,
380
                    vec1_huffcodes, 2, 2, 562);
381
382
    /** calculate number of scale factor bands and their offsets
383
        for every possible block size */
384
    for (i = 0; i < num_possible_block_sizes; i++) {
385
        int subframe_len = s->samples_per_frame >> i;
386
        int x;
387
        int band = 1;
388
389
        s->sfb_offsets[i][0] = 0;
390
391 e0b1d660 Diego Biurrun
        for (x = 0; x < MAX_BANDS-1 && s->sfb_offsets[i][band - 1] < subframe_len; x++) {
392 c1061cc7 Sascha Sommer
            int offset = (subframe_len * 2 * critical_freq[x])
393
                          / s->avctx->sample_rate + 2;
394
            offset &= ~3;
395 e0b1d660 Diego Biurrun
            if (offset > s->sfb_offsets[i][band - 1])
396 c1061cc7 Sascha Sommer
                s->sfb_offsets[i][band++] = offset;
397
        }
398
        s->sfb_offsets[i][band - 1] = subframe_len;
399
        s->num_sfb[i]               = band - 1;
400
    }
401
402
403
    /** Scale factors can be shared between blocks of different size
404
        as every block has a different scale factor band layout.
405
        The matrix sf_offsets is needed to find the correct scale factor.
406
     */
407
408
    for (i = 0; i < num_possible_block_sizes; i++) {
409
        int b;
410
        for (b = 0; b < s->num_sfb[i]; b++) {
411
            int x;
412
            int offset = ((s->sfb_offsets[i][b]
413 e0b1d660 Diego Biurrun
                           + s->sfb_offsets[i][b + 1] - 1) << i) >> 1;
414 c1061cc7 Sascha Sommer
            for (x = 0; x < num_possible_block_sizes; x++) {
415
                int v = 0;
416
                while (s->sfb_offsets[x][v + 1] << x < offset)
417
                    ++v;
418
                s->sf_offsets[i][x][b] = v;
419
            }
420
        }
421
    }
422
423
    /** init MDCT, FIXME: only init needed sizes */
424
    for (i = 0; i < WMAPRO_BLOCK_SIZES; i++)
425
        ff_mdct_init(&s->mdct_ctx[i], BLOCK_MIN_BITS+1+i, 1,
426 e0b1d660 Diego Biurrun
                     1.0 / (1 << (BLOCK_MIN_BITS + i - 1))
427 c1061cc7 Sascha Sommer
                     / (1 << (s->bits_per_sample - 1)));
428
429
    /** init MDCT windows: simple sinus window */
430
    for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) {
431 6776061b Vitor Sessak
        const int win_idx = WMAPRO_BLOCK_MAX_BITS - i;
432 14b86070 Reimar Döffinger
        ff_init_ff_sine_windows(win_idx);
433 e0b1d660 Diego Biurrun
        s->windows[WMAPRO_BLOCK_SIZES - i - 1] = ff_sine_windows[win_idx];
434 c1061cc7 Sascha Sommer
    }
435
436
    /** calculate subwoofer cutoff values */
437
    for (i = 0; i < num_possible_block_sizes; i++) {
438
        int block_size = s->samples_per_frame >> i;
439
        int cutoff = (440*block_size + 3 * (s->avctx->sample_rate >> 1) - 1)
440
                     / s->avctx->sample_rate;
441
        s->subwoofer_cutoffs[i] = av_clip(cutoff, 4, block_size);
442
    }
443
444
    /** calculate sine values for the decorrelation matrix */
445
    for (i = 0; i < 33; i++)
446
        sin64[i] = sin(i*M_PI / 64.0);
447
448
    if (avctx->debug & FF_DEBUG_BITSTREAM)
449
        dump_context(s);
450
451
    avctx->channel_layout = channel_mask;
452
    return 0;
453
}
454
455
/**
456
 *@brief Decode the subframe length.
457
 *@param s context
458
 *@param offset sample offset in the frame
459
 *@return decoded subframe length on success, < 0 in case of an error
460
 */
461
static int decode_subframe_length(WMAProDecodeCtx *s, int offset)
462
{
463
    int frame_len_shift = 0;
464
    int subframe_len;
465
466
    /** no need to read from the bitstream when only one length is possible */
467
    if (offset == s->samples_per_frame - s->min_samples_per_subframe)
468
        return s->min_samples_per_subframe;
469
470
    /** 1 bit indicates if the subframe is of maximum length */
471
    if (s->max_subframe_len_bit) {
472
        if (get_bits1(&s->gb))
473
            frame_len_shift = 1 + get_bits(&s->gb, s->subframe_len_bits-1);
474
    } else
475
        frame_len_shift = get_bits(&s->gb, s->subframe_len_bits);
476
477
    subframe_len = s->samples_per_frame >> frame_len_shift;
478
479
    /** sanity check the length */
480 e0b1d660 Diego Biurrun
    if (subframe_len < s->min_samples_per_subframe ||
481
        subframe_len > s->samples_per_frame) {
482 c1061cc7 Sascha Sommer
        av_log(s->avctx, AV_LOG_ERROR, "broken frame: subframe_len %i\n",
483
               subframe_len);
484
        return AVERROR_INVALIDDATA;
485
    }
486
    return subframe_len;
487
}
488
489
/**
490
 *@brief Decode how the data in the frame is split into subframes.
491
 *       Every WMA frame contains the encoded data for a fixed number of
492
 *       samples per channel. The data for every channel might be split
493
 *       into several subframes. This function will reconstruct the list of
494
 *       subframes for every channel.
495
 *
496
 *       If the subframes are not evenly split, the algorithm estimates the
497
 *       channels with the lowest number of total samples.
498
 *       Afterwards, for each of these channels a bit is read from the
499
 *       bitstream that indicates if the channel contains a subframe with the
500
 *       next subframe size that is going to be read from the bitstream or not.
501
 *       If a channel contains such a subframe, the subframe size gets added to
502
 *       the channel's subframe list.
503
 *       The algorithm repeats these steps until the frame is properly divided
504
 *       between the individual channels.
505
 *
506
 *@param s context
507
 *@return 0 on success, < 0 in case of an error
508
 */
509
static int decode_tilehdr(WMAProDecodeCtx *s)
510
{
511
    uint16_t num_samples[WMAPRO_MAX_CHANNELS];        /** sum of samples for all currently known subframes of a channel */
512
    uint8_t  contains_subframe[WMAPRO_MAX_CHANNELS];  /** flag indicating if a channel contains the current subframe */
513
    int channels_for_cur_subframe = s->num_channels;  /** number of channels that contain the current subframe */
514
    int fixed_channel_layout = 0;                     /** flag indicating that all channels use the same subframe offsets and sizes */
515
    int min_channel_len = 0;                          /** smallest sum of samples (channels with this length will be processed first) */
516
    int c;
517
518
    /* Should never consume more than 3073 bits (256 iterations for the
519
     * while loop when always the minimum amount of 128 samples is substracted
520
     * from missing samples in the 8 channel case).
521
     * 1 + BLOCK_MAX_SIZE * MAX_CHANNELS / BLOCK_MIN_SIZE * (MAX_CHANNELS  + 4)
522
     */
523
524
    /** reset tiling information */
525
    for (c = 0; c < s->num_channels; c++)
526
        s->channel[c].num_subframes = 0;
527
528
    memset(num_samples, 0, sizeof(num_samples));
529
530
    if (s->max_num_subframes == 1 || get_bits1(&s->gb))
531
        fixed_channel_layout = 1;
532
533
    /** loop until the frame data is split between the subframes */
534
    do {
535
        int subframe_len;
536
537
        /** check which channels contain the subframe */
538
        for (c = 0; c < s->num_channels; c++) {
539
            if (num_samples[c] == min_channel_len) {
540
                if (fixed_channel_layout || channels_for_cur_subframe == 1 ||
541
                   (min_channel_len == s->samples_per_frame - s->min_samples_per_subframe))
542
                    contains_subframe[c] = 1;
543
                else
544
                    contains_subframe[c] = get_bits1(&s->gb);
545
            } else
546
                contains_subframe[c] = 0;
547
        }
548
549
        /** get subframe length, subframe_len == 0 is not allowed */
550
        if ((subframe_len = decode_subframe_length(s, min_channel_len)) <= 0)
551
            return AVERROR_INVALIDDATA;
552
553
        /** add subframes to the individual channels and find new min_channel_len */
554
        min_channel_len += subframe_len;
555
        for (c = 0; c < s->num_channels; c++) {
556
            WMAProChannelCtx* chan = &s->channel[c];
557
558
            if (contains_subframe[c]) {
559
                if (chan->num_subframes >= MAX_SUBFRAMES) {
560
                    av_log(s->avctx, AV_LOG_ERROR,
561
                           "broken frame: num subframes > 31\n");
562
                    return AVERROR_INVALIDDATA;
563
                }
564
                chan->subframe_len[chan->num_subframes] = subframe_len;
565
                num_samples[c] += subframe_len;
566
                ++chan->num_subframes;
567
                if (num_samples[c] > s->samples_per_frame) {
568 e0b1d660 Diego Biurrun
                    av_log(s->avctx, AV_LOG_ERROR, "broken frame: "
569 c1061cc7 Sascha Sommer
                           "channel len > samples_per_frame\n");
570
                    return AVERROR_INVALIDDATA;
571
                }
572 e0b1d660 Diego Biurrun
            } else if (num_samples[c] <= min_channel_len) {
573 c1061cc7 Sascha Sommer
                if (num_samples[c] < min_channel_len) {
574
                    channels_for_cur_subframe = 0;
575
                    min_channel_len = num_samples[c];
576
                }
577
                ++channels_for_cur_subframe;
578
            }
579
        }
580
    } while (min_channel_len < s->samples_per_frame);
581
582
    for (c = 0; c < s->num_channels; c++) {
583
        int i;
584
        int offset = 0;
585
        for (i = 0; i < s->channel[c].num_subframes; i++) {
586
            dprintf(s->avctx, "frame[%i] channel[%i] subframe[%i]"
587 e0b1d660 Diego Biurrun
                    " len %i\n", s->frame_num, c, i,
588
                    s->channel[c].subframe_len[i]);
589 c1061cc7 Sascha Sommer
            s->channel[c].subframe_offset[i] = offset;
590
            offset += s->channel[c].subframe_len[i];
591
        }
592
    }
593
594
    return 0;
595
}
596
597
/**
598 da136c7e Sascha Sommer
 *@brief Calculate a decorrelation matrix from the bitstream parameters.
599
 *@param s codec context
600
 *@param chgroup channel group for which the matrix needs to be calculated
601
 */
602 c1061cc7 Sascha Sommer
static void decode_decorrelation_matrix(WMAProDecodeCtx *s,
603
                                        WMAProChannelGrp *chgroup)
604 da136c7e Sascha Sommer
{
605
    int i;
606
    int offset = 0;
607
    int8_t rotation_offset[WMAPRO_MAX_CHANNELS * WMAPRO_MAX_CHANNELS];
608 c1061cc7 Sascha Sommer
    memset(chgroup->decorrelation_matrix, 0, s->num_channels *
609
           s->num_channels * sizeof(*chgroup->decorrelation_matrix));
610 da136c7e Sascha Sommer
611 b25a8818 Diego Biurrun
    for (i = 0; i < chgroup->num_channels * (chgroup->num_channels - 1) >> 1; i++)
612 b979e4a2 Diego Biurrun
        rotation_offset[i] = get_bits(&s->gb, 6);
613 da136c7e Sascha Sommer
614 b25a8818 Diego Biurrun
    for (i = 0; i < chgroup->num_channels; i++)
615 da136c7e Sascha Sommer
        chgroup->decorrelation_matrix[chgroup->num_channels * i + i] =
616 e0b1d660 Diego Biurrun
            get_bits1(&s->gb) ? 1.0 : -1.0;
617 da136c7e Sascha Sommer
618 b25a8818 Diego Biurrun
    for (i = 1; i < chgroup->num_channels; i++) {
619 da136c7e Sascha Sommer
        int x;
620 b25a8818 Diego Biurrun
        for (x = 0; x < i; x++) {
621 da136c7e Sascha Sommer
            int y;
622 b979e4a2 Diego Biurrun
            for (y = 0; y < i + 1; y++) {
623 da136c7e Sascha Sommer
                float v1 = chgroup->decorrelation_matrix[x * chgroup->num_channels + y];
624
                float v2 = chgroup->decorrelation_matrix[i * chgroup->num_channels + y];
625
                int n = rotation_offset[offset + x];
626
                float sinv;
627
                float cosv;
628
629 b25a8818 Diego Biurrun
                if (n < 32) {
630 da136c7e Sascha Sommer
                    sinv = sin64[n];
631 e0b1d660 Diego Biurrun
                    cosv = sin64[32 - n];
632 da136c7e Sascha Sommer
                } else {
633 e0b1d660 Diego Biurrun
                    sinv =  sin64[64 -  n];
634
                    cosv = -sin64[n  - 32];
635 da136c7e Sascha Sommer
                }
636
637
                chgroup->decorrelation_matrix[y + x * chgroup->num_channels] =
638
                                               (v1 * sinv) - (v2 * cosv);
639
                chgroup->decorrelation_matrix[y + i * chgroup->num_channels] =
640
                                               (v1 * cosv) + (v2 * sinv);
641
            }
642
        }
643
        offset += i;
644
    }
645
}
646
647
/**
648 c1061cc7 Sascha Sommer
 *@brief Decode channel transformation parameters
649
 *@param s codec context
650
 *@return 0 in case of success, < 0 in case of bitstream errors
651
 */
652
static int decode_channel_transform(WMAProDecodeCtx* s)
653
{
654
    int i;
655
    /* should never consume more than 1921 bits for the 8 channel case
656 e0b1d660 Diego Biurrun
     * 1 + MAX_CHANNELS * (MAX_CHANNELS + 2 + 3 * MAX_CHANNELS * MAX_CHANNELS
657 c1061cc7 Sascha Sommer
     * + MAX_CHANNELS + MAX_BANDS + 1)
658
     */
659
660
    /** in the one channel case channel transforms are pointless */
661
    s->num_chgroups = 0;
662
    if (s->num_channels > 1) {
663
        int remaining_channels = s->channels_for_cur_subframe;
664
665
        if (get_bits1(&s->gb)) {
666
            av_log_ask_for_sample(s->avctx,
667
                                  "unsupported channel transform bit\n");
668
            return AVERROR_INVALIDDATA;
669
        }
670
671
        for (s->num_chgroups = 0; remaining_channels &&
672 e0b1d660 Diego Biurrun
             s->num_chgroups < s->channels_for_cur_subframe; s->num_chgroups++) {
673 c1061cc7 Sascha Sommer
            WMAProChannelGrp* chgroup = &s->chgroup[s->num_chgroups];
674
            float** channel_data = chgroup->channel_data;
675
            chgroup->num_channels = 0;
676
            chgroup->transform = 0;
677
678
            /** decode channel mask */
679
            if (remaining_channels > 2) {
680
                for (i = 0; i < s->channels_for_cur_subframe; i++) {
681
                    int channel_idx = s->channel_indexes_for_cur_subframe[i];
682
                    if (!s->channel[channel_idx].grouped
683
                        && get_bits1(&s->gb)) {
684
                        ++chgroup->num_channels;
685
                        s->channel[channel_idx].grouped = 1;
686
                        *channel_data++ = s->channel[channel_idx].coeffs;
687
                    }
688
                }
689
            } else {
690
                chgroup->num_channels = remaining_channels;
691
                for (i = 0; i < s->channels_for_cur_subframe; i++) {
692
                    int channel_idx = s->channel_indexes_for_cur_subframe[i];
693
                    if (!s->channel[channel_idx].grouped)
694
                        *channel_data++ = s->channel[channel_idx].coeffs;
695
                    s->channel[channel_idx].grouped = 1;
696
                }
697
            }
698
699
            /** decode transform type */
700
            if (chgroup->num_channels == 2) {
701
                if (get_bits1(&s->gb)) {
702
                    if (get_bits1(&s->gb)) {
703
                        av_log_ask_for_sample(s->avctx,
704 e0b1d660 Diego Biurrun
                                              "unsupported channel transform type\n");
705 c1061cc7 Sascha Sommer
                    }
706
                } else {
707
                    chgroup->transform = 1;
708
                    if (s->num_channels == 2) {
709
                        chgroup->decorrelation_matrix[0] =  1.0;
710
                        chgroup->decorrelation_matrix[1] = -1.0;
711
                        chgroup->decorrelation_matrix[2] =  1.0;
712
                        chgroup->decorrelation_matrix[3] =  1.0;
713
                    } else {
714
                        /** cos(pi/4) */
715
                        chgroup->decorrelation_matrix[0] =  0.70703125;
716
                        chgroup->decorrelation_matrix[1] = -0.70703125;
717
                        chgroup->decorrelation_matrix[2] =  0.70703125;
718
                        chgroup->decorrelation_matrix[3] =  0.70703125;
719
                    }
720
                }
721
            } else if (chgroup->num_channels > 2) {
722
                if (get_bits1(&s->gb)) {
723
                    chgroup->transform = 1;
724
                    if (get_bits1(&s->gb)) {
725
                        decode_decorrelation_matrix(s, chgroup);
726
                    } else {
727
                        /** FIXME: more than 6 coupled channels not supported */
728
                        if (chgroup->num_channels > 6) {
729
                            av_log_ask_for_sample(s->avctx,
730 e0b1d660 Diego Biurrun
                                                  "coupled channels > 6\n");
731 c1061cc7 Sascha Sommer
                        } else {
732
                            memcpy(chgroup->decorrelation_matrix,
733 e0b1d660 Diego Biurrun
                                   default_decorrelation[chgroup->num_channels],
734
                                   chgroup->num_channels * chgroup->num_channels *
735
                                   sizeof(*chgroup->decorrelation_matrix));
736 c1061cc7 Sascha Sommer
                        }
737
                    }
738
                }
739
            }
740
741
            /** decode transform on / off */
742
            if (chgroup->transform) {
743
                if (!get_bits1(&s->gb)) {
744
                    int i;
745
                    /** transform can be enabled for individual bands */
746
                    for (i = 0; i < s->num_bands; i++) {
747
                        chgroup->transform_band[i] = get_bits1(&s->gb);
748
                    }
749
                } else {
750
                    memset(chgroup->transform_band, 1, s->num_bands);
751
                }
752
            }
753
            remaining_channels -= chgroup->num_channels;
754
        }
755
    }
756
    return 0;
757
}
758
759
/**
760 85fecafe Sascha Sommer
 *@brief Extract the coefficients from the bitstream.
761
 *@param s codec context
762
 *@param c current channel number
763
 *@return 0 on success, < 0 in case of bitstream errors
764
 */
765 c1061cc7 Sascha Sommer
static int decode_coeffs(WMAProDecodeCtx *s, int c)
766 85fecafe Sascha Sommer
{
767 4df254f1 Måns Rullgård
    /* Integers 0..15 as single-precision floats.  The table saves a
768
       costly int to float conversion, and storing the values as
769
       integers allows fast sign-flipping. */
770
    static const int fval_tab[16] = {
771
        0x00000000, 0x3f800000, 0x40000000, 0x40400000,
772
        0x40800000, 0x40a00000, 0x40c00000, 0x40e00000,
773
        0x41000000, 0x41100000, 0x41200000, 0x41300000,
774
        0x41400000, 0x41500000, 0x41600000, 0x41700000,
775
    };
776 85fecafe Sascha Sommer
    int vlctable;
777
    VLC* vlc;
778 c1061cc7 Sascha Sommer
    WMAProChannelCtx* ci = &s->channel[c];
779 85fecafe Sascha Sommer
    int rl_mode = 0;
780
    int cur_coeff = 0;
781
    int num_zeros = 0;
782
    const uint16_t* run;
783 076a9dea Måns Rullgård
    const float* level;
784 85fecafe Sascha Sommer
785
    dprintf(s->avctx, "decode coefficients for channel %i\n", c);
786
787
    vlctable = get_bits1(&s->gb);
788
    vlc = &coef_vlc[vlctable];
789
790
    if (vlctable) {
791
        run = coef1_run;
792
        level = coef1_level;
793
    } else {
794
        run = coef0_run;
795
        level = coef0_level;
796
    }
797
798
    /** decode vector coefficients (consumes up to 167 bits per iteration for
799
      4 vector coded large values) */
800
    while (!rl_mode && cur_coeff + 3 < s->subframe_len) {
801
        int vals[4];
802
        int i;
803
        unsigned int idx;
804
805
        idx = get_vlc2(&s->gb, vec4_vlc.table, VLCBITS, VEC4MAXDEPTH);
806
807 ae925315 Diego Biurrun
        if (idx == HUFF_VEC4_SIZE - 1) {
808 85fecafe Sascha Sommer
            for (i = 0; i < 4; i += 2) {
809
                idx = get_vlc2(&s->gb, vec2_vlc.table, VLCBITS, VEC2MAXDEPTH);
810 ae925315 Diego Biurrun
                if (idx == HUFF_VEC2_SIZE - 1) {
811 4df254f1 Måns Rullgård
                    int v0, v1;
812
                    v0 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH);
813
                    if (v0 == HUFF_VEC1_SIZE - 1)
814
                        v0 += ff_wma_get_large_val(&s->gb);
815
                    v1 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH);
816
                    if (v1 == HUFF_VEC1_SIZE - 1)
817
                        v1 += ff_wma_get_large_val(&s->gb);
818
                    ((float*)vals)[i  ] = v0;
819
                    ((float*)vals)[i+1] = v1;
820 85fecafe Sascha Sommer
                } else {
821 4df254f1 Måns Rullgård
                    vals[i]   = fval_tab[symbol_to_vec2[idx] >> 4 ];
822
                    vals[i+1] = fval_tab[symbol_to_vec2[idx] & 0xF];
823 85fecafe Sascha Sommer
                }
824
            }
825
        } else {
826 4df254f1 Måns Rullgård
            vals[0] = fval_tab[ symbol_to_vec4[idx] >> 12      ];
827
            vals[1] = fval_tab[(symbol_to_vec4[idx] >> 8) & 0xF];
828
            vals[2] = fval_tab[(symbol_to_vec4[idx] >> 4) & 0xF];
829
            vals[3] = fval_tab[ symbol_to_vec4[idx]       & 0xF];
830 85fecafe Sascha Sommer
        }
831
832
        /** decode sign */
833
        for (i = 0; i < 4; i++) {
834
            if (vals[i]) {
835
                int sign = get_bits1(&s->gb) - 1;
836 4df254f1 Måns Rullgård
                *(uint32_t*)&ci->coeffs[cur_coeff] = vals[i] ^ sign<<31;
837 85fecafe Sascha Sommer
                num_zeros = 0;
838
            } else {
839 c1061cc7 Sascha Sommer
                ci->coeffs[cur_coeff] = 0;
840 85fecafe Sascha Sommer
                /** switch to run level mode when subframe_len / 128 zeros
841 e0b1d660 Diego Biurrun
                    were found in a row */
842
                rl_mode |= (++num_zeros > s->subframe_len >> 8);
843 85fecafe Sascha Sommer
            }
844
            ++cur_coeff;
845
        }
846
    }
847
848
    /** decode run level coded coefficients */
849
    if (rl_mode) {
850 c1061cc7 Sascha Sommer
        memset(&ci->coeffs[cur_coeff], 0,
851
               sizeof(*ci->coeffs) * (s->subframe_len - cur_coeff));
852 ae925315 Diego Biurrun
        if (ff_wma_run_level_decode(s->avctx, &s->gb, vlc,
853
                                    level, run, 1, ci->coeffs,
854
                                    cur_coeff, s->subframe_len,
855
                                    s->subframe_len, s->esc_len, 0))
856 85fecafe Sascha Sommer
            return AVERROR_INVALIDDATA;
857
    }
858
859
    return 0;
860
}
861
862
/**
863 c1061cc7 Sascha Sommer
 *@brief Extract scale factors from the bitstream.
864
 *@param s codec context
865
 *@return 0 on success, < 0 in case of bitstream errors
866
 */
867
static int decode_scale_factors(WMAProDecodeCtx* s)
868
{
869
    int i;
870
871
    /** should never consume more than 5344 bits
872
     *  MAX_CHANNELS * (1 +  MAX_BANDS * 23)
873
     */
874
875
    for (i = 0; i < s->channels_for_cur_subframe; i++) {
876
        int c = s->channel_indexes_for_cur_subframe[i];
877
        int* sf;
878 7dca334d Sascha Sommer
        int* sf_end;
879
        s->channel[c].scale_factors = s->channel[c].saved_scale_factors[!s->channel[c].scale_factor_idx];
880
        sf_end = s->channel[c].scale_factors + s->num_bands;
881 c1061cc7 Sascha Sommer
882
        /** resample scale factors for the new block size
883
         *  as the scale factors might need to be resampled several times
884
         *  before some  new values are transmitted, a backup of the last
885
         *  transmitted scale factors is kept in saved_scale_factors
886
         */
887
        if (s->channel[c].reuse_sf) {
888
            const int8_t* sf_offsets = s->sf_offsets[s->table_idx][s->channel[c].table_idx];
889
            int b;
890
            for (b = 0; b < s->num_bands; b++)
891
                s->channel[c].scale_factors[b] =
892 7dca334d Sascha Sommer
                    s->channel[c].saved_scale_factors[s->channel[c].scale_factor_idx][*sf_offsets++];
893 c1061cc7 Sascha Sommer
        }
894
895
        if (!s->channel[c].cur_subframe || get_bits1(&s->gb)) {
896
897
            if (!s->channel[c].reuse_sf) {
898
                int val;
899
                /** decode DPCM coded scale factors */
900
                s->channel[c].scale_factor_step = get_bits(&s->gb, 2) + 1;
901
                val = 45 / s->channel[c].scale_factor_step;
902
                for (sf = s->channel[c].scale_factors; sf < sf_end; sf++) {
903
                    val += get_vlc2(&s->gb, sf_vlc.table, SCALEVLCBITS, SCALEMAXDEPTH) - 60;
904
                    *sf = val;
905
                }
906
            } else {
907
                int i;
908
                /** run level decode differences to the resampled factors */
909
                for (i = 0; i < s->num_bands; i++) {
910
                    int idx;
911
                    int skip;
912
                    int val;
913
                    int sign;
914
915
                    idx = get_vlc2(&s->gb, sf_rl_vlc.table, VLCBITS, SCALERLMAXDEPTH);
916
917 e0b1d660 Diego Biurrun
                    if (!idx) {
918 c1061cc7 Sascha Sommer
                        uint32_t code = get_bits(&s->gb, 14);
919
                        val  =  code >> 6;
920
                        sign = (code & 1) - 1;
921
                        skip = (code & 0x3f) >> 1;
922
                    } else if (idx == 1) {
923
                        break;
924
                    } else {
925
                        skip = scale_rl_run[idx];
926
                        val  = scale_rl_level[idx];
927
                        sign = get_bits1(&s->gb)-1;
928
                    }
929
930
                    i += skip;
931
                    if (i >= s->num_bands) {
932 e0b1d660 Diego Biurrun
                        av_log(s->avctx, AV_LOG_ERROR,
933 c1061cc7 Sascha Sommer
                               "invalid scale factor coding\n");
934
                        return AVERROR_INVALIDDATA;
935
                    }
936
                    s->channel[c].scale_factors[i] += (val ^ sign) - sign;
937
                }
938
            }
939 7dca334d Sascha Sommer
            /** swap buffers */
940
            s->channel[c].scale_factor_idx = !s->channel[c].scale_factor_idx;
941 c1061cc7 Sascha Sommer
            s->channel[c].table_idx = s->table_idx;
942
            s->channel[c].reuse_sf  = 1;
943
        }
944
945
        /** calculate new scale factor maximum */
946
        s->channel[c].max_scale_factor = s->channel[c].scale_factors[0];
947
        for (sf = s->channel[c].scale_factors + 1; sf < sf_end; sf++) {
948
            s->channel[c].max_scale_factor =
949
                FFMAX(s->channel[c].max_scale_factor, *sf);
950
        }
951
952
    }
953
    return 0;
954
}
955
956
/**
957 da136c7e Sascha Sommer
 *@brief Reconstruct the individual channel data.
958
 *@param s codec context
959
 */
960 c1061cc7 Sascha Sommer
static void inverse_channel_transform(WMAProDecodeCtx *s)
961 da136c7e Sascha Sommer
{
962
    int i;
963
964 b25a8818 Diego Biurrun
    for (i = 0; i < s->num_chgroups; i++) {
965 f53e96ed Sascha Sommer
        if (s->chgroup[i].transform) {
966 da136c7e Sascha Sommer
            float data[WMAPRO_MAX_CHANNELS];
967
            const int num_channels = s->chgroup[i].num_channels;
968
            float** ch_data = s->chgroup[i].channel_data;
969
            float** ch_end = ch_data + num_channels;
970
            const int8_t* tb = s->chgroup[i].transform_band;
971
            int16_t* sfb;
972
973
            /** multichannel decorrelation */
974 b979e4a2 Diego Biurrun
            for (sfb = s->cur_sfb_offsets;
975 e0b1d660 Diego Biurrun
                 sfb < s->cur_sfb_offsets + s->num_bands; sfb++) {
976 f53e96ed Sascha Sommer
                int y;
977 da136c7e Sascha Sommer
                if (*tb++ == 1) {
978
                    /** multiply values with the decorrelation_matrix */
979 b25a8818 Diego Biurrun
                    for (y = sfb[0]; y < FFMIN(sfb[1], s->subframe_len); y++) {
980 da136c7e Sascha Sommer
                        const float* mat = s->chgroup[i].decorrelation_matrix;
981 b25a8818 Diego Biurrun
                        const float* data_end = data + num_channels;
982
                        float* data_ptr = data;
983 da136c7e Sascha Sommer
                        float** ch;
984
985 b979e4a2 Diego Biurrun
                        for (ch = ch_data; ch < ch_end; ch++)
986 e0b1d660 Diego Biurrun
                            *data_ptr++ = (*ch)[y];
987 da136c7e Sascha Sommer
988
                        for (ch = ch_data; ch < ch_end; ch++) {
989
                            float sum = 0;
990
                            data_ptr = data;
991
                            while (data_ptr < data_end)
992
                                sum += *data_ptr++ * *mat++;
993
994
                            (*ch)[y] = sum;
995
                        }
996
                    }
997 f53e96ed Sascha Sommer
                } else if (s->num_channels == 2) {
998 d975e5e9 Måns Rullgård
                    int len = FFMIN(sfb[1], s->subframe_len) - sfb[0];
999
                    s->dsp.vector_fmul_scalar(ch_data[0] + sfb[0],
1000
                                              ch_data[0] + sfb[0],
1001
                                              181.0 / 128, len);
1002
                    s->dsp.vector_fmul_scalar(ch_data[1] + sfb[0],
1003
                                              ch_data[1] + sfb[0],
1004
                                              181.0 / 128, len);
1005 da136c7e Sascha Sommer
                }
1006
            }
1007
        }
1008
    }
1009
}
1010
1011 c1061cc7 Sascha Sommer
/**
1012
 *@brief Apply sine window and reconstruct the output buffer.
1013
 *@param s codec context
1014
 */
1015
static void wmapro_window(WMAProDecodeCtx *s)
1016
{
1017
    int i;
1018 e0b1d660 Diego Biurrun
    for (i = 0; i < s->channels_for_cur_subframe; i++) {
1019 c1061cc7 Sascha Sommer
        int c = s->channel_indexes_for_cur_subframe[i];
1020
        float* window;
1021
        int winlen = s->channel[c].prev_block_len;
1022
        float* start = s->channel[c].coeffs - (winlen >> 1);
1023
1024
        if (s->subframe_len < winlen) {
1025 e0b1d660 Diego Biurrun
            start += (winlen - s->subframe_len) >> 1;
1026 c1061cc7 Sascha Sommer
            winlen = s->subframe_len;
1027
        }
1028
1029 e0b1d660 Diego Biurrun
        window = s->windows[av_log2(winlen) - BLOCK_MIN_BITS];
1030 c1061cc7 Sascha Sommer
1031
        winlen >>= 1;
1032
1033
        s->dsp.vector_fmul_window(start, start, start + winlen,
1034
                                  window, 0, winlen);
1035
1036
        s->channel[c].prev_block_len = s->subframe_len;
1037
    }
1038
}
1039
1040
/**
1041
 *@brief Decode a single subframe (block).
1042
 *@param s codec context
1043
 *@return 0 on success, < 0 when decoding failed
1044
 */
1045
static int decode_subframe(WMAProDecodeCtx *s)
1046
{
1047
    int offset = s->samples_per_frame;
1048
    int subframe_len = s->samples_per_frame;
1049
    int i;
1050
    int total_samples   = s->samples_per_frame * s->num_channels;
1051
    int transmit_coeffs = 0;
1052
    int cur_subwoofer_cutoff;
1053
1054
    s->subframe_offset = get_bits_count(&s->gb);
1055
1056
    /** reset channel context and find the next block offset and size
1057
        == the next block of the channel with the smallest number of
1058
        decoded samples
1059
    */
1060
    for (i = 0; i < s->num_channels; i++) {
1061
        s->channel[i].grouped = 0;
1062
        if (offset > s->channel[i].decoded_samples) {
1063
            offset = s->channel[i].decoded_samples;
1064
            subframe_len =
1065
                s->channel[i].subframe_len[s->channel[i].cur_subframe];
1066
        }
1067
    }
1068
1069
    dprintf(s->avctx,
1070 e0b1d660 Diego Biurrun
            "processing subframe with offset %i len %i\n", offset, subframe_len);
1071 c1061cc7 Sascha Sommer
1072
    /** get a list of all channels that contain the estimated block */
1073
    s->channels_for_cur_subframe = 0;
1074
    for (i = 0; i < s->num_channels; i++) {
1075
        const int cur_subframe = s->channel[i].cur_subframe;
1076
        /** substract already processed samples */
1077
        total_samples -= s->channel[i].decoded_samples;
1078
1079
        /** and count if there are multiple subframes that match our profile */
1080
        if (offset == s->channel[i].decoded_samples &&
1081 e0b1d660 Diego Biurrun
            subframe_len == s->channel[i].subframe_len[cur_subframe]) {
1082 c1061cc7 Sascha Sommer
            total_samples -= s->channel[i].subframe_len[cur_subframe];
1083
            s->channel[i].decoded_samples +=
1084
                s->channel[i].subframe_len[cur_subframe];
1085
            s->channel_indexes_for_cur_subframe[s->channels_for_cur_subframe] = i;
1086
            ++s->channels_for_cur_subframe;
1087
        }
1088
    }
1089
1090
    /** check if the frame will be complete after processing the
1091
        estimated block */
1092
    if (!total_samples)
1093
        s->parsed_all_subframes = 1;
1094
1095
1096
    dprintf(s->avctx, "subframe is part of %i channels\n",
1097 e0b1d660 Diego Biurrun
            s->channels_for_cur_subframe);
1098 c1061cc7 Sascha Sommer
1099
    /** calculate number of scale factor bands and their offsets */
1100
    s->table_idx         = av_log2(s->samples_per_frame/subframe_len);
1101
    s->num_bands         = s->num_sfb[s->table_idx];
1102
    s->cur_sfb_offsets   = s->sfb_offsets[s->table_idx];
1103
    cur_subwoofer_cutoff = s->subwoofer_cutoffs[s->table_idx];
1104
1105
    /** configure the decoder for the current subframe */
1106
    for (i = 0; i < s->channels_for_cur_subframe; i++) {
1107
        int c = s->channel_indexes_for_cur_subframe[i];
1108
1109 e0b1d660 Diego Biurrun
        s->channel[c].coeffs = &s->channel[c].out[(s->samples_per_frame >> 1)
1110 c1061cc7 Sascha Sommer
                                                  + offset];
1111
    }
1112
1113
    s->subframe_len = subframe_len;
1114
    s->esc_len = av_log2(s->subframe_len - 1) + 1;
1115
1116
    /** skip extended header if any */
1117
    if (get_bits1(&s->gb)) {
1118
        int num_fill_bits;
1119
        if (!(num_fill_bits = get_bits(&s->gb, 2))) {
1120
            int len = get_bits(&s->gb, 4);
1121
            num_fill_bits = get_bits(&s->gb, len) + 1;
1122
        }
1123
1124
        if (num_fill_bits >= 0) {
1125
            if (get_bits_count(&s->gb) + num_fill_bits > s->num_saved_bits) {
1126 e0b1d660 Diego Biurrun
                av_log(s->avctx, AV_LOG_ERROR, "invalid number of fill bits\n");
1127 c1061cc7 Sascha Sommer
                return AVERROR_INVALIDDATA;
1128
            }
1129
1130
            skip_bits_long(&s->gb, num_fill_bits);
1131
        }
1132
    }
1133
1134
    /** no idea for what the following bit is used */
1135
    if (get_bits1(&s->gb)) {
1136
        av_log_ask_for_sample(s->avctx, "reserved bit set\n");
1137
        return AVERROR_INVALIDDATA;
1138
    }
1139
1140
1141
    if (decode_channel_transform(s) < 0)
1142
        return AVERROR_INVALIDDATA;
1143
1144
1145
    for (i = 0; i < s->channels_for_cur_subframe; i++) {
1146
        int c = s->channel_indexes_for_cur_subframe[i];
1147
        if ((s->channel[c].transmit_coefs = get_bits1(&s->gb)))
1148
            transmit_coeffs = 1;
1149
    }
1150
1151
    if (transmit_coeffs) {
1152
        int step;
1153
        int quant_step = 90 * s->bits_per_sample >> 4;
1154
        if ((get_bits1(&s->gb))) {
1155
            /** FIXME: might change run level mode decision */
1156
            av_log_ask_for_sample(s->avctx, "unsupported quant step coding\n");
1157
            return AVERROR_INVALIDDATA;
1158
        }
1159
        /** decode quantization step */
1160
        step = get_sbits(&s->gb, 6);
1161
        quant_step += step;
1162
        if (step == -32 || step == 31) {
1163
            const int sign = (step == 31) - 1;
1164
            int quant = 0;
1165
            while (get_bits_count(&s->gb) + 5 < s->num_saved_bits &&
1166 e0b1d660 Diego Biurrun
                   (step = get_bits(&s->gb, 5)) == 31) {
1167
                quant += 31;
1168 c1061cc7 Sascha Sommer
            }
1169
            quant_step += ((quant + step) ^ sign) - sign;
1170
        }
1171
        if (quant_step < 0) {
1172 e0b1d660 Diego Biurrun
            av_log(s->avctx, AV_LOG_DEBUG, "negative quant step\n");
1173 c1061cc7 Sascha Sommer
        }
1174
1175
        /** decode quantization step modifiers for every channel */
1176
1177
        if (s->channels_for_cur_subframe == 1) {
1178
            s->channel[s->channel_indexes_for_cur_subframe[0]].quant_step = quant_step;
1179
        } else {
1180
            int modifier_len = get_bits(&s->gb, 3);
1181
            for (i = 0; i < s->channels_for_cur_subframe; i++) {
1182
                int c = s->channel_indexes_for_cur_subframe[i];
1183
                s->channel[c].quant_step = quant_step;
1184
                if (get_bits1(&s->gb)) {
1185
                    if (modifier_len) {
1186 e0b1d660 Diego Biurrun
                        s->channel[c].quant_step += get_bits(&s->gb, modifier_len) + 1;
1187 c1061cc7 Sascha Sommer
                    } else
1188
                        ++s->channel[c].quant_step;
1189
                }
1190
            }
1191
        }
1192
1193
        /** decode scale factors */
1194
        if (decode_scale_factors(s) < 0)
1195
            return AVERROR_INVALIDDATA;
1196
    }
1197
1198
    dprintf(s->avctx, "BITSTREAM: subframe header length was %i\n",
1199 e0b1d660 Diego Biurrun
            get_bits_count(&s->gb) - s->subframe_offset);
1200 c1061cc7 Sascha Sommer
1201
    /** parse coefficients */
1202
    for (i = 0; i < s->channels_for_cur_subframe; i++) {
1203
        int c = s->channel_indexes_for_cur_subframe[i];
1204
        if (s->channel[c].transmit_coefs &&
1205 e0b1d660 Diego Biurrun
            get_bits_count(&s->gb) < s->num_saved_bits) {
1206
            decode_coeffs(s, c);
1207 c1061cc7 Sascha Sommer
        } else
1208
            memset(s->channel[c].coeffs, 0,
1209
                   sizeof(*s->channel[c].coeffs) * subframe_len);
1210
    }
1211
1212
    dprintf(s->avctx, "BITSTREAM: subframe length was %i\n",
1213 e0b1d660 Diego Biurrun
            get_bits_count(&s->gb) - s->subframe_offset);
1214 c1061cc7 Sascha Sommer
1215
    if (transmit_coeffs) {
1216
        /** reconstruct the per channel data */
1217
        inverse_channel_transform(s);
1218
        for (i = 0; i < s->channels_for_cur_subframe; i++) {
1219
            int c = s->channel_indexes_for_cur_subframe[i];
1220
            const int* sf = s->channel[c].scale_factors;
1221
            int b;
1222
1223
            if (c == s->lfe_channel)
1224
                memset(&s->tmp[cur_subwoofer_cutoff], 0, sizeof(*s->tmp) *
1225
                       (subframe_len - cur_subwoofer_cutoff));
1226
1227
            /** inverse quantization and rescaling */
1228
            for (b = 0; b < s->num_bands; b++) {
1229
                const int end = FFMIN(s->cur_sfb_offsets[b+1], s->subframe_len);
1230
                const int exp = s->channel[c].quant_step -
1231
                            (s->channel[c].max_scale_factor - *sf++) *
1232
                            s->channel[c].scale_factor_step;
1233
                const float quant = pow(10.0, exp / 20.0);
1234 d975e5e9 Måns Rullgård
                int start = s->cur_sfb_offsets[b];
1235
                s->dsp.vector_fmul_scalar(s->tmp + start,
1236
                                          s->channel[c].coeffs + start,
1237
                                          quant, end - start);
1238 c1061cc7 Sascha Sommer
            }
1239
1240
            /** apply imdct (ff_imdct_half == DCTIV with reverse) */
1241 e0b1d660 Diego Biurrun
            ff_imdct_half(&s->mdct_ctx[av_log2(subframe_len) - BLOCK_MIN_BITS],
1242 c1061cc7 Sascha Sommer
                          s->channel[c].coeffs, s->tmp);
1243
        }
1244
    }
1245
1246
    /** window and overlapp-add */
1247
    wmapro_window(s);
1248
1249
    /** handled one subframe */
1250
    for (i = 0; i < s->channels_for_cur_subframe; i++) {
1251
        int c = s->channel_indexes_for_cur_subframe[i];
1252
        if (s->channel[c].cur_subframe >= s->channel[c].num_subframes) {
1253 e0b1d660 Diego Biurrun
            av_log(s->avctx, AV_LOG_ERROR, "broken subframe\n");
1254 c1061cc7 Sascha Sommer
            return AVERROR_INVALIDDATA;
1255
        }
1256
        ++s->channel[c].cur_subframe;
1257
    }
1258
1259
    return 0;
1260
}
1261
1262
/**
1263
 *@brief Decode one WMA frame.
1264
 *@param s codec context
1265
 *@return 0 if the trailer bit indicates that this is the last frame,
1266
 *        1 if there are additional frames
1267
 */
1268
static int decode_frame(WMAProDecodeCtx *s)
1269
{
1270
    GetBitContext* gb = &s->gb;
1271
    int more_frames = 0;
1272
    int len = 0;
1273
    int i;
1274
1275
    /** check for potential output buffer overflow */
1276
    if (s->num_channels * s->samples_per_frame > s->samples_end - s->samples) {
1277 7551a559 Sascha Sommer
        /** return an error if no frame could be decoded at all */
1278 5f28b5e7 Sascha Sommer
        av_log(s->avctx, AV_LOG_ERROR,
1279
               "not enough space for the output samples\n");
1280
        s->packet_loss = 1;
1281 c1061cc7 Sascha Sommer
        return 0;
1282
    }
1283
1284
    /** get frame length */
1285
    if (s->len_prefix)
1286
        len = get_bits(gb, s->log2_frame_size);
1287
1288
    dprintf(s->avctx, "decoding frame with length %x\n", len);
1289
1290
    /** decode tile information */
1291
    if (decode_tilehdr(s)) {
1292
        s->packet_loss = 1;
1293
        return 0;
1294
    }
1295
1296
    /** read postproc transform */
1297
    if (s->num_channels > 1 && get_bits1(gb)) {
1298
        av_log_ask_for_sample(s->avctx, "Unsupported postproc transform found\n");
1299
        s->packet_loss = 1;
1300
        return 0;
1301
    }
1302
1303
    /** read drc info */
1304
    if (s->dynamic_range_compression) {
1305
        s->drc_gain = get_bits(gb, 8);
1306
        dprintf(s->avctx, "drc_gain %i\n", s->drc_gain);
1307
    }
1308
1309
    /** no idea what these are for, might be the number of samples
1310
        that need to be skipped at the beginning or end of a stream */
1311
    if (get_bits1(gb)) {
1312
        int skip;
1313
1314
        /** usually true for the first frame */
1315
        if (get_bits1(gb)) {
1316
            skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
1317
            dprintf(s->avctx, "start skip: %i\n", skip);
1318
        }
1319
1320
        /** sometimes true for the last frame */
1321
        if (get_bits1(gb)) {
1322
            skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
1323
            dprintf(s->avctx, "end skip: %i\n", skip);
1324
        }
1325
1326
    }
1327
1328
    dprintf(s->avctx, "BITSTREAM: frame header length was %i\n",
1329 e0b1d660 Diego Biurrun
            get_bits_count(gb) - s->frame_offset);
1330 c1061cc7 Sascha Sommer
1331
    /** reset subframe states */
1332
    s->parsed_all_subframes = 0;
1333
    for (i = 0; i < s->num_channels; i++) {
1334
        s->channel[i].decoded_samples = 0;
1335
        s->channel[i].cur_subframe    = 0;
1336
        s->channel[i].reuse_sf        = 0;
1337
    }
1338
1339
    /** decode all subframes */
1340
    while (!s->parsed_all_subframes) {
1341
        if (decode_subframe(s) < 0) {
1342
            s->packet_loss = 1;
1343
            return 0;
1344
        }
1345
    }
1346
1347
    /** interleave samples and write them to the output buffer */
1348
    for (i = 0; i < s->num_channels; i++) {
1349
        float* ptr;
1350
        int incr = s->num_channels;
1351
        float* iptr = s->channel[i].out;
1352
        int x;
1353
1354
        ptr = s->samples + i;
1355
1356
        for (x = 0; x < s->samples_per_frame; x++) {
1357
            *ptr = av_clipf(*iptr++, -1.0, 32767.0 / 32768.0);
1358
            ptr += incr;
1359
        }
1360
1361
        /** reuse second half of the IMDCT output for the next frame */
1362
        memcpy(&s->channel[i].out[0],
1363
               &s->channel[i].out[s->samples_per_frame],
1364
               s->samples_per_frame * sizeof(*s->channel[i].out) >> 1);
1365
    }
1366
1367
    if (s->skip_frame) {
1368
        s->skip_frame = 0;
1369
    } else
1370
        s->samples += s->num_channels * s->samples_per_frame;
1371
1372
    if (len != (get_bits_count(gb) - s->frame_offset) + 2) {
1373
        /** FIXME: not sure if this is always an error */
1374 e0b1d660 Diego Biurrun
        av_log(s->avctx, AV_LOG_ERROR, "frame[%i] would have to skip %i bits\n",
1375 c1061cc7 Sascha Sommer
               s->frame_num, len - (get_bits_count(gb) - s->frame_offset) - 1);
1376
        s->packet_loss = 1;
1377
        return 0;
1378
    }
1379
1380
    /** skip the rest of the frame data */
1381
    skip_bits_long(gb, len - (get_bits_count(gb) - s->frame_offset) - 1);
1382
1383
    /** decode trailer bit */
1384
    more_frames = get_bits1(gb);
1385
1386
    ++s->frame_num;
1387
    return more_frames;
1388
}
1389
1390
/**
1391
 *@brief Calculate remaining input buffer length.
1392
 *@param s codec context
1393
 *@param gb bitstream reader context
1394
 *@return remaining size in bits
1395
 */
1396 e0b1d660 Diego Biurrun
static int remaining_bits(WMAProDecodeCtx *s, GetBitContext *gb)
1397 c1061cc7 Sascha Sommer
{
1398
    return s->buf_bit_size - get_bits_count(gb);
1399
}
1400
1401
/**
1402
 *@brief Fill the bit reservoir with a (partial) frame.
1403
 *@param s codec context
1404
 *@param gb bitstream reader context
1405
 *@param len length of the partial frame
1406
 *@param append decides wether to reset the buffer or not
1407
 */
1408
static void save_bits(WMAProDecodeCtx *s, GetBitContext* gb, int len,
1409 e0b1d660 Diego Biurrun
                      int append)
1410 c1061cc7 Sascha Sommer
{
1411
    int buflen;
1412
1413
    /** when the frame data does not need to be concatenated, the input buffer
1414
        is resetted and additional bits from the previous frame are copyed
1415
        and skipped later so that a fast byte copy is possible */
1416
1417
    if (!append) {
1418
        s->frame_offset = get_bits_count(gb) & 7;
1419
        s->num_saved_bits = s->frame_offset;
1420
        init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE);
1421
    }
1422
1423
    buflen = (s->num_saved_bits + len + 8) >> 3;
1424
1425
    if (len <= 0 || buflen > MAX_FRAMESIZE) {
1426 e0b1d660 Diego Biurrun
        av_log_ask_for_sample(s->avctx, "input buffer too small\n");
1427
        s->packet_loss = 1;
1428
        return;
1429 c1061cc7 Sascha Sommer
    }
1430
1431
    s->num_saved_bits += len;
1432
    if (!append) {
1433 e0b1d660 Diego Biurrun
        ff_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3),
1434
                     s->num_saved_bits);
1435 c1061cc7 Sascha Sommer
    } else {
1436
        int align = 8 - (get_bits_count(gb) & 7);
1437
        align = FFMIN(align, len);
1438
        put_bits(&s->pb, align, get_bits(gb, align));
1439
        len -= align;
1440
        ff_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3), len);
1441
    }
1442
    skip_bits_long(gb, len);
1443
1444
    {
1445 e0b1d660 Diego Biurrun
        PutBitContext tmp = s->pb;
1446
        flush_put_bits(&tmp);
1447 c1061cc7 Sascha Sommer
    }
1448
1449
    init_get_bits(&s->gb, s->frame_data, s->num_saved_bits);
1450
    skip_bits(&s->gb, s->frame_offset);
1451
}
1452
1453
/**
1454
 *@brief Decode a single WMA packet.
1455
 *@param avctx codec context
1456
 *@param data the output buffer
1457
 *@param data_size number of bytes that were written to the output buffer
1458
 *@param avpkt input packet
1459
 *@return number of bytes that were read from the input buffer
1460
 */
1461
static int decode_packet(AVCodecContext *avctx,
1462 e0b1d660 Diego Biurrun
                         void *data, int *data_size, AVPacket* avpkt)
1463 c1061cc7 Sascha Sommer
{
1464
    WMAProDecodeCtx *s = avctx->priv_data;
1465 9244370a Sascha Sommer
    GetBitContext* gb  = &s->pgb;
1466
    const uint8_t* buf = avpkt->data;
1467
    int buf_size       = avpkt->size;
1468 c1061cc7 Sascha Sommer
    int num_bits_prev_frame;
1469
    int packet_sequence_number;
1470
1471 9244370a Sascha Sommer
    s->samples       = data;
1472
    s->samples_end   = (float*)((int8_t*)data + *data_size);
1473 c1061cc7 Sascha Sommer
    *data_size = 0;
1474
1475 5f28b5e7 Sascha Sommer
    if (s->packet_done || s->packet_loss) {
1476
        s->packet_done = 0;
1477 9244370a Sascha Sommer
        s->buf_bit_size = buf_size << 3;
1478 7551a559 Sascha Sommer
1479 9244370a Sascha Sommer
        /** sanity check for the buffer length */
1480
        if (buf_size < avctx->block_align)
1481
            return 0;
1482 c1061cc7 Sascha Sommer
1483 9244370a Sascha Sommer
        buf_size = avctx->block_align;
1484 c1061cc7 Sascha Sommer
1485 9244370a Sascha Sommer
        /** parse packet header */
1486
        init_get_bits(gb, buf, s->buf_bit_size);
1487
        packet_sequence_number = get_bits(gb, 4);
1488
        skip_bits(gb, 2);
1489 c1061cc7 Sascha Sommer
1490 9244370a Sascha Sommer
        /** get number of bits that need to be added to the previous frame */
1491
        num_bits_prev_frame = get_bits(gb, s->log2_frame_size);
1492
        dprintf(avctx, "packet[%d]: nbpf %x\n", avctx->frame_number,
1493
                num_bits_prev_frame);
1494 c1061cc7 Sascha Sommer
1495 9244370a Sascha Sommer
        /** check for packet loss */
1496
        if (!s->packet_loss &&
1497
            ((s->packet_sequence_number + 1) & 0xF) != packet_sequence_number) {
1498
            s->packet_loss = 1;
1499
            av_log(avctx, AV_LOG_ERROR, "Packet loss detected! seq %x vs %x\n",
1500
                   s->packet_sequence_number, packet_sequence_number);
1501
        }
1502
        s->packet_sequence_number = packet_sequence_number;
1503
1504
        if (num_bits_prev_frame > 0) {
1505
            /** append the previous frame data to the remaining data from the
1506
                previous packet to create a full frame */
1507
            save_bits(s, gb, num_bits_prev_frame, 1);
1508
            dprintf(avctx, "accumulated %x bits of frame data\n",
1509
                    s->num_saved_bits - s->frame_offset);
1510
1511
            /** decode the cross packet frame if it is valid */
1512
            if (!s->packet_loss)
1513
                decode_frame(s);
1514
        } else if (s->num_saved_bits - s->frame_offset) {
1515
            dprintf(avctx, "ignoring %x previously saved bits\n",
1516
                    s->num_saved_bits - s->frame_offset);
1517
        }
1518 c1061cc7 Sascha Sommer
1519 9244370a Sascha Sommer
        s->packet_loss = 0;
1520 7551a559 Sascha Sommer
1521
    } else {
1522 5f28b5e7 Sascha Sommer
        int frame_size;
1523 bc7f96b1 Sascha Sommer
        s->buf_bit_size = avpkt->size << 3;
1524
        init_get_bits(gb, avpkt->data, s->buf_bit_size);
1525
        skip_bits(gb, s->packet_offset);
1526 5f28b5e7 Sascha Sommer
        if (remaining_bits(s, gb) > s->log2_frame_size &&
1527
            (frame_size = show_bits(gb, s->log2_frame_size)) &&
1528
            frame_size <= remaining_bits(s, gb)) {
1529 20169324 Sascha Sommer
            save_bits(s, gb, frame_size, 0);
1530 5f28b5e7 Sascha Sommer
            s->packet_done = !decode_frame(s);
1531 c1061cc7 Sascha Sommer
        } else
1532 5f28b5e7 Sascha Sommer
            s->packet_done = 1;
1533 c1061cc7 Sascha Sommer
    }
1534
1535 5f28b5e7 Sascha Sommer
    if (s->packet_done && !s->packet_loss &&
1536 7551a559 Sascha Sommer
        remaining_bits(s, gb) > 0) {
1537 c1061cc7 Sascha Sommer
        /** save the rest of the data so that it can be decoded
1538
            with the next packet */
1539 20169324 Sascha Sommer
        save_bits(s, gb, remaining_bits(s, gb), 0);
1540 c1061cc7 Sascha Sommer
    }
1541
1542
    *data_size = (int8_t *)s->samples - (int8_t *)data;
1543 bc7f96b1 Sascha Sommer
    s->packet_offset = get_bits_count(gb) & 7;
1544 c1061cc7 Sascha Sommer
1545 037396d0 Sascha Sommer
    return (s->packet_loss) ? AVERROR_INVALIDDATA : get_bits_count(gb) >> 3;
1546 c1061cc7 Sascha Sommer
}
1547
1548
/**
1549
 *@brief Clear decoder buffers (for seeking).
1550
 *@param avctx codec context
1551
 */
1552
static void flush(AVCodecContext *avctx)
1553
{
1554
    WMAProDecodeCtx *s = avctx->priv_data;
1555
    int i;
1556
    /** reset output buffer as a part of it is used during the windowing of a
1557
        new frame */
1558
    for (i = 0; i < s->num_channels; i++)
1559
        memset(s->channel[i].out, 0, s->samples_per_frame *
1560
               sizeof(*s->channel[i].out));
1561
    s->packet_loss = 1;
1562
}
1563
1564
1565
/**
1566
 *@brief wmapro decoder
1567
 */
1568
AVCodec wmapro_decoder = {
1569
    "wmapro",
1570
    CODEC_TYPE_AUDIO,
1571
    CODEC_ID_WMAPRO,
1572
    sizeof(WMAProDecodeCtx),
1573
    decode_init,
1574
    NULL,
1575
    decode_end,
1576
    decode_packet,
1577 d859bb1d Sascha Sommer
    .capabilities = CODEC_CAP_SUBFRAMES,
1578 c1061cc7 Sascha Sommer
    .flush= flush,
1579
    .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 9 Professional"),
1580
};