ffmpeg / libavcodec / wmaprodec.c @ c5c20ae4
History | View | Annotate | Download (60.5 KB)
1 |
/*
|
---|---|
2 |
* Wmapro compatible decoder
|
3 |
* Copyright (c) 2007 Baptiste Coudurier, Benjamin Larsson, Ulion
|
4 |
* Copyright (c) 2008 - 2009 Sascha Sommer, Benjamin Larsson
|
5 |
*
|
6 |
* This file is part of FFmpeg.
|
7 |
*
|
8 |
* FFmpeg is free software; you can redistribute it and/or
|
9 |
* modify it under the terms of the GNU Lesser General Public
|
10 |
* License as published by the Free Software Foundation; either
|
11 |
* version 2.1 of the License, or (at your option) any later version.
|
12 |
*
|
13 |
* FFmpeg is distributed in the hope that it will be useful,
|
14 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
16 |
* Lesser General Public License for more details.
|
17 |
*
|
18 |
* You should have received a copy of the GNU Lesser General Public
|
19 |
* License along with FFmpeg; if not, write to the Free Software
|
20 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
21 |
*/
|
22 |
|
23 |
/**
|
24 |
* @file libavcodec/wmaprodec.c
|
25 |
* @brief wmapro decoder implementation
|
26 |
* Wmapro is an MDCT based codec comparable to wma standard or AAC.
|
27 |
* The decoding therefore consists of the following steps:
|
28 |
* - bitstream decoding
|
29 |
* - reconstruction of per-channel data
|
30 |
* - rescaling and inverse quantization
|
31 |
* - IMDCT
|
32 |
* - windowing and overlapp-add
|
33 |
*
|
34 |
* The compressed wmapro bitstream is split into individual packets.
|
35 |
* Every such packet contains one or more wma frames.
|
36 |
* The compressed frames may have a variable length and frames may
|
37 |
* cross packet boundaries.
|
38 |
* Common to all wmapro frames is the number of samples that are stored in
|
39 |
* a frame.
|
40 |
* The number of samples and a few other decode flags are stored
|
41 |
* as extradata that has to be passed to the decoder.
|
42 |
*
|
43 |
* The wmapro frames themselves are again split into a variable number of
|
44 |
* subframes. Every subframe contains the data for 2^N time domain samples
|
45 |
* where N varies between 7 and 12.
|
46 |
*
|
47 |
* Example wmapro bitstream (in samples):
|
48 |
*
|
49 |
* || packet 0 || packet 1 || packet 2 packets
|
50 |
* ---------------------------------------------------
|
51 |
* || frame 0 || frame 1 || frame 2 || frames
|
52 |
* ---------------------------------------------------
|
53 |
* || | | || | | | || || subframes of channel 0
|
54 |
* ---------------------------------------------------
|
55 |
* || | | || | | | || || subframes of channel 1
|
56 |
* ---------------------------------------------------
|
57 |
*
|
58 |
* The frame layouts for the individual channels of a wma frame does not need
|
59 |
* to be the same.
|
60 |
*
|
61 |
* However, if the offsets and lengths of several subframes of a frame are the
|
62 |
* same, the subframes of the channels can be grouped.
|
63 |
* Every group may then use special coding techniques like M/S stereo coding
|
64 |
* to improve the compression ratio. These channel transformations do not
|
65 |
* need to be applied to a whole subframe. Instead, they can also work on
|
66 |
* individual scale factor bands (see below).
|
67 |
* The coefficients that carry the audio signal in the frequency domain
|
68 |
* are transmitted as huffman-coded vectors with 4, 2 and 1 elements.
|
69 |
* In addition to that, the encoder can switch to a runlevel coding scheme
|
70 |
* by transmitting subframe_length / 128 zero coefficients.
|
71 |
*
|
72 |
* Before the audio signal can be converted to the time domain, the
|
73 |
* coefficients have to be rescaled and inverse quantized.
|
74 |
* A subframe is therefore split into several scale factor bands that get
|
75 |
* scaled individually.
|
76 |
* Scale factors are submitted for every frame but they might be shared
|
77 |
* between the subframes of a channel. Scale factors are initially DPCM-coded.
|
78 |
* Once scale factors are shared, the differences are transmitted as runlevel
|
79 |
* codes.
|
80 |
* Every subframe length and offset combination in the frame layout shares a
|
81 |
* common quantization factor that can be adjusted for every channel by a
|
82 |
* modifier.
|
83 |
* After the inverse quantization, the coefficients get processed by an IMDCT.
|
84 |
* The resulting values are then windowed with a sine window and the first half
|
85 |
* of the values are added to the second half of the output from the previous
|
86 |
* subframe in order to reconstruct the output samples.
|
87 |
*/
|
88 |
|
89 |
#include "avcodec.h" |
90 |
#include "internal.h" |
91 |
#include "get_bits.h" |
92 |
#include "put_bits.h" |
93 |
#include "wmaprodata.h" |
94 |
#include "dsputil.h" |
95 |
#include "wma.h" |
96 |
|
97 |
/** current decoder limitations */
|
98 |
#define WMAPRO_MAX_CHANNELS 8 ///< max number of handled channels |
99 |
#define MAX_SUBFRAMES 32 ///< max number of subframes per channel |
100 |
#define MAX_BANDS 29 ///< max number of scale factor bands |
101 |
#define MAX_FRAMESIZE 32768 ///< maximum compressed frame size |
102 |
|
103 |
#define WMAPRO_BLOCK_MAX_BITS 12 ///< log2 of max block size |
104 |
#define WMAPRO_BLOCK_MAX_SIZE (1 << WMAPRO_BLOCK_MAX_BITS) ///< maximum block size |
105 |
#define WMAPRO_BLOCK_SIZES (WMAPRO_BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1) ///< possible block sizes |
106 |
|
107 |
|
108 |
#define VLCBITS 9 |
109 |
#define SCALEVLCBITS 8 |
110 |
#define VEC4MAXDEPTH ((HUFF_VEC4_MAXBITS+VLCBITS-1)/VLCBITS) |
111 |
#define VEC2MAXDEPTH ((HUFF_VEC2_MAXBITS+VLCBITS-1)/VLCBITS) |
112 |
#define VEC1MAXDEPTH ((HUFF_VEC1_MAXBITS+VLCBITS-1)/VLCBITS) |
113 |
#define SCALEMAXDEPTH ((HUFF_SCALE_MAXBITS+SCALEVLCBITS-1)/SCALEVLCBITS) |
114 |
#define SCALERLMAXDEPTH ((HUFF_SCALE_RL_MAXBITS+VLCBITS-1)/VLCBITS) |
115 |
|
116 |
static VLC sf_vlc; ///< scale factor DPCM vlc |
117 |
static VLC sf_rl_vlc; ///< scale factor run length vlc |
118 |
static VLC vec4_vlc; ///< 4 coefficients per symbol |
119 |
static VLC vec2_vlc; ///< 2 coefficients per symbol |
120 |
static VLC vec1_vlc; ///< 1 coefficient per symbol |
121 |
static VLC coef_vlc[2]; ///< coefficient run length vlc codes |
122 |
static float sin64[33]; ///< sinus table for decorrelation |
123 |
|
124 |
/**
|
125 |
* @brief frame specific decoder context for a single channel
|
126 |
*/
|
127 |
typedef struct { |
128 |
int16_t prev_block_len; ///< length of the previous block
|
129 |
uint8_t transmit_coefs; |
130 |
uint8_t num_subframes; |
131 |
uint16_t subframe_len[MAX_SUBFRAMES]; ///< subframe length in samples
|
132 |
uint16_t subframe_offset[MAX_SUBFRAMES]; ///< subframe positions in the current frame
|
133 |
uint8_t cur_subframe; ///< current subframe number
|
134 |
uint16_t decoded_samples; ///< number of already processed samples
|
135 |
uint8_t grouped; ///< channel is part of a group
|
136 |
int quant_step; ///< quantization step for the current subframe |
137 |
int8_t reuse_sf; ///< share scale factors between subframes
|
138 |
int8_t scale_factor_step; ///< scaling step for the current subframe
|
139 |
int max_scale_factor; ///< maximum scale factor for the current subframe |
140 |
int saved_scale_factors[2][MAX_BANDS]; ///< resampled and (previously) transmitted scale factor values |
141 |
int8_t scale_factor_idx; ///< index for the transmitted scale factor values (used for resampling)
|
142 |
int* scale_factors; ///< pointer to the scale factor values used for decoding |
143 |
uint8_t table_idx; ///< index in sf_offsets for the scale factor reference block
|
144 |
float* coeffs; ///< pointer to the subframe decode buffer |
145 |
DECLARE_ALIGNED(16, float, out)[WMAPRO_BLOCK_MAX_SIZE + WMAPRO_BLOCK_MAX_SIZE / 2]; ///< output buffer |
146 |
} WMAProChannelCtx; |
147 |
|
148 |
/**
|
149 |
* @brief channel group for channel transformations
|
150 |
*/
|
151 |
typedef struct { |
152 |
uint8_t num_channels; ///< number of channels in the group
|
153 |
int8_t transform; ///< transform on / off
|
154 |
int8_t transform_band[MAX_BANDS]; ///< controls if the transform is enabled for a certain band
|
155 |
float decorrelation_matrix[WMAPRO_MAX_CHANNELS*WMAPRO_MAX_CHANNELS];
|
156 |
float* channel_data[WMAPRO_MAX_CHANNELS]; ///< transformation coefficients |
157 |
} WMAProChannelGrp; |
158 |
|
159 |
/**
|
160 |
* @brief main decoder context
|
161 |
*/
|
162 |
typedef struct WMAProDecodeCtx { |
163 |
/* generic decoder variables */
|
164 |
AVCodecContext* avctx; ///< codec context for av_log
|
165 |
DSPContext dsp; ///< accelerated DSP functions
|
166 |
uint8_t frame_data[MAX_FRAMESIZE + |
167 |
FF_INPUT_BUFFER_PADDING_SIZE];///< compressed frame data
|
168 |
PutBitContext pb; ///< context for filling the frame_data buffer
|
169 |
FFTContext mdct_ctx[WMAPRO_BLOCK_SIZES]; ///< MDCT context per block size
|
170 |
DECLARE_ALIGNED(16, float, tmp)[WMAPRO_BLOCK_MAX_SIZE]; ///< IMDCT output buffer |
171 |
float* windows[WMAPRO_BLOCK_SIZES]; ///< windows for the different block sizes |
172 |
|
173 |
/* frame size dependent frame information (set during initialization) */
|
174 |
uint32_t decode_flags; ///< used compression features
|
175 |
uint8_t len_prefix; ///< frame is prefixed with its length
|
176 |
uint8_t dynamic_range_compression; ///< frame contains DRC data
|
177 |
uint8_t bits_per_sample; ///< integer audio sample size for the unscaled IMDCT output (used to scale to [-1.0, 1.0])
|
178 |
uint16_t samples_per_frame; ///< number of samples to output
|
179 |
uint16_t log2_frame_size; |
180 |
int8_t num_channels; ///< number of channels in the stream (same as AVCodecContext.num_channels)
|
181 |
int8_t lfe_channel; ///< lfe channel index
|
182 |
uint8_t max_num_subframes; |
183 |
uint8_t subframe_len_bits; ///< number of bits used for the subframe length
|
184 |
uint8_t max_subframe_len_bit; ///< flag indicating that the subframe is of maximum size when the first subframe length bit is 1
|
185 |
uint16_t min_samples_per_subframe; |
186 |
int8_t num_sfb[WMAPRO_BLOCK_SIZES]; ///< scale factor bands per block size
|
187 |
int16_t sfb_offsets[WMAPRO_BLOCK_SIZES][MAX_BANDS]; ///< scale factor band offsets (multiples of 4)
|
188 |
int8_t sf_offsets[WMAPRO_BLOCK_SIZES][WMAPRO_BLOCK_SIZES][MAX_BANDS]; ///< scale factor resample matrix
|
189 |
int16_t subwoofer_cutoffs[WMAPRO_BLOCK_SIZES]; ///< subwoofer cutoff values
|
190 |
|
191 |
/* packet decode state */
|
192 |
GetBitContext pgb; ///< bitstream reader context for the packet
|
193 |
uint8_t packet_offset; ///< frame offset in the packet
|
194 |
uint8_t packet_sequence_number; ///< current packet number
|
195 |
int num_saved_bits; ///< saved number of bits |
196 |
int frame_offset; ///< frame offset in the bit reservoir |
197 |
int subframe_offset; ///< subframe offset in the bit reservoir |
198 |
uint8_t packet_loss; ///< set in case of bitstream error
|
199 |
uint8_t packet_done; ///< set when a packet is fully decoded
|
200 |
|
201 |
/* frame decode state */
|
202 |
uint32_t frame_num; ///< current frame number (not used for decoding)
|
203 |
GetBitContext gb; ///< bitstream reader context
|
204 |
int buf_bit_size; ///< buffer size in bits |
205 |
float* samples; ///< current samplebuffer pointer |
206 |
float* samples_end; ///< maximum samplebuffer pointer |
207 |
uint8_t drc_gain; ///< gain for the DRC tool
|
208 |
int8_t skip_frame; ///< skip output step
|
209 |
int8_t parsed_all_subframes; ///< all subframes decoded?
|
210 |
|
211 |
/* subframe/block decode state */
|
212 |
int16_t subframe_len; ///< current subframe length
|
213 |
int8_t channels_for_cur_subframe; ///< number of channels that contain the subframe
|
214 |
int8_t channel_indexes_for_cur_subframe[WMAPRO_MAX_CHANNELS]; |
215 |
int8_t num_bands; ///< number of scale factor bands
|
216 |
int16_t* cur_sfb_offsets; ///< sfb offsets for the current block
|
217 |
uint8_t table_idx; ///< index for the num_sfb, sfb_offsets, sf_offsets and subwoofer_cutoffs tables
|
218 |
int8_t esc_len; ///< length of escaped coefficients
|
219 |
|
220 |
uint8_t num_chgroups; ///< number of channel groups
|
221 |
WMAProChannelGrp chgroup[WMAPRO_MAX_CHANNELS]; ///< channel group information
|
222 |
|
223 |
WMAProChannelCtx channel[WMAPRO_MAX_CHANNELS]; ///< per channel data
|
224 |
} WMAProDecodeCtx; |
225 |
|
226 |
|
227 |
/**
|
228 |
*@brief helper function to print the most important members of the context
|
229 |
*@param s context
|
230 |
*/
|
231 |
static void av_cold dump_context(WMAProDecodeCtx *s) |
232 |
{ |
233 |
#define PRINT(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %d\n", a, b); |
234 |
#define PRINT_HEX(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %x\n", a, b); |
235 |
|
236 |
PRINT("ed sample bit depth", s->bits_per_sample);
|
237 |
PRINT_HEX("ed decode flags", s->decode_flags);
|
238 |
PRINT("samples per frame", s->samples_per_frame);
|
239 |
PRINT("log2 frame size", s->log2_frame_size);
|
240 |
PRINT("max num subframes", s->max_num_subframes);
|
241 |
PRINT("len prefix", s->len_prefix);
|
242 |
PRINT("num channels", s->num_channels);
|
243 |
} |
244 |
|
245 |
/**
|
246 |
*@brief Uninitialize the decoder and free all resources.
|
247 |
*@param avctx codec context
|
248 |
*@return 0 on success, < 0 otherwise
|
249 |
*/
|
250 |
static av_cold int decode_end(AVCodecContext *avctx) |
251 |
{ |
252 |
WMAProDecodeCtx *s = avctx->priv_data; |
253 |
int i;
|
254 |
|
255 |
for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) |
256 |
ff_mdct_end(&s->mdct_ctx[i]); |
257 |
|
258 |
return 0; |
259 |
} |
260 |
|
261 |
/**
|
262 |
*@brief Initialize the decoder.
|
263 |
*@param avctx codec context
|
264 |
*@return 0 on success, -1 otherwise
|
265 |
*/
|
266 |
static av_cold int decode_init(AVCodecContext *avctx) |
267 |
{ |
268 |
WMAProDecodeCtx *s = avctx->priv_data; |
269 |
uint8_t *edata_ptr = avctx->extradata; |
270 |
unsigned int channel_mask; |
271 |
int i;
|
272 |
int log2_max_num_subframes;
|
273 |
int num_possible_block_sizes;
|
274 |
|
275 |
s->avctx = avctx; |
276 |
dsputil_init(&s->dsp, avctx); |
277 |
init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE); |
278 |
|
279 |
avctx->sample_fmt = SAMPLE_FMT_FLT; |
280 |
|
281 |
if (avctx->extradata_size >= 18) { |
282 |
s->decode_flags = AV_RL16(edata_ptr+14);
|
283 |
channel_mask = AV_RL32(edata_ptr+2);
|
284 |
s->bits_per_sample = AV_RL16(edata_ptr); |
285 |
/** dump the extradata */
|
286 |
for (i = 0; i < avctx->extradata_size; i++) |
287 |
dprintf(avctx, "[%x] ", avctx->extradata[i]);
|
288 |
dprintf(avctx, "\n");
|
289 |
|
290 |
} else {
|
291 |
av_log_ask_for_sample(avctx, "Unknown extradata size\n");
|
292 |
return AVERROR_INVALIDDATA;
|
293 |
} |
294 |
|
295 |
/** generic init */
|
296 |
s->log2_frame_size = av_log2(avctx->block_align) + 4;
|
297 |
|
298 |
/** frame info */
|
299 |
s->skip_frame = 1; /** skip first frame */ |
300 |
s->packet_loss = 1;
|
301 |
s->len_prefix = (s->decode_flags & 0x40);
|
302 |
|
303 |
if (!s->len_prefix) {
|
304 |
av_log_ask_for_sample(avctx, "no length prefix\n");
|
305 |
return AVERROR_INVALIDDATA;
|
306 |
} |
307 |
|
308 |
/** get frame len */
|
309 |
s->samples_per_frame = 1 << ff_wma_get_frame_len_bits(avctx->sample_rate,
|
310 |
3, s->decode_flags);
|
311 |
|
312 |
/** init previous block len */
|
313 |
for (i = 0; i < avctx->channels; i++) |
314 |
s->channel[i].prev_block_len = s->samples_per_frame; |
315 |
|
316 |
/** subframe info */
|
317 |
log2_max_num_subframes = ((s->decode_flags & 0x38) >> 3); |
318 |
s->max_num_subframes = 1 << log2_max_num_subframes;
|
319 |
if (s->max_num_subframes == 16) |
320 |
s->max_subframe_len_bit = 1;
|
321 |
s->subframe_len_bits = av_log2(log2_max_num_subframes) + 1;
|
322 |
|
323 |
num_possible_block_sizes = log2_max_num_subframes + 1;
|
324 |
s->min_samples_per_subframe = s->samples_per_frame / s->max_num_subframes; |
325 |
s->dynamic_range_compression = (s->decode_flags & 0x80);
|
326 |
|
327 |
if (s->max_num_subframes > MAX_SUBFRAMES) {
|
328 |
av_log(avctx, AV_LOG_ERROR, "invalid number of subframes %i\n",
|
329 |
s->max_num_subframes); |
330 |
return AVERROR_INVALIDDATA;
|
331 |
} |
332 |
|
333 |
s->num_channels = avctx->channels; |
334 |
|
335 |
/** extract lfe channel position */
|
336 |
s->lfe_channel = -1;
|
337 |
|
338 |
if (channel_mask & 8) { |
339 |
unsigned int mask; |
340 |
for (mask = 1; mask < 16; mask <<= 1) { |
341 |
if (channel_mask & mask)
|
342 |
++s->lfe_channel; |
343 |
} |
344 |
} |
345 |
|
346 |
if (s->num_channels < 0) { |
347 |
av_log(avctx, AV_LOG_ERROR, "invalid number of channels %d\n", s->num_channels);
|
348 |
return AVERROR_INVALIDDATA;
|
349 |
} else if (s->num_channels > WMAPRO_MAX_CHANNELS) { |
350 |
av_log_ask_for_sample(avctx, "unsupported number of channels\n");
|
351 |
return AVERROR_PATCHWELCOME;
|
352 |
} |
353 |
|
354 |
INIT_VLC_STATIC(&sf_vlc, SCALEVLCBITS, HUFF_SCALE_SIZE, |
355 |
scale_huffbits, 1, 1, |
356 |
scale_huffcodes, 2, 2, 616); |
357 |
|
358 |
INIT_VLC_STATIC(&sf_rl_vlc, VLCBITS, HUFF_SCALE_RL_SIZE, |
359 |
scale_rl_huffbits, 1, 1, |
360 |
scale_rl_huffcodes, 4, 4, 1406); |
361 |
|
362 |
INIT_VLC_STATIC(&coef_vlc[0], VLCBITS, HUFF_COEF0_SIZE,
|
363 |
coef0_huffbits, 1, 1, |
364 |
coef0_huffcodes, 4, 4, 2108); |
365 |
|
366 |
INIT_VLC_STATIC(&coef_vlc[1], VLCBITS, HUFF_COEF1_SIZE,
|
367 |
coef1_huffbits, 1, 1, |
368 |
coef1_huffcodes, 4, 4, 3912); |
369 |
|
370 |
INIT_VLC_STATIC(&vec4_vlc, VLCBITS, HUFF_VEC4_SIZE, |
371 |
vec4_huffbits, 1, 1, |
372 |
vec4_huffcodes, 2, 2, 604); |
373 |
|
374 |
INIT_VLC_STATIC(&vec2_vlc, VLCBITS, HUFF_VEC2_SIZE, |
375 |
vec2_huffbits, 1, 1, |
376 |
vec2_huffcodes, 2, 2, 562); |
377 |
|
378 |
INIT_VLC_STATIC(&vec1_vlc, VLCBITS, HUFF_VEC1_SIZE, |
379 |
vec1_huffbits, 1, 1, |
380 |
vec1_huffcodes, 2, 2, 562); |
381 |
|
382 |
/** calculate number of scale factor bands and their offsets
|
383 |
for every possible block size */
|
384 |
for (i = 0; i < num_possible_block_sizes; i++) { |
385 |
int subframe_len = s->samples_per_frame >> i;
|
386 |
int x;
|
387 |
int band = 1; |
388 |
|
389 |
s->sfb_offsets[i][0] = 0; |
390 |
|
391 |
for (x = 0; x < MAX_BANDS-1 && s->sfb_offsets[i][band - 1] < subframe_len; x++) { |
392 |
int offset = (subframe_len * 2 * critical_freq[x]) |
393 |
/ s->avctx->sample_rate + 2;
|
394 |
offset &= ~3;
|
395 |
if (offset > s->sfb_offsets[i][band - 1]) |
396 |
s->sfb_offsets[i][band++] = offset; |
397 |
} |
398 |
s->sfb_offsets[i][band - 1] = subframe_len;
|
399 |
s->num_sfb[i] = band - 1;
|
400 |
} |
401 |
|
402 |
|
403 |
/** Scale factors can be shared between blocks of different size
|
404 |
as every block has a different scale factor band layout.
|
405 |
The matrix sf_offsets is needed to find the correct scale factor.
|
406 |
*/
|
407 |
|
408 |
for (i = 0; i < num_possible_block_sizes; i++) { |
409 |
int b;
|
410 |
for (b = 0; b < s->num_sfb[i]; b++) { |
411 |
int x;
|
412 |
int offset = ((s->sfb_offsets[i][b]
|
413 |
+ s->sfb_offsets[i][b + 1] - 1) << i) >> 1; |
414 |
for (x = 0; x < num_possible_block_sizes; x++) { |
415 |
int v = 0; |
416 |
while (s->sfb_offsets[x][v + 1] << x < offset) |
417 |
++v; |
418 |
s->sf_offsets[i][x][b] = v; |
419 |
} |
420 |
} |
421 |
} |
422 |
|
423 |
/** init MDCT, FIXME: only init needed sizes */
|
424 |
for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) |
425 |
ff_mdct_init(&s->mdct_ctx[i], BLOCK_MIN_BITS+1+i, 1, |
426 |
1.0 / (1 << (BLOCK_MIN_BITS + i - 1)) |
427 |
/ (1 << (s->bits_per_sample - 1))); |
428 |
|
429 |
/** init MDCT windows: simple sinus window */
|
430 |
for (i = 0; i < WMAPRO_BLOCK_SIZES; i++) { |
431 |
const int win_idx = WMAPRO_BLOCK_MAX_BITS - i; |
432 |
ff_init_ff_sine_windows(win_idx); |
433 |
s->windows[WMAPRO_BLOCK_SIZES - i - 1] = ff_sine_windows[win_idx];
|
434 |
} |
435 |
|
436 |
/** calculate subwoofer cutoff values */
|
437 |
for (i = 0; i < num_possible_block_sizes; i++) { |
438 |
int block_size = s->samples_per_frame >> i;
|
439 |
int cutoff = (440*block_size + 3 * (s->avctx->sample_rate >> 1) - 1) |
440 |
/ s->avctx->sample_rate; |
441 |
s->subwoofer_cutoffs[i] = av_clip(cutoff, 4, block_size);
|
442 |
} |
443 |
|
444 |
/** calculate sine values for the decorrelation matrix */
|
445 |
for (i = 0; i < 33; i++) |
446 |
sin64[i] = sin(i*M_PI / 64.0); |
447 |
|
448 |
if (avctx->debug & FF_DEBUG_BITSTREAM)
|
449 |
dump_context(s); |
450 |
|
451 |
avctx->channel_layout = channel_mask; |
452 |
return 0; |
453 |
} |
454 |
|
455 |
/**
|
456 |
*@brief Decode the subframe length.
|
457 |
*@param s context
|
458 |
*@param offset sample offset in the frame
|
459 |
*@return decoded subframe length on success, < 0 in case of an error
|
460 |
*/
|
461 |
static int decode_subframe_length(WMAProDecodeCtx *s, int offset) |
462 |
{ |
463 |
int frame_len_shift = 0; |
464 |
int subframe_len;
|
465 |
|
466 |
/** no need to read from the bitstream when only one length is possible */
|
467 |
if (offset == s->samples_per_frame - s->min_samples_per_subframe)
|
468 |
return s->min_samples_per_subframe;
|
469 |
|
470 |
/** 1 bit indicates if the subframe is of maximum length */
|
471 |
if (s->max_subframe_len_bit) {
|
472 |
if (get_bits1(&s->gb))
|
473 |
frame_len_shift = 1 + get_bits(&s->gb, s->subframe_len_bits-1); |
474 |
} else
|
475 |
frame_len_shift = get_bits(&s->gb, s->subframe_len_bits); |
476 |
|
477 |
subframe_len = s->samples_per_frame >> frame_len_shift; |
478 |
|
479 |
/** sanity check the length */
|
480 |
if (subframe_len < s->min_samples_per_subframe ||
|
481 |
subframe_len > s->samples_per_frame) { |
482 |
av_log(s->avctx, AV_LOG_ERROR, "broken frame: subframe_len %i\n",
|
483 |
subframe_len); |
484 |
return AVERROR_INVALIDDATA;
|
485 |
} |
486 |
return subframe_len;
|
487 |
} |
488 |
|
489 |
/**
|
490 |
*@brief Decode how the data in the frame is split into subframes.
|
491 |
* Every WMA frame contains the encoded data for a fixed number of
|
492 |
* samples per channel. The data for every channel might be split
|
493 |
* into several subframes. This function will reconstruct the list of
|
494 |
* subframes for every channel.
|
495 |
*
|
496 |
* If the subframes are not evenly split, the algorithm estimates the
|
497 |
* channels with the lowest number of total samples.
|
498 |
* Afterwards, for each of these channels a bit is read from the
|
499 |
* bitstream that indicates if the channel contains a subframe with the
|
500 |
* next subframe size that is going to be read from the bitstream or not.
|
501 |
* If a channel contains such a subframe, the subframe size gets added to
|
502 |
* the channel's subframe list.
|
503 |
* The algorithm repeats these steps until the frame is properly divided
|
504 |
* between the individual channels.
|
505 |
*
|
506 |
*@param s context
|
507 |
*@return 0 on success, < 0 in case of an error
|
508 |
*/
|
509 |
static int decode_tilehdr(WMAProDecodeCtx *s) |
510 |
{ |
511 |
uint16_t num_samples[WMAPRO_MAX_CHANNELS]; /** sum of samples for all currently known subframes of a channel */
|
512 |
uint8_t contains_subframe[WMAPRO_MAX_CHANNELS]; /** flag indicating if a channel contains the current subframe */
|
513 |
int channels_for_cur_subframe = s->num_channels; /** number of channels that contain the current subframe */ |
514 |
int fixed_channel_layout = 0; /** flag indicating that all channels use the same subframe offsets and sizes */ |
515 |
int min_channel_len = 0; /** smallest sum of samples (channels with this length will be processed first) */ |
516 |
int c;
|
517 |
|
518 |
/* Should never consume more than 3073 bits (256 iterations for the
|
519 |
* while loop when always the minimum amount of 128 samples is substracted
|
520 |
* from missing samples in the 8 channel case).
|
521 |
* 1 + BLOCK_MAX_SIZE * MAX_CHANNELS / BLOCK_MIN_SIZE * (MAX_CHANNELS + 4)
|
522 |
*/
|
523 |
|
524 |
/** reset tiling information */
|
525 |
for (c = 0; c < s->num_channels; c++) |
526 |
s->channel[c].num_subframes = 0;
|
527 |
|
528 |
memset(num_samples, 0, sizeof(num_samples)); |
529 |
|
530 |
if (s->max_num_subframes == 1 || get_bits1(&s->gb)) |
531 |
fixed_channel_layout = 1;
|
532 |
|
533 |
/** loop until the frame data is split between the subframes */
|
534 |
do {
|
535 |
int subframe_len;
|
536 |
|
537 |
/** check which channels contain the subframe */
|
538 |
for (c = 0; c < s->num_channels; c++) { |
539 |
if (num_samples[c] == min_channel_len) {
|
540 |
if (fixed_channel_layout || channels_for_cur_subframe == 1 || |
541 |
(min_channel_len == s->samples_per_frame - s->min_samples_per_subframe)) |
542 |
contains_subframe[c] = 1;
|
543 |
else
|
544 |
contains_subframe[c] = get_bits1(&s->gb); |
545 |
} else
|
546 |
contains_subframe[c] = 0;
|
547 |
} |
548 |
|
549 |
/** get subframe length, subframe_len == 0 is not allowed */
|
550 |
if ((subframe_len = decode_subframe_length(s, min_channel_len)) <= 0) |
551 |
return AVERROR_INVALIDDATA;
|
552 |
|
553 |
/** add subframes to the individual channels and find new min_channel_len */
|
554 |
min_channel_len += subframe_len; |
555 |
for (c = 0; c < s->num_channels; c++) { |
556 |
WMAProChannelCtx* chan = &s->channel[c]; |
557 |
|
558 |
if (contains_subframe[c]) {
|
559 |
if (chan->num_subframes >= MAX_SUBFRAMES) {
|
560 |
av_log(s->avctx, AV_LOG_ERROR, |
561 |
"broken frame: num subframes > 31\n");
|
562 |
return AVERROR_INVALIDDATA;
|
563 |
} |
564 |
chan->subframe_len[chan->num_subframes] = subframe_len; |
565 |
num_samples[c] += subframe_len; |
566 |
++chan->num_subframes; |
567 |
if (num_samples[c] > s->samples_per_frame) {
|
568 |
av_log(s->avctx, AV_LOG_ERROR, "broken frame: "
|
569 |
"channel len > samples_per_frame\n");
|
570 |
return AVERROR_INVALIDDATA;
|
571 |
} |
572 |
} else if (num_samples[c] <= min_channel_len) { |
573 |
if (num_samples[c] < min_channel_len) {
|
574 |
channels_for_cur_subframe = 0;
|
575 |
min_channel_len = num_samples[c]; |
576 |
} |
577 |
++channels_for_cur_subframe; |
578 |
} |
579 |
} |
580 |
} while (min_channel_len < s->samples_per_frame);
|
581 |
|
582 |
for (c = 0; c < s->num_channels; c++) { |
583 |
int i;
|
584 |
int offset = 0; |
585 |
for (i = 0; i < s->channel[c].num_subframes; i++) { |
586 |
dprintf(s->avctx, "frame[%i] channel[%i] subframe[%i]"
|
587 |
" len %i\n", s->frame_num, c, i,
|
588 |
s->channel[c].subframe_len[i]); |
589 |
s->channel[c].subframe_offset[i] = offset; |
590 |
offset += s->channel[c].subframe_len[i]; |
591 |
} |
592 |
} |
593 |
|
594 |
return 0; |
595 |
} |
596 |
|
597 |
/**
|
598 |
*@brief Calculate a decorrelation matrix from the bitstream parameters.
|
599 |
*@param s codec context
|
600 |
*@param chgroup channel group for which the matrix needs to be calculated
|
601 |
*/
|
602 |
static void decode_decorrelation_matrix(WMAProDecodeCtx *s, |
603 |
WMAProChannelGrp *chgroup) |
604 |
{ |
605 |
int i;
|
606 |
int offset = 0; |
607 |
int8_t rotation_offset[WMAPRO_MAX_CHANNELS * WMAPRO_MAX_CHANNELS]; |
608 |
memset(chgroup->decorrelation_matrix, 0, s->num_channels *
|
609 |
s->num_channels * sizeof(*chgroup->decorrelation_matrix));
|
610 |
|
611 |
for (i = 0; i < chgroup->num_channels * (chgroup->num_channels - 1) >> 1; i++) |
612 |
rotation_offset[i] = get_bits(&s->gb, 6);
|
613 |
|
614 |
for (i = 0; i < chgroup->num_channels; i++) |
615 |
chgroup->decorrelation_matrix[chgroup->num_channels * i + i] = |
616 |
get_bits1(&s->gb) ? 1.0 : -1.0; |
617 |
|
618 |
for (i = 1; i < chgroup->num_channels; i++) { |
619 |
int x;
|
620 |
for (x = 0; x < i; x++) { |
621 |
int y;
|
622 |
for (y = 0; y < i + 1; y++) { |
623 |
float v1 = chgroup->decorrelation_matrix[x * chgroup->num_channels + y];
|
624 |
float v2 = chgroup->decorrelation_matrix[i * chgroup->num_channels + y];
|
625 |
int n = rotation_offset[offset + x];
|
626 |
float sinv;
|
627 |
float cosv;
|
628 |
|
629 |
if (n < 32) { |
630 |
sinv = sin64[n]; |
631 |
cosv = sin64[32 - n];
|
632 |
} else {
|
633 |
sinv = sin64[64 - n];
|
634 |
cosv = -sin64[n - 32];
|
635 |
} |
636 |
|
637 |
chgroup->decorrelation_matrix[y + x * chgroup->num_channels] = |
638 |
(v1 * sinv) - (v2 * cosv); |
639 |
chgroup->decorrelation_matrix[y + i * chgroup->num_channels] = |
640 |
(v1 * cosv) + (v2 * sinv); |
641 |
} |
642 |
} |
643 |
offset += i; |
644 |
} |
645 |
} |
646 |
|
647 |
/**
|
648 |
*@brief Decode channel transformation parameters
|
649 |
*@param s codec context
|
650 |
*@return 0 in case of success, < 0 in case of bitstream errors
|
651 |
*/
|
652 |
static int decode_channel_transform(WMAProDecodeCtx* s) |
653 |
{ |
654 |
int i;
|
655 |
/* should never consume more than 1921 bits for the 8 channel case
|
656 |
* 1 + MAX_CHANNELS * (MAX_CHANNELS + 2 + 3 * MAX_CHANNELS * MAX_CHANNELS
|
657 |
* + MAX_CHANNELS + MAX_BANDS + 1)
|
658 |
*/
|
659 |
|
660 |
/** in the one channel case channel transforms are pointless */
|
661 |
s->num_chgroups = 0;
|
662 |
if (s->num_channels > 1) { |
663 |
int remaining_channels = s->channels_for_cur_subframe;
|
664 |
|
665 |
if (get_bits1(&s->gb)) {
|
666 |
av_log_ask_for_sample(s->avctx, |
667 |
"unsupported channel transform bit\n");
|
668 |
return AVERROR_INVALIDDATA;
|
669 |
} |
670 |
|
671 |
for (s->num_chgroups = 0; remaining_channels && |
672 |
s->num_chgroups < s->channels_for_cur_subframe; s->num_chgroups++) { |
673 |
WMAProChannelGrp* chgroup = &s->chgroup[s->num_chgroups]; |
674 |
float** channel_data = chgroup->channel_data;
|
675 |
chgroup->num_channels = 0;
|
676 |
chgroup->transform = 0;
|
677 |
|
678 |
/** decode channel mask */
|
679 |
if (remaining_channels > 2) { |
680 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
681 |
int channel_idx = s->channel_indexes_for_cur_subframe[i];
|
682 |
if (!s->channel[channel_idx].grouped
|
683 |
&& get_bits1(&s->gb)) { |
684 |
++chgroup->num_channels; |
685 |
s->channel[channel_idx].grouped = 1;
|
686 |
*channel_data++ = s->channel[channel_idx].coeffs; |
687 |
} |
688 |
} |
689 |
} else {
|
690 |
chgroup->num_channels = remaining_channels; |
691 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
692 |
int channel_idx = s->channel_indexes_for_cur_subframe[i];
|
693 |
if (!s->channel[channel_idx].grouped)
|
694 |
*channel_data++ = s->channel[channel_idx].coeffs; |
695 |
s->channel[channel_idx].grouped = 1;
|
696 |
} |
697 |
} |
698 |
|
699 |
/** decode transform type */
|
700 |
if (chgroup->num_channels == 2) { |
701 |
if (get_bits1(&s->gb)) {
|
702 |
if (get_bits1(&s->gb)) {
|
703 |
av_log_ask_for_sample(s->avctx, |
704 |
"unsupported channel transform type\n");
|
705 |
} |
706 |
} else {
|
707 |
chgroup->transform = 1;
|
708 |
if (s->num_channels == 2) { |
709 |
chgroup->decorrelation_matrix[0] = 1.0; |
710 |
chgroup->decorrelation_matrix[1] = -1.0; |
711 |
chgroup->decorrelation_matrix[2] = 1.0; |
712 |
chgroup->decorrelation_matrix[3] = 1.0; |
713 |
} else {
|
714 |
/** cos(pi/4) */
|
715 |
chgroup->decorrelation_matrix[0] = 0.70703125; |
716 |
chgroup->decorrelation_matrix[1] = -0.70703125; |
717 |
chgroup->decorrelation_matrix[2] = 0.70703125; |
718 |
chgroup->decorrelation_matrix[3] = 0.70703125; |
719 |
} |
720 |
} |
721 |
} else if (chgroup->num_channels > 2) { |
722 |
if (get_bits1(&s->gb)) {
|
723 |
chgroup->transform = 1;
|
724 |
if (get_bits1(&s->gb)) {
|
725 |
decode_decorrelation_matrix(s, chgroup); |
726 |
} else {
|
727 |
/** FIXME: more than 6 coupled channels not supported */
|
728 |
if (chgroup->num_channels > 6) { |
729 |
av_log_ask_for_sample(s->avctx, |
730 |
"coupled channels > 6\n");
|
731 |
} else {
|
732 |
memcpy(chgroup->decorrelation_matrix, |
733 |
default_decorrelation[chgroup->num_channels], |
734 |
chgroup->num_channels * chgroup->num_channels * |
735 |
sizeof(*chgroup->decorrelation_matrix));
|
736 |
} |
737 |
} |
738 |
} |
739 |
} |
740 |
|
741 |
/** decode transform on / off */
|
742 |
if (chgroup->transform) {
|
743 |
if (!get_bits1(&s->gb)) {
|
744 |
int i;
|
745 |
/** transform can be enabled for individual bands */
|
746 |
for (i = 0; i < s->num_bands; i++) { |
747 |
chgroup->transform_band[i] = get_bits1(&s->gb); |
748 |
} |
749 |
} else {
|
750 |
memset(chgroup->transform_band, 1, s->num_bands);
|
751 |
} |
752 |
} |
753 |
remaining_channels -= chgroup->num_channels; |
754 |
} |
755 |
} |
756 |
return 0; |
757 |
} |
758 |
|
759 |
/**
|
760 |
*@brief Extract the coefficients from the bitstream.
|
761 |
*@param s codec context
|
762 |
*@param c current channel number
|
763 |
*@return 0 on success, < 0 in case of bitstream errors
|
764 |
*/
|
765 |
static int decode_coeffs(WMAProDecodeCtx *s, int c) |
766 |
{ |
767 |
/* Integers 0..15 as single-precision floats. The table saves a
|
768 |
costly int to float conversion, and storing the values as
|
769 |
integers allows fast sign-flipping. */
|
770 |
static const int fval_tab[16] = { |
771 |
0x00000000, 0x3f800000, 0x40000000, 0x40400000, |
772 |
0x40800000, 0x40a00000, 0x40c00000, 0x40e00000, |
773 |
0x41000000, 0x41100000, 0x41200000, 0x41300000, |
774 |
0x41400000, 0x41500000, 0x41600000, 0x41700000, |
775 |
}; |
776 |
int vlctable;
|
777 |
VLC* vlc; |
778 |
WMAProChannelCtx* ci = &s->channel[c]; |
779 |
int rl_mode = 0; |
780 |
int cur_coeff = 0; |
781 |
int num_zeros = 0; |
782 |
const uint16_t* run;
|
783 |
const float* level; |
784 |
|
785 |
dprintf(s->avctx, "decode coefficients for channel %i\n", c);
|
786 |
|
787 |
vlctable = get_bits1(&s->gb); |
788 |
vlc = &coef_vlc[vlctable]; |
789 |
|
790 |
if (vlctable) {
|
791 |
run = coef1_run; |
792 |
level = coef1_level; |
793 |
} else {
|
794 |
run = coef0_run; |
795 |
level = coef0_level; |
796 |
} |
797 |
|
798 |
/** decode vector coefficients (consumes up to 167 bits per iteration for
|
799 |
4 vector coded large values) */
|
800 |
while (!rl_mode && cur_coeff + 3 < s->subframe_len) { |
801 |
int vals[4]; |
802 |
int i;
|
803 |
unsigned int idx; |
804 |
|
805 |
idx = get_vlc2(&s->gb, vec4_vlc.table, VLCBITS, VEC4MAXDEPTH); |
806 |
|
807 |
if (idx == HUFF_VEC4_SIZE - 1) { |
808 |
for (i = 0; i < 4; i += 2) { |
809 |
idx = get_vlc2(&s->gb, vec2_vlc.table, VLCBITS, VEC2MAXDEPTH); |
810 |
if (idx == HUFF_VEC2_SIZE - 1) { |
811 |
int v0, v1;
|
812 |
v0 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH); |
813 |
if (v0 == HUFF_VEC1_SIZE - 1) |
814 |
v0 += ff_wma_get_large_val(&s->gb); |
815 |
v1 = get_vlc2(&s->gb, vec1_vlc.table, VLCBITS, VEC1MAXDEPTH); |
816 |
if (v1 == HUFF_VEC1_SIZE - 1) |
817 |
v1 += ff_wma_get_large_val(&s->gb); |
818 |
((float*)vals)[i ] = v0;
|
819 |
((float*)vals)[i+1] = v1; |
820 |
} else {
|
821 |
vals[i] = fval_tab[symbol_to_vec2[idx] >> 4 ];
|
822 |
vals[i+1] = fval_tab[symbol_to_vec2[idx] & 0xF]; |
823 |
} |
824 |
} |
825 |
} else {
|
826 |
vals[0] = fval_tab[ symbol_to_vec4[idx] >> 12 ]; |
827 |
vals[1] = fval_tab[(symbol_to_vec4[idx] >> 8) & 0xF]; |
828 |
vals[2] = fval_tab[(symbol_to_vec4[idx] >> 4) & 0xF]; |
829 |
vals[3] = fval_tab[ symbol_to_vec4[idx] & 0xF]; |
830 |
} |
831 |
|
832 |
/** decode sign */
|
833 |
for (i = 0; i < 4; i++) { |
834 |
if (vals[i]) {
|
835 |
int sign = get_bits1(&s->gb) - 1; |
836 |
*(uint32_t*)&ci->coeffs[cur_coeff] = vals[i] ^ sign<<31;
|
837 |
num_zeros = 0;
|
838 |
} else {
|
839 |
ci->coeffs[cur_coeff] = 0;
|
840 |
/** switch to run level mode when subframe_len / 128 zeros
|
841 |
were found in a row */
|
842 |
rl_mode |= (++num_zeros > s->subframe_len >> 8);
|
843 |
} |
844 |
++cur_coeff; |
845 |
} |
846 |
} |
847 |
|
848 |
/** decode run level coded coefficients */
|
849 |
if (rl_mode) {
|
850 |
memset(&ci->coeffs[cur_coeff], 0,
|
851 |
sizeof(*ci->coeffs) * (s->subframe_len - cur_coeff));
|
852 |
if (ff_wma_run_level_decode(s->avctx, &s->gb, vlc,
|
853 |
level, run, 1, ci->coeffs,
|
854 |
cur_coeff, s->subframe_len, |
855 |
s->subframe_len, s->esc_len, 0))
|
856 |
return AVERROR_INVALIDDATA;
|
857 |
} |
858 |
|
859 |
return 0; |
860 |
} |
861 |
|
862 |
/**
|
863 |
*@brief Extract scale factors from the bitstream.
|
864 |
*@param s codec context
|
865 |
*@return 0 on success, < 0 in case of bitstream errors
|
866 |
*/
|
867 |
static int decode_scale_factors(WMAProDecodeCtx* s) |
868 |
{ |
869 |
int i;
|
870 |
|
871 |
/** should never consume more than 5344 bits
|
872 |
* MAX_CHANNELS * (1 + MAX_BANDS * 23)
|
873 |
*/
|
874 |
|
875 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
876 |
int c = s->channel_indexes_for_cur_subframe[i];
|
877 |
int* sf;
|
878 |
int* sf_end;
|
879 |
s->channel[c].scale_factors = s->channel[c].saved_scale_factors[!s->channel[c].scale_factor_idx]; |
880 |
sf_end = s->channel[c].scale_factors + s->num_bands; |
881 |
|
882 |
/** resample scale factors for the new block size
|
883 |
* as the scale factors might need to be resampled several times
|
884 |
* before some new values are transmitted, a backup of the last
|
885 |
* transmitted scale factors is kept in saved_scale_factors
|
886 |
*/
|
887 |
if (s->channel[c].reuse_sf) {
|
888 |
const int8_t* sf_offsets = s->sf_offsets[s->table_idx][s->channel[c].table_idx];
|
889 |
int b;
|
890 |
for (b = 0; b < s->num_bands; b++) |
891 |
s->channel[c].scale_factors[b] = |
892 |
s->channel[c].saved_scale_factors[s->channel[c].scale_factor_idx][*sf_offsets++]; |
893 |
} |
894 |
|
895 |
if (!s->channel[c].cur_subframe || get_bits1(&s->gb)) {
|
896 |
|
897 |
if (!s->channel[c].reuse_sf) {
|
898 |
int val;
|
899 |
/** decode DPCM coded scale factors */
|
900 |
s->channel[c].scale_factor_step = get_bits(&s->gb, 2) + 1; |
901 |
val = 45 / s->channel[c].scale_factor_step;
|
902 |
for (sf = s->channel[c].scale_factors; sf < sf_end; sf++) {
|
903 |
val += get_vlc2(&s->gb, sf_vlc.table, SCALEVLCBITS, SCALEMAXDEPTH) - 60;
|
904 |
*sf = val; |
905 |
} |
906 |
} else {
|
907 |
int i;
|
908 |
/** run level decode differences to the resampled factors */
|
909 |
for (i = 0; i < s->num_bands; i++) { |
910 |
int idx;
|
911 |
int skip;
|
912 |
int val;
|
913 |
int sign;
|
914 |
|
915 |
idx = get_vlc2(&s->gb, sf_rl_vlc.table, VLCBITS, SCALERLMAXDEPTH); |
916 |
|
917 |
if (!idx) {
|
918 |
uint32_t code = get_bits(&s->gb, 14);
|
919 |
val = code >> 6;
|
920 |
sign = (code & 1) - 1; |
921 |
skip = (code & 0x3f) >> 1; |
922 |
} else if (idx == 1) { |
923 |
break;
|
924 |
} else {
|
925 |
skip = scale_rl_run[idx]; |
926 |
val = scale_rl_level[idx]; |
927 |
sign = get_bits1(&s->gb)-1;
|
928 |
} |
929 |
|
930 |
i += skip; |
931 |
if (i >= s->num_bands) {
|
932 |
av_log(s->avctx, AV_LOG_ERROR, |
933 |
"invalid scale factor coding\n");
|
934 |
return AVERROR_INVALIDDATA;
|
935 |
} |
936 |
s->channel[c].scale_factors[i] += (val ^ sign) - sign; |
937 |
} |
938 |
} |
939 |
/** swap buffers */
|
940 |
s->channel[c].scale_factor_idx = !s->channel[c].scale_factor_idx; |
941 |
s->channel[c].table_idx = s->table_idx; |
942 |
s->channel[c].reuse_sf = 1;
|
943 |
} |
944 |
|
945 |
/** calculate new scale factor maximum */
|
946 |
s->channel[c].max_scale_factor = s->channel[c].scale_factors[0];
|
947 |
for (sf = s->channel[c].scale_factors + 1; sf < sf_end; sf++) { |
948 |
s->channel[c].max_scale_factor = |
949 |
FFMAX(s->channel[c].max_scale_factor, *sf); |
950 |
} |
951 |
|
952 |
} |
953 |
return 0; |
954 |
} |
955 |
|
956 |
/**
|
957 |
*@brief Reconstruct the individual channel data.
|
958 |
*@param s codec context
|
959 |
*/
|
960 |
static void inverse_channel_transform(WMAProDecodeCtx *s) |
961 |
{ |
962 |
int i;
|
963 |
|
964 |
for (i = 0; i < s->num_chgroups; i++) { |
965 |
if (s->chgroup[i].transform) {
|
966 |
float data[WMAPRO_MAX_CHANNELS];
|
967 |
const int num_channels = s->chgroup[i].num_channels; |
968 |
float** ch_data = s->chgroup[i].channel_data;
|
969 |
float** ch_end = ch_data + num_channels;
|
970 |
const int8_t* tb = s->chgroup[i].transform_band;
|
971 |
int16_t* sfb; |
972 |
|
973 |
/** multichannel decorrelation */
|
974 |
for (sfb = s->cur_sfb_offsets;
|
975 |
sfb < s->cur_sfb_offsets + s->num_bands; sfb++) { |
976 |
int y;
|
977 |
if (*tb++ == 1) { |
978 |
/** multiply values with the decorrelation_matrix */
|
979 |
for (y = sfb[0]; y < FFMIN(sfb[1], s->subframe_len); y++) { |
980 |
const float* mat = s->chgroup[i].decorrelation_matrix; |
981 |
const float* data_end = data + num_channels; |
982 |
float* data_ptr = data;
|
983 |
float** ch;
|
984 |
|
985 |
for (ch = ch_data; ch < ch_end; ch++)
|
986 |
*data_ptr++ = (*ch)[y]; |
987 |
|
988 |
for (ch = ch_data; ch < ch_end; ch++) {
|
989 |
float sum = 0; |
990 |
data_ptr = data; |
991 |
while (data_ptr < data_end)
|
992 |
sum += *data_ptr++ * *mat++; |
993 |
|
994 |
(*ch)[y] = sum; |
995 |
} |
996 |
} |
997 |
} else if (s->num_channels == 2) { |
998 |
int len = FFMIN(sfb[1], s->subframe_len) - sfb[0]; |
999 |
s->dsp.vector_fmul_scalar(ch_data[0] + sfb[0], |
1000 |
ch_data[0] + sfb[0], |
1001 |
181.0 / 128, len); |
1002 |
s->dsp.vector_fmul_scalar(ch_data[1] + sfb[0], |
1003 |
ch_data[1] + sfb[0], |
1004 |
181.0 / 128, len); |
1005 |
} |
1006 |
} |
1007 |
} |
1008 |
} |
1009 |
} |
1010 |
|
1011 |
/**
|
1012 |
*@brief Apply sine window and reconstruct the output buffer.
|
1013 |
*@param s codec context
|
1014 |
*/
|
1015 |
static void wmapro_window(WMAProDecodeCtx *s) |
1016 |
{ |
1017 |
int i;
|
1018 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
1019 |
int c = s->channel_indexes_for_cur_subframe[i];
|
1020 |
float* window;
|
1021 |
int winlen = s->channel[c].prev_block_len;
|
1022 |
float* start = s->channel[c].coeffs - (winlen >> 1); |
1023 |
|
1024 |
if (s->subframe_len < winlen) {
|
1025 |
start += (winlen - s->subframe_len) >> 1;
|
1026 |
winlen = s->subframe_len; |
1027 |
} |
1028 |
|
1029 |
window = s->windows[av_log2(winlen) - BLOCK_MIN_BITS]; |
1030 |
|
1031 |
winlen >>= 1;
|
1032 |
|
1033 |
s->dsp.vector_fmul_window(start, start, start + winlen, |
1034 |
window, 0, winlen);
|
1035 |
|
1036 |
s->channel[c].prev_block_len = s->subframe_len; |
1037 |
} |
1038 |
} |
1039 |
|
1040 |
/**
|
1041 |
*@brief Decode a single subframe (block).
|
1042 |
*@param s codec context
|
1043 |
*@return 0 on success, < 0 when decoding failed
|
1044 |
*/
|
1045 |
static int decode_subframe(WMAProDecodeCtx *s) |
1046 |
{ |
1047 |
int offset = s->samples_per_frame;
|
1048 |
int subframe_len = s->samples_per_frame;
|
1049 |
int i;
|
1050 |
int total_samples = s->samples_per_frame * s->num_channels;
|
1051 |
int transmit_coeffs = 0; |
1052 |
int cur_subwoofer_cutoff;
|
1053 |
|
1054 |
s->subframe_offset = get_bits_count(&s->gb); |
1055 |
|
1056 |
/** reset channel context and find the next block offset and size
|
1057 |
== the next block of the channel with the smallest number of
|
1058 |
decoded samples
|
1059 |
*/
|
1060 |
for (i = 0; i < s->num_channels; i++) { |
1061 |
s->channel[i].grouped = 0;
|
1062 |
if (offset > s->channel[i].decoded_samples) {
|
1063 |
offset = s->channel[i].decoded_samples; |
1064 |
subframe_len = |
1065 |
s->channel[i].subframe_len[s->channel[i].cur_subframe]; |
1066 |
} |
1067 |
} |
1068 |
|
1069 |
dprintf(s->avctx, |
1070 |
"processing subframe with offset %i len %i\n", offset, subframe_len);
|
1071 |
|
1072 |
/** get a list of all channels that contain the estimated block */
|
1073 |
s->channels_for_cur_subframe = 0;
|
1074 |
for (i = 0; i < s->num_channels; i++) { |
1075 |
const int cur_subframe = s->channel[i].cur_subframe; |
1076 |
/** substract already processed samples */
|
1077 |
total_samples -= s->channel[i].decoded_samples; |
1078 |
|
1079 |
/** and count if there are multiple subframes that match our profile */
|
1080 |
if (offset == s->channel[i].decoded_samples &&
|
1081 |
subframe_len == s->channel[i].subframe_len[cur_subframe]) { |
1082 |
total_samples -= s->channel[i].subframe_len[cur_subframe]; |
1083 |
s->channel[i].decoded_samples += |
1084 |
s->channel[i].subframe_len[cur_subframe]; |
1085 |
s->channel_indexes_for_cur_subframe[s->channels_for_cur_subframe] = i; |
1086 |
++s->channels_for_cur_subframe; |
1087 |
} |
1088 |
} |
1089 |
|
1090 |
/** check if the frame will be complete after processing the
|
1091 |
estimated block */
|
1092 |
if (!total_samples)
|
1093 |
s->parsed_all_subframes = 1;
|
1094 |
|
1095 |
|
1096 |
dprintf(s->avctx, "subframe is part of %i channels\n",
|
1097 |
s->channels_for_cur_subframe); |
1098 |
|
1099 |
/** calculate number of scale factor bands and their offsets */
|
1100 |
s->table_idx = av_log2(s->samples_per_frame/subframe_len); |
1101 |
s->num_bands = s->num_sfb[s->table_idx]; |
1102 |
s->cur_sfb_offsets = s->sfb_offsets[s->table_idx]; |
1103 |
cur_subwoofer_cutoff = s->subwoofer_cutoffs[s->table_idx]; |
1104 |
|
1105 |
/** configure the decoder for the current subframe */
|
1106 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
1107 |
int c = s->channel_indexes_for_cur_subframe[i];
|
1108 |
|
1109 |
s->channel[c].coeffs = &s->channel[c].out[(s->samples_per_frame >> 1)
|
1110 |
+ offset]; |
1111 |
} |
1112 |
|
1113 |
s->subframe_len = subframe_len; |
1114 |
s->esc_len = av_log2(s->subframe_len - 1) + 1; |
1115 |
|
1116 |
/** skip extended header if any */
|
1117 |
if (get_bits1(&s->gb)) {
|
1118 |
int num_fill_bits;
|
1119 |
if (!(num_fill_bits = get_bits(&s->gb, 2))) { |
1120 |
int len = get_bits(&s->gb, 4); |
1121 |
num_fill_bits = get_bits(&s->gb, len) + 1;
|
1122 |
} |
1123 |
|
1124 |
if (num_fill_bits >= 0) { |
1125 |
if (get_bits_count(&s->gb) + num_fill_bits > s->num_saved_bits) {
|
1126 |
av_log(s->avctx, AV_LOG_ERROR, "invalid number of fill bits\n");
|
1127 |
return AVERROR_INVALIDDATA;
|
1128 |
} |
1129 |
|
1130 |
skip_bits_long(&s->gb, num_fill_bits); |
1131 |
} |
1132 |
} |
1133 |
|
1134 |
/** no idea for what the following bit is used */
|
1135 |
if (get_bits1(&s->gb)) {
|
1136 |
av_log_ask_for_sample(s->avctx, "reserved bit set\n");
|
1137 |
return AVERROR_INVALIDDATA;
|
1138 |
} |
1139 |
|
1140 |
|
1141 |
if (decode_channel_transform(s) < 0) |
1142 |
return AVERROR_INVALIDDATA;
|
1143 |
|
1144 |
|
1145 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
1146 |
int c = s->channel_indexes_for_cur_subframe[i];
|
1147 |
if ((s->channel[c].transmit_coefs = get_bits1(&s->gb)))
|
1148 |
transmit_coeffs = 1;
|
1149 |
} |
1150 |
|
1151 |
if (transmit_coeffs) {
|
1152 |
int step;
|
1153 |
int quant_step = 90 * s->bits_per_sample >> 4; |
1154 |
if ((get_bits1(&s->gb))) {
|
1155 |
/** FIXME: might change run level mode decision */
|
1156 |
av_log_ask_for_sample(s->avctx, "unsupported quant step coding\n");
|
1157 |
return AVERROR_INVALIDDATA;
|
1158 |
} |
1159 |
/** decode quantization step */
|
1160 |
step = get_sbits(&s->gb, 6);
|
1161 |
quant_step += step; |
1162 |
if (step == -32 || step == 31) { |
1163 |
const int sign = (step == 31) - 1; |
1164 |
int quant = 0; |
1165 |
while (get_bits_count(&s->gb) + 5 < s->num_saved_bits && |
1166 |
(step = get_bits(&s->gb, 5)) == 31) { |
1167 |
quant += 31;
|
1168 |
} |
1169 |
quant_step += ((quant + step) ^ sign) - sign; |
1170 |
} |
1171 |
if (quant_step < 0) { |
1172 |
av_log(s->avctx, AV_LOG_DEBUG, "negative quant step\n");
|
1173 |
} |
1174 |
|
1175 |
/** decode quantization step modifiers for every channel */
|
1176 |
|
1177 |
if (s->channels_for_cur_subframe == 1) { |
1178 |
s->channel[s->channel_indexes_for_cur_subframe[0]].quant_step = quant_step;
|
1179 |
} else {
|
1180 |
int modifier_len = get_bits(&s->gb, 3); |
1181 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
1182 |
int c = s->channel_indexes_for_cur_subframe[i];
|
1183 |
s->channel[c].quant_step = quant_step; |
1184 |
if (get_bits1(&s->gb)) {
|
1185 |
if (modifier_len) {
|
1186 |
s->channel[c].quant_step += get_bits(&s->gb, modifier_len) + 1;
|
1187 |
} else
|
1188 |
++s->channel[c].quant_step; |
1189 |
} |
1190 |
} |
1191 |
} |
1192 |
|
1193 |
/** decode scale factors */
|
1194 |
if (decode_scale_factors(s) < 0) |
1195 |
return AVERROR_INVALIDDATA;
|
1196 |
} |
1197 |
|
1198 |
dprintf(s->avctx, "BITSTREAM: subframe header length was %i\n",
|
1199 |
get_bits_count(&s->gb) - s->subframe_offset); |
1200 |
|
1201 |
/** parse coefficients */
|
1202 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
1203 |
int c = s->channel_indexes_for_cur_subframe[i];
|
1204 |
if (s->channel[c].transmit_coefs &&
|
1205 |
get_bits_count(&s->gb) < s->num_saved_bits) { |
1206 |
decode_coeffs(s, c); |
1207 |
} else
|
1208 |
memset(s->channel[c].coeffs, 0,
|
1209 |
sizeof(*s->channel[c].coeffs) * subframe_len);
|
1210 |
} |
1211 |
|
1212 |
dprintf(s->avctx, "BITSTREAM: subframe length was %i\n",
|
1213 |
get_bits_count(&s->gb) - s->subframe_offset); |
1214 |
|
1215 |
if (transmit_coeffs) {
|
1216 |
/** reconstruct the per channel data */
|
1217 |
inverse_channel_transform(s); |
1218 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
1219 |
int c = s->channel_indexes_for_cur_subframe[i];
|
1220 |
const int* sf = s->channel[c].scale_factors; |
1221 |
int b;
|
1222 |
|
1223 |
if (c == s->lfe_channel)
|
1224 |
memset(&s->tmp[cur_subwoofer_cutoff], 0, sizeof(*s->tmp) * |
1225 |
(subframe_len - cur_subwoofer_cutoff)); |
1226 |
|
1227 |
/** inverse quantization and rescaling */
|
1228 |
for (b = 0; b < s->num_bands; b++) { |
1229 |
const int end = FFMIN(s->cur_sfb_offsets[b+1], s->subframe_len); |
1230 |
const int exp = s->channel[c].quant_step - |
1231 |
(s->channel[c].max_scale_factor - *sf++) * |
1232 |
s->channel[c].scale_factor_step; |
1233 |
const float quant = pow(10.0, exp / 20.0); |
1234 |
int start = s->cur_sfb_offsets[b];
|
1235 |
s->dsp.vector_fmul_scalar(s->tmp + start, |
1236 |
s->channel[c].coeffs + start, |
1237 |
quant, end - start); |
1238 |
} |
1239 |
|
1240 |
/** apply imdct (ff_imdct_half == DCTIV with reverse) */
|
1241 |
ff_imdct_half(&s->mdct_ctx[av_log2(subframe_len) - BLOCK_MIN_BITS], |
1242 |
s->channel[c].coeffs, s->tmp); |
1243 |
} |
1244 |
} |
1245 |
|
1246 |
/** window and overlapp-add */
|
1247 |
wmapro_window(s); |
1248 |
|
1249 |
/** handled one subframe */
|
1250 |
for (i = 0; i < s->channels_for_cur_subframe; i++) { |
1251 |
int c = s->channel_indexes_for_cur_subframe[i];
|
1252 |
if (s->channel[c].cur_subframe >= s->channel[c].num_subframes) {
|
1253 |
av_log(s->avctx, AV_LOG_ERROR, "broken subframe\n");
|
1254 |
return AVERROR_INVALIDDATA;
|
1255 |
} |
1256 |
++s->channel[c].cur_subframe; |
1257 |
} |
1258 |
|
1259 |
return 0; |
1260 |
} |
1261 |
|
1262 |
/**
|
1263 |
*@brief Decode one WMA frame.
|
1264 |
*@param s codec context
|
1265 |
*@return 0 if the trailer bit indicates that this is the last frame,
|
1266 |
* 1 if there are additional frames
|
1267 |
*/
|
1268 |
static int decode_frame(WMAProDecodeCtx *s) |
1269 |
{ |
1270 |
GetBitContext* gb = &s->gb; |
1271 |
int more_frames = 0; |
1272 |
int len = 0; |
1273 |
int i;
|
1274 |
|
1275 |
/** check for potential output buffer overflow */
|
1276 |
if (s->num_channels * s->samples_per_frame > s->samples_end - s->samples) {
|
1277 |
/** return an error if no frame could be decoded at all */
|
1278 |
av_log(s->avctx, AV_LOG_ERROR, |
1279 |
"not enough space for the output samples\n");
|
1280 |
s->packet_loss = 1;
|
1281 |
return 0; |
1282 |
} |
1283 |
|
1284 |
/** get frame length */
|
1285 |
if (s->len_prefix)
|
1286 |
len = get_bits(gb, s->log2_frame_size); |
1287 |
|
1288 |
dprintf(s->avctx, "decoding frame with length %x\n", len);
|
1289 |
|
1290 |
/** decode tile information */
|
1291 |
if (decode_tilehdr(s)) {
|
1292 |
s->packet_loss = 1;
|
1293 |
return 0; |
1294 |
} |
1295 |
|
1296 |
/** read postproc transform */
|
1297 |
if (s->num_channels > 1 && get_bits1(gb)) { |
1298 |
av_log_ask_for_sample(s->avctx, "Unsupported postproc transform found\n");
|
1299 |
s->packet_loss = 1;
|
1300 |
return 0; |
1301 |
} |
1302 |
|
1303 |
/** read drc info */
|
1304 |
if (s->dynamic_range_compression) {
|
1305 |
s->drc_gain = get_bits(gb, 8);
|
1306 |
dprintf(s->avctx, "drc_gain %i\n", s->drc_gain);
|
1307 |
} |
1308 |
|
1309 |
/** no idea what these are for, might be the number of samples
|
1310 |
that need to be skipped at the beginning or end of a stream */
|
1311 |
if (get_bits1(gb)) {
|
1312 |
int skip;
|
1313 |
|
1314 |
/** usually true for the first frame */
|
1315 |
if (get_bits1(gb)) {
|
1316 |
skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
|
1317 |
dprintf(s->avctx, "start skip: %i\n", skip);
|
1318 |
} |
1319 |
|
1320 |
/** sometimes true for the last frame */
|
1321 |
if (get_bits1(gb)) {
|
1322 |
skip = get_bits(gb, av_log2(s->samples_per_frame * 2));
|
1323 |
dprintf(s->avctx, "end skip: %i\n", skip);
|
1324 |
} |
1325 |
|
1326 |
} |
1327 |
|
1328 |
dprintf(s->avctx, "BITSTREAM: frame header length was %i\n",
|
1329 |
get_bits_count(gb) - s->frame_offset); |
1330 |
|
1331 |
/** reset subframe states */
|
1332 |
s->parsed_all_subframes = 0;
|
1333 |
for (i = 0; i < s->num_channels; i++) { |
1334 |
s->channel[i].decoded_samples = 0;
|
1335 |
s->channel[i].cur_subframe = 0;
|
1336 |
s->channel[i].reuse_sf = 0;
|
1337 |
} |
1338 |
|
1339 |
/** decode all subframes */
|
1340 |
while (!s->parsed_all_subframes) {
|
1341 |
if (decode_subframe(s) < 0) { |
1342 |
s->packet_loss = 1;
|
1343 |
return 0; |
1344 |
} |
1345 |
} |
1346 |
|
1347 |
/** interleave samples and write them to the output buffer */
|
1348 |
for (i = 0; i < s->num_channels; i++) { |
1349 |
float* ptr;
|
1350 |
int incr = s->num_channels;
|
1351 |
float* iptr = s->channel[i].out;
|
1352 |
int x;
|
1353 |
|
1354 |
ptr = s->samples + i; |
1355 |
|
1356 |
for (x = 0; x < s->samples_per_frame; x++) { |
1357 |
*ptr = av_clipf(*iptr++, -1.0, 32767.0 / 32768.0); |
1358 |
ptr += incr; |
1359 |
} |
1360 |
|
1361 |
/** reuse second half of the IMDCT output for the next frame */
|
1362 |
memcpy(&s->channel[i].out[0],
|
1363 |
&s->channel[i].out[s->samples_per_frame], |
1364 |
s->samples_per_frame * sizeof(*s->channel[i].out) >> 1); |
1365 |
} |
1366 |
|
1367 |
if (s->skip_frame) {
|
1368 |
s->skip_frame = 0;
|
1369 |
} else
|
1370 |
s->samples += s->num_channels * s->samples_per_frame; |
1371 |
|
1372 |
if (len != (get_bits_count(gb) - s->frame_offset) + 2) { |
1373 |
/** FIXME: not sure if this is always an error */
|
1374 |
av_log(s->avctx, AV_LOG_ERROR, "frame[%i] would have to skip %i bits\n",
|
1375 |
s->frame_num, len - (get_bits_count(gb) - s->frame_offset) - 1);
|
1376 |
s->packet_loss = 1;
|
1377 |
return 0; |
1378 |
} |
1379 |
|
1380 |
/** skip the rest of the frame data */
|
1381 |
skip_bits_long(gb, len - (get_bits_count(gb) - s->frame_offset) - 1);
|
1382 |
|
1383 |
/** decode trailer bit */
|
1384 |
more_frames = get_bits1(gb); |
1385 |
|
1386 |
++s->frame_num; |
1387 |
return more_frames;
|
1388 |
} |
1389 |
|
1390 |
/**
|
1391 |
*@brief Calculate remaining input buffer length.
|
1392 |
*@param s codec context
|
1393 |
*@param gb bitstream reader context
|
1394 |
*@return remaining size in bits
|
1395 |
*/
|
1396 |
static int remaining_bits(WMAProDecodeCtx *s, GetBitContext *gb) |
1397 |
{ |
1398 |
return s->buf_bit_size - get_bits_count(gb);
|
1399 |
} |
1400 |
|
1401 |
/**
|
1402 |
*@brief Fill the bit reservoir with a (partial) frame.
|
1403 |
*@param s codec context
|
1404 |
*@param gb bitstream reader context
|
1405 |
*@param len length of the partial frame
|
1406 |
*@param append decides wether to reset the buffer or not
|
1407 |
*/
|
1408 |
static void save_bits(WMAProDecodeCtx *s, GetBitContext* gb, int len, |
1409 |
int append)
|
1410 |
{ |
1411 |
int buflen;
|
1412 |
|
1413 |
/** when the frame data does not need to be concatenated, the input buffer
|
1414 |
is resetted and additional bits from the previous frame are copyed
|
1415 |
and skipped later so that a fast byte copy is possible */
|
1416 |
|
1417 |
if (!append) {
|
1418 |
s->frame_offset = get_bits_count(gb) & 7;
|
1419 |
s->num_saved_bits = s->frame_offset; |
1420 |
init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE); |
1421 |
} |
1422 |
|
1423 |
buflen = (s->num_saved_bits + len + 8) >> 3; |
1424 |
|
1425 |
if (len <= 0 || buflen > MAX_FRAMESIZE) { |
1426 |
av_log_ask_for_sample(s->avctx, "input buffer too small\n");
|
1427 |
s->packet_loss = 1;
|
1428 |
return;
|
1429 |
} |
1430 |
|
1431 |
s->num_saved_bits += len; |
1432 |
if (!append) {
|
1433 |
ff_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3),
|
1434 |
s->num_saved_bits); |
1435 |
} else {
|
1436 |
int align = 8 - (get_bits_count(gb) & 7); |
1437 |
align = FFMIN(align, len); |
1438 |
put_bits(&s->pb, align, get_bits(gb, align)); |
1439 |
len -= align; |
1440 |
ff_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3), len);
|
1441 |
} |
1442 |
skip_bits_long(gb, len); |
1443 |
|
1444 |
{ |
1445 |
PutBitContext tmp = s->pb; |
1446 |
flush_put_bits(&tmp); |
1447 |
} |
1448 |
|
1449 |
init_get_bits(&s->gb, s->frame_data, s->num_saved_bits); |
1450 |
skip_bits(&s->gb, s->frame_offset); |
1451 |
} |
1452 |
|
1453 |
/**
|
1454 |
*@brief Decode a single WMA packet.
|
1455 |
*@param avctx codec context
|
1456 |
*@param data the output buffer
|
1457 |
*@param data_size number of bytes that were written to the output buffer
|
1458 |
*@param avpkt input packet
|
1459 |
*@return number of bytes that were read from the input buffer
|
1460 |
*/
|
1461 |
static int decode_packet(AVCodecContext *avctx, |
1462 |
void *data, int *data_size, AVPacket* avpkt) |
1463 |
{ |
1464 |
WMAProDecodeCtx *s = avctx->priv_data; |
1465 |
GetBitContext* gb = &s->pgb; |
1466 |
const uint8_t* buf = avpkt->data;
|
1467 |
int buf_size = avpkt->size;
|
1468 |
int num_bits_prev_frame;
|
1469 |
int packet_sequence_number;
|
1470 |
|
1471 |
s->samples = data; |
1472 |
s->samples_end = (float*)((int8_t*)data + *data_size);
|
1473 |
*data_size = 0;
|
1474 |
|
1475 |
if (s->packet_done || s->packet_loss) {
|
1476 |
s->packet_done = 0;
|
1477 |
s->buf_bit_size = buf_size << 3;
|
1478 |
|
1479 |
/** sanity check for the buffer length */
|
1480 |
if (buf_size < avctx->block_align)
|
1481 |
return 0; |
1482 |
|
1483 |
buf_size = avctx->block_align; |
1484 |
|
1485 |
/** parse packet header */
|
1486 |
init_get_bits(gb, buf, s->buf_bit_size); |
1487 |
packet_sequence_number = get_bits(gb, 4);
|
1488 |
skip_bits(gb, 2);
|
1489 |
|
1490 |
/** get number of bits that need to be added to the previous frame */
|
1491 |
num_bits_prev_frame = get_bits(gb, s->log2_frame_size); |
1492 |
dprintf(avctx, "packet[%d]: nbpf %x\n", avctx->frame_number,
|
1493 |
num_bits_prev_frame); |
1494 |
|
1495 |
/** check for packet loss */
|
1496 |
if (!s->packet_loss &&
|
1497 |
((s->packet_sequence_number + 1) & 0xF) != packet_sequence_number) { |
1498 |
s->packet_loss = 1;
|
1499 |
av_log(avctx, AV_LOG_ERROR, "Packet loss detected! seq %x vs %x\n",
|
1500 |
s->packet_sequence_number, packet_sequence_number); |
1501 |
} |
1502 |
s->packet_sequence_number = packet_sequence_number; |
1503 |
|
1504 |
if (num_bits_prev_frame > 0) { |
1505 |
/** append the previous frame data to the remaining data from the
|
1506 |
previous packet to create a full frame */
|
1507 |
save_bits(s, gb, num_bits_prev_frame, 1);
|
1508 |
dprintf(avctx, "accumulated %x bits of frame data\n",
|
1509 |
s->num_saved_bits - s->frame_offset); |
1510 |
|
1511 |
/** decode the cross packet frame if it is valid */
|
1512 |
if (!s->packet_loss)
|
1513 |
decode_frame(s); |
1514 |
} else if (s->num_saved_bits - s->frame_offset) { |
1515 |
dprintf(avctx, "ignoring %x previously saved bits\n",
|
1516 |
s->num_saved_bits - s->frame_offset); |
1517 |
} |
1518 |
|
1519 |
s->packet_loss = 0;
|
1520 |
|
1521 |
} else {
|
1522 |
int frame_size;
|
1523 |
s->buf_bit_size = avpkt->size << 3;
|
1524 |
init_get_bits(gb, avpkt->data, s->buf_bit_size); |
1525 |
skip_bits(gb, s->packet_offset); |
1526 |
if (remaining_bits(s, gb) > s->log2_frame_size &&
|
1527 |
(frame_size = show_bits(gb, s->log2_frame_size)) && |
1528 |
frame_size <= remaining_bits(s, gb)) { |
1529 |
save_bits(s, gb, frame_size, 0);
|
1530 |
s->packet_done = !decode_frame(s); |
1531 |
} else
|
1532 |
s->packet_done = 1;
|
1533 |
} |
1534 |
|
1535 |
if (s->packet_done && !s->packet_loss &&
|
1536 |
remaining_bits(s, gb) > 0) {
|
1537 |
/** save the rest of the data so that it can be decoded
|
1538 |
with the next packet */
|
1539 |
save_bits(s, gb, remaining_bits(s, gb), 0);
|
1540 |
} |
1541 |
|
1542 |
*data_size = (int8_t *)s->samples - (int8_t *)data; |
1543 |
s->packet_offset = get_bits_count(gb) & 7;
|
1544 |
|
1545 |
return (s->packet_loss) ? AVERROR_INVALIDDATA : get_bits_count(gb) >> 3; |
1546 |
} |
1547 |
|
1548 |
/**
|
1549 |
*@brief Clear decoder buffers (for seeking).
|
1550 |
*@param avctx codec context
|
1551 |
*/
|
1552 |
static void flush(AVCodecContext *avctx) |
1553 |
{ |
1554 |
WMAProDecodeCtx *s = avctx->priv_data; |
1555 |
int i;
|
1556 |
/** reset output buffer as a part of it is used during the windowing of a
|
1557 |
new frame */
|
1558 |
for (i = 0; i < s->num_channels; i++) |
1559 |
memset(s->channel[i].out, 0, s->samples_per_frame *
|
1560 |
sizeof(*s->channel[i].out));
|
1561 |
s->packet_loss = 1;
|
1562 |
} |
1563 |
|
1564 |
|
1565 |
/**
|
1566 |
*@brief wmapro decoder
|
1567 |
*/
|
1568 |
AVCodec wmapro_decoder = { |
1569 |
"wmapro",
|
1570 |
CODEC_TYPE_AUDIO, |
1571 |
CODEC_ID_WMAPRO, |
1572 |
sizeof(WMAProDecodeCtx),
|
1573 |
decode_init, |
1574 |
NULL,
|
1575 |
decode_end, |
1576 |
decode_packet, |
1577 |
.capabilities = CODEC_CAP_SUBFRAMES, |
1578 |
.flush= flush, |
1579 |
.long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 9 Professional"),
|
1580 |
}; |