ffmpeg / libavcodec / ac3enc.c @ cb6247cb
History | View | Annotate | Download (50.2 KB)
1 |
/*
|
---|---|
2 |
* The simplest AC-3 encoder
|
3 |
* Copyright (c) 2000 Fabrice Bellard
|
4 |
*
|
5 |
* This file is part of FFmpeg.
|
6 |
*
|
7 |
* FFmpeg is free software; you can redistribute it and/or
|
8 |
* modify it under the terms of the GNU Lesser General Public
|
9 |
* License as published by the Free Software Foundation; either
|
10 |
* version 2.1 of the License, or (at your option) any later version.
|
11 |
*
|
12 |
* FFmpeg is distributed in the hope that it will be useful,
|
13 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
15 |
* Lesser General Public License for more details.
|
16 |
*
|
17 |
* You should have received a copy of the GNU Lesser General Public
|
18 |
* License along with FFmpeg; if not, write to the Free Software
|
19 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
20 |
*/
|
21 |
|
22 |
/**
|
23 |
* @file
|
24 |
* The simplest AC-3 encoder.
|
25 |
*/
|
26 |
|
27 |
//#define DEBUG
|
28 |
|
29 |
#include "libavcore/audioconvert.h" |
30 |
#include "libavutil/crc.h" |
31 |
#include "avcodec.h" |
32 |
#include "put_bits.h" |
33 |
#include "ac3.h" |
34 |
#include "audioconvert.h" |
35 |
|
36 |
|
37 |
#define MDCT_NBITS 9 |
38 |
#define MDCT_SAMPLES (1 << MDCT_NBITS) |
39 |
|
40 |
/** Maximum number of exponent groups. +1 for separate DC exponent. */
|
41 |
#define AC3_MAX_EXP_GROUPS 85 |
42 |
|
43 |
/** Scale a float value by 2^bits and convert to an integer. */
|
44 |
#define SCALE_FLOAT(a, bits) lrintf((a) * (float)(1 << (bits))) |
45 |
|
46 |
/** Scale a float value by 2^15, convert to an integer, and clip to int16_t range. */
|
47 |
#define FIX15(a) av_clip_int16(SCALE_FLOAT(a, 15)) |
48 |
|
49 |
|
50 |
/**
|
51 |
* Compex number.
|
52 |
* Used in fixed-point MDCT calculation.
|
53 |
*/
|
54 |
typedef struct IComplex { |
55 |
int16_t re,im; |
56 |
} IComplex; |
57 |
|
58 |
/**
|
59 |
* AC-3 encoder private context.
|
60 |
*/
|
61 |
typedef struct AC3EncodeContext { |
62 |
PutBitContext pb; ///< bitstream writer context
|
63 |
|
64 |
int bitstream_id; ///< bitstream id (bsid) |
65 |
int bitstream_mode; ///< bitstream mode (bsmod) |
66 |
|
67 |
int bit_rate; ///< target bit rate, in bits-per-second |
68 |
int sample_rate; ///< sampling frequency, in Hz |
69 |
|
70 |
int frame_size_min; ///< minimum frame size in case rounding is necessary |
71 |
int frame_size; ///< current frame size in bytes |
72 |
int frame_size_code; ///< frame size code (frmsizecod) |
73 |
int bits_written; ///< bit count (used to avg. bitrate) |
74 |
int samples_written; ///< sample count (used to avg. bitrate) |
75 |
|
76 |
int fbw_channels; ///< number of full-bandwidth channels (nfchans) |
77 |
int channels; ///< total number of channels (nchans) |
78 |
int lfe_on; ///< indicates if there is an LFE channel (lfeon) |
79 |
int lfe_channel; ///< channel index of the LFE channel |
80 |
int channel_mode; ///< channel mode (acmod) |
81 |
const uint8_t *channel_map; ///< channel map used to reorder channels |
82 |
|
83 |
int bandwidth_code[AC3_MAX_CHANNELS]; ///< bandwidth code (0 to 60) (chbwcod) |
84 |
int nb_coefs[AC3_MAX_CHANNELS];
|
85 |
|
86 |
/* bitrate allocation control */
|
87 |
int slow_gain_code; ///< slow gain code (sgaincod) |
88 |
int slow_decay_code; ///< slow decay code (sdcycod) |
89 |
int fast_decay_code; ///< fast decay code (fdcycod) |
90 |
int db_per_bit_code; ///< dB/bit code (dbpbcod) |
91 |
int floor_code; ///< floor code (floorcod) |
92 |
AC3BitAllocParameters bit_alloc; ///< bit allocation parameters
|
93 |
int coarse_snr_offset; ///< coarse SNR offsets (csnroffst) |
94 |
int fast_gain_code[AC3_MAX_CHANNELS]; ///< fast gain codes (signal-to-mask ratio) (fgaincod) |
95 |
int fine_snr_offset[AC3_MAX_CHANNELS]; ///< fine SNR offsets (fsnroffst) |
96 |
int frame_bits; ///< all frame bits except exponents and mantissas |
97 |
int exponent_bits; ///< number of bits used for exponents |
98 |
|
99 |
/* mantissa encoding */
|
100 |
int mant1_cnt, mant2_cnt, mant4_cnt; ///< mantissa counts for bap=1,2,4 |
101 |
uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; ///< mantissa pointers for bap=1,2,4
|
102 |
|
103 |
int16_t last_samples[AC3_MAX_CHANNELS][AC3_BLOCK_SIZE]; ///< last 256 samples from previous frame
|
104 |
int16_t planar_samples[AC3_MAX_CHANNELS][AC3_BLOCK_SIZE+AC3_FRAME_SIZE]; |
105 |
int16_t windowed_samples[AC3_WINDOW_SIZE]; |
106 |
int32_t mdct_coef[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS]; |
107 |
uint8_t exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS]; |
108 |
uint8_t exp_strategy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS]; |
109 |
uint8_t encoded_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS]; |
110 |
uint8_t num_exp_groups[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS]; |
111 |
uint8_t grouped_exp[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_EXP_GROUPS]; |
112 |
int16_t psd[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS]; |
113 |
int16_t band_psd[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_CRITICAL_BANDS]; |
114 |
int16_t mask[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_CRITICAL_BANDS]; |
115 |
uint8_t bap[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS]; |
116 |
uint8_t bap1[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS]; |
117 |
int8_t exp_shift[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS]; |
118 |
uint16_t qmant[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS]; |
119 |
} AC3EncodeContext; |
120 |
|
121 |
|
122 |
/** MDCT and FFT tables */
|
123 |
static int16_t costab[64]; |
124 |
static int16_t sintab[64]; |
125 |
static int16_t xcos1[128]; |
126 |
static int16_t xsin1[128]; |
127 |
|
128 |
|
129 |
/**
|
130 |
* Adjust the frame size to make the average bit rate match the target bit rate.
|
131 |
* This is only needed for 11025, 22050, and 44100 sample rates.
|
132 |
*/
|
133 |
static void adjust_frame_size(AC3EncodeContext *s) |
134 |
{ |
135 |
while (s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
|
136 |
s->bits_written -= s->bit_rate; |
137 |
s->samples_written -= s->sample_rate; |
138 |
} |
139 |
s->frame_size = s->frame_size_min + 2 * (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
|
140 |
s->bits_written += s->frame_size * 8;
|
141 |
s->samples_written += AC3_FRAME_SIZE; |
142 |
} |
143 |
|
144 |
|
145 |
/**
|
146 |
* Deinterleave input samples.
|
147 |
* Channels are reordered from FFmpeg's default order to AC-3 order.
|
148 |
*/
|
149 |
static void deinterleave_input_samples(AC3EncodeContext *s, |
150 |
const int16_t *samples)
|
151 |
{ |
152 |
int ch, i;
|
153 |
|
154 |
/* deinterleave and remap input samples */
|
155 |
for (ch = 0; ch < s->channels; ch++) { |
156 |
const int16_t *sptr;
|
157 |
int sinc;
|
158 |
|
159 |
/* copy last 256 samples of previous frame to the start of the current frame */
|
160 |
memcpy(&s->planar_samples[ch][0], s->last_samples[ch],
|
161 |
AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0])); |
162 |
|
163 |
/* deinterleave */
|
164 |
sinc = s->channels; |
165 |
sptr = samples + s->channel_map[ch]; |
166 |
for (i = AC3_BLOCK_SIZE; i < AC3_FRAME_SIZE+AC3_BLOCK_SIZE; i++) {
|
167 |
s->planar_samples[ch][i] = *sptr; |
168 |
sptr += sinc; |
169 |
} |
170 |
|
171 |
/* save last 256 samples for next frame */
|
172 |
memcpy(s->last_samples[ch], &s->planar_samples[ch][6* AC3_BLOCK_SIZE],
|
173 |
AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0])); |
174 |
} |
175 |
} |
176 |
|
177 |
|
178 |
/**
|
179 |
* Initialize FFT tables.
|
180 |
* @param ln log2(FFT size)
|
181 |
*/
|
182 |
static av_cold void fft_init(int ln) |
183 |
{ |
184 |
int i, n, n2;
|
185 |
float alpha;
|
186 |
|
187 |
n = 1 << ln;
|
188 |
n2 = n >> 1;
|
189 |
|
190 |
for (i = 0; i < n2; i++) { |
191 |
alpha = 2.0 * M_PI * i / n; |
192 |
costab[i] = FIX15(cos(alpha)); |
193 |
sintab[i] = FIX15(sin(alpha)); |
194 |
} |
195 |
} |
196 |
|
197 |
|
198 |
/**
|
199 |
* Initialize MDCT tables.
|
200 |
* @param nbits log2(MDCT size)
|
201 |
*/
|
202 |
static av_cold void mdct_init(int nbits) |
203 |
{ |
204 |
int i, n, n4;
|
205 |
|
206 |
n = 1 << nbits;
|
207 |
n4 = n >> 2;
|
208 |
|
209 |
fft_init(nbits - 2);
|
210 |
|
211 |
for (i = 0; i < n4; i++) { |
212 |
float alpha = 2.0 * M_PI * (i + 1.0 / 8.0) / n; |
213 |
xcos1[i] = FIX15(-cos(alpha)); |
214 |
xsin1[i] = FIX15(-sin(alpha)); |
215 |
} |
216 |
} |
217 |
|
218 |
|
219 |
/** Butterfly op */
|
220 |
#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
|
221 |
{ \ |
222 |
int ax, ay, bx, by; \
|
223 |
bx = pre1; \ |
224 |
by = pim1; \ |
225 |
ax = qre1; \ |
226 |
ay = qim1; \ |
227 |
pre = (bx + ax) >> 1; \
|
228 |
pim = (by + ay) >> 1; \
|
229 |
qre = (bx - ax) >> 1; \
|
230 |
qim = (by - ay) >> 1; \
|
231 |
} |
232 |
|
233 |
|
234 |
/** Complex multiply */
|
235 |
#define CMUL(pre, pim, are, aim, bre, bim) \
|
236 |
{ \ |
237 |
pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15; \
|
238 |
pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15; \
|
239 |
} |
240 |
|
241 |
|
242 |
/**
|
243 |
* Calculate a 2^n point complex FFT on 2^ln points.
|
244 |
* @param z complex input/output samples
|
245 |
* @param ln log2(FFT size)
|
246 |
*/
|
247 |
static void fft(IComplex *z, int ln) |
248 |
{ |
249 |
int j, l, np, np2;
|
250 |
int nblocks, nloops;
|
251 |
register IComplex *p,*q;
|
252 |
int tmp_re, tmp_im;
|
253 |
|
254 |
np = 1 << ln;
|
255 |
|
256 |
/* reverse */
|
257 |
for (j = 0; j < np; j++) { |
258 |
int k = av_reverse[j] >> (8 - ln); |
259 |
if (k < j)
|
260 |
FFSWAP(IComplex, z[k], z[j]); |
261 |
} |
262 |
|
263 |
/* pass 0 */
|
264 |
|
265 |
p = &z[0];
|
266 |
j = np >> 1;
|
267 |
do {
|
268 |
BF(p[0].re, p[0].im, p[1].re, p[1].im, |
269 |
p[0].re, p[0].im, p[1].re, p[1].im); |
270 |
p += 2;
|
271 |
} while (--j);
|
272 |
|
273 |
/* pass 1 */
|
274 |
|
275 |
p = &z[0];
|
276 |
j = np >> 2;
|
277 |
do {
|
278 |
BF(p[0].re, p[0].im, p[2].re, p[2].im, |
279 |
p[0].re, p[0].im, p[2].re, p[2].im); |
280 |
BF(p[1].re, p[1].im, p[3].re, p[3].im, |
281 |
p[1].re, p[1].im, p[3].im, -p[3].re); |
282 |
p+=4;
|
283 |
} while (--j);
|
284 |
|
285 |
/* pass 2 .. ln-1 */
|
286 |
|
287 |
nblocks = np >> 3;
|
288 |
nloops = 1 << 2; |
289 |
np2 = np >> 1;
|
290 |
do {
|
291 |
p = z; |
292 |
q = z + nloops; |
293 |
for (j = 0; j < nblocks; j++) { |
294 |
BF(p->re, p->im, q->re, q->im, |
295 |
p->re, p->im, q->re, q->im); |
296 |
p++; |
297 |
q++; |
298 |
for(l = nblocks; l < np2; l += nblocks) {
|
299 |
CMUL(tmp_re, tmp_im, costab[l], -sintab[l], q->re, q->im); |
300 |
BF(p->re, p->im, q->re, q->im, |
301 |
p->re, p->im, tmp_re, tmp_im); |
302 |
p++; |
303 |
q++; |
304 |
} |
305 |
p += nloops; |
306 |
q += nloops; |
307 |
} |
308 |
nblocks = nblocks >> 1;
|
309 |
nloops = nloops << 1;
|
310 |
} while (nblocks);
|
311 |
} |
312 |
|
313 |
|
314 |
/**
|
315 |
* Calculate a 512-point MDCT
|
316 |
* @param out 256 output frequency coefficients
|
317 |
* @param in 512 windowed input audio samples
|
318 |
*/
|
319 |
static void mdct512(int32_t *out, int16_t *in) |
320 |
{ |
321 |
int i, re, im, re1, im1;
|
322 |
int16_t rot[MDCT_SAMPLES]; |
323 |
IComplex x[MDCT_SAMPLES/4];
|
324 |
|
325 |
/* shift to simplify computations */
|
326 |
for (i = 0; i < MDCT_SAMPLES/4; i++) |
327 |
rot[i] = -in[i + 3*MDCT_SAMPLES/4]; |
328 |
for (;i < MDCT_SAMPLES; i++)
|
329 |
rot[i] = in[i - MDCT_SAMPLES/4];
|
330 |
|
331 |
/* pre rotation */
|
332 |
for (i = 0; i < MDCT_SAMPLES/4; i++) { |
333 |
re = ((int)rot[ 2*i] - (int)rot[MDCT_SAMPLES -1-2*i]) >> 1; |
334 |
im = -((int)rot[MDCT_SAMPLES/2+2*i] - (int)rot[MDCT_SAMPLES/2-1-2*i]) >> 1; |
335 |
CMUL(x[i].re, x[i].im, re, im, -xcos1[i], xsin1[i]); |
336 |
} |
337 |
|
338 |
fft(x, MDCT_NBITS - 2);
|
339 |
|
340 |
/* post rotation */
|
341 |
for (i = 0; i < MDCT_SAMPLES/4; i++) { |
342 |
re = x[i].re; |
343 |
im = x[i].im; |
344 |
CMUL(re1, im1, re, im, xsin1[i], xcos1[i]); |
345 |
out[ 2*i] = im1;
|
346 |
out[MDCT_SAMPLES/2-1-2*i] = re1; |
347 |
} |
348 |
} |
349 |
|
350 |
|
351 |
/**
|
352 |
* Apply KBD window to input samples prior to MDCT.
|
353 |
*/
|
354 |
static void apply_window(int16_t *output, const int16_t *input, |
355 |
const int16_t *window, int n) |
356 |
{ |
357 |
int i;
|
358 |
int n2 = n >> 1; |
359 |
|
360 |
for (i = 0; i < n2; i++) { |
361 |
output[i] = MUL16(input[i], window[i]) >> 15;
|
362 |
output[n-i-1] = MUL16(input[n-i-1], window[i]) >> 15; |
363 |
} |
364 |
} |
365 |
|
366 |
|
367 |
/**
|
368 |
* Calculate the log2() of the maximum absolute value in an array.
|
369 |
* @param tab input array
|
370 |
* @param n number of values in the array
|
371 |
* @return log2(max(abs(tab[])))
|
372 |
*/
|
373 |
static int log2_tab(int16_t *tab, int n) |
374 |
{ |
375 |
int i, v;
|
376 |
|
377 |
v = 0;
|
378 |
for (i = 0; i < n; i++) |
379 |
v |= abs(tab[i]); |
380 |
|
381 |
return av_log2(v);
|
382 |
} |
383 |
|
384 |
|
385 |
/**
|
386 |
* Left-shift each value in an array by a specified amount.
|
387 |
* @param tab input array
|
388 |
* @param n number of values in the array
|
389 |
* @param lshift left shift amount. a negative value means right shift.
|
390 |
*/
|
391 |
static void lshift_tab(int16_t *tab, int n, int lshift) |
392 |
{ |
393 |
int i;
|
394 |
|
395 |
if (lshift > 0) { |
396 |
for(i = 0; i < n; i++) |
397 |
tab[i] <<= lshift; |
398 |
} else if (lshift < 0) { |
399 |
lshift = -lshift; |
400 |
for (i = 0; i < n; i++) |
401 |
tab[i] >>= lshift; |
402 |
} |
403 |
} |
404 |
|
405 |
|
406 |
/**
|
407 |
* Normalize the input samples to use the maximum available precision.
|
408 |
* This assumes signed 16-bit input samples. Exponents are reduced by 9 to
|
409 |
* match the 24-bit internal precision for MDCT coefficients.
|
410 |
*
|
411 |
* @return exponent shift
|
412 |
*/
|
413 |
static int normalize_samples(AC3EncodeContext *s) |
414 |
{ |
415 |
int v = 14 - log2_tab(s->windowed_samples, AC3_WINDOW_SIZE); |
416 |
v = FFMAX(0, v);
|
417 |
lshift_tab(s->windowed_samples, AC3_WINDOW_SIZE, v); |
418 |
return v - 9; |
419 |
} |
420 |
|
421 |
|
422 |
/**
|
423 |
* Apply the MDCT to input samples to generate frequency coefficients.
|
424 |
* This applies the KBD window and normalizes the input to reduce precision
|
425 |
* loss due to fixed-point calculations.
|
426 |
*/
|
427 |
static void apply_mdct(AC3EncodeContext *s) |
428 |
{ |
429 |
int blk, ch;
|
430 |
|
431 |
for (ch = 0; ch < s->channels; ch++) { |
432 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
433 |
const int16_t *input_samples = &s->planar_samples[ch][blk * AC3_BLOCK_SIZE];
|
434 |
|
435 |
apply_window(s->windowed_samples, input_samples, ff_ac3_window, AC3_WINDOW_SIZE); |
436 |
|
437 |
s->exp_shift[blk][ch] = normalize_samples(s); |
438 |
|
439 |
mdct512(s->mdct_coef[blk][ch], s->windowed_samples); |
440 |
} |
441 |
} |
442 |
} |
443 |
|
444 |
|
445 |
/**
|
446 |
* Extract exponents from the MDCT coefficients.
|
447 |
* This takes into account the normalization that was done to the input samples
|
448 |
* by adjusting the exponents by the exponent shift values.
|
449 |
*/
|
450 |
static void extract_exponents(AC3EncodeContext *s) |
451 |
{ |
452 |
int blk, ch, i;
|
453 |
|
454 |
/* extract exponents */
|
455 |
for (ch = 0; ch < s->channels; ch++) { |
456 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
457 |
/* compute "exponents". We take into account the normalization there */
|
458 |
for (i = 0; i < AC3_MAX_COEFS; i++) { |
459 |
int e;
|
460 |
int v = abs(s->mdct_coef[blk][ch][i]);
|
461 |
if (v == 0) |
462 |
e = 24;
|
463 |
else {
|
464 |
e = 23 - av_log2(v) + s->exp_shift[blk][ch];
|
465 |
if (e >= 24) { |
466 |
e = 24;
|
467 |
s->mdct_coef[blk][ch][i] = 0;
|
468 |
} |
469 |
} |
470 |
s->exp[blk][ch][i] = e; |
471 |
} |
472 |
} |
473 |
} |
474 |
} |
475 |
|
476 |
|
477 |
/**
|
478 |
* Calculate the sum of absolute differences (SAD) between 2 sets of exponents.
|
479 |
*/
|
480 |
static int calc_exp_diff(uint8_t *exp1, uint8_t *exp2, int n) |
481 |
{ |
482 |
int sum, i;
|
483 |
sum = 0;
|
484 |
for (i = 0; i < n; i++) |
485 |
sum += abs(exp1[i] - exp2[i]); |
486 |
return sum;
|
487 |
} |
488 |
|
489 |
|
490 |
/**
|
491 |
* Exponent Difference Threshold.
|
492 |
* New exponents are sent if their SAD exceed this number.
|
493 |
*/
|
494 |
#define EXP_DIFF_THRESHOLD 1000 |
495 |
|
496 |
|
497 |
/**
|
498 |
* Calculate exponent strategies for all blocks in a single channel.
|
499 |
*/
|
500 |
static void compute_exp_strategy_ch(uint8_t *exp_strategy, uint8_t **exp) |
501 |
{ |
502 |
int blk, blk1;
|
503 |
int exp_diff;
|
504 |
|
505 |
/* estimate if the exponent variation & decide if they should be
|
506 |
reused in the next frame */
|
507 |
exp_strategy[0] = EXP_NEW;
|
508 |
for (blk = 1; blk < AC3_MAX_BLOCKS; blk++) { |
509 |
exp_diff = calc_exp_diff(exp[blk], exp[blk-1], AC3_MAX_COEFS);
|
510 |
if (exp_diff > EXP_DIFF_THRESHOLD)
|
511 |
exp_strategy[blk] = EXP_NEW; |
512 |
else
|
513 |
exp_strategy[blk] = EXP_REUSE; |
514 |
} |
515 |
|
516 |
/* now select the encoding strategy type : if exponents are often
|
517 |
recoded, we use a coarse encoding */
|
518 |
blk = 0;
|
519 |
while (blk < AC3_MAX_BLOCKS) {
|
520 |
blk1 = blk + 1;
|
521 |
while (blk1 < AC3_MAX_BLOCKS && exp_strategy[blk1] == EXP_REUSE)
|
522 |
blk1++; |
523 |
switch (blk1 - blk) {
|
524 |
case 1: exp_strategy[blk] = EXP_D45; break; |
525 |
case 2: |
526 |
case 3: exp_strategy[blk] = EXP_D25; break; |
527 |
default: exp_strategy[blk] = EXP_D15; break; |
528 |
} |
529 |
blk = blk1; |
530 |
} |
531 |
} |
532 |
|
533 |
|
534 |
/**
|
535 |
* Calculate exponent strategies for all channels.
|
536 |
* Array arrangement is reversed to simplify the per-channel calculation.
|
537 |
*/
|
538 |
static void compute_exp_strategy(AC3EncodeContext *s) |
539 |
{ |
540 |
uint8_t *exp1[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS]; |
541 |
uint8_t exp_str1[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS]; |
542 |
int ch, blk;
|
543 |
|
544 |
for (ch = 0; ch < s->fbw_channels; ch++) { |
545 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
546 |
exp1[ch][blk] = s->exp[blk][ch]; |
547 |
exp_str1[ch][blk] = s->exp_strategy[blk][ch]; |
548 |
} |
549 |
|
550 |
compute_exp_strategy_ch(exp_str1[ch], exp1[ch]); |
551 |
|
552 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) |
553 |
s->exp_strategy[blk][ch] = exp_str1[ch][blk]; |
554 |
} |
555 |
if (s->lfe_on) {
|
556 |
ch = s->lfe_channel; |
557 |
s->exp_strategy[0][ch] = EXP_D15;
|
558 |
for (blk = 1; blk < AC3_MAX_BLOCKS; blk++) |
559 |
s->exp_strategy[blk][ch] = EXP_REUSE; |
560 |
} |
561 |
} |
562 |
|
563 |
|
564 |
/**
|
565 |
* Set each encoded exponent in a block to the minimum of itself and the
|
566 |
* exponent in the same frequency bin of a following block.
|
567 |
* exp[i] = min(exp[i], exp1[i]
|
568 |
*/
|
569 |
static void exponent_min(uint8_t exp[AC3_MAX_COEFS], uint8_t exp1[AC3_MAX_COEFS], int n) |
570 |
{ |
571 |
int i;
|
572 |
for (i = 0; i < n; i++) { |
573 |
if (exp1[i] < exp[i])
|
574 |
exp[i] = exp1[i]; |
575 |
} |
576 |
} |
577 |
|
578 |
|
579 |
/**
|
580 |
* Update the exponents so that they are the ones the decoder will decode.
|
581 |
*/
|
582 |
static void encode_exponents_blk_ch(uint8_t encoded_exp[AC3_MAX_COEFS], |
583 |
uint8_t exp[AC3_MAX_COEFS], |
584 |
int nb_exps, int exp_strategy, |
585 |
uint8_t *num_exp_groups) |
586 |
{ |
587 |
int group_size, nb_groups, i, j, k, exp_min;
|
588 |
uint8_t exp1[AC3_MAX_COEFS]; |
589 |
|
590 |
group_size = exp_strategy + (exp_strategy == EXP_D45); |
591 |
*num_exp_groups = (nb_exps + (group_size * 3) - 4) / (3 * group_size); |
592 |
nb_groups = *num_exp_groups * 3;
|
593 |
|
594 |
/* for each group, compute the minimum exponent */
|
595 |
exp1[0] = exp[0]; /* DC exponent is handled separately */ |
596 |
k = 1;
|
597 |
for (i = 1; i <= nb_groups; i++) { |
598 |
exp_min = exp[k]; |
599 |
assert(exp_min >= 0 && exp_min <= 24); |
600 |
for (j = 1; j < group_size; j++) { |
601 |
if (exp[k+j] < exp_min)
|
602 |
exp_min = exp[k+j]; |
603 |
} |
604 |
exp1[i] = exp_min; |
605 |
k += group_size; |
606 |
} |
607 |
|
608 |
/* constraint for DC exponent */
|
609 |
if (exp1[0] > 15) |
610 |
exp1[0] = 15; |
611 |
|
612 |
/* decrease the delta between each groups to within 2 so that they can be
|
613 |
differentially encoded */
|
614 |
for (i = 1; i <= nb_groups; i++) |
615 |
exp1[i] = FFMIN(exp1[i], exp1[i-1] + 2); |
616 |
for (i = nb_groups-1; i >= 0; i--) |
617 |
exp1[i] = FFMIN(exp1[i], exp1[i+1] + 2); |
618 |
|
619 |
/* now we have the exponent values the decoder will see */
|
620 |
encoded_exp[0] = exp1[0]; |
621 |
k = 1;
|
622 |
for (i = 1; i <= nb_groups; i++) { |
623 |
for (j = 0; j < group_size; j++) |
624 |
encoded_exp[k+j] = exp1[i]; |
625 |
k += group_size; |
626 |
} |
627 |
} |
628 |
|
629 |
|
630 |
/**
|
631 |
* Encode exponents from original extracted form to what the decoder will see.
|
632 |
* This copies and groups exponents based on exponent strategy and reduces
|
633 |
* deltas between adjacent exponent groups so that they can be differentially
|
634 |
* encoded.
|
635 |
*/
|
636 |
static void encode_exponents(AC3EncodeContext *s) |
637 |
{ |
638 |
int blk, blk1, blk2, ch;
|
639 |
|
640 |
for (ch = 0; ch < s->channels; ch++) { |
641 |
/* for the EXP_REUSE case we select the min of the exponents */
|
642 |
blk = 0;
|
643 |
while (blk < AC3_MAX_BLOCKS) {
|
644 |
blk1 = blk + 1;
|
645 |
while (blk1 < AC3_MAX_BLOCKS && s->exp_strategy[blk1][ch] == EXP_REUSE) {
|
646 |
exponent_min(s->exp[blk][ch], s->exp[blk1][ch], s->nb_coefs[ch]); |
647 |
blk1++; |
648 |
} |
649 |
encode_exponents_blk_ch(s->encoded_exp[blk][ch], |
650 |
s->exp[blk][ch], s->nb_coefs[ch], |
651 |
s->exp_strategy[blk][ch], |
652 |
&s->num_exp_groups[blk][ch]); |
653 |
/* copy encoded exponents for reuse case */
|
654 |
for (blk2 = blk+1; blk2 < blk1; blk2++) { |
655 |
memcpy(s->encoded_exp[blk2][ch], s->encoded_exp[blk][ch], |
656 |
s->nb_coefs[ch] * sizeof(uint8_t));
|
657 |
} |
658 |
blk = blk1; |
659 |
} |
660 |
} |
661 |
} |
662 |
|
663 |
|
664 |
/**
|
665 |
* Group exponents.
|
666 |
* 3 delta-encoded exponents are in each 7-bit group. The number of groups
|
667 |
* varies depending on exponent strategy and bandwidth.
|
668 |
*/
|
669 |
static void group_exponents(AC3EncodeContext *s) |
670 |
{ |
671 |
int blk, ch, i;
|
672 |
int group_size, bit_count;
|
673 |
uint8_t *p; |
674 |
int delta0, delta1, delta2;
|
675 |
int exp0, exp1;
|
676 |
|
677 |
bit_count = 0;
|
678 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
679 |
for (ch = 0; ch < s->channels; ch++) { |
680 |
if (s->exp_strategy[blk][ch] == EXP_REUSE) {
|
681 |
s->num_exp_groups[blk][ch] = 0;
|
682 |
continue;
|
683 |
} |
684 |
group_size = s->exp_strategy[blk][ch] + (s->exp_strategy[blk][ch] == EXP_D45); |
685 |
bit_count += 4 + (s->num_exp_groups[blk][ch] * 7); |
686 |
p = s->encoded_exp[blk][ch]; |
687 |
|
688 |
/* DC exponent */
|
689 |
exp1 = *p++; |
690 |
s->grouped_exp[blk][ch][0] = exp1;
|
691 |
|
692 |
/* remaining exponents are delta encoded */
|
693 |
for (i = 1; i <= s->num_exp_groups[blk][ch]; i++) { |
694 |
/* merge three delta in one code */
|
695 |
exp0 = exp1; |
696 |
exp1 = p[0];
|
697 |
p += group_size; |
698 |
delta0 = exp1 - exp0 + 2;
|
699 |
|
700 |
exp0 = exp1; |
701 |
exp1 = p[0];
|
702 |
p += group_size; |
703 |
delta1 = exp1 - exp0 + 2;
|
704 |
|
705 |
exp0 = exp1; |
706 |
exp1 = p[0];
|
707 |
p += group_size; |
708 |
delta2 = exp1 - exp0 + 2;
|
709 |
|
710 |
s->grouped_exp[blk][ch][i] = ((delta0 * 5 + delta1) * 5) + delta2; |
711 |
} |
712 |
} |
713 |
} |
714 |
|
715 |
s->exponent_bits = bit_count; |
716 |
} |
717 |
|
718 |
|
719 |
/**
|
720 |
* Calculate final exponents from the supplied MDCT coefficients and exponent shift.
|
721 |
* Extract exponents from MDCT coefficients, calculate exponent strategies,
|
722 |
* and encode final exponents.
|
723 |
*/
|
724 |
static void process_exponents(AC3EncodeContext *s) |
725 |
{ |
726 |
extract_exponents(s); |
727 |
|
728 |
compute_exp_strategy(s); |
729 |
|
730 |
encode_exponents(s); |
731 |
|
732 |
group_exponents(s); |
733 |
} |
734 |
|
735 |
|
736 |
/**
|
737 |
* Initialize bit allocation.
|
738 |
* Set default parameter codes and calculate parameter values.
|
739 |
*/
|
740 |
static void bit_alloc_init(AC3EncodeContext *s) |
741 |
{ |
742 |
int ch;
|
743 |
|
744 |
/* init default parameters */
|
745 |
s->slow_decay_code = 2;
|
746 |
s->fast_decay_code = 1;
|
747 |
s->slow_gain_code = 1;
|
748 |
s->db_per_bit_code = 2;
|
749 |
s->floor_code = 4;
|
750 |
for (ch = 0; ch < s->channels; ch++) |
751 |
s->fast_gain_code[ch] = 4;
|
752 |
|
753 |
/* initial snr offset */
|
754 |
s->coarse_snr_offset = 40;
|
755 |
|
756 |
/* compute real values */
|
757 |
/* currently none of these values change during encoding, so we can just
|
758 |
set them once at initialization */
|
759 |
s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->bit_alloc.sr_shift; |
760 |
s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->bit_alloc.sr_shift; |
761 |
s->bit_alloc.slow_gain = ff_ac3_slow_gain_tab[s->slow_gain_code]; |
762 |
s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code]; |
763 |
s->bit_alloc.floor = ff_ac3_floor_tab[s->floor_code]; |
764 |
} |
765 |
|
766 |
|
767 |
/**
|
768 |
* Count the bits used to encode the frame, minus exponents and mantissas.
|
769 |
*/
|
770 |
static void count_frame_bits(AC3EncodeContext *s) |
771 |
{ |
772 |
static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 }; |
773 |
int blk, ch;
|
774 |
int frame_bits;
|
775 |
|
776 |
/* header size */
|
777 |
frame_bits = 65;
|
778 |
frame_bits += frame_bits_inc[s->channel_mode]; |
779 |
|
780 |
/* audio blocks */
|
781 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
782 |
frame_bits += s->fbw_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */ |
783 |
if (s->channel_mode == AC3_CHMODE_STEREO) {
|
784 |
frame_bits++; /* rematstr */
|
785 |
if (!blk)
|
786 |
frame_bits += 4;
|
787 |
} |
788 |
frame_bits += 2 * s->fbw_channels; /* chexpstr[2] * c */ |
789 |
if (s->lfe_on)
|
790 |
frame_bits++; /* lfeexpstr */
|
791 |
for (ch = 0; ch < s->fbw_channels; ch++) { |
792 |
if (s->exp_strategy[blk][ch] != EXP_REUSE)
|
793 |
frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */ |
794 |
} |
795 |
frame_bits++; /* baie */
|
796 |
frame_bits++; /* snr */
|
797 |
frame_bits += 2; /* delta / skip */ |
798 |
} |
799 |
frame_bits++; /* cplinu for block 0 */
|
800 |
/* bit alloc info */
|
801 |
/* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */
|
802 |
/* csnroffset[6] */
|
803 |
/* (fsnoffset[4] + fgaincod[4]) * c */
|
804 |
frame_bits += 2*4 + 3 + 6 + s->channels * (4 + 3); |
805 |
|
806 |
/* auxdatae, crcrsv */
|
807 |
frame_bits += 2;
|
808 |
|
809 |
/* CRC */
|
810 |
frame_bits += 16;
|
811 |
|
812 |
s->frame_bits = frame_bits; |
813 |
} |
814 |
|
815 |
|
816 |
/**
|
817 |
* Calculate the number of bits needed to encode a set of mantissas.
|
818 |
*/
|
819 |
static int compute_mantissa_size(AC3EncodeContext *s, uint8_t *m, int nb_coefs) |
820 |
{ |
821 |
int bits, mant, i;
|
822 |
|
823 |
bits = 0;
|
824 |
for (i = 0; i < nb_coefs; i++) { |
825 |
mant = m[i]; |
826 |
switch (mant) {
|
827 |
case 0: |
828 |
/* nothing */
|
829 |
break;
|
830 |
case 1: |
831 |
/* 3 mantissa in 5 bits */
|
832 |
if (s->mant1_cnt == 0) |
833 |
bits += 5;
|
834 |
if (++s->mant1_cnt == 3) |
835 |
s->mant1_cnt = 0;
|
836 |
break;
|
837 |
case 2: |
838 |
/* 3 mantissa in 7 bits */
|
839 |
if (s->mant2_cnt == 0) |
840 |
bits += 7;
|
841 |
if (++s->mant2_cnt == 3) |
842 |
s->mant2_cnt = 0;
|
843 |
break;
|
844 |
case 3: |
845 |
bits += 3;
|
846 |
break;
|
847 |
case 4: |
848 |
/* 2 mantissa in 7 bits */
|
849 |
if (s->mant4_cnt == 0) |
850 |
bits += 7;
|
851 |
if (++s->mant4_cnt == 2) |
852 |
s->mant4_cnt = 0;
|
853 |
break;
|
854 |
case 14: |
855 |
bits += 14;
|
856 |
break;
|
857 |
case 15: |
858 |
bits += 16;
|
859 |
break;
|
860 |
default:
|
861 |
bits += mant - 1;
|
862 |
break;
|
863 |
} |
864 |
} |
865 |
return bits;
|
866 |
} |
867 |
|
868 |
|
869 |
/**
|
870 |
* Calculate masking curve based on the final exponents.
|
871 |
* Also calculate the power spectral densities to use in future calculations.
|
872 |
*/
|
873 |
static void bit_alloc_masking(AC3EncodeContext *s) |
874 |
{ |
875 |
int blk, ch;
|
876 |
|
877 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
878 |
for (ch = 0; ch < s->channels; ch++) { |
879 |
if (s->exp_strategy[blk][ch] == EXP_REUSE) {
|
880 |
memcpy(s->psd[blk][ch], s->psd[blk-1][ch], AC3_MAX_COEFS*sizeof(s->psd[0][0][0])); |
881 |
memcpy(s->mask[blk][ch], s->mask[blk-1][ch], AC3_CRITICAL_BANDS*sizeof(s->mask[0][0][0])); |
882 |
} else {
|
883 |
ff_ac3_bit_alloc_calc_psd(s->encoded_exp[blk][ch], 0,
|
884 |
s->nb_coefs[ch], |
885 |
s->psd[blk][ch], s->band_psd[blk][ch]); |
886 |
ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, s->band_psd[blk][ch], |
887 |
0, s->nb_coefs[ch],
|
888 |
ff_ac3_fast_gain_tab[s->fast_gain_code[ch]], |
889 |
ch == s->lfe_channel, |
890 |
DBA_NONE, 0, NULL, NULL, NULL, |
891 |
s->mask[blk][ch]); |
892 |
} |
893 |
} |
894 |
} |
895 |
} |
896 |
|
897 |
|
898 |
/**
|
899 |
* Run the bit allocation with a given SNR offset.
|
900 |
* This calculates the bit allocation pointers that will be used to determine
|
901 |
* the quantization of each mantissa.
|
902 |
* @return the number of bits needed for mantissas if the given SNR offset is
|
903 |
* is used.
|
904 |
*/
|
905 |
static int bit_alloc(AC3EncodeContext *s, |
906 |
uint8_t bap[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][AC3_MAX_COEFS], |
907 |
int snr_offset)
|
908 |
{ |
909 |
int blk, ch;
|
910 |
int mantissa_bits;
|
911 |
|
912 |
snr_offset = (snr_offset - 240) << 2; |
913 |
|
914 |
mantissa_bits = 0;
|
915 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
916 |
s->mant1_cnt = 0;
|
917 |
s->mant2_cnt = 0;
|
918 |
s->mant4_cnt = 0;
|
919 |
for (ch = 0; ch < s->channels; ch++) { |
920 |
ff_ac3_bit_alloc_calc_bap(s->mask[blk][ch], s->psd[blk][ch], 0,
|
921 |
s->nb_coefs[ch], snr_offset, |
922 |
s->bit_alloc.floor, ff_ac3_bap_tab, |
923 |
bap[blk][ch]); |
924 |
mantissa_bits += compute_mantissa_size(s, bap[blk][ch], s->nb_coefs[ch]); |
925 |
} |
926 |
} |
927 |
return mantissa_bits;
|
928 |
} |
929 |
|
930 |
|
931 |
/**
|
932 |
* Constant bitrate bit allocation search.
|
933 |
* Find the largest SNR offset that will allow data to fit in the frame.
|
934 |
*/
|
935 |
static int cbr_bit_allocation(AC3EncodeContext *s) |
936 |
{ |
937 |
int ch;
|
938 |
int bits_left;
|
939 |
int snr_offset;
|
940 |
|
941 |
bits_left = 8 * s->frame_size - (s->frame_bits + s->exponent_bits);
|
942 |
|
943 |
snr_offset = s->coarse_snr_offset << 4;
|
944 |
|
945 |
while (snr_offset >= 0 && |
946 |
bit_alloc(s, s->bap, snr_offset) > bits_left) { |
947 |
snr_offset -= 64;
|
948 |
} |
949 |
if (snr_offset < 0) { |
950 |
return AVERROR(EINVAL);
|
951 |
} |
952 |
|
953 |
while (snr_offset + 64 <= 1023 && |
954 |
bit_alloc(s, s->bap1, snr_offset + 64) <= bits_left) {
|
955 |
snr_offset += 64;
|
956 |
memcpy(s->bap, s->bap1, sizeof(s->bap1));
|
957 |
} |
958 |
while (snr_offset + 16 <= 1023 && |
959 |
bit_alloc(s, s->bap1, snr_offset + 16) <= bits_left) {
|
960 |
snr_offset += 16;
|
961 |
memcpy(s->bap, s->bap1, sizeof(s->bap1));
|
962 |
} |
963 |
while (snr_offset + 4 <= 1023 && |
964 |
bit_alloc(s, s->bap1, snr_offset + 4) <= bits_left) {
|
965 |
snr_offset += 4;
|
966 |
memcpy(s->bap, s->bap1, sizeof(s->bap1));
|
967 |
} |
968 |
while (snr_offset + 1 <= 1023 && |
969 |
bit_alloc(s, s->bap1, snr_offset + 1) <= bits_left) {
|
970 |
snr_offset++; |
971 |
memcpy(s->bap, s->bap1, sizeof(s->bap1));
|
972 |
} |
973 |
|
974 |
s->coarse_snr_offset = snr_offset >> 4;
|
975 |
for (ch = 0; ch < s->channels; ch++) |
976 |
s->fine_snr_offset[ch] = snr_offset & 0xF;
|
977 |
|
978 |
return 0; |
979 |
} |
980 |
|
981 |
|
982 |
/**
|
983 |
* Perform bit allocation search.
|
984 |
* Finds the SNR offset value that maximizes quality and fits in the specified
|
985 |
* frame size. Output is the SNR offset and a set of bit allocation pointers
|
986 |
* used to quantize the mantissas.
|
987 |
*/
|
988 |
static int compute_bit_allocation(AC3EncodeContext *s) |
989 |
{ |
990 |
/* count frame bits other than exponents and mantissas */
|
991 |
count_frame_bits(s); |
992 |
|
993 |
/* calculate psd and masking curve before doing bit allocation */
|
994 |
bit_alloc_masking(s); |
995 |
|
996 |
return cbr_bit_allocation(s);
|
997 |
} |
998 |
|
999 |
|
1000 |
/**
|
1001 |
* Symmetric quantization on 'levels' levels.
|
1002 |
*/
|
1003 |
static inline int sym_quant(int c, int e, int levels) |
1004 |
{ |
1005 |
int v;
|
1006 |
|
1007 |
if (c >= 0) { |
1008 |
v = (levels * (c << e)) >> 24;
|
1009 |
v = (v + 1) >> 1; |
1010 |
v = (levels >> 1) + v;
|
1011 |
} else {
|
1012 |
v = (levels * ((-c) << e)) >> 24;
|
1013 |
v = (v + 1) >> 1; |
1014 |
v = (levels >> 1) - v;
|
1015 |
} |
1016 |
assert (v >= 0 && v < levels);
|
1017 |
return v;
|
1018 |
} |
1019 |
|
1020 |
|
1021 |
/**
|
1022 |
* Asymmetric quantization on 2^qbits levels.
|
1023 |
*/
|
1024 |
static inline int asym_quant(int c, int e, int qbits) |
1025 |
{ |
1026 |
int lshift, m, v;
|
1027 |
|
1028 |
lshift = e + qbits - 24;
|
1029 |
if (lshift >= 0) |
1030 |
v = c << lshift; |
1031 |
else
|
1032 |
v = c >> (-lshift); |
1033 |
/* rounding */
|
1034 |
v = (v + 1) >> 1; |
1035 |
m = (1 << (qbits-1)); |
1036 |
if (v >= m)
|
1037 |
v = m - 1;
|
1038 |
assert(v >= -m); |
1039 |
return v & ((1 << qbits)-1); |
1040 |
} |
1041 |
|
1042 |
|
1043 |
/**
|
1044 |
* Quantize a set of mantissas for a single channel in a single block.
|
1045 |
*/
|
1046 |
static void quantize_mantissas_blk_ch(AC3EncodeContext *s, |
1047 |
int32_t *mdct_coef, int8_t exp_shift, |
1048 |
uint8_t *encoded_exp, uint8_t *bap, |
1049 |
uint16_t *qmant, int n)
|
1050 |
{ |
1051 |
int i;
|
1052 |
|
1053 |
for (i = 0; i < n; i++) { |
1054 |
int v;
|
1055 |
int c = mdct_coef[i];
|
1056 |
int e = encoded_exp[i] - exp_shift;
|
1057 |
int b = bap[i];
|
1058 |
switch (b) {
|
1059 |
case 0: |
1060 |
v = 0;
|
1061 |
break;
|
1062 |
case 1: |
1063 |
v = sym_quant(c, e, 3);
|
1064 |
switch (s->mant1_cnt) {
|
1065 |
case 0: |
1066 |
s->qmant1_ptr = &qmant[i]; |
1067 |
v = 9 * v;
|
1068 |
s->mant1_cnt = 1;
|
1069 |
break;
|
1070 |
case 1: |
1071 |
*s->qmant1_ptr += 3 * v;
|
1072 |
s->mant1_cnt = 2;
|
1073 |
v = 128;
|
1074 |
break;
|
1075 |
default:
|
1076 |
*s->qmant1_ptr += v; |
1077 |
s->mant1_cnt = 0;
|
1078 |
v = 128;
|
1079 |
break;
|
1080 |
} |
1081 |
break;
|
1082 |
case 2: |
1083 |
v = sym_quant(c, e, 5);
|
1084 |
switch (s->mant2_cnt) {
|
1085 |
case 0: |
1086 |
s->qmant2_ptr = &qmant[i]; |
1087 |
v = 25 * v;
|
1088 |
s->mant2_cnt = 1;
|
1089 |
break;
|
1090 |
case 1: |
1091 |
*s->qmant2_ptr += 5 * v;
|
1092 |
s->mant2_cnt = 2;
|
1093 |
v = 128;
|
1094 |
break;
|
1095 |
default:
|
1096 |
*s->qmant2_ptr += v; |
1097 |
s->mant2_cnt = 0;
|
1098 |
v = 128;
|
1099 |
break;
|
1100 |
} |
1101 |
break;
|
1102 |
case 3: |
1103 |
v = sym_quant(c, e, 7);
|
1104 |
break;
|
1105 |
case 4: |
1106 |
v = sym_quant(c, e, 11);
|
1107 |
switch (s->mant4_cnt) {
|
1108 |
case 0: |
1109 |
s->qmant4_ptr = &qmant[i]; |
1110 |
v = 11 * v;
|
1111 |
s->mant4_cnt = 1;
|
1112 |
break;
|
1113 |
default:
|
1114 |
*s->qmant4_ptr += v; |
1115 |
s->mant4_cnt = 0;
|
1116 |
v = 128;
|
1117 |
break;
|
1118 |
} |
1119 |
break;
|
1120 |
case 5: |
1121 |
v = sym_quant(c, e, 15);
|
1122 |
break;
|
1123 |
case 14: |
1124 |
v = asym_quant(c, e, 14);
|
1125 |
break;
|
1126 |
case 15: |
1127 |
v = asym_quant(c, e, 16);
|
1128 |
break;
|
1129 |
default:
|
1130 |
v = asym_quant(c, e, b - 1);
|
1131 |
break;
|
1132 |
} |
1133 |
qmant[i] = v; |
1134 |
} |
1135 |
} |
1136 |
|
1137 |
|
1138 |
/**
|
1139 |
* Quantize mantissas using coefficients, exponents, and bit allocation pointers.
|
1140 |
*/
|
1141 |
static void quantize_mantissas(AC3EncodeContext *s) |
1142 |
{ |
1143 |
int blk, ch;
|
1144 |
|
1145 |
|
1146 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
1147 |
s->mant1_cnt = s->mant2_cnt = s->mant4_cnt = 0;
|
1148 |
s->qmant1_ptr = s->qmant2_ptr = s->qmant4_ptr = NULL;
|
1149 |
|
1150 |
for (ch = 0; ch < s->channels; ch++) { |
1151 |
quantize_mantissas_blk_ch(s, s->mdct_coef[blk][ch], s->exp_shift[blk][ch], |
1152 |
s->encoded_exp[blk][ch], s->bap[blk][ch], |
1153 |
s->qmant[blk][ch], s->nb_coefs[ch]); |
1154 |
} |
1155 |
} |
1156 |
} |
1157 |
|
1158 |
|
1159 |
/**
|
1160 |
* Write the AC-3 frame header to the output bitstream.
|
1161 |
*/
|
1162 |
static void output_frame_header(AC3EncodeContext *s) |
1163 |
{ |
1164 |
put_bits(&s->pb, 16, 0x0b77); /* frame header */ |
1165 |
put_bits(&s->pb, 16, 0); /* crc1: will be filled later */ |
1166 |
put_bits(&s->pb, 2, s->bit_alloc.sr_code);
|
1167 |
put_bits(&s->pb, 6, s->frame_size_code + (s->frame_size - s->frame_size_min) / 2); |
1168 |
put_bits(&s->pb, 5, s->bitstream_id);
|
1169 |
put_bits(&s->pb, 3, s->bitstream_mode);
|
1170 |
put_bits(&s->pb, 3, s->channel_mode);
|
1171 |
if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO) |
1172 |
put_bits(&s->pb, 2, 1); /* XXX -4.5 dB */ |
1173 |
if (s->channel_mode & 0x04) |
1174 |
put_bits(&s->pb, 2, 1); /* XXX -6 dB */ |
1175 |
if (s->channel_mode == AC3_CHMODE_STEREO)
|
1176 |
put_bits(&s->pb, 2, 0); /* surround not indicated */ |
1177 |
put_bits(&s->pb, 1, s->lfe_on); /* LFE */ |
1178 |
put_bits(&s->pb, 5, 31); /* dialog norm: -31 db */ |
1179 |
put_bits(&s->pb, 1, 0); /* no compression control word */ |
1180 |
put_bits(&s->pb, 1, 0); /* no lang code */ |
1181 |
put_bits(&s->pb, 1, 0); /* no audio production info */ |
1182 |
put_bits(&s->pb, 1, 0); /* no copyright */ |
1183 |
put_bits(&s->pb, 1, 1); /* original bitstream */ |
1184 |
put_bits(&s->pb, 1, 0); /* no time code 1 */ |
1185 |
put_bits(&s->pb, 1, 0); /* no time code 2 */ |
1186 |
put_bits(&s->pb, 1, 0); /* no additional bit stream info */ |
1187 |
} |
1188 |
|
1189 |
|
1190 |
/**
|
1191 |
* Write one audio block to the output bitstream.
|
1192 |
*/
|
1193 |
static void output_audio_block(AC3EncodeContext *s, |
1194 |
int block_num)
|
1195 |
{ |
1196 |
int ch, i, baie, rbnd;
|
1197 |
|
1198 |
for (ch = 0; ch < s->fbw_channels; ch++) |
1199 |
put_bits(&s->pb, 1, 0); /* no block switching */ |
1200 |
for (ch = 0; ch < s->fbw_channels; ch++) |
1201 |
put_bits(&s->pb, 1, 1); /* no dither */ |
1202 |
put_bits(&s->pb, 1, 0); /* no dynamic range */ |
1203 |
if (!block_num) {
|
1204 |
put_bits(&s->pb, 1, 1); /* coupling strategy present */ |
1205 |
put_bits(&s->pb, 1, 0); /* no coupling strategy */ |
1206 |
} else {
|
1207 |
put_bits(&s->pb, 1, 0); /* no new coupling strategy */ |
1208 |
} |
1209 |
|
1210 |
if (s->channel_mode == AC3_CHMODE_STEREO) {
|
1211 |
if (!block_num) {
|
1212 |
/* first block must define rematrixing (rematstr) */
|
1213 |
put_bits(&s->pb, 1, 1); |
1214 |
|
1215 |
/* dummy rematrixing rematflg(1:4)=0 */
|
1216 |
for (rbnd = 0; rbnd < 4; rbnd++) |
1217 |
put_bits(&s->pb, 1, 0); |
1218 |
} else {
|
1219 |
/* no matrixing (but should be used in the future) */
|
1220 |
put_bits(&s->pb, 1, 0); |
1221 |
} |
1222 |
} |
1223 |
|
1224 |
/* exponent strategy */
|
1225 |
for (ch = 0; ch < s->fbw_channels; ch++) |
1226 |
put_bits(&s->pb, 2, s->exp_strategy[block_num][ch]);
|
1227 |
|
1228 |
if (s->lfe_on)
|
1229 |
put_bits(&s->pb, 1, s->exp_strategy[block_num][s->lfe_channel]);
|
1230 |
|
1231 |
/* bandwidth */
|
1232 |
for (ch = 0; ch < s->fbw_channels; ch++) { |
1233 |
if (s->exp_strategy[block_num][ch] != EXP_REUSE)
|
1234 |
put_bits(&s->pb, 6, s->bandwidth_code[ch]);
|
1235 |
} |
1236 |
|
1237 |
/* exponents */
|
1238 |
for (ch = 0; ch < s->channels; ch++) { |
1239 |
if (s->exp_strategy[block_num][ch] == EXP_REUSE)
|
1240 |
continue;
|
1241 |
|
1242 |
/* first exponent */
|
1243 |
put_bits(&s->pb, 4, s->grouped_exp[block_num][ch][0]); |
1244 |
|
1245 |
/* next ones are delta-encoded and grouped */
|
1246 |
for (i = 1; i <= s->num_exp_groups[block_num][ch]; i++) |
1247 |
put_bits(&s->pb, 7, s->grouped_exp[block_num][ch][i]);
|
1248 |
|
1249 |
if (ch != s->lfe_channel)
|
1250 |
put_bits(&s->pb, 2, 0); /* no gain range info */ |
1251 |
} |
1252 |
|
1253 |
/* bit allocation info */
|
1254 |
baie = (block_num == 0);
|
1255 |
put_bits(&s->pb, 1, baie);
|
1256 |
if (baie) {
|
1257 |
put_bits(&s->pb, 2, s->slow_decay_code);
|
1258 |
put_bits(&s->pb, 2, s->fast_decay_code);
|
1259 |
put_bits(&s->pb, 2, s->slow_gain_code);
|
1260 |
put_bits(&s->pb, 2, s->db_per_bit_code);
|
1261 |
put_bits(&s->pb, 3, s->floor_code);
|
1262 |
} |
1263 |
|
1264 |
/* snr offset */
|
1265 |
put_bits(&s->pb, 1, baie);
|
1266 |
if (baie) {
|
1267 |
put_bits(&s->pb, 6, s->coarse_snr_offset);
|
1268 |
for (ch = 0; ch < s->channels; ch++) { |
1269 |
put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
|
1270 |
put_bits(&s->pb, 3, s->fast_gain_code[ch]);
|
1271 |
} |
1272 |
} |
1273 |
|
1274 |
put_bits(&s->pb, 1, 0); /* no delta bit allocation */ |
1275 |
put_bits(&s->pb, 1, 0); /* no data to skip */ |
1276 |
|
1277 |
/* mantissa encoding */
|
1278 |
for (ch = 0; ch < s->channels; ch++) { |
1279 |
int b, q;
|
1280 |
|
1281 |
for (i = 0; i < s->nb_coefs[ch]; i++) { |
1282 |
q = s->qmant[block_num][ch][i]; |
1283 |
b = s->bap[block_num][ch][i]; |
1284 |
switch (b) {
|
1285 |
case 0: break; |
1286 |
case 1: if (q != 128) put_bits(&s->pb, 5, q); break; |
1287 |
case 2: if (q != 128) put_bits(&s->pb, 7, q); break; |
1288 |
case 3: put_bits(&s->pb, 3, q); break; |
1289 |
case 4: if (q != 128) put_bits(&s->pb, 7, q); break; |
1290 |
case 14: put_bits(&s->pb, 14, q); break; |
1291 |
case 15: put_bits(&s->pb, 16, q); break; |
1292 |
default: put_bits(&s->pb, b-1, q); break; |
1293 |
} |
1294 |
} |
1295 |
} |
1296 |
} |
1297 |
|
1298 |
|
1299 |
/** CRC-16 Polynomial */
|
1300 |
#define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16)) |
1301 |
|
1302 |
|
1303 |
static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly) |
1304 |
{ |
1305 |
unsigned int c; |
1306 |
|
1307 |
c = 0;
|
1308 |
while (a) {
|
1309 |
if (a & 1) |
1310 |
c ^= b; |
1311 |
a = a >> 1;
|
1312 |
b = b << 1;
|
1313 |
if (b & (1 << 16)) |
1314 |
b ^= poly; |
1315 |
} |
1316 |
return c;
|
1317 |
} |
1318 |
|
1319 |
|
1320 |
static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly) |
1321 |
{ |
1322 |
unsigned int r; |
1323 |
r = 1;
|
1324 |
while (n) {
|
1325 |
if (n & 1) |
1326 |
r = mul_poly(r, a, poly); |
1327 |
a = mul_poly(a, a, poly); |
1328 |
n >>= 1;
|
1329 |
} |
1330 |
return r;
|
1331 |
} |
1332 |
|
1333 |
|
1334 |
/**
|
1335 |
* Fill the end of the frame with 0's and compute the two CRCs.
|
1336 |
*/
|
1337 |
static void output_frame_end(AC3EncodeContext *s) |
1338 |
{ |
1339 |
int frame_size, frame_size_58, pad_bytes, crc1, crc2, crc_inv;
|
1340 |
uint8_t *frame; |
1341 |
|
1342 |
frame_size = s->frame_size; /* frame size in words */
|
1343 |
/* align to 8 bits */
|
1344 |
flush_put_bits(&s->pb); |
1345 |
/* add zero bytes to reach the frame size */
|
1346 |
frame = s->pb.buf; |
1347 |
pad_bytes = s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2;
|
1348 |
assert(pad_bytes >= 0);
|
1349 |
if (pad_bytes > 0) |
1350 |
memset(put_bits_ptr(&s->pb), 0, pad_bytes);
|
1351 |
|
1352 |
/* Now we must compute both crcs : this is not so easy for crc1
|
1353 |
because it is at the beginning of the data... */
|
1354 |
frame_size_58 = ((frame_size >> 2) + (frame_size >> 4)) << 1; |
1355 |
|
1356 |
crc1 = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
|
1357 |
frame + 4, frame_size_58 - 4)); |
1358 |
|
1359 |
/* XXX: could precompute crc_inv */
|
1360 |
crc_inv = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY); |
1361 |
crc1 = mul_poly(crc_inv, crc1, CRC16_POLY); |
1362 |
AV_WB16(frame + 2, crc1);
|
1363 |
|
1364 |
crc2 = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
|
1365 |
frame + frame_size_58, |
1366 |
frame_size - frame_size_58 - 2));
|
1367 |
AV_WB16(frame + frame_size - 2, crc2);
|
1368 |
} |
1369 |
|
1370 |
|
1371 |
/**
|
1372 |
* Write the frame to the output bitstream.
|
1373 |
*/
|
1374 |
static void output_frame(AC3EncodeContext *s, |
1375 |
unsigned char *frame) |
1376 |
{ |
1377 |
int blk;
|
1378 |
|
1379 |
init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE); |
1380 |
|
1381 |
output_frame_header(s); |
1382 |
|
1383 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
1384 |
output_audio_block(s, blk); |
1385 |
} |
1386 |
|
1387 |
output_frame_end(s); |
1388 |
} |
1389 |
|
1390 |
|
1391 |
/**
|
1392 |
* Encode a single AC-3 frame.
|
1393 |
*/
|
1394 |
static int ac3_encode_frame(AVCodecContext *avctx, |
1395 |
unsigned char *frame, int buf_size, void *data) |
1396 |
{ |
1397 |
AC3EncodeContext *s = avctx->priv_data; |
1398 |
const int16_t *samples = data;
|
1399 |
int ret;
|
1400 |
|
1401 |
if (s->bit_alloc.sr_code == 1) |
1402 |
adjust_frame_size(s); |
1403 |
|
1404 |
deinterleave_input_samples(s, samples); |
1405 |
|
1406 |
apply_mdct(s); |
1407 |
|
1408 |
process_exponents(s); |
1409 |
|
1410 |
ret = compute_bit_allocation(s); |
1411 |
if (ret) {
|
1412 |
av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
|
1413 |
return ret;
|
1414 |
} |
1415 |
|
1416 |
quantize_mantissas(s); |
1417 |
|
1418 |
output_frame(s, frame); |
1419 |
|
1420 |
return s->frame_size;
|
1421 |
} |
1422 |
|
1423 |
|
1424 |
/**
|
1425 |
* Finalize encoding and free any memory allocated by the encoder.
|
1426 |
*/
|
1427 |
static av_cold int ac3_encode_close(AVCodecContext *avctx) |
1428 |
{ |
1429 |
av_freep(&avctx->coded_frame); |
1430 |
return 0; |
1431 |
} |
1432 |
|
1433 |
|
1434 |
/**
|
1435 |
* Set channel information during initialization.
|
1436 |
*/
|
1437 |
static av_cold int set_channel_info(AC3EncodeContext *s, int channels, |
1438 |
int64_t *channel_layout) |
1439 |
{ |
1440 |
int ch_layout;
|
1441 |
|
1442 |
if (channels < 1 || channels > AC3_MAX_CHANNELS) |
1443 |
return AVERROR(EINVAL);
|
1444 |
if ((uint64_t)*channel_layout > 0x7FF) |
1445 |
return AVERROR(EINVAL);
|
1446 |
ch_layout = *channel_layout; |
1447 |
if (!ch_layout)
|
1448 |
ch_layout = avcodec_guess_channel_layout(channels, CODEC_ID_AC3, NULL);
|
1449 |
if (av_get_channel_layout_nb_channels(ch_layout) != channels)
|
1450 |
return AVERROR(EINVAL);
|
1451 |
|
1452 |
s->lfe_on = !!(ch_layout & AV_CH_LOW_FREQUENCY); |
1453 |
s->channels = channels; |
1454 |
s->fbw_channels = channels - s->lfe_on; |
1455 |
s->lfe_channel = s->lfe_on ? s->fbw_channels : -1;
|
1456 |
if (s->lfe_on)
|
1457 |
ch_layout -= AV_CH_LOW_FREQUENCY; |
1458 |
|
1459 |
switch (ch_layout) {
|
1460 |
case AV_CH_LAYOUT_MONO: s->channel_mode = AC3_CHMODE_MONO; break; |
1461 |
case AV_CH_LAYOUT_STEREO: s->channel_mode = AC3_CHMODE_STEREO; break; |
1462 |
case AV_CH_LAYOUT_SURROUND: s->channel_mode = AC3_CHMODE_3F; break; |
1463 |
case AV_CH_LAYOUT_2_1: s->channel_mode = AC3_CHMODE_2F1R; break; |
1464 |
case AV_CH_LAYOUT_4POINT0: s->channel_mode = AC3_CHMODE_3F1R; break; |
1465 |
case AV_CH_LAYOUT_QUAD:
|
1466 |
case AV_CH_LAYOUT_2_2: s->channel_mode = AC3_CHMODE_2F2R; break; |
1467 |
case AV_CH_LAYOUT_5POINT0:
|
1468 |
case AV_CH_LAYOUT_5POINT0_BACK: s->channel_mode = AC3_CHMODE_3F2R; break; |
1469 |
default:
|
1470 |
return AVERROR(EINVAL);
|
1471 |
} |
1472 |
|
1473 |
s->channel_map = ff_ac3_enc_channel_map[s->channel_mode][s->lfe_on]; |
1474 |
*channel_layout = ch_layout; |
1475 |
if (s->lfe_on)
|
1476 |
*channel_layout |= AV_CH_LOW_FREQUENCY; |
1477 |
|
1478 |
return 0; |
1479 |
} |
1480 |
|
1481 |
|
1482 |
static av_cold int validate_options(AVCodecContext *avctx, AC3EncodeContext *s) |
1483 |
{ |
1484 |
int i, ret;
|
1485 |
|
1486 |
/* validate channel layout */
|
1487 |
if (!avctx->channel_layout) {
|
1488 |
av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
|
1489 |
"encoder will guess the layout, but it "
|
1490 |
"might be incorrect.\n");
|
1491 |
} |
1492 |
ret = set_channel_info(s, avctx->channels, &avctx->channel_layout); |
1493 |
if (ret) {
|
1494 |
av_log(avctx, AV_LOG_ERROR, "invalid channel layout\n");
|
1495 |
return ret;
|
1496 |
} |
1497 |
|
1498 |
/* validate sample rate */
|
1499 |
for (i = 0; i < 9; i++) { |
1500 |
if ((ff_ac3_sample_rate_tab[i / 3] >> (i % 3)) == avctx->sample_rate) |
1501 |
break;
|
1502 |
} |
1503 |
if (i == 9) { |
1504 |
av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
|
1505 |
return AVERROR(EINVAL);
|
1506 |
} |
1507 |
s->sample_rate = avctx->sample_rate; |
1508 |
s->bit_alloc.sr_shift = i % 3;
|
1509 |
s->bit_alloc.sr_code = i / 3;
|
1510 |
|
1511 |
/* validate bit rate */
|
1512 |
for (i = 0; i < 19; i++) { |
1513 |
if ((ff_ac3_bitrate_tab[i] >> s->bit_alloc.sr_shift)*1000 == avctx->bit_rate) |
1514 |
break;
|
1515 |
} |
1516 |
if (i == 19) { |
1517 |
av_log(avctx, AV_LOG_ERROR, "invalid bit rate\n");
|
1518 |
return AVERROR(EINVAL);
|
1519 |
} |
1520 |
s->bit_rate = avctx->bit_rate; |
1521 |
s->frame_size_code = i << 1;
|
1522 |
|
1523 |
return 0; |
1524 |
} |
1525 |
|
1526 |
|
1527 |
/**
|
1528 |
* Set bandwidth for all channels.
|
1529 |
* The user can optionally supply a cutoff frequency. Otherwise an appropriate
|
1530 |
* default value will be used.
|
1531 |
*/
|
1532 |
static av_cold void set_bandwidth(AC3EncodeContext *s, int cutoff) |
1533 |
{ |
1534 |
int ch, bw_code;
|
1535 |
|
1536 |
if (cutoff) {
|
1537 |
/* calculate bandwidth based on user-specified cutoff frequency */
|
1538 |
int fbw_coeffs;
|
1539 |
cutoff = av_clip(cutoff, 1, s->sample_rate >> 1); |
1540 |
fbw_coeffs = cutoff * 2 * AC3_MAX_COEFS / s->sample_rate;
|
1541 |
bw_code = av_clip((fbw_coeffs - 73) / 3, 0, 60); |
1542 |
} else {
|
1543 |
/* use default bandwidth setting */
|
1544 |
/* XXX: should compute the bandwidth according to the frame
|
1545 |
size, so that we avoid annoying high frequency artifacts */
|
1546 |
bw_code = 50;
|
1547 |
} |
1548 |
|
1549 |
/* set number of coefficients for each channel */
|
1550 |
for (ch = 0; ch < s->fbw_channels; ch++) { |
1551 |
s->bandwidth_code[ch] = bw_code; |
1552 |
s->nb_coefs[ch] = bw_code * 3 + 73; |
1553 |
} |
1554 |
if (s->lfe_on)
|
1555 |
s->nb_coefs[s->lfe_channel] = 7; /* LFE channel always has 7 coefs */ |
1556 |
} |
1557 |
|
1558 |
|
1559 |
/**
|
1560 |
* Initialize the encoder.
|
1561 |
*/
|
1562 |
static av_cold int ac3_encode_init(AVCodecContext *avctx) |
1563 |
{ |
1564 |
AC3EncodeContext *s = avctx->priv_data; |
1565 |
int ret;
|
1566 |
|
1567 |
avctx->frame_size = AC3_FRAME_SIZE; |
1568 |
|
1569 |
ac3_common_init(); |
1570 |
|
1571 |
ret = validate_options(avctx, s); |
1572 |
if (ret)
|
1573 |
return ret;
|
1574 |
|
1575 |
s->bitstream_id = 8 + s->bit_alloc.sr_shift;
|
1576 |
s->bitstream_mode = 0; /* complete main audio service */ |
1577 |
|
1578 |
s->frame_size_min = 2 * ff_ac3_frame_size_tab[s->frame_size_code][s->bit_alloc.sr_code];
|
1579 |
s->bits_written = 0;
|
1580 |
s->samples_written = 0;
|
1581 |
s->frame_size = s->frame_size_min; |
1582 |
|
1583 |
set_bandwidth(s, avctx->cutoff); |
1584 |
|
1585 |
bit_alloc_init(s); |
1586 |
|
1587 |
mdct_init(9);
|
1588 |
|
1589 |
avctx->coded_frame= avcodec_alloc_frame(); |
1590 |
avctx->coded_frame->key_frame= 1;
|
1591 |
|
1592 |
return 0; |
1593 |
} |
1594 |
|
1595 |
|
1596 |
#ifdef TEST
|
1597 |
/*************************************************************************/
|
1598 |
/* TEST */
|
1599 |
|
1600 |
#include "libavutil/lfg.h" |
1601 |
|
1602 |
#define FN (MDCT_SAMPLES/4) |
1603 |
|
1604 |
|
1605 |
static void fft_test(AVLFG *lfg) |
1606 |
{ |
1607 |
IComplex in[FN], in1[FN]; |
1608 |
int k, n, i;
|
1609 |
float sum_re, sum_im, a;
|
1610 |
|
1611 |
for (i = 0; i < FN; i++) { |
1612 |
in[i].re = av_lfg_get(lfg) % 65535 - 32767; |
1613 |
in[i].im = av_lfg_get(lfg) % 65535 - 32767; |
1614 |
in1[i] = in[i]; |
1615 |
} |
1616 |
fft(in, 7);
|
1617 |
|
1618 |
/* do it by hand */
|
1619 |
for (k = 0; k < FN; k++) { |
1620 |
sum_re = 0;
|
1621 |
sum_im = 0;
|
1622 |
for (n = 0; n < FN; n++) { |
1623 |
a = -2 * M_PI * (n * k) / FN;
|
1624 |
sum_re += in1[n].re * cos(a) - in1[n].im * sin(a); |
1625 |
sum_im += in1[n].re * sin(a) + in1[n].im * cos(a); |
1626 |
} |
1627 |
av_log(NULL, AV_LOG_DEBUG, "%3d: %6d,%6d %6.0f,%6.0f\n", |
1628 |
k, in[k].re, in[k].im, sum_re / FN, sum_im / FN); |
1629 |
} |
1630 |
} |
1631 |
|
1632 |
|
1633 |
static void mdct_test(AVLFG *lfg) |
1634 |
{ |
1635 |
int16_t input[MDCT_SAMPLES]; |
1636 |
int32_t output[AC3_MAX_COEFS]; |
1637 |
float input1[MDCT_SAMPLES];
|
1638 |
float output1[AC3_MAX_COEFS];
|
1639 |
float s, a, err, e, emax;
|
1640 |
int i, k, n;
|
1641 |
|
1642 |
for (i = 0; i < MDCT_SAMPLES; i++) { |
1643 |
input[i] = (av_lfg_get(lfg) % 65535 - 32767) * 9 / 10; |
1644 |
input1[i] = input[i]; |
1645 |
} |
1646 |
|
1647 |
mdct512(output, input); |
1648 |
|
1649 |
/* do it by hand */
|
1650 |
for (k = 0; k < AC3_MAX_COEFS; k++) { |
1651 |
s = 0;
|
1652 |
for (n = 0; n < MDCT_SAMPLES; n++) { |
1653 |
a = (2*M_PI*(2*n+1+MDCT_SAMPLES/2)*(2*k+1) / (4 * MDCT_SAMPLES)); |
1654 |
s += input1[n] * cos(a); |
1655 |
} |
1656 |
output1[k] = -2 * s / MDCT_SAMPLES;
|
1657 |
} |
1658 |
|
1659 |
err = 0;
|
1660 |
emax = 0;
|
1661 |
for (i = 0; i < AC3_MAX_COEFS; i++) { |
1662 |
av_log(NULL, AV_LOG_DEBUG, "%3d: %7d %7.0f\n", i, output[i], output1[i]); |
1663 |
e = output[i] - output1[i]; |
1664 |
if (e > emax)
|
1665 |
emax = e; |
1666 |
err += e * e; |
1667 |
} |
1668 |
av_log(NULL, AV_LOG_DEBUG, "err2=%f emax=%f\n", err / AC3_MAX_COEFS, emax); |
1669 |
} |
1670 |
|
1671 |
|
1672 |
int main(void) |
1673 |
{ |
1674 |
AVLFG lfg; |
1675 |
|
1676 |
av_log_set_level(AV_LOG_DEBUG); |
1677 |
mdct_init(9);
|
1678 |
|
1679 |
fft_test(&lfg); |
1680 |
mdct_test(&lfg); |
1681 |
|
1682 |
return 0; |
1683 |
} |
1684 |
#endif /* TEST */ |
1685 |
|
1686 |
|
1687 |
AVCodec ac3_encoder = { |
1688 |
"ac3",
|
1689 |
AVMEDIA_TYPE_AUDIO, |
1690 |
CODEC_ID_AC3, |
1691 |
sizeof(AC3EncodeContext),
|
1692 |
ac3_encode_init, |
1693 |
ac3_encode_frame, |
1694 |
ac3_encode_close, |
1695 |
NULL,
|
1696 |
.sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE}, |
1697 |
.long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
|
1698 |
.channel_layouts = (const int64_t[]){
|
1699 |
AV_CH_LAYOUT_MONO, |
1700 |
AV_CH_LAYOUT_STEREO, |
1701 |
AV_CH_LAYOUT_2_1, |
1702 |
AV_CH_LAYOUT_SURROUND, |
1703 |
AV_CH_LAYOUT_2_2, |
1704 |
AV_CH_LAYOUT_QUAD, |
1705 |
AV_CH_LAYOUT_4POINT0, |
1706 |
AV_CH_LAYOUT_5POINT0, |
1707 |
AV_CH_LAYOUT_5POINT0_BACK, |
1708 |
(AV_CH_LAYOUT_MONO | AV_CH_LOW_FREQUENCY), |
1709 |
(AV_CH_LAYOUT_STEREO | AV_CH_LOW_FREQUENCY), |
1710 |
(AV_CH_LAYOUT_2_1 | AV_CH_LOW_FREQUENCY), |
1711 |
(AV_CH_LAYOUT_SURROUND | AV_CH_LOW_FREQUENCY), |
1712 |
(AV_CH_LAYOUT_2_2 | AV_CH_LOW_FREQUENCY), |
1713 |
(AV_CH_LAYOUT_QUAD | AV_CH_LOW_FREQUENCY), |
1714 |
(AV_CH_LAYOUT_4POINT0 | AV_CH_LOW_FREQUENCY), |
1715 |
AV_CH_LAYOUT_5POINT1, |
1716 |
AV_CH_LAYOUT_5POINT1_BACK, |
1717 |
0 },
|
1718 |
}; |