ffmpeg / libavcodec / h264.h @ ce5e49b0
History | View | Annotate | Download (46.7 KB)
1 |
/*
|
---|---|
2 |
* H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
|
3 |
* Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
|
4 |
*
|
5 |
* This file is part of FFmpeg.
|
6 |
*
|
7 |
* FFmpeg is free software; you can redistribute it and/or
|
8 |
* modify it under the terms of the GNU Lesser General Public
|
9 |
* License as published by the Free Software Foundation; either
|
10 |
* version 2.1 of the License, or (at your option) any later version.
|
11 |
*
|
12 |
* FFmpeg is distributed in the hope that it will be useful,
|
13 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
15 |
* Lesser General Public License for more details.
|
16 |
*
|
17 |
* You should have received a copy of the GNU Lesser General Public
|
18 |
* License along with FFmpeg; if not, write to the Free Software
|
19 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
20 |
*/
|
21 |
|
22 |
/**
|
23 |
* @file
|
24 |
* H.264 / AVC / MPEG4 part10 codec.
|
25 |
* @author Michael Niedermayer <michaelni@gmx.at>
|
26 |
*/
|
27 |
|
28 |
#ifndef AVCODEC_H264_H
|
29 |
#define AVCODEC_H264_H
|
30 |
|
31 |
#include "libavutil/intreadwrite.h" |
32 |
#include "dsputil.h" |
33 |
#include "cabac.h" |
34 |
#include "mpegvideo.h" |
35 |
#include "h264dsp.h" |
36 |
#include "h264pred.h" |
37 |
#include "rectangle.h" |
38 |
|
39 |
#define interlaced_dct interlaced_dct_is_a_bad_name
|
40 |
#define mb_intra mb_intra_is_not_initialized_see_mb_type
|
41 |
|
42 |
#define LUMA_DC_BLOCK_INDEX 24 |
43 |
#define CHROMA_DC_BLOCK_INDEX 25 |
44 |
|
45 |
#define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8 |
46 |
#define COEFF_TOKEN_VLC_BITS 8 |
47 |
#define TOTAL_ZEROS_VLC_BITS 9 |
48 |
#define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3 |
49 |
#define RUN_VLC_BITS 3 |
50 |
#define RUN7_VLC_BITS 6 |
51 |
|
52 |
#define MAX_SPS_COUNT 32 |
53 |
#define MAX_PPS_COUNT 256 |
54 |
|
55 |
#define MAX_MMCO_COUNT 66 |
56 |
|
57 |
#define MAX_DELAYED_PIC_COUNT 16 |
58 |
|
59 |
/* Compiling in interlaced support reduces the speed
|
60 |
* of progressive decoding by about 2%. */
|
61 |
#define ALLOW_INTERLACE
|
62 |
|
63 |
#define ALLOW_NOCHROMA
|
64 |
|
65 |
#define FMO 0 |
66 |
|
67 |
/**
|
68 |
* The maximum number of slices supported by the decoder.
|
69 |
* must be a power of 2
|
70 |
*/
|
71 |
#define MAX_SLICES 16 |
72 |
|
73 |
#ifdef ALLOW_INTERLACE
|
74 |
#define MB_MBAFF h->mb_mbaff
|
75 |
#define MB_FIELD h->mb_field_decoding_flag
|
76 |
#define FRAME_MBAFF h->mb_aff_frame
|
77 |
#define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
|
78 |
#else
|
79 |
#define MB_MBAFF 0 |
80 |
#define MB_FIELD 0 |
81 |
#define FRAME_MBAFF 0 |
82 |
#define FIELD_PICTURE 0 |
83 |
#undef IS_INTERLACED
|
84 |
#define IS_INTERLACED(mb_type) 0 |
85 |
#endif
|
86 |
#define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
|
87 |
|
88 |
#ifdef ALLOW_NOCHROMA
|
89 |
#define CHROMA h->sps.chroma_format_idc
|
90 |
#else
|
91 |
#define CHROMA 1 |
92 |
#endif
|
93 |
|
94 |
#ifndef CABAC
|
95 |
#define CABAC h->pps.cabac
|
96 |
#endif
|
97 |
|
98 |
#define EXTENDED_SAR 255 |
99 |
|
100 |
#define MB_TYPE_REF0 MB_TYPE_ACPRED //dirty but it fits in 16 bit |
101 |
#define MB_TYPE_8x8DCT 0x01000000 |
102 |
#define IS_REF0(a) ((a) & MB_TYPE_REF0)
|
103 |
#define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
|
104 |
|
105 |
/**
|
106 |
* Value of Picture.reference when Picture is not a reference picture, but
|
107 |
* is held for delayed output.
|
108 |
*/
|
109 |
#define DELAYED_PIC_REF 4 |
110 |
|
111 |
#define QP_MAX_MAX (51 + 2*6) // The maximum supported qp |
112 |
|
113 |
/* NAL unit types */
|
114 |
enum {
|
115 |
NAL_SLICE=1,
|
116 |
NAL_DPA, |
117 |
NAL_DPB, |
118 |
NAL_DPC, |
119 |
NAL_IDR_SLICE, |
120 |
NAL_SEI, |
121 |
NAL_SPS, |
122 |
NAL_PPS, |
123 |
NAL_AUD, |
124 |
NAL_END_SEQUENCE, |
125 |
NAL_END_STREAM, |
126 |
NAL_FILLER_DATA, |
127 |
NAL_SPS_EXT, |
128 |
NAL_AUXILIARY_SLICE=19
|
129 |
}; |
130 |
|
131 |
/**
|
132 |
* SEI message types
|
133 |
*/
|
134 |
typedef enum { |
135 |
SEI_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1) |
136 |
SEI_TYPE_PIC_TIMING = 1, ///< picture timing |
137 |
SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data |
138 |
SEI_TYPE_RECOVERY_POINT = 6 ///< recovery point (frame # to decoder sync) |
139 |
} SEI_Type; |
140 |
|
141 |
/**
|
142 |
* pic_struct in picture timing SEI message
|
143 |
*/
|
144 |
typedef enum { |
145 |
SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame |
146 |
SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field |
147 |
SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field |
148 |
SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order |
149 |
SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order |
150 |
SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order |
151 |
SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order |
152 |
SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling |
153 |
SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling |
154 |
} SEI_PicStructType; |
155 |
|
156 |
/**
|
157 |
* Sequence parameter set
|
158 |
*/
|
159 |
typedef struct SPS{ |
160 |
|
161 |
int profile_idc;
|
162 |
int level_idc;
|
163 |
int chroma_format_idc;
|
164 |
int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag |
165 |
int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4 |
166 |
int poc_type; ///< pic_order_cnt_type |
167 |
int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4 |
168 |
int delta_pic_order_always_zero_flag;
|
169 |
int offset_for_non_ref_pic;
|
170 |
int offset_for_top_to_bottom_field;
|
171 |
int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle |
172 |
int ref_frame_count; ///< num_ref_frames |
173 |
int gaps_in_frame_num_allowed_flag;
|
174 |
int mb_width; ///< pic_width_in_mbs_minus1 + 1 |
175 |
int mb_height; ///< pic_height_in_map_units_minus1 + 1 |
176 |
int frame_mbs_only_flag;
|
177 |
int mb_aff; ///<mb_adaptive_frame_field_flag |
178 |
int direct_8x8_inference_flag;
|
179 |
int crop; ///< frame_cropping_flag |
180 |
unsigned int crop_left; ///< frame_cropping_rect_left_offset |
181 |
unsigned int crop_right; ///< frame_cropping_rect_right_offset |
182 |
unsigned int crop_top; ///< frame_cropping_rect_top_offset |
183 |
unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset |
184 |
int vui_parameters_present_flag;
|
185 |
AVRational sar; |
186 |
int video_signal_type_present_flag;
|
187 |
int full_range;
|
188 |
int colour_description_present_flag;
|
189 |
enum AVColorPrimaries color_primaries;
|
190 |
enum AVColorTransferCharacteristic color_trc;
|
191 |
enum AVColorSpace colorspace;
|
192 |
int timing_info_present_flag;
|
193 |
uint32_t num_units_in_tick; |
194 |
uint32_t time_scale; |
195 |
int fixed_frame_rate_flag;
|
196 |
short offset_for_ref_frame[256]; //FIXME dyn aloc? |
197 |
int bitstream_restriction_flag;
|
198 |
int num_reorder_frames;
|
199 |
int scaling_matrix_present;
|
200 |
uint8_t scaling_matrix4[6][16]; |
201 |
uint8_t scaling_matrix8[2][64]; |
202 |
int nal_hrd_parameters_present_flag;
|
203 |
int vcl_hrd_parameters_present_flag;
|
204 |
int pic_struct_present_flag;
|
205 |
int time_offset_length;
|
206 |
int cpb_cnt; ///< See H.264 E.1.2 |
207 |
int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1 |
208 |
int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1 |
209 |
int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1 |
210 |
int bit_depth_luma; ///< bit_depth_luma_minus8 + 8 |
211 |
int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8 |
212 |
int residual_color_transform_flag; ///< residual_colour_transform_flag |
213 |
int constraint_set_flags; ///< constraint_set[0-3]_flag |
214 |
}SPS; |
215 |
|
216 |
/**
|
217 |
* Picture parameter set
|
218 |
*/
|
219 |
typedef struct PPS{ |
220 |
unsigned int sps_id; |
221 |
int cabac; ///< entropy_coding_mode_flag |
222 |
int pic_order_present; ///< pic_order_present_flag |
223 |
int slice_group_count; ///< num_slice_groups_minus1 + 1 |
224 |
int mb_slice_group_map_type;
|
225 |
unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1 |
226 |
int weighted_pred; ///< weighted_pred_flag |
227 |
int weighted_bipred_idc;
|
228 |
int init_qp; ///< pic_init_qp_minus26 + 26 |
229 |
int init_qs; ///< pic_init_qs_minus26 + 26 |
230 |
int chroma_qp_index_offset[2]; |
231 |
int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag |
232 |
int constrained_intra_pred; ///< constrained_intra_pred_flag |
233 |
int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag |
234 |
int transform_8x8_mode; ///< transform_8x8_mode_flag |
235 |
uint8_t scaling_matrix4[6][16]; |
236 |
uint8_t scaling_matrix8[2][64]; |
237 |
uint8_t chroma_qp_table[2][64]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table |
238 |
int chroma_qp_diff;
|
239 |
}PPS; |
240 |
|
241 |
/**
|
242 |
* Memory management control operation opcode.
|
243 |
*/
|
244 |
typedef enum MMCOOpcode{ |
245 |
MMCO_END=0,
|
246 |
MMCO_SHORT2UNUSED, |
247 |
MMCO_LONG2UNUSED, |
248 |
MMCO_SHORT2LONG, |
249 |
MMCO_SET_MAX_LONG, |
250 |
MMCO_RESET, |
251 |
MMCO_LONG, |
252 |
} MMCOOpcode; |
253 |
|
254 |
/**
|
255 |
* Memory management control operation.
|
256 |
*/
|
257 |
typedef struct MMCO{ |
258 |
MMCOOpcode opcode; |
259 |
int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num) |
260 |
int long_arg; ///< index, pic_num, or num long refs depending on opcode |
261 |
} MMCO; |
262 |
|
263 |
/**
|
264 |
* H264Context
|
265 |
*/
|
266 |
typedef struct H264Context{ |
267 |
MpegEncContext s; |
268 |
H264DSPContext h264dsp; |
269 |
int pixel_shift;
|
270 |
int chroma_qp[2]; //QPc |
271 |
|
272 |
int qp_thresh; ///< QP threshold to skip loopfilter |
273 |
|
274 |
int prev_mb_skipped;
|
275 |
int next_mb_skipped;
|
276 |
|
277 |
//prediction stuff
|
278 |
int chroma_pred_mode;
|
279 |
int intra16x16_pred_mode;
|
280 |
|
281 |
int topleft_mb_xy;
|
282 |
int top_mb_xy;
|
283 |
int topright_mb_xy;
|
284 |
int left_mb_xy[2]; |
285 |
|
286 |
int topleft_type;
|
287 |
int top_type;
|
288 |
int topright_type;
|
289 |
int left_type[2]; |
290 |
|
291 |
const uint8_t * left_block;
|
292 |
int topleft_partition;
|
293 |
|
294 |
int8_t intra4x4_pred_mode_cache[5*8]; |
295 |
int8_t (*intra4x4_pred_mode); |
296 |
H264PredContext hpc; |
297 |
unsigned int topleft_samples_available; |
298 |
unsigned int top_samples_available; |
299 |
unsigned int topright_samples_available; |
300 |
unsigned int left_samples_available; |
301 |
uint8_t (*top_borders[2])[(16+2*8)*2]; |
302 |
|
303 |
/**
|
304 |
* non zero coeff count cache.
|
305 |
* is 64 if not available.
|
306 |
*/
|
307 |
DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[6*8]; |
308 |
|
309 |
/*
|
310 |
.UU.YYYY
|
311 |
.UU.YYYY
|
312 |
.vv.YYYY
|
313 |
.VV.YYYY
|
314 |
*/
|
315 |
uint8_t (*non_zero_count)[32];
|
316 |
|
317 |
/**
|
318 |
* Motion vector cache.
|
319 |
*/
|
320 |
DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5*8][2]; |
321 |
DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5*8]; |
322 |
#define LIST_NOT_USED -1 //FIXME rename? |
323 |
#define PART_NOT_AVAILABLE -2 |
324 |
|
325 |
/**
|
326 |
* is 1 if the specific list MV&references are set to 0,0,-2.
|
327 |
*/
|
328 |
int mv_cache_clean[2]; |
329 |
|
330 |
/**
|
331 |
* number of neighbors (top and/or left) that used 8x8 dct
|
332 |
*/
|
333 |
int neighbor_transform_size;
|
334 |
|
335 |
/**
|
336 |
* block_offset[ 0..23] for frame macroblocks
|
337 |
* block_offset[24..47] for field macroblocks
|
338 |
*/
|
339 |
int block_offset[2*(16+8)]; |
340 |
|
341 |
uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
|
342 |
uint32_t *mb2br_xy; |
343 |
int b_stride; //FIXME use s->b4_stride |
344 |
|
345 |
int mb_linesize; ///< may be equal to s->linesize or s->linesize*2, for mbaff |
346 |
int mb_uvlinesize;
|
347 |
|
348 |
int emu_edge_width;
|
349 |
int emu_edge_height;
|
350 |
|
351 |
SPS sps; ///< current sps
|
352 |
|
353 |
/**
|
354 |
* current pps
|
355 |
*/
|
356 |
PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
|
357 |
|
358 |
uint32_t dequant4_buffer[6][QP_MAX_MAX+1][16]; //FIXME should these be moved down? |
359 |
uint32_t dequant8_buffer[2][QP_MAX_MAX+1][64]; |
360 |
uint32_t (*dequant4_coeff[6])[16]; |
361 |
uint32_t (*dequant8_coeff[2])[64]; |
362 |
|
363 |
int slice_num;
|
364 |
uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
|
365 |
int slice_type;
|
366 |
int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P) |
367 |
int slice_type_fixed;
|
368 |
|
369 |
//interlacing specific flags
|
370 |
int mb_aff_frame;
|
371 |
int mb_field_decoding_flag;
|
372 |
int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag |
373 |
|
374 |
DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4]; |
375 |
|
376 |
//Weighted pred stuff
|
377 |
int use_weight;
|
378 |
int use_weight_chroma;
|
379 |
int luma_log2_weight_denom;
|
380 |
int chroma_log2_weight_denom;
|
381 |
//The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss
|
382 |
int luma_weight[48][2][2]; |
383 |
int chroma_weight[48][2][2][2]; |
384 |
int implicit_weight[48][48][2]; |
385 |
|
386 |
int direct_spatial_mv_pred;
|
387 |
int col_parity;
|
388 |
int col_fieldoff;
|
389 |
int dist_scale_factor[16]; |
390 |
int dist_scale_factor_field[2][32]; |
391 |
int map_col_to_list0[2][16+32]; |
392 |
int map_col_to_list0_field[2][2][16+32]; |
393 |
|
394 |
/**
|
395 |
* num_ref_idx_l0/1_active_minus1 + 1
|
396 |
*/
|
397 |
uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
|
398 |
unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode |
399 |
unsigned int list_count; |
400 |
Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs. |
401 |
Reordered version of default_ref_list
|
402 |
according to picture reordering in slice header */
|
403 |
int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1 |
404 |
|
405 |
//data partitioning
|
406 |
GetBitContext intra_gb; |
407 |
GetBitContext inter_gb; |
408 |
GetBitContext *intra_gb_ptr; |
409 |
GetBitContext *inter_gb_ptr; |
410 |
|
411 |
DECLARE_ALIGNED(16, DCTELEM, mb)[16*24*2]; ///< as a dct coeffecient is int32_t in high depth, we need to reserve twice the space. |
412 |
DECLARE_ALIGNED(16, DCTELEM, mb_luma_dc)[16*2]; |
413 |
DCTELEM mb_padding[256*2]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb |
414 |
|
415 |
/**
|
416 |
* Cabac
|
417 |
*/
|
418 |
CABACContext cabac; |
419 |
uint8_t cabac_state[460];
|
420 |
|
421 |
/* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
|
422 |
uint16_t *cbp_table; |
423 |
int cbp;
|
424 |
int top_cbp;
|
425 |
int left_cbp;
|
426 |
/* chroma_pred_mode for i4x4 or i16x16, else 0 */
|
427 |
uint8_t *chroma_pred_mode_table; |
428 |
int last_qscale_diff;
|
429 |
uint8_t (*mvd_table[2])[2]; |
430 |
DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5*8][2]; |
431 |
uint8_t *direct_table; |
432 |
uint8_t direct_cache[5*8]; |
433 |
|
434 |
uint8_t zigzag_scan[16];
|
435 |
uint8_t zigzag_scan8x8[64];
|
436 |
uint8_t zigzag_scan8x8_cavlc[64];
|
437 |
uint8_t field_scan[16];
|
438 |
uint8_t field_scan8x8[64];
|
439 |
uint8_t field_scan8x8_cavlc[64];
|
440 |
const uint8_t *zigzag_scan_q0;
|
441 |
const uint8_t *zigzag_scan8x8_q0;
|
442 |
const uint8_t *zigzag_scan8x8_cavlc_q0;
|
443 |
const uint8_t *field_scan_q0;
|
444 |
const uint8_t *field_scan8x8_q0;
|
445 |
const uint8_t *field_scan8x8_cavlc_q0;
|
446 |
|
447 |
int x264_build;
|
448 |
|
449 |
int mb_xy;
|
450 |
|
451 |
int is_complex;
|
452 |
|
453 |
//deblock
|
454 |
int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0 |
455 |
int slice_alpha_c0_offset;
|
456 |
int slice_beta_offset;
|
457 |
|
458 |
//=============================================================
|
459 |
//Things below are not used in the MB or more inner code
|
460 |
|
461 |
int nal_ref_idc;
|
462 |
int nal_unit_type;
|
463 |
uint8_t *rbsp_buffer[2];
|
464 |
unsigned int rbsp_buffer_size[2]; |
465 |
|
466 |
/**
|
467 |
* Used to parse AVC variant of h264
|
468 |
*/
|
469 |
int is_avc; ///< this flag is != 0 if codec is avc1 |
470 |
int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4) |
471 |
int got_first; ///< this flag is != 0 if we've parsed a frame |
472 |
|
473 |
SPS *sps_buffers[MAX_SPS_COUNT]; |
474 |
PPS *pps_buffers[MAX_PPS_COUNT]; |
475 |
|
476 |
int dequant_coeff_pps; ///< reinit tables when pps changes |
477 |
|
478 |
uint16_t *slice_table_base; |
479 |
|
480 |
|
481 |
//POC stuff
|
482 |
int poc_lsb;
|
483 |
int poc_msb;
|
484 |
int delta_poc_bottom;
|
485 |
int delta_poc[2]; |
486 |
int frame_num;
|
487 |
int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0 |
488 |
int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0 |
489 |
int frame_num_offset; ///< for POC type 2 |
490 |
int prev_frame_num_offset; ///< for POC type 2 |
491 |
int prev_frame_num; ///< frame_num of the last pic for POC type 1/2 |
492 |
|
493 |
/**
|
494 |
* frame_num for frames or 2*frame_num+1 for field pics.
|
495 |
*/
|
496 |
int curr_pic_num;
|
497 |
|
498 |
/**
|
499 |
* max_frame_num or 2*max_frame_num for field pics.
|
500 |
*/
|
501 |
int max_pic_num;
|
502 |
|
503 |
int redundant_pic_count;
|
504 |
|
505 |
Picture *short_ref[32];
|
506 |
Picture *long_ref[32];
|
507 |
Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture |
508 |
Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size? |
509 |
Picture *next_output_pic; |
510 |
int outputed_poc;
|
511 |
int next_outputed_poc;
|
512 |
|
513 |
/**
|
514 |
* memory management control operations buffer.
|
515 |
*/
|
516 |
MMCO mmco[MAX_MMCO_COUNT]; |
517 |
int mmco_index;
|
518 |
|
519 |
int long_ref_count; ///< number of actual long term references |
520 |
int short_ref_count; ///< number of actual short term references |
521 |
|
522 |
int cabac_init_idc;
|
523 |
|
524 |
/**
|
525 |
* @defgroup multithreading Members for slice based multithreading
|
526 |
* @{
|
527 |
*/
|
528 |
struct H264Context *thread_context[MAX_THREADS];
|
529 |
|
530 |
/**
|
531 |
* current slice number, used to initalize slice_num of each thread/context
|
532 |
*/
|
533 |
int current_slice;
|
534 |
|
535 |
/**
|
536 |
* Max number of threads / contexts.
|
537 |
* This is equal to AVCodecContext.thread_count unless
|
538 |
* multithreaded decoding is impossible, in which case it is
|
539 |
* reduced to 1.
|
540 |
*/
|
541 |
int max_contexts;
|
542 |
|
543 |
/**
|
544 |
* 1 if the single thread fallback warning has already been
|
545 |
* displayed, 0 otherwise.
|
546 |
*/
|
547 |
int single_decode_warning;
|
548 |
|
549 |
int last_slice_type;
|
550 |
/** @} */
|
551 |
|
552 |
/**
|
553 |
* pic_struct in picture timing SEI message
|
554 |
*/
|
555 |
SEI_PicStructType sei_pic_struct; |
556 |
|
557 |
/**
|
558 |
* Complement sei_pic_struct
|
559 |
* SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
|
560 |
* However, soft telecined frames may have these values.
|
561 |
* This is used in an attempt to flag soft telecine progressive.
|
562 |
*/
|
563 |
int prev_interlaced_frame;
|
564 |
|
565 |
/**
|
566 |
* Bit set of clock types for fields/frames in picture timing SEI message.
|
567 |
* For each found ct_type, appropriate bit is set (e.g., bit 1 for
|
568 |
* interlaced).
|
569 |
*/
|
570 |
int sei_ct_type;
|
571 |
|
572 |
/**
|
573 |
* dpb_output_delay in picture timing SEI message, see H.264 C.2.2
|
574 |
*/
|
575 |
int sei_dpb_output_delay;
|
576 |
|
577 |
/**
|
578 |
* cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
|
579 |
*/
|
580 |
int sei_cpb_removal_delay;
|
581 |
|
582 |
/**
|
583 |
* recovery_frame_cnt from SEI message
|
584 |
*
|
585 |
* Set to -1 if no recovery point SEI message found or to number of frames
|
586 |
* before playback synchronizes. Frames having recovery point are key
|
587 |
* frames.
|
588 |
*/
|
589 |
int sei_recovery_frame_cnt;
|
590 |
|
591 |
int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag |
592 |
int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag |
593 |
|
594 |
// Timestamp stuff
|
595 |
int sei_buffering_period_present; ///< Buffering period SEI flag |
596 |
int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs |
597 |
|
598 |
//SVQ3 specific fields
|
599 |
int halfpel_flag;
|
600 |
int thirdpel_flag;
|
601 |
int unknown_svq3_flag;
|
602 |
int next_slice_index;
|
603 |
uint32_t svq3_watermark_key; |
604 |
}H264Context; |
605 |
|
606 |
|
607 |
extern const uint8_t ff_h264_chroma_qp[3][QP_MAX_MAX+1]; ///< One chroma qp table for each supported bit depth (8, 9, 10). |
608 |
|
609 |
/**
|
610 |
* Decode SEI
|
611 |
*/
|
612 |
int ff_h264_decode_sei(H264Context *h);
|
613 |
|
614 |
/**
|
615 |
* Decode SPS
|
616 |
*/
|
617 |
int ff_h264_decode_seq_parameter_set(H264Context *h);
|
618 |
|
619 |
/**
|
620 |
* compute profile from sps
|
621 |
*/
|
622 |
int ff_h264_get_profile(SPS *sps);
|
623 |
|
624 |
/**
|
625 |
* Decode PPS
|
626 |
*/
|
627 |
int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length); |
628 |
|
629 |
/**
|
630 |
* Decode a network abstraction layer unit.
|
631 |
* @param consumed is the number of bytes used as input
|
632 |
* @param length is the length of the array
|
633 |
* @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
|
634 |
* @return decoded bytes, might be src+1 if no escapes
|
635 |
*/
|
636 |
const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length); |
637 |
|
638 |
/**
|
639 |
* Free any data that may have been allocated in the H264 context like SPS, PPS etc.
|
640 |
*/
|
641 |
av_cold void ff_h264_free_context(H264Context *h);
|
642 |
|
643 |
/**
|
644 |
* Reconstruct bitstream slice_type.
|
645 |
*/
|
646 |
int ff_h264_get_slice_type(const H264Context *h); |
647 |
|
648 |
/**
|
649 |
* Allocate tables.
|
650 |
* needs width/height
|
651 |
*/
|
652 |
int ff_h264_alloc_tables(H264Context *h);
|
653 |
|
654 |
/**
|
655 |
* Fill the default_ref_list.
|
656 |
*/
|
657 |
int ff_h264_fill_default_ref_list(H264Context *h);
|
658 |
|
659 |
int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
|
660 |
void ff_h264_fill_mbaff_ref_list(H264Context *h);
|
661 |
void ff_h264_remove_all_refs(H264Context *h);
|
662 |
|
663 |
/**
|
664 |
* Execute the reference picture marking (memory management control operations).
|
665 |
*/
|
666 |
int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count); |
667 |
|
668 |
int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
|
669 |
|
670 |
void ff_generate_sliding_window_mmcos(H264Context *h);
|
671 |
|
672 |
|
673 |
/**
|
674 |
* Check if the top & left blocks are available if needed & change the dc mode so it only uses the available blocks.
|
675 |
*/
|
676 |
int ff_h264_check_intra4x4_pred_mode(H264Context *h);
|
677 |
|
678 |
/**
|
679 |
* Check if the top & left blocks are available if needed & change the dc mode so it only uses the available blocks.
|
680 |
*/
|
681 |
int ff_h264_check_intra_pred_mode(H264Context *h, int mode); |
682 |
|
683 |
void ff_h264_write_back_intra_pred_mode(H264Context *h);
|
684 |
void ff_h264_hl_decode_mb(H264Context *h);
|
685 |
int ff_h264_frame_start(H264Context *h);
|
686 |
int ff_h264_decode_extradata(H264Context *h);
|
687 |
av_cold int ff_h264_decode_init(AVCodecContext *avctx);
|
688 |
av_cold int ff_h264_decode_end(AVCodecContext *avctx);
|
689 |
av_cold void ff_h264_decode_init_vlc(void); |
690 |
|
691 |
/**
|
692 |
* Decode a macroblock
|
693 |
* @return 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
|
694 |
*/
|
695 |
int ff_h264_decode_mb_cavlc(H264Context *h);
|
696 |
|
697 |
/**
|
698 |
* Decode a CABAC coded macroblock
|
699 |
* @return 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
|
700 |
*/
|
701 |
int ff_h264_decode_mb_cabac(H264Context *h);
|
702 |
|
703 |
void ff_h264_init_cabac_states(H264Context *h);
|
704 |
|
705 |
void ff_h264_direct_dist_scale_factor(H264Context * const h); |
706 |
void ff_h264_direct_ref_list_init(H264Context * const h); |
707 |
void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type); |
708 |
|
709 |
void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize); |
710 |
void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize); |
711 |
|
712 |
/**
|
713 |
* Reset SEI values at the beginning of the frame.
|
714 |
*
|
715 |
* @param h H.264 context.
|
716 |
*/
|
717 |
void ff_h264_reset_sei(H264Context *h);
|
718 |
|
719 |
|
720 |
void ff_hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
|
721 |
qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
|
722 |
qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
|
723 |
h264_weight_func *weight_op, h264_biweight_func *weight_avg); |
724 |
|
725 |
|
726 |
/*
|
727 |
o-o o-o
|
728 |
/ / /
|
729 |
o-o o-o
|
730 |
,---'
|
731 |
o-o o-o
|
732 |
/ / /
|
733 |
o-o o-o
|
734 |
*/
|
735 |
|
736 |
/* Scan8 organization:
|
737 |
* 0 1 2 3 4 5 6 7
|
738 |
* 0 u u y y y y y
|
739 |
* 1 u U U y Y Y Y Y
|
740 |
* 2 u U U y Y Y Y Y
|
741 |
* 3 v v y Y Y Y Y
|
742 |
* 4 v V V y Y Y Y Y
|
743 |
* 5 v V V DYDUDV
|
744 |
* DY/DU/DV are for luma/chroma DC.
|
745 |
*/
|
746 |
|
747 |
//This table must be here because scan8[constant] must be known at compiletime
|
748 |
static const uint8_t scan8[16 + 2*4 + 3]={ |
749 |
4+1*8, 5+1*8, 4+2*8, 5+2*8, |
750 |
6+1*8, 7+1*8, 6+2*8, 7+2*8, |
751 |
4+3*8, 5+3*8, 4+4*8, 5+4*8, |
752 |
6+3*8, 7+3*8, 6+4*8, 7+4*8, |
753 |
1+1*8, 2+1*8, |
754 |
1+2*8, 2+2*8, |
755 |
1+4*8, 2+4*8, |
756 |
1+5*8, 2+5*8, |
757 |
4+5*8, 5+5*8, 6+5*8 |
758 |
}; |
759 |
|
760 |
static av_always_inline uint32_t pack16to32(int a, int b){ |
761 |
#if HAVE_BIGENDIAN
|
762 |
return (b&0xFFFF) + (a<<16); |
763 |
#else
|
764 |
return (a&0xFFFF) + (b<<16); |
765 |
#endif
|
766 |
} |
767 |
|
768 |
static av_always_inline uint16_t pack8to16(int a, int b){ |
769 |
#if HAVE_BIGENDIAN
|
770 |
return (b&0xFF) + (a<<8); |
771 |
#else
|
772 |
return (a&0xFF) + (b<<8); |
773 |
#endif
|
774 |
} |
775 |
|
776 |
/**
|
777 |
* gets the chroma qp.
|
778 |
*/
|
779 |
static inline int get_chroma_qp(H264Context *h, int t, int qscale){ |
780 |
return h->pps.chroma_qp_table[t][qscale];
|
781 |
} |
782 |
|
783 |
static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my); |
784 |
|
785 |
static void fill_decode_neighbors(H264Context *h, int mb_type){ |
786 |
MpegEncContext * const s = &h->s;
|
787 |
const int mb_xy= h->mb_xy; |
788 |
int topleft_xy, top_xy, topright_xy, left_xy[2]; |
789 |
static const uint8_t left_block_options[4][16]={ |
790 |
{0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8}, |
791 |
{2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8}, |
792 |
{0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}, |
793 |
{0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8} |
794 |
}; |
795 |
|
796 |
h->topleft_partition= -1;
|
797 |
|
798 |
top_xy = mb_xy - (s->mb_stride << MB_FIELD); |
799 |
|
800 |
/* Wow, what a mess, why didn't they simplify the interlacing & intra
|
801 |
* stuff, I can't imagine that these complex rules are worth it. */
|
802 |
|
803 |
topleft_xy = top_xy - 1;
|
804 |
topright_xy= top_xy + 1;
|
805 |
left_xy[1] = left_xy[0] = mb_xy-1; |
806 |
h->left_block = left_block_options[0];
|
807 |
if(FRAME_MBAFF){
|
808 |
const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]); |
809 |
const int curr_mb_field_flag = IS_INTERLACED(mb_type); |
810 |
if(s->mb_y&1){ |
811 |
if (left_mb_field_flag != curr_mb_field_flag) {
|
812 |
left_xy[1] = left_xy[0] = mb_xy - s->mb_stride - 1; |
813 |
if (curr_mb_field_flag) {
|
814 |
left_xy[1] += s->mb_stride;
|
815 |
h->left_block = left_block_options[3];
|
816 |
} else {
|
817 |
topleft_xy += s->mb_stride; |
818 |
// take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
|
819 |
h->topleft_partition = 0;
|
820 |
h->left_block = left_block_options[1];
|
821 |
} |
822 |
} |
823 |
}else{
|
824 |
if(curr_mb_field_flag){
|
825 |
topleft_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy - 1]>>7)&1)-1); |
826 |
topright_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy + 1]>>7)&1)-1); |
827 |
top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1); |
828 |
} |
829 |
if (left_mb_field_flag != curr_mb_field_flag) {
|
830 |
if (curr_mb_field_flag) {
|
831 |
left_xy[1] += s->mb_stride;
|
832 |
h->left_block = left_block_options[3];
|
833 |
} else {
|
834 |
h->left_block = left_block_options[2];
|
835 |
} |
836 |
} |
837 |
} |
838 |
} |
839 |
|
840 |
h->topleft_mb_xy = topleft_xy; |
841 |
h->top_mb_xy = top_xy; |
842 |
h->topright_mb_xy= topright_xy; |
843 |
h->left_mb_xy[0] = left_xy[0]; |
844 |
h->left_mb_xy[1] = left_xy[1]; |
845 |
//FIXME do we need all in the context?
|
846 |
|
847 |
h->topleft_type = s->current_picture.mb_type[topleft_xy] ; |
848 |
h->top_type = s->current_picture.mb_type[top_xy] ; |
849 |
h->topright_type= s->current_picture.mb_type[topright_xy]; |
850 |
h->left_type[0] = s->current_picture.mb_type[left_xy[0]] ; |
851 |
h->left_type[1] = s->current_picture.mb_type[left_xy[1]] ; |
852 |
|
853 |
if(FMO){
|
854 |
if(h->slice_table[topleft_xy ] != h->slice_num) h->topleft_type = 0; |
855 |
if(h->slice_table[top_xy ] != h->slice_num) h->top_type = 0; |
856 |
if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0; |
857 |
}else{
|
858 |
if(h->slice_table[topleft_xy ] != h->slice_num){
|
859 |
h->topleft_type = 0;
|
860 |
if(h->slice_table[top_xy ] != h->slice_num) h->top_type = 0; |
861 |
if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0; |
862 |
} |
863 |
} |
864 |
if(h->slice_table[topright_xy] != h->slice_num) h->topright_type= 0; |
865 |
} |
866 |
|
867 |
static void fill_decode_caches(H264Context *h, int mb_type){ |
868 |
MpegEncContext * const s = &h->s;
|
869 |
int topleft_xy, top_xy, topright_xy, left_xy[2]; |
870 |
int topleft_type, top_type, topright_type, left_type[2]; |
871 |
const uint8_t * left_block= h->left_block;
|
872 |
int i;
|
873 |
|
874 |
topleft_xy = h->topleft_mb_xy ; |
875 |
top_xy = h->top_mb_xy ; |
876 |
topright_xy = h->topright_mb_xy; |
877 |
left_xy[0] = h->left_mb_xy[0] ; |
878 |
left_xy[1] = h->left_mb_xy[1] ; |
879 |
topleft_type = h->topleft_type ; |
880 |
top_type = h->top_type ; |
881 |
topright_type= h->topright_type ; |
882 |
left_type[0] = h->left_type[0] ; |
883 |
left_type[1] = h->left_type[1] ; |
884 |
|
885 |
if(!IS_SKIP(mb_type)){
|
886 |
if(IS_INTRA(mb_type)){
|
887 |
int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1; |
888 |
h->topleft_samples_available= |
889 |
h->top_samples_available= |
890 |
h->left_samples_available= 0xFFFF;
|
891 |
h->topright_samples_available= 0xEEEA;
|
892 |
|
893 |
if(!(top_type & type_mask)){
|
894 |
h->topleft_samples_available= 0xB3FF;
|
895 |
h->top_samples_available= 0x33FF;
|
896 |
h->topright_samples_available= 0x26EA;
|
897 |
} |
898 |
if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){ |
899 |
if(IS_INTERLACED(mb_type)){
|
900 |
if(!(left_type[0] & type_mask)){ |
901 |
h->topleft_samples_available&= 0xDFFF;
|
902 |
h->left_samples_available&= 0x5FFF;
|
903 |
} |
904 |
if(!(left_type[1] & type_mask)){ |
905 |
h->topleft_samples_available&= 0xFF5F;
|
906 |
h->left_samples_available&= 0xFF5F;
|
907 |
} |
908 |
}else{
|
909 |
int left_typei = s->current_picture.mb_type[left_xy[0] + s->mb_stride]; |
910 |
|
911 |
assert(left_xy[0] == left_xy[1]); |
912 |
if(!((left_typei & type_mask) && (left_type[0] & type_mask))){ |
913 |
h->topleft_samples_available&= 0xDF5F;
|
914 |
h->left_samples_available&= 0x5F5F;
|
915 |
} |
916 |
} |
917 |
}else{
|
918 |
if(!(left_type[0] & type_mask)){ |
919 |
h->topleft_samples_available&= 0xDF5F;
|
920 |
h->left_samples_available&= 0x5F5F;
|
921 |
} |
922 |
} |
923 |
|
924 |
if(!(topleft_type & type_mask))
|
925 |
h->topleft_samples_available&= 0x7FFF;
|
926 |
|
927 |
if(!(topright_type & type_mask))
|
928 |
h->topright_samples_available&= 0xFBFF;
|
929 |
|
930 |
if(IS_INTRA4x4(mb_type)){
|
931 |
if(IS_INTRA4x4(top_type)){
|
932 |
AV_COPY32(h->intra4x4_pred_mode_cache+4+8*0, h->intra4x4_pred_mode + h->mb2br_xy[top_xy]); |
933 |
}else{
|
934 |
h->intra4x4_pred_mode_cache[4+8*0]= |
935 |
h->intra4x4_pred_mode_cache[5+8*0]= |
936 |
h->intra4x4_pred_mode_cache[6+8*0]= |
937 |
h->intra4x4_pred_mode_cache[7+8*0]= 2 - 3*!(top_type & type_mask); |
938 |
} |
939 |
for(i=0; i<2; i++){ |
940 |
if(IS_INTRA4x4(left_type[i])){
|
941 |
int8_t *mode= h->intra4x4_pred_mode + h->mb2br_xy[left_xy[i]]; |
942 |
h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= mode[6-left_block[0+2*i]]; |
943 |
h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= mode[6-left_block[1+2*i]]; |
944 |
}else{
|
945 |
h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= |
946 |
h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= 2 - 3*!(left_type[i] & type_mask); |
947 |
} |
948 |
} |
949 |
} |
950 |
} |
951 |
|
952 |
|
953 |
/*
|
954 |
0 . T T. T T T T
|
955 |
1 L . .L . . . .
|
956 |
2 L . .L . . . .
|
957 |
3 . T TL . . . .
|
958 |
4 L . .L . . . .
|
959 |
5 L . .. . . . .
|
960 |
*/
|
961 |
//FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
|
962 |
if(top_type){
|
963 |
AV_COPY32(&h->non_zero_count_cache[4+8*0], &h->non_zero_count[top_xy][4+3*8]); |
964 |
h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8]; |
965 |
h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8]; |
966 |
|
967 |
h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8]; |
968 |
h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8]; |
969 |
}else {
|
970 |
h->non_zero_count_cache[1+8*0]= |
971 |
h->non_zero_count_cache[2+8*0]= |
972 |
|
973 |
h->non_zero_count_cache[1+8*3]= |
974 |
h->non_zero_count_cache[2+8*3]= |
975 |
AV_WN32A(&h->non_zero_count_cache[4+8*0], CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040); |
976 |
} |
977 |
|
978 |
for (i=0; i<2; i++) { |
979 |
if(left_type[i]){
|
980 |
h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]]; |
981 |
h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]]; |
982 |
h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]]; |
983 |
h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]]; |
984 |
}else{
|
985 |
h->non_zero_count_cache[3+8*1 + 2*8*i]= |
986 |
h->non_zero_count_cache[3+8*2 + 2*8*i]= |
987 |
h->non_zero_count_cache[0+8*1 + 8*i]= |
988 |
h->non_zero_count_cache[0+8*4 + 8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64; |
989 |
} |
990 |
} |
991 |
|
992 |
if( CABAC ) {
|
993 |
// top_cbp
|
994 |
if(top_type) {
|
995 |
h->top_cbp = h->cbp_table[top_xy]; |
996 |
} else {
|
997 |
h->top_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F; |
998 |
} |
999 |
// left_cbp
|
1000 |
if (left_type[0]) { |
1001 |
h->left_cbp = (h->cbp_table[left_xy[0]] & 0x1f0) |
1002 |
| ((h->cbp_table[left_xy[0]]>>(left_block[0]&(~1)))&2) |
1003 |
| (((h->cbp_table[left_xy[1]]>>(left_block[2]&(~1)))&2) << 2); |
1004 |
} else {
|
1005 |
h->left_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F; |
1006 |
} |
1007 |
} |
1008 |
} |
1009 |
|
1010 |
if(IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)){
|
1011 |
int list;
|
1012 |
for(list=0; list<h->list_count; list++){ |
1013 |
if(!USES_LIST(mb_type, list)){
|
1014 |
/*if(!h->mv_cache_clean[list]){
|
1015 |
memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
|
1016 |
memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
|
1017 |
h->mv_cache_clean[list]= 1;
|
1018 |
}*/
|
1019 |
continue;
|
1020 |
} |
1021 |
assert(!(IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred)); |
1022 |
|
1023 |
h->mv_cache_clean[list]= 0;
|
1024 |
|
1025 |
if(USES_LIST(top_type, list)){
|
1026 |
const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride; |
1027 |
AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]); |
1028 |
h->ref_cache[list][scan8[0] + 0 - 1*8]= |
1029 |
h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 2]; |
1030 |
h->ref_cache[list][scan8[0] + 2 - 1*8]= |
1031 |
h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 3]; |
1032 |
}else{
|
1033 |
AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]); |
1034 |
AV_WN32A(&h->ref_cache[list][scan8[0] + 0 - 1*8], ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101); |
1035 |
} |
1036 |
|
1037 |
if(mb_type & (MB_TYPE_16x8|MB_TYPE_8x8)){
|
1038 |
for(i=0; i<2; i++){ |
1039 |
int cache_idx = scan8[0] - 1 + i*2*8; |
1040 |
if(USES_LIST(left_type[i], list)){
|
1041 |
const int b_xy= h->mb2b_xy[left_xy[i]] + 3; |
1042 |
const int b8_xy= 4*left_xy[i] + 1; |
1043 |
AV_COPY32(h->mv_cache[list][cache_idx ], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]]); |
1044 |
AV_COPY32(h->mv_cache[list][cache_idx+8], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]]); |
1045 |
h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + (left_block[0+i*2]&~1)]; |
1046 |
h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + (left_block[1+i*2]&~1)]; |
1047 |
}else{
|
1048 |
AV_ZERO32(h->mv_cache [list][cache_idx ]); |
1049 |
AV_ZERO32(h->mv_cache [list][cache_idx+8]);
|
1050 |
h->ref_cache[list][cache_idx ]= |
1051 |
h->ref_cache[list][cache_idx+8]= (left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
|
1052 |
} |
1053 |
} |
1054 |
}else{
|
1055 |
if(USES_LIST(left_type[0], list)){ |
1056 |
const int b_xy= h->mb2b_xy[left_xy[0]] + 3; |
1057 |
const int b8_xy= 4*left_xy[0] + 1; |
1058 |
AV_COPY32(h->mv_cache[list][scan8[0] - 1], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]]); |
1059 |
h->ref_cache[list][scan8[0] - 1]= s->current_picture.ref_index[list][b8_xy + (left_block[0]&~1)]; |
1060 |
}else{
|
1061 |
AV_ZERO32(h->mv_cache [list][scan8[0] - 1]); |
1062 |
h->ref_cache[list][scan8[0] - 1]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE; |
1063 |
} |
1064 |
} |
1065 |
|
1066 |
if(USES_LIST(topright_type, list)){
|
1067 |
const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride; |
1068 |
AV_COPY32(h->mv_cache[list][scan8[0] + 4 - 1*8], s->current_picture.motion_val[list][b_xy]); |
1069 |
h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][4*topright_xy + 2]; |
1070 |
}else{
|
1071 |
AV_ZERO32(h->mv_cache [list][scan8[0] + 4 - 1*8]); |
1072 |
h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE; |
1073 |
} |
1074 |
if(h->ref_cache[list][scan8[0] + 4 - 1*8] < 0){ |
1075 |
if(USES_LIST(topleft_type, list)){
|
1076 |
const int b_xy = h->mb2b_xy [topleft_xy] + 3 + h->b_stride + (h->topleft_partition & 2*h->b_stride); |
1077 |
const int b8_xy= 4*topleft_xy + 1 + (h->topleft_partition & 2); |
1078 |
AV_COPY32(h->mv_cache[list][scan8[0] - 1 - 1*8], s->current_picture.motion_val[list][b_xy]); |
1079 |
h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy]; |
1080 |
}else{
|
1081 |
AV_ZERO32(h->mv_cache[list][scan8[0] - 1 - 1*8]); |
1082 |
h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE; |
1083 |
} |
1084 |
} |
1085 |
|
1086 |
if((mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2)) && !FRAME_MBAFF)
|
1087 |
continue;
|
1088 |
|
1089 |
if(!(mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2))) {
|
1090 |
h->ref_cache[list][scan8[4 ]] =
|
1091 |
h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
|
1092 |
AV_ZERO32(h->mv_cache [list][scan8[4 ]]);
|
1093 |
AV_ZERO32(h->mv_cache [list][scan8[12]]);
|
1094 |
|
1095 |
if( CABAC ) {
|
1096 |
/* XXX beurk, Load mvd */
|
1097 |
if(USES_LIST(top_type, list)){
|
1098 |
const int b_xy= h->mb2br_xy[top_xy]; |
1099 |
AV_COPY64(h->mvd_cache[list][scan8[0] + 0 - 1*8], h->mvd_table[list][b_xy + 0]); |
1100 |
}else{
|
1101 |
AV_ZERO64(h->mvd_cache[list][scan8[0] + 0 - 1*8]); |
1102 |
} |
1103 |
if(USES_LIST(left_type[0], list)){ |
1104 |
const int b_xy= h->mb2br_xy[left_xy[0]] + 6; |
1105 |
AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 0*8], h->mvd_table[list][b_xy - left_block[0]]); |
1106 |
AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 1*8], h->mvd_table[list][b_xy - left_block[1]]); |
1107 |
}else{
|
1108 |
AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 0*8]); |
1109 |
AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 1*8]); |
1110 |
} |
1111 |
if(USES_LIST(left_type[1], list)){ |
1112 |
const int b_xy= h->mb2br_xy[left_xy[1]] + 6; |
1113 |
AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 2*8], h->mvd_table[list][b_xy - left_block[2]]); |
1114 |
AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 3*8], h->mvd_table[list][b_xy - left_block[3]]); |
1115 |
}else{
|
1116 |
AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 2*8]); |
1117 |
AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 3*8]); |
1118 |
} |
1119 |
AV_ZERO16(h->mvd_cache [list][scan8[4 ]]);
|
1120 |
AV_ZERO16(h->mvd_cache [list][scan8[12]]);
|
1121 |
if(h->slice_type_nos == AV_PICTURE_TYPE_B){
|
1122 |
fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, MB_TYPE_16x16>>1, 1); |
1123 |
|
1124 |
if(IS_DIRECT(top_type)){
|
1125 |
AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101u*(MB_TYPE_DIRECT2>>1)); |
1126 |
}else if(IS_8X8(top_type)){ |
1127 |
int b8_xy = 4*top_xy; |
1128 |
h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy + 2]; |
1129 |
h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 3]; |
1130 |
}else{
|
1131 |
AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101*(MB_TYPE_16x16>>1)); |
1132 |
} |
1133 |
|
1134 |
if(IS_DIRECT(left_type[0])) |
1135 |
h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_DIRECT2>>1; |
1136 |
else if(IS_8X8(left_type[0])) |
1137 |
h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[4*left_xy[0] + 1 + (left_block[0]&~1)]; |
1138 |
else
|
1139 |
h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_16x16>>1; |
1140 |
|
1141 |
if(IS_DIRECT(left_type[1])) |
1142 |
h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_DIRECT2>>1; |
1143 |
else if(IS_8X8(left_type[1])) |
1144 |
h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[4*left_xy[1] + 1 + (left_block[2]&~1)]; |
1145 |
else
|
1146 |
h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_16x16>>1; |
1147 |
} |
1148 |
} |
1149 |
} |
1150 |
if(FRAME_MBAFF){
|
1151 |
#define MAP_MVS\
|
1152 |
MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\ |
1153 |
MAP_F2F(scan8[0] + 0 - 1*8, top_type)\ |
1154 |
MAP_F2F(scan8[0] + 1 - 1*8, top_type)\ |
1155 |
MAP_F2F(scan8[0] + 2 - 1*8, top_type)\ |
1156 |
MAP_F2F(scan8[0] + 3 - 1*8, top_type)\ |
1157 |
MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\ |
1158 |
MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\ |
1159 |
MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\ |
1160 |
MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\ |
1161 |
MAP_F2F(scan8[0] - 1 + 3*8, left_type[1]) |
1162 |
if(MB_FIELD){
|
1163 |
#define MAP_F2F(idx, mb_type)\
|
1164 |
if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\ |
1165 |
h->ref_cache[list][idx] <<= 1;\
|
1166 |
h->mv_cache[list][idx][1] /= 2;\ |
1167 |
h->mvd_cache[list][idx][1] >>=1;\ |
1168 |
} |
1169 |
MAP_MVS |
1170 |
#undef MAP_F2F
|
1171 |
}else{
|
1172 |
#define MAP_F2F(idx, mb_type)\
|
1173 |
if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\ |
1174 |
h->ref_cache[list][idx] >>= 1;\
|
1175 |
h->mv_cache[list][idx][1] <<= 1;\ |
1176 |
h->mvd_cache[list][idx][1] <<= 1;\ |
1177 |
} |
1178 |
MAP_MVS |
1179 |
#undef MAP_F2F
|
1180 |
} |
1181 |
} |
1182 |
} |
1183 |
} |
1184 |
|
1185 |
h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
|
1186 |
} |
1187 |
|
1188 |
/**
|
1189 |
* gets the predicted intra4x4 prediction mode.
|
1190 |
*/
|
1191 |
static inline int pred_intra_mode(H264Context *h, int n){ |
1192 |
const int index8= scan8[n]; |
1193 |
const int left= h->intra4x4_pred_mode_cache[index8 - 1]; |
1194 |
const int top = h->intra4x4_pred_mode_cache[index8 - 8]; |
1195 |
const int min= FFMIN(left, top); |
1196 |
|
1197 |
tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
|
1198 |
|
1199 |
if(min<0) return DC_PRED; |
1200 |
else return min; |
1201 |
} |
1202 |
|
1203 |
static inline void write_back_non_zero_count(H264Context *h){ |
1204 |
const int mb_xy= h->mb_xy; |
1205 |
|
1206 |
AV_COPY64(&h->non_zero_count[mb_xy][ 0], &h->non_zero_count_cache[0+8*1]); |
1207 |
AV_COPY64(&h->non_zero_count[mb_xy][ 8], &h->non_zero_count_cache[0+8*2]); |
1208 |
AV_COPY32(&h->non_zero_count[mb_xy][16], &h->non_zero_count_cache[0+8*5]); |
1209 |
AV_COPY32(&h->non_zero_count[mb_xy][20], &h->non_zero_count_cache[4+8*3]); |
1210 |
AV_COPY64(&h->non_zero_count[mb_xy][24], &h->non_zero_count_cache[0+8*4]); |
1211 |
} |
1212 |
|
1213 |
static inline void write_back_motion(H264Context *h, int mb_type){ |
1214 |
MpegEncContext * const s = &h->s;
|
1215 |
const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride; //try mb2b(8)_xy |
1216 |
const int b8_xy= 4*h->mb_xy; |
1217 |
int list;
|
1218 |
|
1219 |
if(!USES_LIST(mb_type, 0)) |
1220 |
fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, 2, (uint8_t)LIST_NOT_USED, 1); |
1221 |
|
1222 |
for(list=0; list<h->list_count; list++){ |
1223 |
int y, b_stride;
|
1224 |
int16_t (*mv_dst)[2];
|
1225 |
int16_t (*mv_src)[2];
|
1226 |
|
1227 |
if(!USES_LIST(mb_type, list))
|
1228 |
continue;
|
1229 |
|
1230 |
b_stride = h->b_stride; |
1231 |
mv_dst = &s->current_picture.motion_val[list][b_xy]; |
1232 |
mv_src = &h->mv_cache[list][scan8[0]];
|
1233 |
for(y=0; y<4; y++){ |
1234 |
AV_COPY128(mv_dst + y*b_stride, mv_src + 8*y);
|
1235 |
} |
1236 |
if( CABAC ) {
|
1237 |
uint8_t (*mvd_dst)[2] = &h->mvd_table[list][FMO ? 8*h->mb_xy : h->mb2br_xy[h->mb_xy]]; |
1238 |
uint8_t (*mvd_src)[2] = &h->mvd_cache[list][scan8[0]]; |
1239 |
if(IS_SKIP(mb_type))
|
1240 |
AV_ZERO128(mvd_dst); |
1241 |
else{
|
1242 |
AV_COPY64(mvd_dst, mvd_src + 8*3); |
1243 |
AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8*0); |
1244 |
AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8*1); |
1245 |
AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8*2); |
1246 |
} |
1247 |
} |
1248 |
|
1249 |
{ |
1250 |
int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy]; |
1251 |
ref_index[0+0*2]= h->ref_cache[list][scan8[0]]; |
1252 |
ref_index[1+0*2]= h->ref_cache[list][scan8[4]]; |
1253 |
ref_index[0+1*2]= h->ref_cache[list][scan8[8]]; |
1254 |
ref_index[1+1*2]= h->ref_cache[list][scan8[12]]; |
1255 |
} |
1256 |
} |
1257 |
|
1258 |
if(h->slice_type_nos == AV_PICTURE_TYPE_B && CABAC){
|
1259 |
if(IS_8X8(mb_type)){
|
1260 |
uint8_t *direct_table = &h->direct_table[4*h->mb_xy];
|
1261 |
direct_table[1] = h->sub_mb_type[1]>>1; |
1262 |
direct_table[2] = h->sub_mb_type[2]>>1; |
1263 |
direct_table[3] = h->sub_mb_type[3]>>1; |
1264 |
} |
1265 |
} |
1266 |
} |
1267 |
|
1268 |
static inline int get_dct8x8_allowed(H264Context *h){ |
1269 |
if(h->sps.direct_8x8_inference_flag)
|
1270 |
return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8 )*0x0001000100010001ULL)); |
1271 |
else
|
1272 |
return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL)); |
1273 |
} |
1274 |
|
1275 |
/**
|
1276 |
* decodes a P_SKIP or B_SKIP macroblock
|
1277 |
*/
|
1278 |
static void av_unused decode_mb_skip(H264Context *h){ |
1279 |
MpegEncContext * const s = &h->s;
|
1280 |
const int mb_xy= h->mb_xy; |
1281 |
int mb_type=0; |
1282 |
|
1283 |
memset(h->non_zero_count[mb_xy], 0, 32); |
1284 |
memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui |
1285 |
|
1286 |
if(MB_FIELD)
|
1287 |
mb_type|= MB_TYPE_INTERLACED; |
1288 |
|
1289 |
if( h->slice_type_nos == AV_PICTURE_TYPE_B )
|
1290 |
{ |
1291 |
// just for fill_caches. pred_direct_motion will set the real mb_type
|
1292 |
mb_type|= MB_TYPE_L0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP; |
1293 |
if(h->direct_spatial_mv_pred){
|
1294 |
fill_decode_neighbors(h, mb_type); |
1295 |
fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
|
1296 |
} |
1297 |
ff_h264_pred_direct_motion(h, &mb_type); |
1298 |
mb_type|= MB_TYPE_SKIP; |
1299 |
} |
1300 |
else
|
1301 |
{ |
1302 |
int mx, my;
|
1303 |
mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP; |
1304 |
|
1305 |
fill_decode_neighbors(h, mb_type); |
1306 |
fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
|
1307 |
pred_pskip_motion(h, &mx, &my); |
1308 |
fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1); |
1309 |
fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4); |
1310 |
} |
1311 |
|
1312 |
write_back_motion(h, mb_type); |
1313 |
s->current_picture.mb_type[mb_xy]= mb_type; |
1314 |
s->current_picture.qscale_table[mb_xy]= s->qscale; |
1315 |
h->slice_table[ mb_xy ]= h->slice_num; |
1316 |
h->prev_mb_skipped= 1;
|
1317 |
} |
1318 |
|
1319 |
#include "h264_mvpred.h" //For pred_pskip_motion() |
1320 |
|
1321 |
#endif /* AVCODEC_H264_H */ |