Statistics
| Branch: | Revision:

ffmpeg / libavcodec / wma.c @ cee4bb89

History | View | Annotate | Download (12.7 KB)

1
/*
2
 * WMA compatible codec
3
 * Copyright (c) 2002-2007 The FFmpeg Project
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21

    
22
#include "avcodec.h"
23
#include "wma.h"
24
#include "wmadata.h"
25

    
26
#undef NDEBUG
27
#include <assert.h>
28

    
29
/* XXX: use same run/length optimization as mpeg decoders */
30
//FIXME maybe split decode / encode or pass flag
31
static void init_coef_vlc(VLC *vlc, uint16_t **prun_table,
32
                          uint16_t **plevel_table, uint16_t **pint_table,
33
                          const CoefVLCTable *vlc_table)
34
{
35
    int n = vlc_table->n;
36
    const uint8_t  *table_bits   = vlc_table->huffbits;
37
    const uint32_t *table_codes  = vlc_table->huffcodes;
38
    const uint16_t *levels_table = vlc_table->levels;
39
    uint16_t *run_table, *level_table, *int_table;
40
    int i, l, j, k, level;
41

    
42
    init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
43

    
44
    run_table   = av_malloc(n * sizeof(uint16_t));
45
    level_table = av_malloc(n * sizeof(uint16_t));
46
    int_table   = av_malloc(n * sizeof(uint16_t));
47
    i = 2;
48
    level = 1;
49
    k = 0;
50
    while (i < n) {
51
        int_table[k] = i;
52
        l = levels_table[k++];
53
        for (j = 0; j < l; j++) {
54
            run_table[i]   = j;
55
            level_table[i] = level;
56
            i++;
57
        }
58
        level++;
59
    }
60
    *prun_table   = run_table;
61
    *plevel_table = level_table;
62
    *pint_table   = int_table;
63
}
64

    
65
/**
66
 *@brief Get the samples per frame for this stream.
67
 *@param sample_rate output sample_rate
68
 *@param version wma version
69
 *@param decode_flags codec compression features
70
 *@return log2 of the number of output samples per frame
71
 */
72
int av_cold ff_wma_get_frame_len_bits(int sample_rate, int version,
73
                                      unsigned int decode_flags)
74
{
75

    
76
    int frame_len_bits;
77

    
78
    if (sample_rate <= 16000)
79
        frame_len_bits = 9;
80
    else if (sample_rate <= 22050 ||
81
             (sample_rate <= 32000 && version == 1))
82
        frame_len_bits = 10;
83
    else
84
        frame_len_bits = 11;
85

    
86
    return frame_len_bits;
87
}
88

    
89
int ff_wma_init(AVCodecContext *avctx, int flags2)
90
{
91
    WMACodecContext *s = avctx->priv_data;
92
    int i;
93
    float bps1, high_freq;
94
    volatile float bps;
95
    int sample_rate1;
96
    int coef_vlc_table;
97

    
98
    if (   avctx->sample_rate <= 0 || avctx->sample_rate > 50000
99
        || avctx->channels    <= 0 || avctx->channels    > 8
100
        || avctx->bit_rate    <= 0)
101
        return -1;
102

    
103
    s->sample_rate = avctx->sample_rate;
104
    s->nb_channels = avctx->channels;
105
    s->bit_rate    = avctx->bit_rate;
106
    s->block_align = avctx->block_align;
107

    
108
    dsputil_init(&s->dsp, avctx);
109

    
110
    if (avctx->codec->id == CODEC_ID_WMAV1) {
111
        s->version = 1;
112
    } else {
113
        s->version = 2;
114
    }
115

    
116
    /* compute MDCT block size */
117
    s->frame_len_bits = ff_wma_get_frame_len_bits(s->sample_rate, s->version, 0);
118

    
119
    s->frame_len = 1 << s->frame_len_bits;
120
    if (s->use_variable_block_len) {
121
        int nb_max, nb;
122
        nb = ((flags2 >> 3) & 3) + 1;
123
        if ((s->bit_rate / s->nb_channels) >= 32000)
124
            nb += 2;
125
        nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
126
        if (nb > nb_max)
127
            nb = nb_max;
128
        s->nb_block_sizes = nb + 1;
129
    } else {
130
        s->nb_block_sizes = 1;
131
    }
132

    
133
    /* init rate dependent parameters */
134
    s->use_noise_coding = 1;
135
    high_freq = s->sample_rate * 0.5;
136

    
137
    /* if version 2, then the rates are normalized */
138
    sample_rate1 = s->sample_rate;
139
    if (s->version == 2) {
140
        if (sample_rate1 >= 44100)
141
            sample_rate1 = 44100;
142
        else if (sample_rate1 >= 22050)
143
            sample_rate1 = 22050;
144
        else if (sample_rate1 >= 16000)
145
            sample_rate1 = 16000;
146
        else if (sample_rate1 >= 11025)
147
            sample_rate1 = 11025;
148
        else if (sample_rate1 >= 8000)
149
            sample_rate1 = 8000;
150
    }
151

    
152
    bps = (float)s->bit_rate / (float)(s->nb_channels * s->sample_rate);
153
    s->byte_offset_bits = av_log2((int)(bps * s->frame_len / 8.0 + 0.5)) + 2;
154

    
155
    /* compute high frequency value and choose if noise coding should
156
       be activated */
157
    bps1 = bps;
158
    if (s->nb_channels == 2)
159
        bps1 = bps * 1.6;
160
    if (sample_rate1 == 44100) {
161
        if (bps1 >= 0.61)
162
            s->use_noise_coding = 0;
163
        else
164
            high_freq = high_freq * 0.4;
165
    } else if (sample_rate1 == 22050) {
166
        if (bps1 >= 1.16)
167
            s->use_noise_coding = 0;
168
        else if (bps1 >= 0.72)
169
            high_freq = high_freq * 0.7;
170
        else
171
            high_freq = high_freq * 0.6;
172
    } else if (sample_rate1 == 16000) {
173
        if (bps > 0.5)
174
            high_freq = high_freq * 0.5;
175
        else
176
            high_freq = high_freq * 0.3;
177
    } else if (sample_rate1 == 11025) {
178
        high_freq = high_freq * 0.7;
179
    } else if (sample_rate1 == 8000) {
180
        if (bps <= 0.625) {
181
            high_freq = high_freq * 0.5;
182
        } else if (bps > 0.75) {
183
            s->use_noise_coding = 0;
184
        } else {
185
            high_freq = high_freq * 0.65;
186
        }
187
    } else {
188
        if (bps >= 0.8) {
189
            high_freq = high_freq * 0.75;
190
        } else if (bps >= 0.6) {
191
            high_freq = high_freq * 0.6;
192
        } else {
193
            high_freq = high_freq * 0.5;
194
        }
195
    }
196
    dprintf(s->avctx, "flags2=0x%x\n", flags2);
197
    dprintf(s->avctx, "version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
198
            s->version, s->nb_channels, s->sample_rate, s->bit_rate,
199
            s->block_align);
200
    dprintf(s->avctx, "bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
201
            bps, bps1, high_freq, s->byte_offset_bits);
202
    dprintf(s->avctx, "use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
203
            s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
204

    
205
    /* compute the scale factor band sizes for each MDCT block size */
206
    {
207
        int a, b, pos, lpos, k, block_len, i, j, n;
208
        const uint8_t *table;
209

    
210
        if (s->version == 1) {
211
            s->coefs_start = 3;
212
        } else {
213
            s->coefs_start = 0;
214
        }
215
        for (k = 0; k < s->nb_block_sizes; k++) {
216
            block_len = s->frame_len >> k;
217

    
218
            if (s->version == 1) {
219
                lpos = 0;
220
                for (i = 0; i < 25; i++) {
221
                    a = wma_critical_freqs[i];
222
                    b = s->sample_rate;
223
                    pos = ((block_len * 2 * a) + (b >> 1)) / b;
224
                    if (pos > block_len)
225
                        pos = block_len;
226
                    s->exponent_bands[0][i] = pos - lpos;
227
                    if (pos >= block_len) {
228
                        i++;
229
                        break;
230
                    }
231
                    lpos = pos;
232
                }
233
                s->exponent_sizes[0] = i;
234
            } else {
235
                /* hardcoded tables */
236
                table = NULL;
237
                a = s->frame_len_bits - BLOCK_MIN_BITS - k;
238
                if (a < 3) {
239
                    if (s->sample_rate >= 44100)
240
                        table = exponent_band_44100[a];
241
                    else if (s->sample_rate >= 32000)
242
                        table = exponent_band_32000[a];
243
                    else if (s->sample_rate >= 22050)
244
                        table = exponent_band_22050[a];
245
                }
246
                if (table) {
247
                    n = *table++;
248
                    for (i = 0; i < n; i++)
249
                        s->exponent_bands[k][i] = table[i];
250
                    s->exponent_sizes[k] = n;
251
                } else {
252
                    j = 0;
253
                    lpos = 0;
254
                    for (i = 0; i < 25; i++) {
255
                        a = wma_critical_freqs[i];
256
                        b = s->sample_rate;
257
                        pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
258
                        pos <<= 2;
259
                        if (pos > block_len)
260
                            pos = block_len;
261
                        if (pos > lpos)
262
                            s->exponent_bands[k][j++] = pos - lpos;
263
                        if (pos >= block_len)
264
                            break;
265
                        lpos = pos;
266
                    }
267
                    s->exponent_sizes[k] = j;
268
                }
269
            }
270

    
271
            /* max number of coefs */
272
            s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
273
            /* high freq computation */
274
            s->high_band_start[k] = (int)((block_len * 2 * high_freq) /
275
                                          s->sample_rate + 0.5);
276
            n = s->exponent_sizes[k];
277
            j = 0;
278
            pos = 0;
279
            for (i = 0; i < n; i++) {
280
                int start, end;
281
                start = pos;
282
                pos += s->exponent_bands[k][i];
283
                end = pos;
284
                if (start < s->high_band_start[k])
285
                    start = s->high_band_start[k];
286
                if (end > s->coefs_end[k])
287
                    end = s->coefs_end[k];
288
                if (end > start)
289
                    s->exponent_high_bands[k][j++] = end - start;
290
            }
291
            s->exponent_high_sizes[k] = j;
292
#if 0
293
            tprintf(s->avctx, "%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
294
                    s->frame_len >> k,
295
                    s->coefs_end[k],
296
                    s->high_band_start[k],
297
                    s->exponent_high_sizes[k]);
298
            for (j = 0; j < s->exponent_high_sizes[k]; j++)
299
                tprintf(s->avctx, " %d", s->exponent_high_bands[k][j]);
300
            tprintf(s->avctx, "\n");
301
#endif
302
        }
303
    }
304

    
305
#ifdef TRACE
306
    {
307
        int i, j;
308
        for (i = 0; i < s->nb_block_sizes; i++) {
309
            tprintf(s->avctx, "%5d: n=%2d:",
310
                    s->frame_len >> i,
311
                    s->exponent_sizes[i]);
312
            for (j = 0; j < s->exponent_sizes[i]; j++)
313
                tprintf(s->avctx, " %d", s->exponent_bands[i][j]);
314
            tprintf(s->avctx, "\n");
315
        }
316
    }
317
#endif
318

    
319
    /* init MDCT windows : simple sinus window */
320
    for (i = 0; i < s->nb_block_sizes; i++) {
321
        int n;
322
        n = 1 << (s->frame_len_bits - i);
323
        ff_sine_window_init(ff_sine_windows[s->frame_len_bits - i - 7], n);
324
        s->windows[i] = ff_sine_windows[s->frame_len_bits - i - 7];
325
    }
326

    
327
    s->reset_block_lengths = 1;
328

    
329
    if (s->use_noise_coding) {
330

    
331
        /* init the noise generator */
332
        if (s->use_exp_vlc)
333
            s->noise_mult = 0.02;
334
        else
335
            s->noise_mult = 0.04;
336

    
337
#ifdef TRACE
338
        for (i = 0; i < NOISE_TAB_SIZE; i++)
339
            s->noise_table[i] = 1.0 * s->noise_mult;
340
#else
341
        {
342
            unsigned int seed;
343
            float norm;
344
            seed = 1;
345
            norm = (1.0 / (float)(1LL << 31)) * sqrt(3) * s->noise_mult;
346
            for (i = 0; i < NOISE_TAB_SIZE; i++) {
347
                seed = seed * 314159 + 1;
348
                s->noise_table[i] = (float)((int)seed) * norm;
349
            }
350
        }
351
#endif
352
    }
353

    
354
    /* choose the VLC tables for the coefficients */
355
    coef_vlc_table = 2;
356
    if (s->sample_rate >= 32000) {
357
        if (bps1 < 0.72)
358
            coef_vlc_table = 0;
359
        else if (bps1 < 1.16)
360
            coef_vlc_table = 1;
361
    }
362
    s->coef_vlcs[0]= &coef_vlcs[coef_vlc_table * 2    ];
363
    s->coef_vlcs[1]= &coef_vlcs[coef_vlc_table * 2 + 1];
364
    init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0], &s->int_table[0],
365
                  s->coef_vlcs[0]);
366
    init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1], &s->int_table[1],
367
                  s->coef_vlcs[1]);
368

    
369
    return 0;
370
}
371

    
372
int ff_wma_total_gain_to_bits(int total_gain)
373
{
374
         if (total_gain < 15) return 13;
375
    else if (total_gain < 32) return 12;
376
    else if (total_gain < 40) return 11;
377
    else if (total_gain < 45) return 10;
378
    else                      return  9;
379
}
380

    
381
int ff_wma_end(AVCodecContext *avctx)
382
{
383
    WMACodecContext *s = avctx->priv_data;
384
    int i;
385

    
386
    for (i = 0; i < s->nb_block_sizes; i++)
387
        ff_mdct_end(&s->mdct_ctx[i]);
388

    
389
    if (s->use_exp_vlc) {
390
        free_vlc(&s->exp_vlc);
391
    }
392
    if (s->use_noise_coding) {
393
        free_vlc(&s->hgain_vlc);
394
    }
395
    for (i = 0; i < 2; i++) {
396
        free_vlc(&s->coef_vlc[i]);
397
        av_free(s->run_table[i]);
398
        av_free(s->level_table[i]);
399
        av_free(s->int_table[i]);
400
    }
401

    
402
    return 0;
403
}