ffmpeg / libavcodec / ac3enc.c @ cf7c961b
History | View | Annotate | Download (58.5 KB)
1 |
/*
|
---|---|
2 |
* The simplest AC-3 encoder
|
3 |
* Copyright (c) 2000 Fabrice Bellard
|
4 |
* Copyright (c) 2006-2010 Justin Ruggles <justin.ruggles@gmail.com>
|
5 |
* Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
|
6 |
*
|
7 |
* This file is part of FFmpeg.
|
8 |
*
|
9 |
* FFmpeg is free software; you can redistribute it and/or
|
10 |
* modify it under the terms of the GNU Lesser General Public
|
11 |
* License as published by the Free Software Foundation; either
|
12 |
* version 2.1 of the License, or (at your option) any later version.
|
13 |
*
|
14 |
* FFmpeg is distributed in the hope that it will be useful,
|
15 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
17 |
* Lesser General Public License for more details.
|
18 |
*
|
19 |
* You should have received a copy of the GNU Lesser General Public
|
20 |
* License along with FFmpeg; if not, write to the Free Software
|
21 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
22 |
*/
|
23 |
|
24 |
/**
|
25 |
* @file
|
26 |
* The simplest AC-3 encoder.
|
27 |
*/
|
28 |
|
29 |
//#define DEBUG
|
30 |
|
31 |
#include "libavcore/audioconvert.h" |
32 |
#include "libavutil/crc.h" |
33 |
#include "avcodec.h" |
34 |
#include "put_bits.h" |
35 |
#include "dsputil.h" |
36 |
#include "ac3.h" |
37 |
#include "audioconvert.h" |
38 |
|
39 |
|
40 |
#define MDCT_NBITS 9 |
41 |
#define MDCT_SAMPLES (1 << MDCT_NBITS) |
42 |
|
43 |
/** Maximum number of exponent groups. +1 for separate DC exponent. */
|
44 |
#define AC3_MAX_EXP_GROUPS 85 |
45 |
|
46 |
/** Scale a float value by 2^bits and convert to an integer. */
|
47 |
#define SCALE_FLOAT(a, bits) lrintf((a) * (float)(1 << (bits))) |
48 |
|
49 |
/** Scale a float value by 2^15, convert to an integer, and clip to int16_t range. */
|
50 |
#define FIX15(a) av_clip_int16(SCALE_FLOAT(a, 15)) |
51 |
|
52 |
|
53 |
/**
|
54 |
* Compex number.
|
55 |
* Used in fixed-point MDCT calculation.
|
56 |
*/
|
57 |
typedef struct IComplex { |
58 |
int16_t re,im; |
59 |
} IComplex; |
60 |
|
61 |
typedef struct AC3MDCTContext { |
62 |
AVCodecContext *avctx; ///< parent context for av_log()
|
63 |
int16_t *rot_tmp; ///< temp buffer for pre-rotated samples
|
64 |
IComplex *cplx_tmp; ///< temp buffer for complex pre-rotated samples
|
65 |
} AC3MDCTContext; |
66 |
|
67 |
/**
|
68 |
* Data for a single audio block.
|
69 |
*/
|
70 |
typedef struct AC3Block { |
71 |
uint8_t **bap; ///< bit allocation pointers (bap)
|
72 |
int32_t **mdct_coef; ///< MDCT coefficients
|
73 |
uint8_t **exp; ///< original exponents
|
74 |
uint8_t **grouped_exp; ///< grouped exponents
|
75 |
int16_t **psd; ///< psd per frequency bin
|
76 |
int16_t **band_psd; ///< psd per critical band
|
77 |
int16_t **mask; ///< masking curve
|
78 |
uint16_t **qmant; ///< quantized mantissas
|
79 |
uint8_t exp_strategy[AC3_MAX_CHANNELS]; ///< exponent strategies
|
80 |
int8_t exp_shift[AC3_MAX_CHANNELS]; ///< exponent shift values
|
81 |
} AC3Block; |
82 |
|
83 |
/**
|
84 |
* AC-3 encoder private context.
|
85 |
*/
|
86 |
typedef struct AC3EncodeContext { |
87 |
PutBitContext pb; ///< bitstream writer context
|
88 |
DSPContext dsp; |
89 |
AC3MDCTContext mdct; ///< MDCT context
|
90 |
|
91 |
AC3Block blocks[AC3_MAX_BLOCKS]; ///< per-block info
|
92 |
|
93 |
int bitstream_id; ///< bitstream id (bsid) |
94 |
int bitstream_mode; ///< bitstream mode (bsmod) |
95 |
|
96 |
int bit_rate; ///< target bit rate, in bits-per-second |
97 |
int sample_rate; ///< sampling frequency, in Hz |
98 |
|
99 |
int frame_size_min; ///< minimum frame size in case rounding is necessary |
100 |
int frame_size; ///< current frame size in bytes |
101 |
int frame_size_code; ///< frame size code (frmsizecod) |
102 |
int bits_written; ///< bit count (used to avg. bitrate) |
103 |
int samples_written; ///< sample count (used to avg. bitrate) |
104 |
|
105 |
int fbw_channels; ///< number of full-bandwidth channels (nfchans) |
106 |
int channels; ///< total number of channels (nchans) |
107 |
int lfe_on; ///< indicates if there is an LFE channel (lfeon) |
108 |
int lfe_channel; ///< channel index of the LFE channel |
109 |
int channel_mode; ///< channel mode (acmod) |
110 |
const uint8_t *channel_map; ///< channel map used to reorder channels |
111 |
|
112 |
int bandwidth_code[AC3_MAX_CHANNELS]; ///< bandwidth code (0 to 60) (chbwcod) |
113 |
int nb_coefs[AC3_MAX_CHANNELS];
|
114 |
|
115 |
/* bitrate allocation control */
|
116 |
int slow_gain_code; ///< slow gain code (sgaincod) |
117 |
int slow_decay_code; ///< slow decay code (sdcycod) |
118 |
int fast_decay_code; ///< fast decay code (fdcycod) |
119 |
int db_per_bit_code; ///< dB/bit code (dbpbcod) |
120 |
int floor_code; ///< floor code (floorcod) |
121 |
AC3BitAllocParameters bit_alloc; ///< bit allocation parameters
|
122 |
int coarse_snr_offset; ///< coarse SNR offsets (csnroffst) |
123 |
int fast_gain_code[AC3_MAX_CHANNELS]; ///< fast gain codes (signal-to-mask ratio) (fgaincod) |
124 |
int fine_snr_offset[AC3_MAX_CHANNELS]; ///< fine SNR offsets (fsnroffst) |
125 |
int frame_bits_fixed; ///< number of non-coefficient bits for fixed parameters |
126 |
int frame_bits; ///< all frame bits except exponents and mantissas |
127 |
int exponent_bits; ///< number of bits used for exponents |
128 |
|
129 |
/* mantissa encoding */
|
130 |
int mant1_cnt, mant2_cnt, mant4_cnt; ///< mantissa counts for bap=1,2,4 |
131 |
uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr; ///< mantissa pointers for bap=1,2,4
|
132 |
|
133 |
int16_t **planar_samples; |
134 |
uint8_t *bap_buffer; |
135 |
uint8_t *bap1_buffer; |
136 |
int32_t *mdct_coef_buffer; |
137 |
uint8_t *exp_buffer; |
138 |
uint8_t *grouped_exp_buffer; |
139 |
int16_t *psd_buffer; |
140 |
int16_t *band_psd_buffer; |
141 |
int16_t *mask_buffer; |
142 |
uint16_t *qmant_buffer; |
143 |
|
144 |
DECLARE_ALIGNED(16, int16_t, windowed_samples)[AC3_WINDOW_SIZE];
|
145 |
} AC3EncodeContext; |
146 |
|
147 |
|
148 |
/** MDCT and FFT tables */
|
149 |
static int16_t costab[64]; |
150 |
static int16_t sintab[64]; |
151 |
static int16_t xcos1[128]; |
152 |
static int16_t xsin1[128]; |
153 |
|
154 |
/**
|
155 |
* LUT for number of exponent groups.
|
156 |
* exponent_group_tab[exponent strategy-1][number of coefficients]
|
157 |
*/
|
158 |
uint8_t exponent_group_tab[3][256]; |
159 |
|
160 |
|
161 |
/**
|
162 |
* Adjust the frame size to make the average bit rate match the target bit rate.
|
163 |
* This is only needed for 11025, 22050, and 44100 sample rates.
|
164 |
*/
|
165 |
static void adjust_frame_size(AC3EncodeContext *s) |
166 |
{ |
167 |
while (s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
|
168 |
s->bits_written -= s->bit_rate; |
169 |
s->samples_written -= s->sample_rate; |
170 |
} |
171 |
s->frame_size = s->frame_size_min + |
172 |
2 * (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
|
173 |
s->bits_written += s->frame_size * 8;
|
174 |
s->samples_written += AC3_FRAME_SIZE; |
175 |
} |
176 |
|
177 |
|
178 |
/**
|
179 |
* Deinterleave input samples.
|
180 |
* Channels are reordered from FFmpeg's default order to AC-3 order.
|
181 |
*/
|
182 |
static void deinterleave_input_samples(AC3EncodeContext *s, |
183 |
const int16_t *samples)
|
184 |
{ |
185 |
int ch, i;
|
186 |
|
187 |
/* deinterleave and remap input samples */
|
188 |
for (ch = 0; ch < s->channels; ch++) { |
189 |
const int16_t *sptr;
|
190 |
int sinc;
|
191 |
|
192 |
/* copy last 256 samples of previous frame to the start of the current frame */
|
193 |
memcpy(&s->planar_samples[ch][0], &s->planar_samples[ch][AC3_FRAME_SIZE],
|
194 |
AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0])); |
195 |
|
196 |
/* deinterleave */
|
197 |
sinc = s->channels; |
198 |
sptr = samples + s->channel_map[ch]; |
199 |
for (i = AC3_BLOCK_SIZE; i < AC3_FRAME_SIZE+AC3_BLOCK_SIZE; i++) {
|
200 |
s->planar_samples[ch][i] = *sptr; |
201 |
sptr += sinc; |
202 |
} |
203 |
} |
204 |
} |
205 |
|
206 |
|
207 |
/**
|
208 |
* Finalize MDCT and free allocated memory.
|
209 |
*/
|
210 |
static av_cold void mdct_end(AC3MDCTContext *mdct) |
211 |
{ |
212 |
av_freep(&mdct->rot_tmp); |
213 |
av_freep(&mdct->cplx_tmp); |
214 |
} |
215 |
|
216 |
|
217 |
|
218 |
/**
|
219 |
* Initialize FFT tables.
|
220 |
* @param ln log2(FFT size)
|
221 |
*/
|
222 |
static av_cold void fft_init(int ln) |
223 |
{ |
224 |
int i, n, n2;
|
225 |
float alpha;
|
226 |
|
227 |
n = 1 << ln;
|
228 |
n2 = n >> 1;
|
229 |
|
230 |
for (i = 0; i < n2; i++) { |
231 |
alpha = 2.0 * M_PI * i / n; |
232 |
costab[i] = FIX15(cos(alpha)); |
233 |
sintab[i] = FIX15(sin(alpha)); |
234 |
} |
235 |
} |
236 |
|
237 |
|
238 |
/**
|
239 |
* Initialize MDCT tables.
|
240 |
* @param nbits log2(MDCT size)
|
241 |
*/
|
242 |
static av_cold int mdct_init(AC3MDCTContext *mdct, int nbits) |
243 |
{ |
244 |
int i, n, n4;
|
245 |
|
246 |
n = 1 << nbits;
|
247 |
n4 = n >> 2;
|
248 |
|
249 |
fft_init(nbits - 2);
|
250 |
|
251 |
FF_ALLOC_OR_GOTO(mdct->avctx, mdct->rot_tmp, n * sizeof(*mdct->rot_tmp),
|
252 |
mdct_alloc_fail); |
253 |
FF_ALLOC_OR_GOTO(mdct->avctx, mdct->cplx_tmp, n4 * sizeof(*mdct->cplx_tmp),
|
254 |
mdct_alloc_fail); |
255 |
|
256 |
for (i = 0; i < n4; i++) { |
257 |
float alpha = 2.0 * M_PI * (i + 1.0 / 8.0) / n; |
258 |
xcos1[i] = FIX15(-cos(alpha)); |
259 |
xsin1[i] = FIX15(-sin(alpha)); |
260 |
} |
261 |
|
262 |
return 0; |
263 |
mdct_alloc_fail:
|
264 |
return AVERROR(ENOMEM);
|
265 |
} |
266 |
|
267 |
|
268 |
/** Butterfly op */
|
269 |
#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
|
270 |
{ \ |
271 |
int ax, ay, bx, by; \
|
272 |
bx = pre1; \ |
273 |
by = pim1; \ |
274 |
ax = qre1; \ |
275 |
ay = qim1; \ |
276 |
pre = (bx + ax) >> 1; \
|
277 |
pim = (by + ay) >> 1; \
|
278 |
qre = (bx - ax) >> 1; \
|
279 |
qim = (by - ay) >> 1; \
|
280 |
} |
281 |
|
282 |
|
283 |
/** Complex multiply */
|
284 |
#define CMUL(pre, pim, are, aim, bre, bim) \
|
285 |
{ \ |
286 |
pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15; \
|
287 |
pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15; \
|
288 |
} |
289 |
|
290 |
|
291 |
/**
|
292 |
* Calculate a 2^n point complex FFT on 2^ln points.
|
293 |
* @param z complex input/output samples
|
294 |
* @param ln log2(FFT size)
|
295 |
*/
|
296 |
static void fft(IComplex *z, int ln) |
297 |
{ |
298 |
int j, l, np, np2;
|
299 |
int nblocks, nloops;
|
300 |
register IComplex *p,*q;
|
301 |
int tmp_re, tmp_im;
|
302 |
|
303 |
np = 1 << ln;
|
304 |
|
305 |
/* reverse */
|
306 |
for (j = 0; j < np; j++) { |
307 |
int k = av_reverse[j] >> (8 - ln); |
308 |
if (k < j)
|
309 |
FFSWAP(IComplex, z[k], z[j]); |
310 |
} |
311 |
|
312 |
/* pass 0 */
|
313 |
|
314 |
p = &z[0];
|
315 |
j = np >> 1;
|
316 |
do {
|
317 |
BF(p[0].re, p[0].im, p[1].re, p[1].im, |
318 |
p[0].re, p[0].im, p[1].re, p[1].im); |
319 |
p += 2;
|
320 |
} while (--j);
|
321 |
|
322 |
/* pass 1 */
|
323 |
|
324 |
p = &z[0];
|
325 |
j = np >> 2;
|
326 |
do {
|
327 |
BF(p[0].re, p[0].im, p[2].re, p[2].im, |
328 |
p[0].re, p[0].im, p[2].re, p[2].im); |
329 |
BF(p[1].re, p[1].im, p[3].re, p[3].im, |
330 |
p[1].re, p[1].im, p[3].im, -p[3].re); |
331 |
p+=4;
|
332 |
} while (--j);
|
333 |
|
334 |
/* pass 2 .. ln-1 */
|
335 |
|
336 |
nblocks = np >> 3;
|
337 |
nloops = 1 << 2; |
338 |
np2 = np >> 1;
|
339 |
do {
|
340 |
p = z; |
341 |
q = z + nloops; |
342 |
for (j = 0; j < nblocks; j++) { |
343 |
BF(p->re, p->im, q->re, q->im, |
344 |
p->re, p->im, q->re, q->im); |
345 |
p++; |
346 |
q++; |
347 |
for(l = nblocks; l < np2; l += nblocks) {
|
348 |
CMUL(tmp_re, tmp_im, costab[l], -sintab[l], q->re, q->im); |
349 |
BF(p->re, p->im, q->re, q->im, |
350 |
p->re, p->im, tmp_re, tmp_im); |
351 |
p++; |
352 |
q++; |
353 |
} |
354 |
p += nloops; |
355 |
q += nloops; |
356 |
} |
357 |
nblocks = nblocks >> 1;
|
358 |
nloops = nloops << 1;
|
359 |
} while (nblocks);
|
360 |
} |
361 |
|
362 |
|
363 |
/**
|
364 |
* Calculate a 512-point MDCT
|
365 |
* @param out 256 output frequency coefficients
|
366 |
* @param in 512 windowed input audio samples
|
367 |
*/
|
368 |
static void mdct512(AC3MDCTContext *mdct, int32_t *out, int16_t *in) |
369 |
{ |
370 |
int i, re, im;
|
371 |
int16_t *rot = mdct->rot_tmp; |
372 |
IComplex *x = mdct->cplx_tmp; |
373 |
|
374 |
/* shift to simplify computations */
|
375 |
for (i = 0; i < MDCT_SAMPLES/4; i++) |
376 |
rot[i] = -in[i + 3*MDCT_SAMPLES/4]; |
377 |
memcpy(&rot[MDCT_SAMPLES/4], &in[0], 3*MDCT_SAMPLES/4*sizeof(*in)); |
378 |
|
379 |
/* pre rotation */
|
380 |
for (i = 0; i < MDCT_SAMPLES/4; i++) { |
381 |
re = ((int)rot[ 2*i] - (int)rot[MDCT_SAMPLES -1-2*i]) >> 1; |
382 |
im = -((int)rot[MDCT_SAMPLES/2+2*i] - (int)rot[MDCT_SAMPLES/2-1-2*i]) >> 1; |
383 |
CMUL(x[i].re, x[i].im, re, im, -xcos1[i], xsin1[i]); |
384 |
} |
385 |
|
386 |
fft(x, MDCT_NBITS - 2);
|
387 |
|
388 |
/* post rotation */
|
389 |
for (i = 0; i < MDCT_SAMPLES/4; i++) { |
390 |
re = x[i].re; |
391 |
im = x[i].im; |
392 |
CMUL(out[MDCT_SAMPLES/2-1-2*i], out[2*i], re, im, xsin1[i], xcos1[i]); |
393 |
} |
394 |
} |
395 |
|
396 |
|
397 |
/**
|
398 |
* Apply KBD window to input samples prior to MDCT.
|
399 |
*/
|
400 |
static void apply_window(int16_t *output, const int16_t *input, |
401 |
const int16_t *window, int n) |
402 |
{ |
403 |
int i;
|
404 |
int n2 = n >> 1; |
405 |
|
406 |
for (i = 0; i < n2; i++) { |
407 |
output[i] = MUL16(input[i], window[i]) >> 15;
|
408 |
output[n-i-1] = MUL16(input[n-i-1], window[i]) >> 15; |
409 |
} |
410 |
} |
411 |
|
412 |
|
413 |
/**
|
414 |
* Calculate the log2() of the maximum absolute value in an array.
|
415 |
* @param tab input array
|
416 |
* @param n number of values in the array
|
417 |
* @return log2(max(abs(tab[])))
|
418 |
*/
|
419 |
static int log2_tab(int16_t *tab, int n) |
420 |
{ |
421 |
int i, v;
|
422 |
|
423 |
v = 0;
|
424 |
for (i = 0; i < n; i++) |
425 |
v |= abs(tab[i]); |
426 |
|
427 |
return av_log2(v);
|
428 |
} |
429 |
|
430 |
|
431 |
/**
|
432 |
* Left-shift each value in an array by a specified amount.
|
433 |
* @param tab input array
|
434 |
* @param n number of values in the array
|
435 |
* @param lshift left shift amount. a negative value means right shift.
|
436 |
*/
|
437 |
static void lshift_tab(int16_t *tab, int n, int lshift) |
438 |
{ |
439 |
int i;
|
440 |
|
441 |
if (lshift > 0) { |
442 |
for (i = 0; i < n; i++) |
443 |
tab[i] <<= lshift; |
444 |
} else if (lshift < 0) { |
445 |
lshift = -lshift; |
446 |
for (i = 0; i < n; i++) |
447 |
tab[i] >>= lshift; |
448 |
} |
449 |
} |
450 |
|
451 |
|
452 |
/**
|
453 |
* Normalize the input samples to use the maximum available precision.
|
454 |
* This assumes signed 16-bit input samples. Exponents are reduced by 9 to
|
455 |
* match the 24-bit internal precision for MDCT coefficients.
|
456 |
*
|
457 |
* @return exponent shift
|
458 |
*/
|
459 |
static int normalize_samples(AC3EncodeContext *s) |
460 |
{ |
461 |
int v = 14 - log2_tab(s->windowed_samples, AC3_WINDOW_SIZE); |
462 |
v = FFMAX(0, v);
|
463 |
lshift_tab(s->windowed_samples, AC3_WINDOW_SIZE, v); |
464 |
return v - 9; |
465 |
} |
466 |
|
467 |
|
468 |
/**
|
469 |
* Apply the MDCT to input samples to generate frequency coefficients.
|
470 |
* This applies the KBD window and normalizes the input to reduce precision
|
471 |
* loss due to fixed-point calculations.
|
472 |
*/
|
473 |
static void apply_mdct(AC3EncodeContext *s) |
474 |
{ |
475 |
int blk, ch;
|
476 |
|
477 |
for (ch = 0; ch < s->channels; ch++) { |
478 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
479 |
AC3Block *block = &s->blocks[blk]; |
480 |
const int16_t *input_samples = &s->planar_samples[ch][blk * AC3_BLOCK_SIZE];
|
481 |
|
482 |
apply_window(s->windowed_samples, input_samples, ff_ac3_window, AC3_WINDOW_SIZE); |
483 |
|
484 |
block->exp_shift[ch] = normalize_samples(s); |
485 |
|
486 |
mdct512(&s->mdct, block->mdct_coef[ch], s->windowed_samples); |
487 |
} |
488 |
} |
489 |
} |
490 |
|
491 |
|
492 |
/**
|
493 |
* Initialize exponent tables.
|
494 |
*/
|
495 |
static av_cold void exponent_init(AC3EncodeContext *s) |
496 |
{ |
497 |
int i;
|
498 |
for (i = 73; i < 256; i++) { |
499 |
exponent_group_tab[0][i] = (i - 1) / 3; |
500 |
exponent_group_tab[1][i] = (i + 2) / 6; |
501 |
exponent_group_tab[2][i] = (i + 8) / 12; |
502 |
} |
503 |
} |
504 |
|
505 |
|
506 |
/**
|
507 |
* Extract exponents from the MDCT coefficients.
|
508 |
* This takes into account the normalization that was done to the input samples
|
509 |
* by adjusting the exponents by the exponent shift values.
|
510 |
*/
|
511 |
static void extract_exponents(AC3EncodeContext *s) |
512 |
{ |
513 |
int blk, ch, i;
|
514 |
|
515 |
for (ch = 0; ch < s->channels; ch++) { |
516 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
517 |
AC3Block *block = &s->blocks[blk]; |
518 |
for (i = 0; i < AC3_MAX_COEFS; i++) { |
519 |
int e;
|
520 |
int v = abs(block->mdct_coef[ch][i]);
|
521 |
if (v == 0) |
522 |
e = 24;
|
523 |
else {
|
524 |
e = 23 - av_log2(v) + block->exp_shift[ch];
|
525 |
if (e >= 24) { |
526 |
e = 24;
|
527 |
block->mdct_coef[ch][i] = 0;
|
528 |
} |
529 |
} |
530 |
block->exp[ch][i] = e; |
531 |
} |
532 |
} |
533 |
} |
534 |
} |
535 |
|
536 |
|
537 |
/**
|
538 |
* Exponent Difference Threshold.
|
539 |
* New exponents are sent if their SAD exceed this number.
|
540 |
*/
|
541 |
#define EXP_DIFF_THRESHOLD 1000 |
542 |
|
543 |
|
544 |
/**
|
545 |
* Calculate exponent strategies for all blocks in a single channel.
|
546 |
*/
|
547 |
static void compute_exp_strategy_ch(AC3EncodeContext *s, uint8_t *exp_strategy, uint8_t **exp) |
548 |
{ |
549 |
int blk, blk1;
|
550 |
int exp_diff;
|
551 |
|
552 |
/* estimate if the exponent variation & decide if they should be
|
553 |
reused in the next frame */
|
554 |
exp_strategy[0] = EXP_NEW;
|
555 |
for (blk = 1; blk < AC3_MAX_BLOCKS; blk++) { |
556 |
exp_diff = s->dsp.sad[0](NULL, exp[blk], exp[blk-1], 16, 16); |
557 |
if (exp_diff > EXP_DIFF_THRESHOLD)
|
558 |
exp_strategy[blk] = EXP_NEW; |
559 |
else
|
560 |
exp_strategy[blk] = EXP_REUSE; |
561 |
} |
562 |
|
563 |
/* now select the encoding strategy type : if exponents are often
|
564 |
recoded, we use a coarse encoding */
|
565 |
blk = 0;
|
566 |
while (blk < AC3_MAX_BLOCKS) {
|
567 |
blk1 = blk + 1;
|
568 |
while (blk1 < AC3_MAX_BLOCKS && exp_strategy[blk1] == EXP_REUSE)
|
569 |
blk1++; |
570 |
switch (blk1 - blk) {
|
571 |
case 1: exp_strategy[blk] = EXP_D45; break; |
572 |
case 2: |
573 |
case 3: exp_strategy[blk] = EXP_D25; break; |
574 |
default: exp_strategy[blk] = EXP_D15; break; |
575 |
} |
576 |
blk = blk1; |
577 |
} |
578 |
} |
579 |
|
580 |
|
581 |
/**
|
582 |
* Calculate exponent strategies for all channels.
|
583 |
* Array arrangement is reversed to simplify the per-channel calculation.
|
584 |
*/
|
585 |
static void compute_exp_strategy(AC3EncodeContext *s) |
586 |
{ |
587 |
uint8_t *exp1[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS]; |
588 |
uint8_t exp_str1[AC3_MAX_CHANNELS][AC3_MAX_BLOCKS]; |
589 |
int ch, blk;
|
590 |
|
591 |
for (ch = 0; ch < s->fbw_channels; ch++) { |
592 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
593 |
exp1[ch][blk] = s->blocks[blk].exp[ch]; |
594 |
exp_str1[ch][blk] = s->blocks[blk].exp_strategy[ch]; |
595 |
} |
596 |
|
597 |
compute_exp_strategy_ch(s, exp_str1[ch], exp1[ch]); |
598 |
|
599 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) |
600 |
s->blocks[blk].exp_strategy[ch] = exp_str1[ch][blk]; |
601 |
} |
602 |
if (s->lfe_on) {
|
603 |
ch = s->lfe_channel; |
604 |
s->blocks[0].exp_strategy[ch] = EXP_D15;
|
605 |
for (blk = 1; blk < AC3_MAX_BLOCKS; blk++) |
606 |
s->blocks[blk].exp_strategy[ch] = EXP_REUSE; |
607 |
} |
608 |
} |
609 |
|
610 |
|
611 |
/**
|
612 |
* Set each encoded exponent in a block to the minimum of itself and the
|
613 |
* exponent in the same frequency bin of a following block.
|
614 |
* exp[i] = min(exp[i], exp1[i]
|
615 |
*/
|
616 |
static void exponent_min(uint8_t *exp, uint8_t *exp1, int n) |
617 |
{ |
618 |
int i;
|
619 |
for (i = 0; i < n; i++) { |
620 |
if (exp1[i] < exp[i])
|
621 |
exp[i] = exp1[i]; |
622 |
} |
623 |
} |
624 |
|
625 |
|
626 |
/**
|
627 |
* Update the exponents so that they are the ones the decoder will decode.
|
628 |
*/
|
629 |
static void encode_exponents_blk_ch(uint8_t *exp, |
630 |
int nb_exps, int exp_strategy) |
631 |
{ |
632 |
int nb_groups, i, k;
|
633 |
|
634 |
nb_groups = exponent_group_tab[exp_strategy-1][nb_exps] * 3; |
635 |
|
636 |
/* for each group, compute the minimum exponent */
|
637 |
switch(exp_strategy) {
|
638 |
case EXP_D25:
|
639 |
for (i = 1, k = 1; i <= nb_groups; i++) { |
640 |
uint8_t exp_min = exp[k]; |
641 |
if (exp[k+1] < exp_min) |
642 |
exp_min = exp[k+1];
|
643 |
exp[i] = exp_min; |
644 |
k += 2;
|
645 |
} |
646 |
break;
|
647 |
case EXP_D45:
|
648 |
for (i = 1, k = 1; i <= nb_groups; i++) { |
649 |
uint8_t exp_min = exp[k]; |
650 |
if (exp[k+1] < exp_min) |
651 |
exp_min = exp[k+1];
|
652 |
if (exp[k+2] < exp_min) |
653 |
exp_min = exp[k+2];
|
654 |
if (exp[k+3] < exp_min) |
655 |
exp_min = exp[k+3];
|
656 |
exp[i] = exp_min; |
657 |
k += 4;
|
658 |
} |
659 |
break;
|
660 |
} |
661 |
|
662 |
/* constraint for DC exponent */
|
663 |
if (exp[0] > 15) |
664 |
exp[0] = 15; |
665 |
|
666 |
/* decrease the delta between each groups to within 2 so that they can be
|
667 |
differentially encoded */
|
668 |
for (i = 1; i <= nb_groups; i++) |
669 |
exp[i] = FFMIN(exp[i], exp[i-1] + 2); |
670 |
i--; |
671 |
while (--i >= 0) |
672 |
exp[i] = FFMIN(exp[i], exp[i+1] + 2); |
673 |
|
674 |
/* now we have the exponent values the decoder will see */
|
675 |
switch (exp_strategy) {
|
676 |
case EXP_D25:
|
677 |
for (i = nb_groups, k = nb_groups * 2; i > 0; i--) { |
678 |
uint8_t exp1 = exp[i]; |
679 |
exp[k--] = exp1; |
680 |
exp[k--] = exp1; |
681 |
} |
682 |
break;
|
683 |
case EXP_D45:
|
684 |
for (i = nb_groups, k = nb_groups * 4; i > 0; i--) { |
685 |
exp[k] = exp[k-1] = exp[k-2] = exp[k-3] = exp[i]; |
686 |
k -= 4;
|
687 |
} |
688 |
break;
|
689 |
} |
690 |
} |
691 |
|
692 |
|
693 |
/**
|
694 |
* Encode exponents from original extracted form to what the decoder will see.
|
695 |
* This copies and groups exponents based on exponent strategy and reduces
|
696 |
* deltas between adjacent exponent groups so that they can be differentially
|
697 |
* encoded.
|
698 |
*/
|
699 |
static void encode_exponents(AC3EncodeContext *s) |
700 |
{ |
701 |
int blk, blk1, blk2, ch;
|
702 |
AC3Block *block, *block1, *block2; |
703 |
|
704 |
for (ch = 0; ch < s->channels; ch++) { |
705 |
blk = 0;
|
706 |
block = &s->blocks[0];
|
707 |
while (blk < AC3_MAX_BLOCKS) {
|
708 |
blk1 = blk + 1;
|
709 |
block1 = block + 1;
|
710 |
/* for the EXP_REUSE case we select the min of the exponents */
|
711 |
while (blk1 < AC3_MAX_BLOCKS && block1->exp_strategy[ch] == EXP_REUSE) {
|
712 |
exponent_min(block->exp[ch], block1->exp[ch], s->nb_coefs[ch]); |
713 |
blk1++; |
714 |
block1++; |
715 |
} |
716 |
encode_exponents_blk_ch(block->exp[ch], s->nb_coefs[ch], |
717 |
block->exp_strategy[ch]); |
718 |
/* copy encoded exponents for reuse case */
|
719 |
block2 = block + 1;
|
720 |
for (blk2 = blk+1; blk2 < blk1; blk2++, block2++) { |
721 |
memcpy(block2->exp[ch], block->exp[ch], |
722 |
s->nb_coefs[ch] * sizeof(uint8_t));
|
723 |
} |
724 |
blk = blk1; |
725 |
block = block1; |
726 |
} |
727 |
} |
728 |
} |
729 |
|
730 |
|
731 |
/**
|
732 |
* Group exponents.
|
733 |
* 3 delta-encoded exponents are in each 7-bit group. The number of groups
|
734 |
* varies depending on exponent strategy and bandwidth.
|
735 |
*/
|
736 |
static void group_exponents(AC3EncodeContext *s) |
737 |
{ |
738 |
int blk, ch, i;
|
739 |
int group_size, nb_groups, bit_count;
|
740 |
uint8_t *p; |
741 |
int delta0, delta1, delta2;
|
742 |
int exp0, exp1;
|
743 |
|
744 |
bit_count = 0;
|
745 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
746 |
AC3Block *block = &s->blocks[blk]; |
747 |
for (ch = 0; ch < s->channels; ch++) { |
748 |
if (block->exp_strategy[ch] == EXP_REUSE) {
|
749 |
continue;
|
750 |
} |
751 |
group_size = block->exp_strategy[ch] + (block->exp_strategy[ch] == EXP_D45); |
752 |
nb_groups = exponent_group_tab[block->exp_strategy[ch]-1][s->nb_coefs[ch]];
|
753 |
bit_count += 4 + (nb_groups * 7); |
754 |
p = block->exp[ch]; |
755 |
|
756 |
/* DC exponent */
|
757 |
exp1 = *p++; |
758 |
block->grouped_exp[ch][0] = exp1;
|
759 |
|
760 |
/* remaining exponents are delta encoded */
|
761 |
for (i = 1; i <= nb_groups; i++) { |
762 |
/* merge three delta in one code */
|
763 |
exp0 = exp1; |
764 |
exp1 = p[0];
|
765 |
p += group_size; |
766 |
delta0 = exp1 - exp0 + 2;
|
767 |
|
768 |
exp0 = exp1; |
769 |
exp1 = p[0];
|
770 |
p += group_size; |
771 |
delta1 = exp1 - exp0 + 2;
|
772 |
|
773 |
exp0 = exp1; |
774 |
exp1 = p[0];
|
775 |
p += group_size; |
776 |
delta2 = exp1 - exp0 + 2;
|
777 |
|
778 |
block->grouped_exp[ch][i] = ((delta0 * 5 + delta1) * 5) + delta2; |
779 |
} |
780 |
} |
781 |
} |
782 |
|
783 |
s->exponent_bits = bit_count; |
784 |
} |
785 |
|
786 |
|
787 |
/**
|
788 |
* Calculate final exponents from the supplied MDCT coefficients and exponent shift.
|
789 |
* Extract exponents from MDCT coefficients, calculate exponent strategies,
|
790 |
* and encode final exponents.
|
791 |
*/
|
792 |
static void process_exponents(AC3EncodeContext *s) |
793 |
{ |
794 |
extract_exponents(s); |
795 |
|
796 |
compute_exp_strategy(s); |
797 |
|
798 |
encode_exponents(s); |
799 |
|
800 |
group_exponents(s); |
801 |
} |
802 |
|
803 |
|
804 |
/**
|
805 |
* Count frame bits that are based solely on fixed parameters.
|
806 |
* This only has to be run once when the encoder is initialized.
|
807 |
*/
|
808 |
static void count_frame_bits_fixed(AC3EncodeContext *s) |
809 |
{ |
810 |
static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 }; |
811 |
int blk;
|
812 |
int frame_bits;
|
813 |
|
814 |
/* assumptions:
|
815 |
* no dynamic range codes
|
816 |
* no channel coupling
|
817 |
* no rematrixing
|
818 |
* bit allocation parameters do not change between blocks
|
819 |
* SNR offsets do not change between blocks
|
820 |
* no delta bit allocation
|
821 |
* no skipped data
|
822 |
* no auxilliary data
|
823 |
*/
|
824 |
|
825 |
/* header size */
|
826 |
frame_bits = 65;
|
827 |
frame_bits += frame_bits_inc[s->channel_mode]; |
828 |
|
829 |
/* audio blocks */
|
830 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
831 |
frame_bits += s->fbw_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */ |
832 |
if (s->channel_mode == AC3_CHMODE_STEREO) {
|
833 |
frame_bits++; /* rematstr */
|
834 |
if (!blk)
|
835 |
frame_bits += 4;
|
836 |
} |
837 |
frame_bits += 2 * s->fbw_channels; /* chexpstr[2] * c */ |
838 |
if (s->lfe_on)
|
839 |
frame_bits++; /* lfeexpstr */
|
840 |
frame_bits++; /* baie */
|
841 |
frame_bits++; /* snr */
|
842 |
frame_bits += 2; /* delta / skip */ |
843 |
} |
844 |
frame_bits++; /* cplinu for block 0 */
|
845 |
/* bit alloc info */
|
846 |
/* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */
|
847 |
/* csnroffset[6] */
|
848 |
/* (fsnoffset[4] + fgaincod[4]) * c */
|
849 |
frame_bits += 2*4 + 3 + 6 + s->channels * (4 + 3); |
850 |
|
851 |
/* auxdatae, crcrsv */
|
852 |
frame_bits += 2;
|
853 |
|
854 |
/* CRC */
|
855 |
frame_bits += 16;
|
856 |
|
857 |
s->frame_bits_fixed = frame_bits; |
858 |
} |
859 |
|
860 |
|
861 |
/**
|
862 |
* Initialize bit allocation.
|
863 |
* Set default parameter codes and calculate parameter values.
|
864 |
*/
|
865 |
static void bit_alloc_init(AC3EncodeContext *s) |
866 |
{ |
867 |
int ch;
|
868 |
|
869 |
/* init default parameters */
|
870 |
s->slow_decay_code = 2;
|
871 |
s->fast_decay_code = 1;
|
872 |
s->slow_gain_code = 1;
|
873 |
s->db_per_bit_code = 2;
|
874 |
s->floor_code = 4;
|
875 |
for (ch = 0; ch < s->channels; ch++) |
876 |
s->fast_gain_code[ch] = 4;
|
877 |
|
878 |
/* initial snr offset */
|
879 |
s->coarse_snr_offset = 40;
|
880 |
|
881 |
/* compute real values */
|
882 |
/* currently none of these values change during encoding, so we can just
|
883 |
set them once at initialization */
|
884 |
s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->bit_alloc.sr_shift; |
885 |
s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->bit_alloc.sr_shift; |
886 |
s->bit_alloc.slow_gain = ff_ac3_slow_gain_tab[s->slow_gain_code]; |
887 |
s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code]; |
888 |
s->bit_alloc.floor = ff_ac3_floor_tab[s->floor_code]; |
889 |
|
890 |
count_frame_bits_fixed(s); |
891 |
} |
892 |
|
893 |
|
894 |
/**
|
895 |
* Count the bits used to encode the frame, minus exponents and mantissas.
|
896 |
* Bits based on fixed parameters have already been counted, so now we just
|
897 |
* have to add the bits based on parameters that change during encoding.
|
898 |
*/
|
899 |
static void count_frame_bits(AC3EncodeContext *s) |
900 |
{ |
901 |
int blk, ch;
|
902 |
int frame_bits = 0; |
903 |
|
904 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
905 |
uint8_t *exp_strategy = s->blocks[blk].exp_strategy; |
906 |
for (ch = 0; ch < s->fbw_channels; ch++) { |
907 |
if (exp_strategy[ch] != EXP_REUSE)
|
908 |
frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */ |
909 |
} |
910 |
} |
911 |
s->frame_bits = s->frame_bits_fixed + frame_bits; |
912 |
} |
913 |
|
914 |
|
915 |
/**
|
916 |
* Calculate the number of bits needed to encode a set of mantissas.
|
917 |
*/
|
918 |
static int compute_mantissa_size(int mant_cnt[5], uint8_t *bap, int nb_coefs) |
919 |
{ |
920 |
int bits, b, i;
|
921 |
|
922 |
bits = 0;
|
923 |
for (i = 0; i < nb_coefs; i++) { |
924 |
b = bap[i]; |
925 |
if (b <= 4) { |
926 |
// bap=1 to bap=4 will be counted in compute_mantissa_size_final
|
927 |
mant_cnt[b]++; |
928 |
} else if (b <= 13) { |
929 |
// bap=5 to bap=13 use (bap-1) bits
|
930 |
bits += b - 1;
|
931 |
} else {
|
932 |
// bap=14 uses 14 bits and bap=15 uses 16 bits
|
933 |
bits += (b == 14) ? 14 : 16; |
934 |
} |
935 |
} |
936 |
return bits;
|
937 |
} |
938 |
|
939 |
|
940 |
/**
|
941 |
* Finalize the mantissa bit count by adding in the grouped mantissas.
|
942 |
*/
|
943 |
static int compute_mantissa_size_final(int mant_cnt[5]) |
944 |
{ |
945 |
// bap=1 : 3 mantissas in 5 bits
|
946 |
int bits = (mant_cnt[1] / 3) * 5; |
947 |
// bap=2 : 3 mantissas in 7 bits
|
948 |
// bap=4 : 2 mantissas in 7 bits
|
949 |
bits += ((mant_cnt[2] / 3) + (mant_cnt[4] >> 1)) * 7; |
950 |
// bap=3 : each mantissa is 3 bits
|
951 |
bits += mant_cnt[3] * 3; |
952 |
return bits;
|
953 |
} |
954 |
|
955 |
|
956 |
/**
|
957 |
* Calculate masking curve based on the final exponents.
|
958 |
* Also calculate the power spectral densities to use in future calculations.
|
959 |
*/
|
960 |
static void bit_alloc_masking(AC3EncodeContext *s) |
961 |
{ |
962 |
int blk, ch;
|
963 |
|
964 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
965 |
AC3Block *block = &s->blocks[blk]; |
966 |
for (ch = 0; ch < s->channels; ch++) { |
967 |
/* We only need psd and mask for calculating bap.
|
968 |
Since we currently do not calculate bap when exponent
|
969 |
strategy is EXP_REUSE we do not need to calculate psd or mask. */
|
970 |
if (block->exp_strategy[ch] != EXP_REUSE) {
|
971 |
ff_ac3_bit_alloc_calc_psd(block->exp[ch], 0,
|
972 |
s->nb_coefs[ch], |
973 |
block->psd[ch], block->band_psd[ch]); |
974 |
ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, block->band_psd[ch], |
975 |
0, s->nb_coefs[ch],
|
976 |
ff_ac3_fast_gain_tab[s->fast_gain_code[ch]], |
977 |
ch == s->lfe_channel, |
978 |
DBA_NONE, 0, NULL, NULL, NULL, |
979 |
block->mask[ch]); |
980 |
} |
981 |
} |
982 |
} |
983 |
} |
984 |
|
985 |
|
986 |
/**
|
987 |
* Ensure that bap for each block and channel point to the current bap_buffer.
|
988 |
* They may have been switched during the bit allocation search.
|
989 |
*/
|
990 |
static void reset_block_bap(AC3EncodeContext *s) |
991 |
{ |
992 |
int blk, ch;
|
993 |
if (s->blocks[0].bap[0] == s->bap_buffer) |
994 |
return;
|
995 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
996 |
for (ch = 0; ch < s->channels; ch++) { |
997 |
s->blocks[blk].bap[ch] = &s->bap_buffer[AC3_MAX_COEFS * (blk * s->channels + ch)]; |
998 |
} |
999 |
} |
1000 |
} |
1001 |
|
1002 |
|
1003 |
/**
|
1004 |
* Run the bit allocation with a given SNR offset.
|
1005 |
* This calculates the bit allocation pointers that will be used to determine
|
1006 |
* the quantization of each mantissa.
|
1007 |
* @return the number of bits needed for mantissas if the given SNR offset is
|
1008 |
* is used.
|
1009 |
*/
|
1010 |
static int bit_alloc(AC3EncodeContext *s, |
1011 |
int snr_offset)
|
1012 |
{ |
1013 |
int blk, ch;
|
1014 |
int mantissa_bits;
|
1015 |
int mant_cnt[5]; |
1016 |
|
1017 |
snr_offset = (snr_offset - 240) << 2; |
1018 |
|
1019 |
reset_block_bap(s); |
1020 |
mantissa_bits = 0;
|
1021 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
1022 |
AC3Block *block = &s->blocks[blk]; |
1023 |
// initialize grouped mantissa counts. these are set so that they are
|
1024 |
// padded to the next whole group size when bits are counted in
|
1025 |
// compute_mantissa_size_final
|
1026 |
mant_cnt[0] = mant_cnt[3] = 0; |
1027 |
mant_cnt[1] = mant_cnt[2] = 2; |
1028 |
mant_cnt[4] = 1; |
1029 |
for (ch = 0; ch < s->channels; ch++) { |
1030 |
/* Currently the only bit allocation parameters which vary across
|
1031 |
blocks within a frame are the exponent values. We can take
|
1032 |
advantage of that by reusing the bit allocation pointers
|
1033 |
whenever we reuse exponents. */
|
1034 |
if (block->exp_strategy[ch] == EXP_REUSE) {
|
1035 |
memcpy(block->bap[ch], s->blocks[blk-1].bap[ch], AC3_MAX_COEFS);
|
1036 |
} else {
|
1037 |
ff_ac3_bit_alloc_calc_bap(block->mask[ch], block->psd[ch], 0,
|
1038 |
s->nb_coefs[ch], snr_offset, |
1039 |
s->bit_alloc.floor, ff_ac3_bap_tab, |
1040 |
block->bap[ch]); |
1041 |
} |
1042 |
mantissa_bits += compute_mantissa_size(mant_cnt, block->bap[ch], s->nb_coefs[ch]); |
1043 |
} |
1044 |
mantissa_bits += compute_mantissa_size_final(mant_cnt); |
1045 |
} |
1046 |
return mantissa_bits;
|
1047 |
} |
1048 |
|
1049 |
|
1050 |
/**
|
1051 |
* Constant bitrate bit allocation search.
|
1052 |
* Find the largest SNR offset that will allow data to fit in the frame.
|
1053 |
*/
|
1054 |
static int cbr_bit_allocation(AC3EncodeContext *s) |
1055 |
{ |
1056 |
int ch;
|
1057 |
int bits_left;
|
1058 |
int snr_offset;
|
1059 |
|
1060 |
bits_left = 8 * s->frame_size - (s->frame_bits + s->exponent_bits);
|
1061 |
|
1062 |
snr_offset = s->coarse_snr_offset << 4;
|
1063 |
|
1064 |
while (snr_offset >= 0 && |
1065 |
bit_alloc(s, snr_offset) > bits_left) { |
1066 |
snr_offset -= 64;
|
1067 |
} |
1068 |
if (snr_offset < 0) |
1069 |
return AVERROR(EINVAL);
|
1070 |
|
1071 |
FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer); |
1072 |
while (snr_offset + 64 <= 1023 && |
1073 |
bit_alloc(s, snr_offset + 64) <= bits_left) {
|
1074 |
snr_offset += 64;
|
1075 |
FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer); |
1076 |
} |
1077 |
while (snr_offset + 16 <= 1023 && |
1078 |
bit_alloc(s, snr_offset + 16) <= bits_left) {
|
1079 |
snr_offset += 16;
|
1080 |
FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer); |
1081 |
} |
1082 |
while (snr_offset + 4 <= 1023 && |
1083 |
bit_alloc(s, snr_offset + 4) <= bits_left) {
|
1084 |
snr_offset += 4;
|
1085 |
FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer); |
1086 |
} |
1087 |
while (snr_offset + 1 <= 1023 && |
1088 |
bit_alloc(s, snr_offset + 1) <= bits_left) {
|
1089 |
snr_offset++; |
1090 |
FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer); |
1091 |
} |
1092 |
FFSWAP(uint8_t *, s->bap_buffer, s->bap1_buffer); |
1093 |
reset_block_bap(s); |
1094 |
|
1095 |
s->coarse_snr_offset = snr_offset >> 4;
|
1096 |
for (ch = 0; ch < s->channels; ch++) |
1097 |
s->fine_snr_offset[ch] = snr_offset & 0xF;
|
1098 |
|
1099 |
return 0; |
1100 |
} |
1101 |
|
1102 |
|
1103 |
/**
|
1104 |
* Perform bit allocation search.
|
1105 |
* Finds the SNR offset value that maximizes quality and fits in the specified
|
1106 |
* frame size. Output is the SNR offset and a set of bit allocation pointers
|
1107 |
* used to quantize the mantissas.
|
1108 |
*/
|
1109 |
static int compute_bit_allocation(AC3EncodeContext *s) |
1110 |
{ |
1111 |
count_frame_bits(s); |
1112 |
|
1113 |
bit_alloc_masking(s); |
1114 |
|
1115 |
return cbr_bit_allocation(s);
|
1116 |
} |
1117 |
|
1118 |
|
1119 |
/**
|
1120 |
* Symmetric quantization on 'levels' levels.
|
1121 |
*/
|
1122 |
static inline int sym_quant(int c, int e, int levels) |
1123 |
{ |
1124 |
int v;
|
1125 |
|
1126 |
if (c >= 0) { |
1127 |
v = (levels * (c << e)) >> 24;
|
1128 |
v = (v + 1) >> 1; |
1129 |
v = (levels >> 1) + v;
|
1130 |
} else {
|
1131 |
v = (levels * ((-c) << e)) >> 24;
|
1132 |
v = (v + 1) >> 1; |
1133 |
v = (levels >> 1) - v;
|
1134 |
} |
1135 |
assert(v >= 0 && v < levels);
|
1136 |
return v;
|
1137 |
} |
1138 |
|
1139 |
|
1140 |
/**
|
1141 |
* Asymmetric quantization on 2^qbits levels.
|
1142 |
*/
|
1143 |
static inline int asym_quant(int c, int e, int qbits) |
1144 |
{ |
1145 |
int lshift, m, v;
|
1146 |
|
1147 |
lshift = e + qbits - 24;
|
1148 |
if (lshift >= 0) |
1149 |
v = c << lshift; |
1150 |
else
|
1151 |
v = c >> (-lshift); |
1152 |
/* rounding */
|
1153 |
v = (v + 1) >> 1; |
1154 |
m = (1 << (qbits-1)); |
1155 |
if (v >= m)
|
1156 |
v = m - 1;
|
1157 |
assert(v >= -m); |
1158 |
return v & ((1 << qbits)-1); |
1159 |
} |
1160 |
|
1161 |
|
1162 |
/**
|
1163 |
* Quantize a set of mantissas for a single channel in a single block.
|
1164 |
*/
|
1165 |
static void quantize_mantissas_blk_ch(AC3EncodeContext *s, |
1166 |
int32_t *mdct_coef, int8_t exp_shift, |
1167 |
uint8_t *exp, uint8_t *bap, |
1168 |
uint16_t *qmant, int n)
|
1169 |
{ |
1170 |
int i;
|
1171 |
|
1172 |
for (i = 0; i < n; i++) { |
1173 |
int v;
|
1174 |
int c = mdct_coef[i];
|
1175 |
int e = exp[i] - exp_shift;
|
1176 |
int b = bap[i];
|
1177 |
switch (b) {
|
1178 |
case 0: |
1179 |
v = 0;
|
1180 |
break;
|
1181 |
case 1: |
1182 |
v = sym_quant(c, e, 3);
|
1183 |
switch (s->mant1_cnt) {
|
1184 |
case 0: |
1185 |
s->qmant1_ptr = &qmant[i]; |
1186 |
v = 9 * v;
|
1187 |
s->mant1_cnt = 1;
|
1188 |
break;
|
1189 |
case 1: |
1190 |
*s->qmant1_ptr += 3 * v;
|
1191 |
s->mant1_cnt = 2;
|
1192 |
v = 128;
|
1193 |
break;
|
1194 |
default:
|
1195 |
*s->qmant1_ptr += v; |
1196 |
s->mant1_cnt = 0;
|
1197 |
v = 128;
|
1198 |
break;
|
1199 |
} |
1200 |
break;
|
1201 |
case 2: |
1202 |
v = sym_quant(c, e, 5);
|
1203 |
switch (s->mant2_cnt) {
|
1204 |
case 0: |
1205 |
s->qmant2_ptr = &qmant[i]; |
1206 |
v = 25 * v;
|
1207 |
s->mant2_cnt = 1;
|
1208 |
break;
|
1209 |
case 1: |
1210 |
*s->qmant2_ptr += 5 * v;
|
1211 |
s->mant2_cnt = 2;
|
1212 |
v = 128;
|
1213 |
break;
|
1214 |
default:
|
1215 |
*s->qmant2_ptr += v; |
1216 |
s->mant2_cnt = 0;
|
1217 |
v = 128;
|
1218 |
break;
|
1219 |
} |
1220 |
break;
|
1221 |
case 3: |
1222 |
v = sym_quant(c, e, 7);
|
1223 |
break;
|
1224 |
case 4: |
1225 |
v = sym_quant(c, e, 11);
|
1226 |
switch (s->mant4_cnt) {
|
1227 |
case 0: |
1228 |
s->qmant4_ptr = &qmant[i]; |
1229 |
v = 11 * v;
|
1230 |
s->mant4_cnt = 1;
|
1231 |
break;
|
1232 |
default:
|
1233 |
*s->qmant4_ptr += v; |
1234 |
s->mant4_cnt = 0;
|
1235 |
v = 128;
|
1236 |
break;
|
1237 |
} |
1238 |
break;
|
1239 |
case 5: |
1240 |
v = sym_quant(c, e, 15);
|
1241 |
break;
|
1242 |
case 14: |
1243 |
v = asym_quant(c, e, 14);
|
1244 |
break;
|
1245 |
case 15: |
1246 |
v = asym_quant(c, e, 16);
|
1247 |
break;
|
1248 |
default:
|
1249 |
v = asym_quant(c, e, b - 1);
|
1250 |
break;
|
1251 |
} |
1252 |
qmant[i] = v; |
1253 |
} |
1254 |
} |
1255 |
|
1256 |
|
1257 |
/**
|
1258 |
* Quantize mantissas using coefficients, exponents, and bit allocation pointers.
|
1259 |
*/
|
1260 |
static void quantize_mantissas(AC3EncodeContext *s) |
1261 |
{ |
1262 |
int blk, ch;
|
1263 |
|
1264 |
|
1265 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
1266 |
AC3Block *block = &s->blocks[blk]; |
1267 |
s->mant1_cnt = s->mant2_cnt = s->mant4_cnt = 0;
|
1268 |
s->qmant1_ptr = s->qmant2_ptr = s->qmant4_ptr = NULL;
|
1269 |
|
1270 |
for (ch = 0; ch < s->channels; ch++) { |
1271 |
quantize_mantissas_blk_ch(s, block->mdct_coef[ch], block->exp_shift[ch], |
1272 |
block->exp[ch], block->bap[ch], |
1273 |
block->qmant[ch], s->nb_coefs[ch]); |
1274 |
} |
1275 |
} |
1276 |
} |
1277 |
|
1278 |
|
1279 |
/**
|
1280 |
* Write the AC-3 frame header to the output bitstream.
|
1281 |
*/
|
1282 |
static void output_frame_header(AC3EncodeContext *s) |
1283 |
{ |
1284 |
put_bits(&s->pb, 16, 0x0b77); /* frame header */ |
1285 |
put_bits(&s->pb, 16, 0); /* crc1: will be filled later */ |
1286 |
put_bits(&s->pb, 2, s->bit_alloc.sr_code);
|
1287 |
put_bits(&s->pb, 6, s->frame_size_code + (s->frame_size - s->frame_size_min) / 2); |
1288 |
put_bits(&s->pb, 5, s->bitstream_id);
|
1289 |
put_bits(&s->pb, 3, s->bitstream_mode);
|
1290 |
put_bits(&s->pb, 3, s->channel_mode);
|
1291 |
if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO) |
1292 |
put_bits(&s->pb, 2, 1); /* XXX -4.5 dB */ |
1293 |
if (s->channel_mode & 0x04) |
1294 |
put_bits(&s->pb, 2, 1); /* XXX -6 dB */ |
1295 |
if (s->channel_mode == AC3_CHMODE_STEREO)
|
1296 |
put_bits(&s->pb, 2, 0); /* surround not indicated */ |
1297 |
put_bits(&s->pb, 1, s->lfe_on); /* LFE */ |
1298 |
put_bits(&s->pb, 5, 31); /* dialog norm: -31 db */ |
1299 |
put_bits(&s->pb, 1, 0); /* no compression control word */ |
1300 |
put_bits(&s->pb, 1, 0); /* no lang code */ |
1301 |
put_bits(&s->pb, 1, 0); /* no audio production info */ |
1302 |
put_bits(&s->pb, 1, 0); /* no copyright */ |
1303 |
put_bits(&s->pb, 1, 1); /* original bitstream */ |
1304 |
put_bits(&s->pb, 1, 0); /* no time code 1 */ |
1305 |
put_bits(&s->pb, 1, 0); /* no time code 2 */ |
1306 |
put_bits(&s->pb, 1, 0); /* no additional bit stream info */ |
1307 |
} |
1308 |
|
1309 |
|
1310 |
/**
|
1311 |
* Write one audio block to the output bitstream.
|
1312 |
*/
|
1313 |
static void output_audio_block(AC3EncodeContext *s, |
1314 |
int block_num)
|
1315 |
{ |
1316 |
int ch, i, baie, rbnd;
|
1317 |
AC3Block *block = &s->blocks[block_num]; |
1318 |
|
1319 |
/* block switching */
|
1320 |
for (ch = 0; ch < s->fbw_channels; ch++) |
1321 |
put_bits(&s->pb, 1, 0); |
1322 |
|
1323 |
/* dither flags */
|
1324 |
for (ch = 0; ch < s->fbw_channels; ch++) |
1325 |
put_bits(&s->pb, 1, 1); |
1326 |
|
1327 |
/* dynamic range codes */
|
1328 |
put_bits(&s->pb, 1, 0); |
1329 |
|
1330 |
/* channel coupling */
|
1331 |
if (!block_num) {
|
1332 |
put_bits(&s->pb, 1, 1); /* coupling strategy present */ |
1333 |
put_bits(&s->pb, 1, 0); /* no coupling strategy */ |
1334 |
} else {
|
1335 |
put_bits(&s->pb, 1, 0); /* no new coupling strategy */ |
1336 |
} |
1337 |
|
1338 |
/* stereo rematrixing */
|
1339 |
if (s->channel_mode == AC3_CHMODE_STEREO) {
|
1340 |
if (!block_num) {
|
1341 |
/* first block must define rematrixing (rematstr) */
|
1342 |
put_bits(&s->pb, 1, 1); |
1343 |
|
1344 |
/* dummy rematrixing rematflg(1:4)=0 */
|
1345 |
for (rbnd = 0; rbnd < 4; rbnd++) |
1346 |
put_bits(&s->pb, 1, 0); |
1347 |
} else {
|
1348 |
/* no matrixing (but should be used in the future) */
|
1349 |
put_bits(&s->pb, 1, 0); |
1350 |
} |
1351 |
} |
1352 |
|
1353 |
/* exponent strategy */
|
1354 |
for (ch = 0; ch < s->fbw_channels; ch++) |
1355 |
put_bits(&s->pb, 2, block->exp_strategy[ch]);
|
1356 |
if (s->lfe_on)
|
1357 |
put_bits(&s->pb, 1, block->exp_strategy[s->lfe_channel]);
|
1358 |
|
1359 |
/* bandwidth */
|
1360 |
for (ch = 0; ch < s->fbw_channels; ch++) { |
1361 |
if (block->exp_strategy[ch] != EXP_REUSE)
|
1362 |
put_bits(&s->pb, 6, s->bandwidth_code[ch]);
|
1363 |
} |
1364 |
|
1365 |
/* exponents */
|
1366 |
for (ch = 0; ch < s->channels; ch++) { |
1367 |
int nb_groups;
|
1368 |
|
1369 |
if (block->exp_strategy[ch] == EXP_REUSE)
|
1370 |
continue;
|
1371 |
|
1372 |
/* DC exponent */
|
1373 |
put_bits(&s->pb, 4, block->grouped_exp[ch][0]); |
1374 |
|
1375 |
/* exponent groups */
|
1376 |
nb_groups = exponent_group_tab[block->exp_strategy[ch]-1][s->nb_coefs[ch]];
|
1377 |
for (i = 1; i <= nb_groups; i++) |
1378 |
put_bits(&s->pb, 7, block->grouped_exp[ch][i]);
|
1379 |
|
1380 |
/* gain range info */
|
1381 |
if (ch != s->lfe_channel)
|
1382 |
put_bits(&s->pb, 2, 0); |
1383 |
} |
1384 |
|
1385 |
/* bit allocation info */
|
1386 |
baie = (block_num == 0);
|
1387 |
put_bits(&s->pb, 1, baie);
|
1388 |
if (baie) {
|
1389 |
put_bits(&s->pb, 2, s->slow_decay_code);
|
1390 |
put_bits(&s->pb, 2, s->fast_decay_code);
|
1391 |
put_bits(&s->pb, 2, s->slow_gain_code);
|
1392 |
put_bits(&s->pb, 2, s->db_per_bit_code);
|
1393 |
put_bits(&s->pb, 3, s->floor_code);
|
1394 |
} |
1395 |
|
1396 |
/* snr offset */
|
1397 |
put_bits(&s->pb, 1, baie);
|
1398 |
if (baie) {
|
1399 |
put_bits(&s->pb, 6, s->coarse_snr_offset);
|
1400 |
for (ch = 0; ch < s->channels; ch++) { |
1401 |
put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
|
1402 |
put_bits(&s->pb, 3, s->fast_gain_code[ch]);
|
1403 |
} |
1404 |
} |
1405 |
|
1406 |
put_bits(&s->pb, 1, 0); /* no delta bit allocation */ |
1407 |
put_bits(&s->pb, 1, 0); /* no data to skip */ |
1408 |
|
1409 |
/* mantissas */
|
1410 |
for (ch = 0; ch < s->channels; ch++) { |
1411 |
int b, q;
|
1412 |
for (i = 0; i < s->nb_coefs[ch]; i++) { |
1413 |
q = block->qmant[ch][i]; |
1414 |
b = block->bap[ch][i]; |
1415 |
switch (b) {
|
1416 |
case 0: break; |
1417 |
case 1: if (q != 128) put_bits(&s->pb, 5, q); break; |
1418 |
case 2: if (q != 128) put_bits(&s->pb, 7, q); break; |
1419 |
case 3: put_bits(&s->pb, 3, q); break; |
1420 |
case 4: if (q != 128) put_bits(&s->pb, 7, q); break; |
1421 |
case 14: put_bits(&s->pb, 14, q); break; |
1422 |
case 15: put_bits(&s->pb, 16, q); break; |
1423 |
default: put_bits(&s->pb, b-1, q); break; |
1424 |
} |
1425 |
} |
1426 |
} |
1427 |
} |
1428 |
|
1429 |
|
1430 |
/** CRC-16 Polynomial */
|
1431 |
#define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16)) |
1432 |
|
1433 |
|
1434 |
static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly) |
1435 |
{ |
1436 |
unsigned int c; |
1437 |
|
1438 |
c = 0;
|
1439 |
while (a) {
|
1440 |
if (a & 1) |
1441 |
c ^= b; |
1442 |
a = a >> 1;
|
1443 |
b = b << 1;
|
1444 |
if (b & (1 << 16)) |
1445 |
b ^= poly; |
1446 |
} |
1447 |
return c;
|
1448 |
} |
1449 |
|
1450 |
|
1451 |
static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly) |
1452 |
{ |
1453 |
unsigned int r; |
1454 |
r = 1;
|
1455 |
while (n) {
|
1456 |
if (n & 1) |
1457 |
r = mul_poly(r, a, poly); |
1458 |
a = mul_poly(a, a, poly); |
1459 |
n >>= 1;
|
1460 |
} |
1461 |
return r;
|
1462 |
} |
1463 |
|
1464 |
|
1465 |
/**
|
1466 |
* Fill the end of the frame with 0's and compute the two CRCs.
|
1467 |
*/
|
1468 |
static void output_frame_end(AC3EncodeContext *s) |
1469 |
{ |
1470 |
int frame_size, frame_size_58, pad_bytes, crc1, crc2, crc_inv;
|
1471 |
uint8_t *frame; |
1472 |
|
1473 |
frame_size = s->frame_size; |
1474 |
frame_size_58 = ((frame_size >> 2) + (frame_size >> 4)) << 1; |
1475 |
|
1476 |
/* pad the remainder of the frame with zeros */
|
1477 |
flush_put_bits(&s->pb); |
1478 |
frame = s->pb.buf; |
1479 |
pad_bytes = s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2;
|
1480 |
assert(pad_bytes >= 0);
|
1481 |
if (pad_bytes > 0) |
1482 |
memset(put_bits_ptr(&s->pb), 0, pad_bytes);
|
1483 |
|
1484 |
/* compute crc1 */
|
1485 |
/* this is not so easy because it is at the beginning of the data... */
|
1486 |
crc1 = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
|
1487 |
frame + 4, frame_size_58 - 4)); |
1488 |
/* XXX: could precompute crc_inv */
|
1489 |
crc_inv = pow_poly((CRC16_POLY >> 1), (8 * frame_size_58) - 16, CRC16_POLY); |
1490 |
crc1 = mul_poly(crc_inv, crc1, CRC16_POLY); |
1491 |
AV_WB16(frame + 2, crc1);
|
1492 |
|
1493 |
/* compute crc2 */
|
1494 |
crc2 = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
|
1495 |
frame + frame_size_58, |
1496 |
frame_size - frame_size_58 - 2));
|
1497 |
AV_WB16(frame + frame_size - 2, crc2);
|
1498 |
} |
1499 |
|
1500 |
|
1501 |
/**
|
1502 |
* Write the frame to the output bitstream.
|
1503 |
*/
|
1504 |
static void output_frame(AC3EncodeContext *s, |
1505 |
unsigned char *frame) |
1506 |
{ |
1507 |
int blk;
|
1508 |
|
1509 |
init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE); |
1510 |
|
1511 |
output_frame_header(s); |
1512 |
|
1513 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) |
1514 |
output_audio_block(s, blk); |
1515 |
|
1516 |
output_frame_end(s); |
1517 |
} |
1518 |
|
1519 |
|
1520 |
/**
|
1521 |
* Encode a single AC-3 frame.
|
1522 |
*/
|
1523 |
static int ac3_encode_frame(AVCodecContext *avctx, |
1524 |
unsigned char *frame, int buf_size, void *data) |
1525 |
{ |
1526 |
AC3EncodeContext *s = avctx->priv_data; |
1527 |
const int16_t *samples = data;
|
1528 |
int ret;
|
1529 |
|
1530 |
if (s->bit_alloc.sr_code == 1) |
1531 |
adjust_frame_size(s); |
1532 |
|
1533 |
deinterleave_input_samples(s, samples); |
1534 |
|
1535 |
apply_mdct(s); |
1536 |
|
1537 |
process_exponents(s); |
1538 |
|
1539 |
ret = compute_bit_allocation(s); |
1540 |
if (ret) {
|
1541 |
av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
|
1542 |
return ret;
|
1543 |
} |
1544 |
|
1545 |
quantize_mantissas(s); |
1546 |
|
1547 |
output_frame(s, frame); |
1548 |
|
1549 |
return s->frame_size;
|
1550 |
} |
1551 |
|
1552 |
|
1553 |
/**
|
1554 |
* Finalize encoding and free any memory allocated by the encoder.
|
1555 |
*/
|
1556 |
static av_cold int ac3_encode_close(AVCodecContext *avctx) |
1557 |
{ |
1558 |
int blk, ch;
|
1559 |
AC3EncodeContext *s = avctx->priv_data; |
1560 |
|
1561 |
for (ch = 0; ch < s->channels; ch++) |
1562 |
av_freep(&s->planar_samples[ch]); |
1563 |
av_freep(&s->planar_samples); |
1564 |
av_freep(&s->bap_buffer); |
1565 |
av_freep(&s->bap1_buffer); |
1566 |
av_freep(&s->mdct_coef_buffer); |
1567 |
av_freep(&s->exp_buffer); |
1568 |
av_freep(&s->grouped_exp_buffer); |
1569 |
av_freep(&s->psd_buffer); |
1570 |
av_freep(&s->band_psd_buffer); |
1571 |
av_freep(&s->mask_buffer); |
1572 |
av_freep(&s->qmant_buffer); |
1573 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
1574 |
AC3Block *block = &s->blocks[blk]; |
1575 |
av_freep(&block->bap); |
1576 |
av_freep(&block->mdct_coef); |
1577 |
av_freep(&block->exp); |
1578 |
av_freep(&block->grouped_exp); |
1579 |
av_freep(&block->psd); |
1580 |
av_freep(&block->band_psd); |
1581 |
av_freep(&block->mask); |
1582 |
av_freep(&block->qmant); |
1583 |
} |
1584 |
|
1585 |
mdct_end(&s->mdct); |
1586 |
|
1587 |
av_freep(&avctx->coded_frame); |
1588 |
return 0; |
1589 |
} |
1590 |
|
1591 |
|
1592 |
/**
|
1593 |
* Set channel information during initialization.
|
1594 |
*/
|
1595 |
static av_cold int set_channel_info(AC3EncodeContext *s, int channels, |
1596 |
int64_t *channel_layout) |
1597 |
{ |
1598 |
int ch_layout;
|
1599 |
|
1600 |
if (channels < 1 || channels > AC3_MAX_CHANNELS) |
1601 |
return AVERROR(EINVAL);
|
1602 |
if ((uint64_t)*channel_layout > 0x7FF) |
1603 |
return AVERROR(EINVAL);
|
1604 |
ch_layout = *channel_layout; |
1605 |
if (!ch_layout)
|
1606 |
ch_layout = avcodec_guess_channel_layout(channels, CODEC_ID_AC3, NULL);
|
1607 |
if (av_get_channel_layout_nb_channels(ch_layout) != channels)
|
1608 |
return AVERROR(EINVAL);
|
1609 |
|
1610 |
s->lfe_on = !!(ch_layout & AV_CH_LOW_FREQUENCY); |
1611 |
s->channels = channels; |
1612 |
s->fbw_channels = channels - s->lfe_on; |
1613 |
s->lfe_channel = s->lfe_on ? s->fbw_channels : -1;
|
1614 |
if (s->lfe_on)
|
1615 |
ch_layout -= AV_CH_LOW_FREQUENCY; |
1616 |
|
1617 |
switch (ch_layout) {
|
1618 |
case AV_CH_LAYOUT_MONO: s->channel_mode = AC3_CHMODE_MONO; break; |
1619 |
case AV_CH_LAYOUT_STEREO: s->channel_mode = AC3_CHMODE_STEREO; break; |
1620 |
case AV_CH_LAYOUT_SURROUND: s->channel_mode = AC3_CHMODE_3F; break; |
1621 |
case AV_CH_LAYOUT_2_1: s->channel_mode = AC3_CHMODE_2F1R; break; |
1622 |
case AV_CH_LAYOUT_4POINT0: s->channel_mode = AC3_CHMODE_3F1R; break; |
1623 |
case AV_CH_LAYOUT_QUAD:
|
1624 |
case AV_CH_LAYOUT_2_2: s->channel_mode = AC3_CHMODE_2F2R; break; |
1625 |
case AV_CH_LAYOUT_5POINT0:
|
1626 |
case AV_CH_LAYOUT_5POINT0_BACK: s->channel_mode = AC3_CHMODE_3F2R; break; |
1627 |
default:
|
1628 |
return AVERROR(EINVAL);
|
1629 |
} |
1630 |
|
1631 |
s->channel_map = ff_ac3_enc_channel_map[s->channel_mode][s->lfe_on]; |
1632 |
*channel_layout = ch_layout; |
1633 |
if (s->lfe_on)
|
1634 |
*channel_layout |= AV_CH_LOW_FREQUENCY; |
1635 |
|
1636 |
return 0; |
1637 |
} |
1638 |
|
1639 |
|
1640 |
static av_cold int validate_options(AVCodecContext *avctx, AC3EncodeContext *s) |
1641 |
{ |
1642 |
int i, ret;
|
1643 |
|
1644 |
/* validate channel layout */
|
1645 |
if (!avctx->channel_layout) {
|
1646 |
av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
|
1647 |
"encoder will guess the layout, but it "
|
1648 |
"might be incorrect.\n");
|
1649 |
} |
1650 |
ret = set_channel_info(s, avctx->channels, &avctx->channel_layout); |
1651 |
if (ret) {
|
1652 |
av_log(avctx, AV_LOG_ERROR, "invalid channel layout\n");
|
1653 |
return ret;
|
1654 |
} |
1655 |
|
1656 |
/* validate sample rate */
|
1657 |
for (i = 0; i < 9; i++) { |
1658 |
if ((ff_ac3_sample_rate_tab[i / 3] >> (i % 3)) == avctx->sample_rate) |
1659 |
break;
|
1660 |
} |
1661 |
if (i == 9) { |
1662 |
av_log(avctx, AV_LOG_ERROR, "invalid sample rate\n");
|
1663 |
return AVERROR(EINVAL);
|
1664 |
} |
1665 |
s->sample_rate = avctx->sample_rate; |
1666 |
s->bit_alloc.sr_shift = i % 3;
|
1667 |
s->bit_alloc.sr_code = i / 3;
|
1668 |
|
1669 |
/* validate bit rate */
|
1670 |
for (i = 0; i < 19; i++) { |
1671 |
if ((ff_ac3_bitrate_tab[i] >> s->bit_alloc.sr_shift)*1000 == avctx->bit_rate) |
1672 |
break;
|
1673 |
} |
1674 |
if (i == 19) { |
1675 |
av_log(avctx, AV_LOG_ERROR, "invalid bit rate\n");
|
1676 |
return AVERROR(EINVAL);
|
1677 |
} |
1678 |
s->bit_rate = avctx->bit_rate; |
1679 |
s->frame_size_code = i << 1;
|
1680 |
|
1681 |
return 0; |
1682 |
} |
1683 |
|
1684 |
|
1685 |
/**
|
1686 |
* Set bandwidth for all channels.
|
1687 |
* The user can optionally supply a cutoff frequency. Otherwise an appropriate
|
1688 |
* default value will be used.
|
1689 |
*/
|
1690 |
static av_cold void set_bandwidth(AC3EncodeContext *s, int cutoff) |
1691 |
{ |
1692 |
int ch, bw_code;
|
1693 |
|
1694 |
if (cutoff) {
|
1695 |
/* calculate bandwidth based on user-specified cutoff frequency */
|
1696 |
int fbw_coeffs;
|
1697 |
cutoff = av_clip(cutoff, 1, s->sample_rate >> 1); |
1698 |
fbw_coeffs = cutoff * 2 * AC3_MAX_COEFS / s->sample_rate;
|
1699 |
bw_code = av_clip((fbw_coeffs - 73) / 3, 0, 60); |
1700 |
} else {
|
1701 |
/* use default bandwidth setting */
|
1702 |
/* XXX: should compute the bandwidth according to the frame
|
1703 |
size, so that we avoid annoying high frequency artifacts */
|
1704 |
bw_code = 50;
|
1705 |
} |
1706 |
|
1707 |
/* set number of coefficients for each channel */
|
1708 |
for (ch = 0; ch < s->fbw_channels; ch++) { |
1709 |
s->bandwidth_code[ch] = bw_code; |
1710 |
s->nb_coefs[ch] = bw_code * 3 + 73; |
1711 |
} |
1712 |
if (s->lfe_on)
|
1713 |
s->nb_coefs[s->lfe_channel] = 7; /* LFE channel always has 7 coefs */ |
1714 |
} |
1715 |
|
1716 |
|
1717 |
static av_cold int allocate_buffers(AVCodecContext *avctx) |
1718 |
{ |
1719 |
int blk, ch;
|
1720 |
AC3EncodeContext *s = avctx->priv_data; |
1721 |
|
1722 |
FF_ALLOC_OR_GOTO(avctx, s->planar_samples, s->channels * sizeof(*s->planar_samples),
|
1723 |
alloc_fail); |
1724 |
for (ch = 0; ch < s->channels; ch++) { |
1725 |
FF_ALLOCZ_OR_GOTO(avctx, s->planar_samples[ch], |
1726 |
(AC3_FRAME_SIZE+AC3_BLOCK_SIZE) * sizeof(**s->planar_samples),
|
1727 |
alloc_fail); |
1728 |
} |
1729 |
FF_ALLOC_OR_GOTO(avctx, s->bap_buffer, AC3_MAX_BLOCKS * s->channels * |
1730 |
AC3_MAX_COEFS * sizeof(*s->bap_buffer), alloc_fail);
|
1731 |
FF_ALLOC_OR_GOTO(avctx, s->bap1_buffer, AC3_MAX_BLOCKS * s->channels * |
1732 |
AC3_MAX_COEFS * sizeof(*s->bap1_buffer), alloc_fail);
|
1733 |
FF_ALLOC_OR_GOTO(avctx, s->mdct_coef_buffer, AC3_MAX_BLOCKS * s->channels * |
1734 |
AC3_MAX_COEFS * sizeof(*s->mdct_coef_buffer), alloc_fail);
|
1735 |
FF_ALLOC_OR_GOTO(avctx, s->exp_buffer, AC3_MAX_BLOCKS * s->channels * |
1736 |
AC3_MAX_COEFS * sizeof(*s->exp_buffer), alloc_fail);
|
1737 |
FF_ALLOC_OR_GOTO(avctx, s->grouped_exp_buffer, AC3_MAX_BLOCKS * s->channels * |
1738 |
128 * sizeof(*s->grouped_exp_buffer), alloc_fail); |
1739 |
FF_ALLOC_OR_GOTO(avctx, s->psd_buffer, AC3_MAX_BLOCKS * s->channels * |
1740 |
AC3_MAX_COEFS * sizeof(*s->psd_buffer), alloc_fail);
|
1741 |
FF_ALLOC_OR_GOTO(avctx, s->band_psd_buffer, AC3_MAX_BLOCKS * s->channels * |
1742 |
64 * sizeof(*s->band_psd_buffer), alloc_fail); |
1743 |
FF_ALLOC_OR_GOTO(avctx, s->mask_buffer, AC3_MAX_BLOCKS * s->channels * |
1744 |
64 * sizeof(*s->mask_buffer), alloc_fail); |
1745 |
FF_ALLOC_OR_GOTO(avctx, s->qmant_buffer, AC3_MAX_BLOCKS * s->channels * |
1746 |
AC3_MAX_COEFS * sizeof(*s->qmant_buffer), alloc_fail);
|
1747 |
for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) { |
1748 |
AC3Block *block = &s->blocks[blk]; |
1749 |
FF_ALLOC_OR_GOTO(avctx, block->bap, s->channels * sizeof(*block->bap),
|
1750 |
alloc_fail); |
1751 |
FF_ALLOCZ_OR_GOTO(avctx, block->mdct_coef, s->channels * sizeof(*block->mdct_coef),
|
1752 |
alloc_fail); |
1753 |
FF_ALLOCZ_OR_GOTO(avctx, block->exp, s->channels * sizeof(*block->exp),
|
1754 |
alloc_fail); |
1755 |
FF_ALLOCZ_OR_GOTO(avctx, block->grouped_exp, s->channels * sizeof(*block->grouped_exp),
|
1756 |
alloc_fail); |
1757 |
FF_ALLOCZ_OR_GOTO(avctx, block->psd, s->channels * sizeof(*block->psd),
|
1758 |
alloc_fail); |
1759 |
FF_ALLOCZ_OR_GOTO(avctx, block->band_psd, s->channels * sizeof(*block->band_psd),
|
1760 |
alloc_fail); |
1761 |
FF_ALLOCZ_OR_GOTO(avctx, block->mask, s->channels * sizeof(*block->mask),
|
1762 |
alloc_fail); |
1763 |
FF_ALLOCZ_OR_GOTO(avctx, block->qmant, s->channels * sizeof(*block->qmant),
|
1764 |
alloc_fail); |
1765 |
|
1766 |
for (ch = 0; ch < s->channels; ch++) { |
1767 |
block->bap[ch] = &s->bap_buffer [AC3_MAX_COEFS * (blk * s->channels + ch)]; |
1768 |
block->mdct_coef[ch] = &s->mdct_coef_buffer [AC3_MAX_COEFS * (blk * s->channels + ch)]; |
1769 |
block->exp[ch] = &s->exp_buffer [AC3_MAX_COEFS * (blk * s->channels + ch)]; |
1770 |
block->grouped_exp[ch] = &s->grouped_exp_buffer[128 * (blk * s->channels + ch)];
|
1771 |
block->psd[ch] = &s->psd_buffer [AC3_MAX_COEFS * (blk * s->channels + ch)]; |
1772 |
block->band_psd[ch] = &s->band_psd_buffer [64 * (blk * s->channels + ch)];
|
1773 |
block->mask[ch] = &s->mask_buffer [64 * (blk * s->channels + ch)];
|
1774 |
block->qmant[ch] = &s->qmant_buffer [AC3_MAX_COEFS * (blk * s->channels + ch)]; |
1775 |
} |
1776 |
} |
1777 |
|
1778 |
return 0; |
1779 |
alloc_fail:
|
1780 |
return AVERROR(ENOMEM);
|
1781 |
} |
1782 |
|
1783 |
|
1784 |
/**
|
1785 |
* Initialize the encoder.
|
1786 |
*/
|
1787 |
static av_cold int ac3_encode_init(AVCodecContext *avctx) |
1788 |
{ |
1789 |
AC3EncodeContext *s = avctx->priv_data; |
1790 |
int ret;
|
1791 |
|
1792 |
avctx->frame_size = AC3_FRAME_SIZE; |
1793 |
|
1794 |
ac3_common_init(); |
1795 |
|
1796 |
ret = validate_options(avctx, s); |
1797 |
if (ret)
|
1798 |
return ret;
|
1799 |
|
1800 |
s->bitstream_id = 8 + s->bit_alloc.sr_shift;
|
1801 |
s->bitstream_mode = 0; /* complete main audio service */ |
1802 |
|
1803 |
s->frame_size_min = 2 * ff_ac3_frame_size_tab[s->frame_size_code][s->bit_alloc.sr_code];
|
1804 |
s->bits_written = 0;
|
1805 |
s->samples_written = 0;
|
1806 |
s->frame_size = s->frame_size_min; |
1807 |
|
1808 |
set_bandwidth(s, avctx->cutoff); |
1809 |
|
1810 |
exponent_init(s); |
1811 |
|
1812 |
bit_alloc_init(s); |
1813 |
|
1814 |
s->mdct.avctx = avctx; |
1815 |
ret = mdct_init(&s->mdct, 9);
|
1816 |
if (ret)
|
1817 |
goto init_fail;
|
1818 |
|
1819 |
ret = allocate_buffers(avctx); |
1820 |
if (ret)
|
1821 |
goto init_fail;
|
1822 |
|
1823 |
avctx->coded_frame= avcodec_alloc_frame(); |
1824 |
|
1825 |
dsputil_init(&s->dsp, avctx); |
1826 |
|
1827 |
return 0; |
1828 |
init_fail:
|
1829 |
ac3_encode_close(avctx); |
1830 |
return ret;
|
1831 |
} |
1832 |
|
1833 |
|
1834 |
#ifdef TEST
|
1835 |
/*************************************************************************/
|
1836 |
/* TEST */
|
1837 |
|
1838 |
#include "libavutil/lfg.h" |
1839 |
|
1840 |
#define FN (MDCT_SAMPLES/4) |
1841 |
|
1842 |
|
1843 |
static void fft_test(AVLFG *lfg) |
1844 |
{ |
1845 |
IComplex in[FN], in1[FN]; |
1846 |
int k, n, i;
|
1847 |
float sum_re, sum_im, a;
|
1848 |
|
1849 |
for (i = 0; i < FN; i++) { |
1850 |
in[i].re = av_lfg_get(lfg) % 65535 - 32767; |
1851 |
in[i].im = av_lfg_get(lfg) % 65535 - 32767; |
1852 |
in1[i] = in[i]; |
1853 |
} |
1854 |
fft(in, 7);
|
1855 |
|
1856 |
/* do it by hand */
|
1857 |
for (k = 0; k < FN; k++) { |
1858 |
sum_re = 0;
|
1859 |
sum_im = 0;
|
1860 |
for (n = 0; n < FN; n++) { |
1861 |
a = -2 * M_PI * (n * k) / FN;
|
1862 |
sum_re += in1[n].re * cos(a) - in1[n].im * sin(a); |
1863 |
sum_im += in1[n].re * sin(a) + in1[n].im * cos(a); |
1864 |
} |
1865 |
av_log(NULL, AV_LOG_DEBUG, "%3d: %6d,%6d %6.0f,%6.0f\n", |
1866 |
k, in[k].re, in[k].im, sum_re / FN, sum_im / FN); |
1867 |
} |
1868 |
} |
1869 |
|
1870 |
|
1871 |
static void mdct_test(AVLFG *lfg) |
1872 |
{ |
1873 |
int16_t input[MDCT_SAMPLES]; |
1874 |
int32_t output[AC3_MAX_COEFS]; |
1875 |
float input1[MDCT_SAMPLES];
|
1876 |
float output1[AC3_MAX_COEFS];
|
1877 |
float s, a, err, e, emax;
|
1878 |
int i, k, n;
|
1879 |
|
1880 |
for (i = 0; i < MDCT_SAMPLES; i++) { |
1881 |
input[i] = (av_lfg_get(lfg) % 65535 - 32767) * 9 / 10; |
1882 |
input1[i] = input[i]; |
1883 |
} |
1884 |
|
1885 |
mdct512(output, input); |
1886 |
|
1887 |
/* do it by hand */
|
1888 |
for (k = 0; k < AC3_MAX_COEFS; k++) { |
1889 |
s = 0;
|
1890 |
for (n = 0; n < MDCT_SAMPLES; n++) { |
1891 |
a = (2*M_PI*(2*n+1+MDCT_SAMPLES/2)*(2*k+1) / (4 * MDCT_SAMPLES)); |
1892 |
s += input1[n] * cos(a); |
1893 |
} |
1894 |
output1[k] = -2 * s / MDCT_SAMPLES;
|
1895 |
} |
1896 |
|
1897 |
err = 0;
|
1898 |
emax = 0;
|
1899 |
for (i = 0; i < AC3_MAX_COEFS; i++) { |
1900 |
av_log(NULL, AV_LOG_DEBUG, "%3d: %7d %7.0f\n", i, output[i], output1[i]); |
1901 |
e = output[i] - output1[i]; |
1902 |
if (e > emax)
|
1903 |
emax = e; |
1904 |
err += e * e; |
1905 |
} |
1906 |
av_log(NULL, AV_LOG_DEBUG, "err2=%f emax=%f\n", err / AC3_MAX_COEFS, emax); |
1907 |
} |
1908 |
|
1909 |
|
1910 |
int main(void) |
1911 |
{ |
1912 |
AVLFG lfg; |
1913 |
|
1914 |
av_log_set_level(AV_LOG_DEBUG); |
1915 |
mdct_init(9);
|
1916 |
|
1917 |
fft_test(&lfg); |
1918 |
mdct_test(&lfg); |
1919 |
|
1920 |
return 0; |
1921 |
} |
1922 |
#endif /* TEST */ |
1923 |
|
1924 |
|
1925 |
AVCodec ac3_encoder = { |
1926 |
"ac3",
|
1927 |
AVMEDIA_TYPE_AUDIO, |
1928 |
CODEC_ID_AC3, |
1929 |
sizeof(AC3EncodeContext),
|
1930 |
ac3_encode_init, |
1931 |
ac3_encode_frame, |
1932 |
ac3_encode_close, |
1933 |
NULL,
|
1934 |
.sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE}, |
1935 |
.long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
|
1936 |
.channel_layouts = (const int64_t[]){
|
1937 |
AV_CH_LAYOUT_MONO, |
1938 |
AV_CH_LAYOUT_STEREO, |
1939 |
AV_CH_LAYOUT_2_1, |
1940 |
AV_CH_LAYOUT_SURROUND, |
1941 |
AV_CH_LAYOUT_2_2, |
1942 |
AV_CH_LAYOUT_QUAD, |
1943 |
AV_CH_LAYOUT_4POINT0, |
1944 |
AV_CH_LAYOUT_5POINT0, |
1945 |
AV_CH_LAYOUT_5POINT0_BACK, |
1946 |
(AV_CH_LAYOUT_MONO | AV_CH_LOW_FREQUENCY), |
1947 |
(AV_CH_LAYOUT_STEREO | AV_CH_LOW_FREQUENCY), |
1948 |
(AV_CH_LAYOUT_2_1 | AV_CH_LOW_FREQUENCY), |
1949 |
(AV_CH_LAYOUT_SURROUND | AV_CH_LOW_FREQUENCY), |
1950 |
(AV_CH_LAYOUT_2_2 | AV_CH_LOW_FREQUENCY), |
1951 |
(AV_CH_LAYOUT_QUAD | AV_CH_LOW_FREQUENCY), |
1952 |
(AV_CH_LAYOUT_4POINT0 | AV_CH_LOW_FREQUENCY), |
1953 |
AV_CH_LAYOUT_5POINT1, |
1954 |
AV_CH_LAYOUT_5POINT1_BACK, |
1955 |
0 },
|
1956 |
}; |