Statistics
| Branch: | Revision:

ffmpeg / libavcodec / adpcm.c @ d1e0d21f

History | View | Annotate | Download (49.8 KB)

1
/*
2
 * ADPCM codecs
3
 * Copyright (c) 2001-2003 The ffmpeg Project
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
#include "avcodec.h"
22
#include "bitstream.h"
23

    
24
/**
25
 * @file adpcm.c
26
 * ADPCM codecs.
27
 * First version by Francois Revol (revol@free.fr)
28
 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
29
 *   by Mike Melanson (melanson@pcisys.net)
30
 * CD-ROM XA ADPCM codec by BERO
31
 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
32
 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
33
 *
34
 * Features and limitations:
35
 *
36
 * Reference documents:
37
 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
38
 * http://www.geocities.com/SiliconValley/8682/aud3.txt
39
 * http://openquicktime.sourceforge.net/plugins.htm
40
 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
41
 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
42
 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
43
 *
44
 * CD-ROM XA:
45
 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
46
 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
47
 * readstr http://www.geocities.co.jp/Playtown/2004/
48
 */
49

    
50
#define BLKSIZE 1024
51

    
52
#define CLAMP_TO_SHORT(value) \
53
if (value > 32767) \
54
    value = 32767; \
55
else if (value < -32768) \
56
    value = -32768; \
57

    
58
/* step_table[] and index_table[] are from the ADPCM reference source */
59
/* This is the index table: */
60
static const int index_table[16] = {
61
    -1, -1, -1, -1, 2, 4, 6, 8,
62
    -1, -1, -1, -1, 2, 4, 6, 8,
63
};
64

    
65
/**
66
 * This is the step table. Note that many programs use slight deviations from
67
 * this table, but such deviations are negligible:
68
 */
69
static const int step_table[89] = {
70
    7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
71
    19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
72
    50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
73
    130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
74
    337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
75
    876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
76
    2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
77
    5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
78
    15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
79
};
80

    
81
/* These are for MS-ADPCM */
82
/* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
83
static const int AdaptationTable[] = {
84
        230, 230, 230, 230, 307, 409, 512, 614,
85
        768, 614, 512, 409, 307, 230, 230, 230
86
};
87

    
88
static const int AdaptCoeff1[] = {
89
        256, 512, 0, 192, 240, 460, 392
90
};
91

    
92
static const int AdaptCoeff2[] = {
93
        0, -256, 0, 64, 0, -208, -232
94
};
95

    
96
/* These are for CD-ROM XA ADPCM */
97
static const int xa_adpcm_table[5][2] = {
98
   {   0,   0 },
99
   {  60,   0 },
100
   { 115, -52 },
101
   {  98, -55 },
102
   { 122, -60 }
103
};
104

    
105
static const int ea_adpcm_table[] = {
106
    0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
107
    3, 4, 7, 8, 10, 11, 0, -1, -3, -4
108
};
109

    
110
static const int ct_adpcm_table[8] = {
111
    0x00E6, 0x00E6, 0x00E6, 0x00E6,
112
    0x0133, 0x0199, 0x0200, 0x0266
113
};
114

    
115
// padded to zero where table size is less then 16
116
static const int swf_index_tables[4][16] = {
117
    /*2*/ { -1, 2 },
118
    /*3*/ { -1, -1, 2, 4 },
119
    /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
120
    /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
121
};
122

    
123
static const int yamaha_indexscale[] = {
124
    230, 230, 230, 230, 307, 409, 512, 614,
125
    230, 230, 230, 230, 307, 409, 512, 614
126
};
127

    
128
static const int yamaha_difflookup[] = {
129
    1, 3, 5, 7, 9, 11, 13, 15,
130
    -1, -3, -5, -7, -9, -11, -13, -15
131
};
132

    
133
/* end of tables */
134

    
135
typedef struct ADPCMChannelStatus {
136
    int predictor;
137
    short int step_index;
138
    int step;
139
    /* for encoding */
140
    int prev_sample;
141

    
142
    /* MS version */
143
    short sample1;
144
    short sample2;
145
    int coeff1;
146
    int coeff2;
147
    int idelta;
148
} ADPCMChannelStatus;
149

    
150
typedef struct ADPCMContext {
151
    int channel; /* for stereo MOVs, decode left, then decode right, then tell it's decoded */
152
    ADPCMChannelStatus status[2];
153
    short sample_buffer[32]; /* hold left samples while waiting for right samples */
154
} ADPCMContext;
155

    
156
/* XXX: implement encoding */
157

    
158
#ifdef CONFIG_ENCODERS
159
static int adpcm_encode_init(AVCodecContext *avctx)
160
{
161
    if (avctx->channels > 2)
162
        return -1; /* only stereo or mono =) */
163
    switch(avctx->codec->id) {
164
    case CODEC_ID_ADPCM_IMA_QT:
165
        av_log(avctx, AV_LOG_ERROR, "ADPCM: codec adpcm_ima_qt unsupported for encoding !\n");
166
        avctx->frame_size = 64; /* XXX: can multiple of avctx->channels * 64 (left and right blocks are interleaved) */
167
        return -1;
168
        break;
169
    case CODEC_ID_ADPCM_IMA_WAV:
170
        avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
171
                                                             /* and we have 4 bytes per channel overhead */
172
        avctx->block_align = BLKSIZE;
173
        /* seems frame_size isn't taken into account... have to buffer the samples :-( */
174
        break;
175
    case CODEC_ID_ADPCM_MS:
176
        avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
177
                                                             /* and we have 7 bytes per channel overhead */
178
        avctx->block_align = BLKSIZE;
179
        break;
180
    case CODEC_ID_ADPCM_YAMAHA:
181
        avctx->frame_size = BLKSIZE * avctx->channels;
182
        avctx->block_align = BLKSIZE;
183
        break;
184
    default:
185
        return -1;
186
        break;
187
    }
188

    
189
    avctx->coded_frame= avcodec_alloc_frame();
190
    avctx->coded_frame->key_frame= 1;
191

    
192
    return 0;
193
}
194

    
195
static int adpcm_encode_close(AVCodecContext *avctx)
196
{
197
    av_freep(&avctx->coded_frame);
198

    
199
    return 0;
200
}
201

    
202

    
203
static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
204
{
205
    int delta = sample - c->prev_sample;
206
    int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
207
    c->prev_sample = c->prev_sample + ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
208
    CLAMP_TO_SHORT(c->prev_sample);
209
    c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
210
    return nibble;
211
}
212

    
213
static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
214
{
215
    int predictor, nibble, bias;
216

    
217
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
218

    
219
    nibble= sample - predictor;
220
    if(nibble>=0) bias= c->idelta/2;
221
    else          bias=-c->idelta/2;
222

    
223
    nibble= (nibble + bias) / c->idelta;
224
    nibble= av_clip(nibble, -8, 7)&0x0F;
225

    
226
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
227
    CLAMP_TO_SHORT(predictor);
228

    
229
    c->sample2 = c->sample1;
230
    c->sample1 = predictor;
231

    
232
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
233
    if (c->idelta < 16) c->idelta = 16;
234

    
235
    return nibble;
236
}
237

    
238
static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
239
{
240
    int nibble, delta;
241

    
242
    if(!c->step) {
243
        c->predictor = 0;
244
        c->step = 127;
245
    }
246

    
247
    delta = sample - c->predictor;
248

    
249
    nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
250

    
251
    c->predictor = c->predictor + ((c->step * yamaha_difflookup[nibble]) / 8);
252
    CLAMP_TO_SHORT(c->predictor);
253
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
254
    c->step = av_clip(c->step, 127, 24567);
255

    
256
    return nibble;
257
}
258

    
259
typedef struct TrellisPath {
260
    int nibble;
261
    int prev;
262
} TrellisPath;
263

    
264
typedef struct TrellisNode {
265
    uint32_t ssd;
266
    int path;
267
    int sample1;
268
    int sample2;
269
    int step;
270
} TrellisNode;
271

    
272
static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
273
                                   uint8_t *dst, ADPCMChannelStatus *c, int n)
274
{
275
#define FREEZE_INTERVAL 128
276
    //FIXME 6% faster if frontier is a compile-time constant
277
    const int frontier = 1 << avctx->trellis;
278
    const int stride = avctx->channels;
279
    const int version = avctx->codec->id;
280
    const int max_paths = frontier*FREEZE_INTERVAL;
281
    TrellisPath paths[max_paths], *p;
282
    TrellisNode node_buf[2][frontier];
283
    TrellisNode *nodep_buf[2][frontier];
284
    TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd
285
    TrellisNode **nodes_next = nodep_buf[1];
286
    int pathn = 0, froze = -1, i, j, k;
287

    
288
    assert(!(max_paths&(max_paths-1)));
289

    
290
    memset(nodep_buf, 0, sizeof(nodep_buf));
291
    nodes[0] = &node_buf[1][0];
292
    nodes[0]->ssd = 0;
293
    nodes[0]->path = 0;
294
    nodes[0]->step = c->step_index;
295
    nodes[0]->sample1 = c->sample1;
296
    nodes[0]->sample2 = c->sample2;
297
    if(version == CODEC_ID_ADPCM_IMA_WAV)
298
        nodes[0]->sample1 = c->prev_sample;
299
    if(version == CODEC_ID_ADPCM_MS)
300
        nodes[0]->step = c->idelta;
301
    if(version == CODEC_ID_ADPCM_YAMAHA) {
302
        if(c->step == 0) {
303
            nodes[0]->step = 127;
304
            nodes[0]->sample1 = 0;
305
        } else {
306
            nodes[0]->step = c->step;
307
            nodes[0]->sample1 = c->predictor;
308
        }
309
    }
310

    
311
    for(i=0; i<n; i++) {
312
        TrellisNode *t = node_buf[i&1];
313
        TrellisNode **u;
314
        int sample = samples[i*stride];
315
        memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
316
        for(j=0; j<frontier && nodes[j]; j++) {
317
            // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
318
            const int range = (j < frontier/2) ? 1 : 0;
319
            const int step = nodes[j]->step;
320
            int nidx;
321
            if(version == CODEC_ID_ADPCM_MS) {
322
                const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 256;
323
                const int div = (sample - predictor) / step;
324
                const int nmin = av_clip(div-range, -8, 6);
325
                const int nmax = av_clip(div+range, -7, 7);
326
                for(nidx=nmin; nidx<=nmax; nidx++) {
327
                    const int nibble = nidx & 0xf;
328
                    int dec_sample = predictor + nidx * step;
329
#define STORE_NODE(NAME, STEP_INDEX)\
330
                    int d;\
331
                    uint32_t ssd;\
332
                    CLAMP_TO_SHORT(dec_sample);\
333
                    d = sample - dec_sample;\
334
                    ssd = nodes[j]->ssd + d*d;\
335
                    if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
336
                        continue;\
337
                    /* Collapse any two states with the same previous sample value. \
338
                     * One could also distinguish states by step and by 2nd to last
339
                     * sample, but the effects of that are negligible. */\
340
                    for(k=0; k<frontier && nodes_next[k]; k++) {\
341
                        if(dec_sample == nodes_next[k]->sample1) {\
342
                            assert(ssd >= nodes_next[k]->ssd);\
343
                            goto next_##NAME;\
344
                        }\
345
                    }\
346
                    for(k=0; k<frontier; k++) {\
347
                        if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
348
                            TrellisNode *u = nodes_next[frontier-1];\
349
                            if(!u) {\
350
                                assert(pathn < max_paths);\
351
                                u = t++;\
352
                                u->path = pathn++;\
353
                            }\
354
                            u->ssd = ssd;\
355
                            u->step = STEP_INDEX;\
356
                            u->sample2 = nodes[j]->sample1;\
357
                            u->sample1 = dec_sample;\
358
                            paths[u->path].nibble = nibble;\
359
                            paths[u->path].prev = nodes[j]->path;\
360
                            memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
361
                            nodes_next[k] = u;\
362
                            break;\
363
                        }\
364
                    }\
365
                    next_##NAME:;
366
                    STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
367
                }
368
            } else if(version == CODEC_ID_ADPCM_IMA_WAV) {
369
#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
370
                const int predictor = nodes[j]->sample1;\
371
                const int div = (sample - predictor) * 4 / STEP_TABLE;\
372
                int nmin = av_clip(div-range, -7, 6);\
373
                int nmax = av_clip(div+range, -6, 7);\
374
                if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
375
                if(nmax<0) nmax--;\
376
                for(nidx=nmin; nidx<=nmax; nidx++) {\
377
                    const int nibble = nidx<0 ? 7-nidx : nidx;\
378
                    int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
379
                    STORE_NODE(NAME, STEP_INDEX);\
380
                }
381
                LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88));
382
            } else { //CODEC_ID_ADPCM_YAMAHA
383
                LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
384
#undef LOOP_NODES
385
#undef STORE_NODE
386
            }
387
        }
388

    
389
        u = nodes;
390
        nodes = nodes_next;
391
        nodes_next = u;
392

    
393
        // prevent overflow
394
        if(nodes[0]->ssd > (1<<28)) {
395
            for(j=1; j<frontier && nodes[j]; j++)
396
                nodes[j]->ssd -= nodes[0]->ssd;
397
            nodes[0]->ssd = 0;
398
        }
399

    
400
        // merge old paths to save memory
401
        if(i == froze + FREEZE_INTERVAL) {
402
            p = &paths[nodes[0]->path];
403
            for(k=i; k>froze; k--) {
404
                dst[k] = p->nibble;
405
                p = &paths[p->prev];
406
            }
407
            froze = i;
408
            pathn = 0;
409
            // other nodes might use paths that don't coincide with the frozen one.
410
            // checking which nodes do so is too slow, so just kill them all.
411
            // this also slightly improves quality, but I don't know why.
412
            memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
413
        }
414
    }
415

    
416
    p = &paths[nodes[0]->path];
417
    for(i=n-1; i>froze; i--) {
418
        dst[i] = p->nibble;
419
        p = &paths[p->prev];
420
    }
421

    
422
    c->predictor = nodes[0]->sample1;
423
    c->sample1 = nodes[0]->sample1;
424
    c->sample2 = nodes[0]->sample2;
425
    c->step_index = nodes[0]->step;
426
    c->step = nodes[0]->step;
427
    c->idelta = nodes[0]->step;
428
}
429

    
430
static int adpcm_encode_frame(AVCodecContext *avctx,
431
                            unsigned char *frame, int buf_size, void *data)
432
{
433
    int n, i, st;
434
    short *samples;
435
    unsigned char *dst;
436
    ADPCMContext *c = avctx->priv_data;
437

    
438
    dst = frame;
439
    samples = (short *)data;
440
    st= avctx->channels == 2;
441
/*    n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
442

    
443
    switch(avctx->codec->id) {
444
    case CODEC_ID_ADPCM_IMA_QT: /* XXX: can't test until we get .mov writer */
445
        break;
446
    case CODEC_ID_ADPCM_IMA_WAV:
447
        n = avctx->frame_size / 8;
448
            c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
449
/*            c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
450
            *dst++ = (c->status[0].prev_sample) & 0xFF; /* little endian */
451
            *dst++ = (c->status[0].prev_sample >> 8) & 0xFF;
452
            *dst++ = (unsigned char)c->status[0].step_index;
453
            *dst++ = 0; /* unknown */
454
            samples++;
455
            if (avctx->channels == 2) {
456
                c->status[1].prev_sample = (signed short)samples[1];
457
/*                c->status[1].step_index = 0; */
458
                *dst++ = (c->status[1].prev_sample) & 0xFF;
459
                *dst++ = (c->status[1].prev_sample >> 8) & 0xFF;
460
                *dst++ = (unsigned char)c->status[1].step_index;
461
                *dst++ = 0;
462
                samples++;
463
            }
464

    
465
            /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
466
            if(avctx->trellis > 0) {
467
                uint8_t buf[2][n*8];
468
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8);
469
                if(avctx->channels == 2)
470
                    adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8);
471
                for(i=0; i<n; i++) {
472
                    *dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4);
473
                    *dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4);
474
                    *dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4);
475
                    *dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4);
476
                    if (avctx->channels == 2) {
477
                        *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4);
478
                        *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4);
479
                        *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4);
480
                        *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4);
481
                    }
482
                }
483
            } else
484
            for (; n>0; n--) {
485
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]) & 0x0F;
486
                *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4) & 0xF0;
487
                dst++;
488
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]) & 0x0F;
489
                *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4) & 0xF0;
490
                dst++;
491
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]) & 0x0F;
492
                *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4) & 0xF0;
493
                dst++;
494
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]) & 0x0F;
495
                *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4) & 0xF0;
496
                dst++;
497
                /* right channel */
498
                if (avctx->channels == 2) {
499
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
500
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
501
                    dst++;
502
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
503
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
504
                    dst++;
505
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
506
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
507
                    dst++;
508
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
509
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
510
                    dst++;
511
                }
512
                samples += 8 * avctx->channels;
513
            }
514
        break;
515
    case CODEC_ID_ADPCM_MS:
516
        for(i=0; i<avctx->channels; i++){
517
            int predictor=0;
518

    
519
            *dst++ = predictor;
520
            c->status[i].coeff1 = AdaptCoeff1[predictor];
521
            c->status[i].coeff2 = AdaptCoeff2[predictor];
522
        }
523
        for(i=0; i<avctx->channels; i++){
524
            if (c->status[i].idelta < 16)
525
                c->status[i].idelta = 16;
526

    
527
            *dst++ = c->status[i].idelta & 0xFF;
528
            *dst++ = c->status[i].idelta >> 8;
529
        }
530
        for(i=0; i<avctx->channels; i++){
531
            c->status[i].sample1= *samples++;
532

    
533
            *dst++ = c->status[i].sample1 & 0xFF;
534
            *dst++ = c->status[i].sample1 >> 8;
535
        }
536
        for(i=0; i<avctx->channels; i++){
537
            c->status[i].sample2= *samples++;
538

    
539
            *dst++ = c->status[i].sample2 & 0xFF;
540
            *dst++ = c->status[i].sample2 >> 8;
541
        }
542

    
543
        if(avctx->trellis > 0) {
544
            int n = avctx->block_align - 7*avctx->channels;
545
            uint8_t buf[2][n];
546
            if(avctx->channels == 1) {
547
                n *= 2;
548
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
549
                for(i=0; i<n; i+=2)
550
                    *dst++ = (buf[0][i] << 4) | buf[0][i+1];
551
            } else {
552
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
553
                adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
554
                for(i=0; i<n; i++)
555
                    *dst++ = (buf[0][i] << 4) | buf[1][i];
556
            }
557
        } else
558
        for(i=7*avctx->channels; i<avctx->block_align; i++) {
559
            int nibble;
560
            nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
561
            nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
562
            *dst++ = nibble;
563
        }
564
        break;
565
    case CODEC_ID_ADPCM_YAMAHA:
566
        n = avctx->frame_size / 2;
567
        if(avctx->trellis > 0) {
568
            uint8_t buf[2][n*2];
569
            n *= 2;
570
            if(avctx->channels == 1) {
571
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
572
                for(i=0; i<n; i+=2)
573
                    *dst++ = buf[0][i] | (buf[0][i+1] << 4);
574
            } else {
575
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
576
                adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
577
                for(i=0; i<n; i++)
578
                    *dst++ = buf[0][i] | (buf[1][i] << 4);
579
            }
580
        } else
581
        for (; n>0; n--) {
582
            for(i = 0; i < avctx->channels; i++) {
583
                int nibble;
584
                nibble  = adpcm_yamaha_compress_sample(&c->status[i], samples[i]);
585
                nibble |= adpcm_yamaha_compress_sample(&c->status[i], samples[i+avctx->channels]) << 4;
586
                *dst++ = nibble;
587
            }
588
            samples += 2 * avctx->channels;
589
        }
590
        break;
591
    default:
592
        return -1;
593
    }
594
    return dst - frame;
595
}
596
#endif //CONFIG_ENCODERS
597

    
598
static int adpcm_decode_init(AVCodecContext * avctx)
599
{
600
    ADPCMContext *c = avctx->priv_data;
601

    
602
    if(avctx->channels > 2U){
603
        return -1;
604
    }
605

    
606
    c->channel = 0;
607
    c->status[0].predictor = c->status[1].predictor = 0;
608
    c->status[0].step_index = c->status[1].step_index = 0;
609
    c->status[0].step = c->status[1].step = 0;
610

    
611
    switch(avctx->codec->id) {
612
    case CODEC_ID_ADPCM_CT:
613
        c->status[0].step = c->status[1].step = 511;
614
        break;
615
    default:
616
        break;
617
    }
618
    return 0;
619
}
620

    
621
static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
622
{
623
    int step_index;
624
    int predictor;
625
    int sign, delta, diff, step;
626

    
627
    step = step_table[c->step_index];
628
    step_index = c->step_index + index_table[(unsigned)nibble];
629
    if (step_index < 0) step_index = 0;
630
    else if (step_index > 88) step_index = 88;
631

    
632
    sign = nibble & 8;
633
    delta = nibble & 7;
634
    /* perform direct multiplication instead of series of jumps proposed by
635
     * the reference ADPCM implementation since modern CPUs can do the mults
636
     * quickly enough */
637
    diff = ((2 * delta + 1) * step) >> shift;
638
    predictor = c->predictor;
639
    if (sign) predictor -= diff;
640
    else predictor += diff;
641

    
642
    CLAMP_TO_SHORT(predictor);
643
    c->predictor = predictor;
644
    c->step_index = step_index;
645

    
646
    return (short)predictor;
647
}
648

    
649
static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
650
{
651
    int predictor;
652

    
653
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
654
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
655
    CLAMP_TO_SHORT(predictor);
656

    
657
    c->sample2 = c->sample1;
658
    c->sample1 = predictor;
659
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
660
    if (c->idelta < 16) c->idelta = 16;
661

    
662
    return (short)predictor;
663
}
664

    
665
static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
666
{
667
    int predictor;
668
    int sign, delta, diff;
669
    int new_step;
670

    
671
    sign = nibble & 8;
672
    delta = nibble & 7;
673
    /* perform direct multiplication instead of series of jumps proposed by
674
     * the reference ADPCM implementation since modern CPUs can do the mults
675
     * quickly enough */
676
    diff = ((2 * delta + 1) * c->step) >> 3;
677
    predictor = c->predictor;
678
    /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
679
    if(sign)
680
        predictor = ((predictor * 254) >> 8) - diff;
681
    else
682
            predictor = ((predictor * 254) >> 8) + diff;
683
    /* calculate new step and clamp it to range 511..32767 */
684
    new_step = (ct_adpcm_table[nibble & 7] * c->step) >> 8;
685
    c->step = new_step;
686
    if(c->step < 511)
687
        c->step = 511;
688
    if(c->step > 32767)
689
        c->step = 32767;
690

    
691
    CLAMP_TO_SHORT(predictor);
692
    c->predictor = predictor;
693
    return (short)predictor;
694
}
695

    
696
static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
697
{
698
    int sign, delta, diff;
699

    
700
    sign = nibble & (1<<(size-1));
701
    delta = nibble & ((1<<(size-1))-1);
702
    diff = delta << (7 + c->step + shift);
703

    
704
    if (sign)
705
        c->predictor -= diff;
706
    else
707
        c->predictor += diff;
708

    
709
    /* clamp result */
710
    if (c->predictor > 16256)
711
        c->predictor = 16256;
712
    else if (c->predictor < -16384)
713
        c->predictor = -16384;
714

    
715
    /* calculate new step */
716
    if (delta >= (2*size - 3) && c->step < 3)
717
        c->step++;
718
    else if (delta == 0 && c->step > 0)
719
        c->step--;
720

    
721
    return (short) c->predictor;
722
}
723

    
724
static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
725
{
726
    if(!c->step) {
727
        c->predictor = 0;
728
        c->step = 127;
729
    }
730

    
731
    c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
732
    CLAMP_TO_SHORT(c->predictor);
733
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
734
    c->step = av_clip(c->step, 127, 24567);
735
    return c->predictor;
736
}
737

    
738
static void xa_decode(short *out, const unsigned char *in,
739
    ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
740
{
741
    int i, j;
742
    int shift,filter,f0,f1;
743
    int s_1,s_2;
744
    int d,s,t;
745

    
746
    for(i=0;i<4;i++) {
747

    
748
        shift  = 12 - (in[4+i*2] & 15);
749
        filter = in[4+i*2] >> 4;
750
        f0 = xa_adpcm_table[filter][0];
751
        f1 = xa_adpcm_table[filter][1];
752

    
753
        s_1 = left->sample1;
754
        s_2 = left->sample2;
755

    
756
        for(j=0;j<28;j++) {
757
            d = in[16+i+j*4];
758

    
759
            t = (signed char)(d<<4)>>4;
760
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
761
            CLAMP_TO_SHORT(s);
762
            *out = s;
763
            out += inc;
764
            s_2 = s_1;
765
            s_1 = s;
766
        }
767

    
768
        if (inc==2) { /* stereo */
769
            left->sample1 = s_1;
770
            left->sample2 = s_2;
771
            s_1 = right->sample1;
772
            s_2 = right->sample2;
773
            out = out + 1 - 28*2;
774
        }
775

    
776
        shift  = 12 - (in[5+i*2] & 15);
777
        filter = in[5+i*2] >> 4;
778

    
779
        f0 = xa_adpcm_table[filter][0];
780
        f1 = xa_adpcm_table[filter][1];
781

    
782
        for(j=0;j<28;j++) {
783
            d = in[16+i+j*4];
784

    
785
            t = (signed char)d >> 4;
786
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
787
            CLAMP_TO_SHORT(s);
788
            *out = s;
789
            out += inc;
790
            s_2 = s_1;
791
            s_1 = s;
792
        }
793

    
794
        if (inc==2) { /* stereo */
795
            right->sample1 = s_1;
796
            right->sample2 = s_2;
797
            out -= 1;
798
        } else {
799
            left->sample1 = s_1;
800
            left->sample2 = s_2;
801
        }
802
    }
803
}
804

    
805

    
806
/* DK3 ADPCM support macro */
807
#define DK3_GET_NEXT_NIBBLE() \
808
    if (decode_top_nibble_next) \
809
    { \
810
        nibble = (last_byte >> 4) & 0x0F; \
811
        decode_top_nibble_next = 0; \
812
    } \
813
    else \
814
    { \
815
        last_byte = *src++; \
816
        if (src >= buf + buf_size) break; \
817
        nibble = last_byte & 0x0F; \
818
        decode_top_nibble_next = 1; \
819
    }
820

    
821
static int adpcm_decode_frame(AVCodecContext *avctx,
822
                            void *data, int *data_size,
823
                            uint8_t *buf, int buf_size)
824
{
825
    ADPCMContext *c = avctx->priv_data;
826
    ADPCMChannelStatus *cs;
827
    int n, m, channel, i;
828
    int block_predictor[2];
829
    short *samples;
830
    short *samples_end;
831
    uint8_t *src;
832
    int st; /* stereo */
833

    
834
    /* DK3 ADPCM accounting variables */
835
    unsigned char last_byte = 0;
836
    unsigned char nibble;
837
    int decode_top_nibble_next = 0;
838
    int diff_channel;
839

    
840
    /* EA ADPCM state variables */
841
    uint32_t samples_in_chunk;
842
    int32_t previous_left_sample, previous_right_sample;
843
    int32_t current_left_sample, current_right_sample;
844
    int32_t next_left_sample, next_right_sample;
845
    int32_t coeff1l, coeff2l, coeff1r, coeff2r;
846
    uint8_t shift_left, shift_right;
847
    int count1, count2;
848

    
849
    if (!buf_size)
850
        return 0;
851

    
852
    //should protect all 4bit ADPCM variants
853
    //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
854
    //
855
    if(*data_size/4 < buf_size + 8)
856
        return -1;
857

    
858
    samples = data;
859
    samples_end= samples + *data_size/2;
860
    *data_size= 0;
861
    src = buf;
862

    
863
    st = avctx->channels == 2 ? 1 : 0;
864

    
865
    switch(avctx->codec->id) {
866
    case CODEC_ID_ADPCM_IMA_QT:
867
        n = (buf_size - 2);/* >> 2*avctx->channels;*/
868
        channel = c->channel;
869
        cs = &(c->status[channel]);
870
        /* (pppppp) (piiiiiii) */
871

    
872
        /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
873
        cs->predictor = (*src++) << 8;
874
        cs->predictor |= (*src & 0x80);
875
        cs->predictor &= 0xFF80;
876

    
877
        /* sign extension */
878
        if(cs->predictor & 0x8000)
879
            cs->predictor -= 0x10000;
880

    
881
        CLAMP_TO_SHORT(cs->predictor);
882

    
883
        cs->step_index = (*src++) & 0x7F;
884

    
885
        if (cs->step_index > 88){
886
            av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
887
            cs->step_index = 88;
888
        }
889

    
890
        cs->step = step_table[cs->step_index];
891

    
892
        if (st && channel)
893
            samples++;
894

    
895
        for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
896
            *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
897
            samples += avctx->channels;
898
            *samples = adpcm_ima_expand_nibble(cs, (src[0] >> 4) & 0x0F, 3);
899
            samples += avctx->channels;
900
            src ++;
901
        }
902

    
903
        if(st) { /* handle stereo interlacing */
904
            c->channel = (channel + 1) % 2; /* we get one packet for left, then one for right data */
905
            if(channel == 1) { /* wait for the other packet before outputing anything */
906
                return src - buf;
907
            }
908
        }
909
        break;
910
    case CODEC_ID_ADPCM_IMA_WAV:
911
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
912
            buf_size = avctx->block_align;
913

    
914
//        samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
915

    
916
        for(i=0; i<avctx->channels; i++){
917
            cs = &(c->status[i]);
918
            cs->predictor = (int16_t)(src[0] + (src[1]<<8));
919
            src+=2;
920

    
921
        // XXX: is this correct ??: *samples++ = cs->predictor;
922

    
923
            cs->step_index = *src++;
924
            if (cs->step_index > 88){
925
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
926
                cs->step_index = 88;
927
            }
928
            if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
929
        }
930

    
931
        while(src < buf + buf_size){
932
            for(m=0; m<4; m++){
933
                for(i=0; i<=st; i++)
934
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
935
                for(i=0; i<=st; i++)
936
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4  , 3);
937
                src++;
938
            }
939
            src += 4*st;
940
        }
941
        break;
942
    case CODEC_ID_ADPCM_4XM:
943
        cs = &(c->status[0]);
944
        c->status[0].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
945
        if(st){
946
            c->status[1].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
947
        }
948
        c->status[0].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
949
        if(st){
950
            c->status[1].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
951
        }
952
        if (cs->step_index < 0) cs->step_index = 0;
953
        if (cs->step_index > 88) cs->step_index = 88;
954

    
955
        m= (buf_size - (src - buf))>>st;
956
        for(i=0; i<m; i++) {
957
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
958
            if (st)
959
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
960
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
961
            if (st)
962
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
963
        }
964

    
965
        src += m<<st;
966

    
967
        break;
968
    case CODEC_ID_ADPCM_MS:
969
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
970
            buf_size = avctx->block_align;
971
        n = buf_size - 7 * avctx->channels;
972
        if (n < 0)
973
            return -1;
974
        block_predictor[0] = av_clip(*src++, 0, 7);
975
        block_predictor[1] = 0;
976
        if (st)
977
            block_predictor[1] = av_clip(*src++, 0, 7);
978
        c->status[0].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
979
        src+=2;
980
        if (st){
981
            c->status[1].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
982
            src+=2;
983
        }
984
        c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
985
        c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
986
        c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
987
        c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
988

    
989
        c->status[0].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
990
        src+=2;
991
        if (st) c->status[1].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
992
        if (st) src+=2;
993
        c->status[0].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
994
        src+=2;
995
        if (st) c->status[1].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
996
        if (st) src+=2;
997

    
998
        *samples++ = c->status[0].sample1;
999
        if (st) *samples++ = c->status[1].sample1;
1000
        *samples++ = c->status[0].sample2;
1001
        if (st) *samples++ = c->status[1].sample2;
1002
        for(;n>0;n--) {
1003
            *samples++ = adpcm_ms_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F);
1004
            *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
1005
            src ++;
1006
        }
1007
        break;
1008
    case CODEC_ID_ADPCM_IMA_DK4:
1009
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1010
            buf_size = avctx->block_align;
1011

    
1012
        c->status[0].predictor = (int16_t)(src[0] | (src[1] << 8));
1013
        c->status[0].step_index = src[2];
1014
        src += 4;
1015
        *samples++ = c->status[0].predictor;
1016
        if (st) {
1017
            c->status[1].predictor = (int16_t)(src[0] | (src[1] << 8));
1018
            c->status[1].step_index = src[2];
1019
            src += 4;
1020
            *samples++ = c->status[1].predictor;
1021
        }
1022
        while (src < buf + buf_size) {
1023

    
1024
            /* take care of the top nibble (always left or mono channel) */
1025
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1026
                (src[0] >> 4) & 0x0F, 3);
1027

    
1028
            /* take care of the bottom nibble, which is right sample for
1029
             * stereo, or another mono sample */
1030
            if (st)
1031
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1032
                    src[0] & 0x0F, 3);
1033
            else
1034
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1035
                    src[0] & 0x0F, 3);
1036

    
1037
            src++;
1038
        }
1039
        break;
1040
    case CODEC_ID_ADPCM_IMA_DK3:
1041
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1042
            buf_size = avctx->block_align;
1043

    
1044
        if(buf_size + 16 > (samples_end - samples)*3/8)
1045
            return -1;
1046

    
1047
        c->status[0].predictor = (int16_t)(src[10] | (src[11] << 8));
1048
        c->status[1].predictor = (int16_t)(src[12] | (src[13] << 8));
1049
        c->status[0].step_index = src[14];
1050
        c->status[1].step_index = src[15];
1051
        /* sign extend the predictors */
1052
        src += 16;
1053
        diff_channel = c->status[1].predictor;
1054

    
1055
        /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1056
         * the buffer is consumed */
1057
        while (1) {
1058

    
1059
            /* for this algorithm, c->status[0] is the sum channel and
1060
             * c->status[1] is the diff channel */
1061

    
1062
            /* process the first predictor of the sum channel */
1063
            DK3_GET_NEXT_NIBBLE();
1064
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1065

    
1066
            /* process the diff channel predictor */
1067
            DK3_GET_NEXT_NIBBLE();
1068
            adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1069

    
1070
            /* process the first pair of stereo PCM samples */
1071
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1072
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1073
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1074

    
1075
            /* process the second predictor of the sum channel */
1076
            DK3_GET_NEXT_NIBBLE();
1077
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1078

    
1079
            /* process the second pair of stereo PCM samples */
1080
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1081
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1082
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1083
        }
1084
        break;
1085
    case CODEC_ID_ADPCM_IMA_WS:
1086
        /* no per-block initialization; just start decoding the data */
1087
        while (src < buf + buf_size) {
1088

    
1089
            if (st) {
1090
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1091
                    (src[0] >> 4) & 0x0F, 3);
1092
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1093
                    src[0] & 0x0F, 3);
1094
            } else {
1095
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1096
                    (src[0] >> 4) & 0x0F, 3);
1097
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1098
                    src[0] & 0x0F, 3);
1099
            }
1100

    
1101
            src++;
1102
        }
1103
        break;
1104
    case CODEC_ID_ADPCM_XA:
1105
        c->status[0].sample1 = c->status[0].sample2 =
1106
        c->status[1].sample1 = c->status[1].sample2 = 0;
1107
        while (buf_size >= 128) {
1108
            xa_decode(samples, src, &c->status[0], &c->status[1],
1109
                avctx->channels);
1110
            src += 128;
1111
            samples += 28 * 8;
1112
            buf_size -= 128;
1113
        }
1114
        break;
1115
    case CODEC_ID_ADPCM_EA:
1116
        samples_in_chunk = AV_RL32(src);
1117
        if (samples_in_chunk >= ((buf_size - 12) * 2)) {
1118
            src += buf_size;
1119
            break;
1120
        }
1121
        src += 4;
1122
        current_left_sample = (int16_t)AV_RL16(src);
1123
        src += 2;
1124
        previous_left_sample = (int16_t)AV_RL16(src);
1125
        src += 2;
1126
        current_right_sample = (int16_t)AV_RL16(src);
1127
        src += 2;
1128
        previous_right_sample = (int16_t)AV_RL16(src);
1129
        src += 2;
1130

    
1131
        for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
1132
            coeff1l = ea_adpcm_table[(*src >> 4) & 0x0F];
1133
            coeff2l = ea_adpcm_table[((*src >> 4) & 0x0F) + 4];
1134
            coeff1r = ea_adpcm_table[*src & 0x0F];
1135
            coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
1136
            src++;
1137

    
1138
            shift_left = ((*src >> 4) & 0x0F) + 8;
1139
            shift_right = (*src & 0x0F) + 8;
1140
            src++;
1141

    
1142
            for (count2 = 0; count2 < 28; count2++) {
1143
                next_left_sample = (((*src & 0xF0) << 24) >> shift_left);
1144
                next_right_sample = (((*src & 0x0F) << 28) >> shift_right);
1145
                src++;
1146

    
1147
                next_left_sample = (next_left_sample +
1148
                    (current_left_sample * coeff1l) +
1149
                    (previous_left_sample * coeff2l) + 0x80) >> 8;
1150
                next_right_sample = (next_right_sample +
1151
                    (current_right_sample * coeff1r) +
1152
                    (previous_right_sample * coeff2r) + 0x80) >> 8;
1153
                CLAMP_TO_SHORT(next_left_sample);
1154
                CLAMP_TO_SHORT(next_right_sample);
1155

    
1156
                previous_left_sample = current_left_sample;
1157
                current_left_sample = next_left_sample;
1158
                previous_right_sample = current_right_sample;
1159
                current_right_sample = next_right_sample;
1160
                *samples++ = (unsigned short)current_left_sample;
1161
                *samples++ = (unsigned short)current_right_sample;
1162
            }
1163
        }
1164
        break;
1165
    case CODEC_ID_ADPCM_IMA_SMJPEG:
1166
        c->status[0].predictor = *src;
1167
        src += 2;
1168
        c->status[0].step_index = *src++;
1169
        src++;  /* skip another byte before getting to the meat */
1170
        while (src < buf + buf_size) {
1171
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1172
                *src & 0x0F, 3);
1173
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1174
                (*src >> 4) & 0x0F, 3);
1175
            src++;
1176
        }
1177
        break;
1178
    case CODEC_ID_ADPCM_CT:
1179
        while (src < buf + buf_size) {
1180
            if (st) {
1181
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1182
                    (src[0] >> 4) & 0x0F);
1183
                *samples++ = adpcm_ct_expand_nibble(&c->status[1],
1184
                    src[0] & 0x0F);
1185
            } else {
1186
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1187
                    (src[0] >> 4) & 0x0F);
1188
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1189
                    src[0] & 0x0F);
1190
            }
1191
            src++;
1192
        }
1193
        break;
1194
    case CODEC_ID_ADPCM_SBPRO_4:
1195
    case CODEC_ID_ADPCM_SBPRO_3:
1196
    case CODEC_ID_ADPCM_SBPRO_2:
1197
        if (!c->status[0].step_index) {
1198
            /* the first byte is a raw sample */
1199
            *samples++ = 128 * (*src++ - 0x80);
1200
            if (st)
1201
              *samples++ = 128 * (*src++ - 0x80);
1202
            c->status[0].step_index = 1;
1203
        }
1204
        if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1205
            while (src < buf + buf_size) {
1206
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1207
                    (src[0] >> 4) & 0x0F, 4, 0);
1208
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1209
                    src[0] & 0x0F, 4, 0);
1210
                src++;
1211
            }
1212
        } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1213
            while (src < buf + buf_size && samples + 2 < samples_end) {
1214
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1215
                    (src[0] >> 5) & 0x07, 3, 0);
1216
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1217
                    (src[0] >> 2) & 0x07, 3, 0);
1218
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1219
                    src[0] & 0x03, 2, 0);
1220
                src++;
1221
            }
1222
        } else {
1223
            while (src < buf + buf_size && samples + 3 < samples_end) {
1224
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1225
                    (src[0] >> 6) & 0x03, 2, 2);
1226
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1227
                    (src[0] >> 4) & 0x03, 2, 2);
1228
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1229
                    (src[0] >> 2) & 0x03, 2, 2);
1230
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1231
                    src[0] & 0x03, 2, 2);
1232
                src++;
1233
            }
1234
        }
1235
        break;
1236
    case CODEC_ID_ADPCM_SWF:
1237
    {
1238
        GetBitContext gb;
1239
        const int *table;
1240
        int k0, signmask, nb_bits;
1241
        int size = buf_size*8;
1242

    
1243
        init_get_bits(&gb, buf, size);
1244

    
1245
        //read bits & inital values
1246
        nb_bits = get_bits(&gb, 2)+2;
1247
        //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1248
        table = swf_index_tables[nb_bits-2];
1249
        k0 = 1 << (nb_bits-2);
1250
        signmask = 1 << (nb_bits-1);
1251

    
1252
        for (i = 0; i < avctx->channels; i++) {
1253
            *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1254
            c->status[i].step_index = get_bits(&gb, 6);
1255
        }
1256

    
1257
        while (get_bits_count(&gb) < size)
1258
        {
1259
            int i;
1260

    
1261
            for (i = 0; i < avctx->channels; i++) {
1262
                // similar to IMA adpcm
1263
                int delta = get_bits(&gb, nb_bits);
1264
                int step = step_table[c->status[i].step_index];
1265
                long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1266
                int k = k0;
1267

    
1268
                do {
1269
                    if (delta & k)
1270
                        vpdiff += step;
1271
                    step >>= 1;
1272
                    k >>= 1;
1273
                } while(k);
1274
                vpdiff += step;
1275

    
1276
                if (delta & signmask)
1277
                    c->status[i].predictor -= vpdiff;
1278
                else
1279
                    c->status[i].predictor += vpdiff;
1280

    
1281
                c->status[i].step_index += table[delta & (~signmask)];
1282

    
1283
                c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
1284
                c->status[i].predictor = av_clip(c->status[i].predictor, -32768, 32767);
1285

    
1286
                *samples++ = c->status[i].predictor;
1287
                if (samples >= samples_end) {
1288
                    av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1289
                    return -1;
1290
                }
1291
            }
1292
        }
1293
        src += buf_size;
1294
        break;
1295
    }
1296
    case CODEC_ID_ADPCM_YAMAHA:
1297
        while (src < buf + buf_size) {
1298
            if (st) {
1299
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1300
                        src[0] & 0x0F);
1301
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1302
                        (src[0] >> 4) & 0x0F);
1303
            } else {
1304
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1305
                        src[0] & 0x0F);
1306
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1307
                        (src[0] >> 4) & 0x0F);
1308
            }
1309
            src++;
1310
        }
1311
        break;
1312
    case CODEC_ID_ADPCM_THP:
1313
      {
1314
        GetBitContext gb;
1315
        int table[16][2];
1316
        unsigned int samplecnt;
1317
        int prev1[2], prev2[2];
1318
        int ch;
1319

    
1320
        if (buf_size < 80) {
1321
            av_log(avctx, AV_LOG_ERROR, "frame too small\n");
1322
            return -1;
1323
        }
1324

    
1325
        init_get_bits(&gb, src, buf_size * 8);
1326
        src += buf_size;
1327

    
1328
                    get_bits_long(&gb, 32); /* Channel size */
1329
        samplecnt = get_bits_long(&gb, 32);
1330

    
1331
        for (ch = 0; ch < 2; ch++)
1332
            for (i = 0; i < 16; i++)
1333
                table[i][ch] = get_sbits(&gb, 16);
1334

    
1335
        /* Initialize the previous sample.  */
1336
        for (ch = 0; ch < 2; ch++) {
1337
            prev1[ch] = get_sbits(&gb, 16);
1338
            prev2[ch] = get_sbits(&gb, 16);
1339
        }
1340

    
1341
        if (samplecnt >= (samples_end - samples) /  (st + 1)) {
1342
            av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1343
            return -1;
1344
        }
1345

    
1346
        for (ch = 0; ch <= st; ch++) {
1347
            samples = (unsigned short *) data + ch;
1348

    
1349
            /* Read in every sample for this channel.  */
1350
            for (i = 0; i < samplecnt / 14; i++) {
1351
                uint8_t index = get_bits (&gb, 4) & 7;
1352
                unsigned int exp = get_bits (&gb, 4);
1353
                int factor1 = table[index * 2][ch];
1354
                int factor2 = table[index * 2 + 1][ch];
1355

    
1356
                /* Decode 14 samples.  */
1357
                for (n = 0; n < 14; n++) {
1358
                    int sampledat = get_sbits (&gb, 4);
1359

    
1360
                    *samples = ((prev1[ch]*factor1
1361
                                + prev2[ch]*factor2) >> 11) + (sampledat << exp);
1362
                    prev2[ch] = prev1[ch];
1363
                    prev1[ch] = *samples++;
1364

    
1365
                    /* In case of stereo, skip one sample, this sample
1366
                       is for the other channel.  */
1367
                    samples += st;
1368
                }
1369
            }
1370
        }
1371

    
1372
        /* In the previous loop, in case stereo is used, samples is
1373
           increased exactly one time too often.  */
1374
        samples -= st;
1375
        break;
1376
      }
1377

    
1378
    default:
1379
        return -1;
1380
    }
1381
    *data_size = (uint8_t *)samples - (uint8_t *)data;
1382
    return src - buf;
1383
}
1384

    
1385

    
1386

    
1387
#ifdef CONFIG_ENCODERS
1388
#define ADPCM_ENCODER(id,name)                  \
1389
AVCodec name ## _encoder = {                    \
1390
    #name,                                      \
1391
    CODEC_TYPE_AUDIO,                           \
1392
    id,                                         \
1393
    sizeof(ADPCMContext),                       \
1394
    adpcm_encode_init,                          \
1395
    adpcm_encode_frame,                         \
1396
    adpcm_encode_close,                         \
1397
    NULL,                                       \
1398
};
1399
#else
1400
#define ADPCM_ENCODER(id,name)
1401
#endif
1402

    
1403
#ifdef CONFIG_DECODERS
1404
#define ADPCM_DECODER(id,name)                  \
1405
AVCodec name ## _decoder = {                    \
1406
    #name,                                      \
1407
    CODEC_TYPE_AUDIO,                           \
1408
    id,                                         \
1409
    sizeof(ADPCMContext),                       \
1410
    adpcm_decode_init,                          \
1411
    NULL,                                       \
1412
    NULL,                                       \
1413
    adpcm_decode_frame,                         \
1414
};
1415
#else
1416
#define ADPCM_DECODER(id,name)
1417
#endif
1418

    
1419
#define ADPCM_CODEC(id, name)                   \
1420
ADPCM_ENCODER(id,name) ADPCM_DECODER(id,name)
1421

    
1422
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt);
1423
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav);
1424
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3);
1425
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4);
1426
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws);
1427
ADPCM_CODEC(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg);
1428
ADPCM_CODEC(CODEC_ID_ADPCM_MS, adpcm_ms);
1429
ADPCM_CODEC(CODEC_ID_ADPCM_4XM, adpcm_4xm);
1430
ADPCM_CODEC(CODEC_ID_ADPCM_XA, adpcm_xa);
1431
ADPCM_CODEC(CODEC_ID_ADPCM_EA, adpcm_ea);
1432
ADPCM_CODEC(CODEC_ID_ADPCM_CT, adpcm_ct);
1433
ADPCM_CODEC(CODEC_ID_ADPCM_SWF, adpcm_swf);
1434
ADPCM_CODEC(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha);
1435
ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4);
1436
ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3);
1437
ADPCM_CODEC(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2);
1438
ADPCM_CODEC(CODEC_ID_ADPCM_THP, adpcm_thp);
1439

    
1440
#undef ADPCM_CODEC