ffmpeg / libavcodec / vp8.c @ d23e3e5f
History | View | Annotate | Download (63.9 KB)
1 |
/**
|
---|---|
2 |
* VP8 compatible video decoder
|
3 |
*
|
4 |
* Copyright (C) 2010 David Conrad
|
5 |
* Copyright (C) 2010 Ronald S. Bultje
|
6 |
* Copyright (C) 2010 Jason Garrett-Glaser
|
7 |
*
|
8 |
* This file is part of FFmpeg.
|
9 |
*
|
10 |
* FFmpeg is free software; you can redistribute it and/or
|
11 |
* modify it under the terms of the GNU Lesser General Public
|
12 |
* License as published by the Free Software Foundation; either
|
13 |
* version 2.1 of the License, or (at your option) any later version.
|
14 |
*
|
15 |
* FFmpeg is distributed in the hope that it will be useful,
|
16 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
17 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
18 |
* Lesser General Public License for more details.
|
19 |
*
|
20 |
* You should have received a copy of the GNU Lesser General Public
|
21 |
* License along with FFmpeg; if not, write to the Free Software
|
22 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
23 |
*/
|
24 |
|
25 |
#include "libavcore/imgutils.h" |
26 |
#include "avcodec.h" |
27 |
#include "vp56.h" |
28 |
#include "vp8data.h" |
29 |
#include "vp8dsp.h" |
30 |
#include "h264pred.h" |
31 |
#include "rectangle.h" |
32 |
|
33 |
typedef struct { |
34 |
uint8_t filter_level; |
35 |
uint8_t inner_limit; |
36 |
uint8_t inner_filter; |
37 |
} VP8FilterStrength; |
38 |
|
39 |
typedef struct { |
40 |
uint8_t skip; |
41 |
// todo: make it possible to check for at least (i4x4 or split_mv)
|
42 |
// in one op. are others needed?
|
43 |
uint8_t mode; |
44 |
uint8_t ref_frame; |
45 |
uint8_t partitioning; |
46 |
VP56mv mv; |
47 |
VP56mv bmv[16];
|
48 |
} VP8Macroblock; |
49 |
|
50 |
typedef struct { |
51 |
AVCodecContext *avctx; |
52 |
DSPContext dsp; |
53 |
VP8DSPContext vp8dsp; |
54 |
H264PredContext hpc; |
55 |
vp8_mc_func put_pixels_tab[3][3][3]; |
56 |
AVFrame frames[4];
|
57 |
AVFrame *framep[4];
|
58 |
uint8_t *edge_emu_buffer; |
59 |
VP56RangeCoder c; ///< header context, includes mb modes and motion vectors
|
60 |
int profile;
|
61 |
|
62 |
int mb_width; /* number of horizontal MB */ |
63 |
int mb_height; /* number of vertical MB */ |
64 |
int linesize;
|
65 |
int uvlinesize;
|
66 |
|
67 |
int keyframe;
|
68 |
int invisible;
|
69 |
int update_last; ///< update VP56_FRAME_PREVIOUS with the current one |
70 |
int update_golden; ///< VP56_FRAME_NONE if not updated, or which frame to copy if so |
71 |
int update_altref;
|
72 |
int deblock_filter;
|
73 |
|
74 |
/**
|
75 |
* If this flag is not set, all the probability updates
|
76 |
* are discarded after this frame is decoded.
|
77 |
*/
|
78 |
int update_probabilities;
|
79 |
|
80 |
/**
|
81 |
* All coefficients are contained in separate arith coding contexts.
|
82 |
* There can be 1, 2, 4, or 8 of these after the header context.
|
83 |
*/
|
84 |
int num_coeff_partitions;
|
85 |
VP56RangeCoder coeff_partition[8];
|
86 |
|
87 |
VP8Macroblock *macroblocks; |
88 |
VP8Macroblock *macroblocks_base; |
89 |
VP8FilterStrength *filter_strength; |
90 |
|
91 |
uint8_t *intra4x4_pred_mode_top; |
92 |
uint8_t intra4x4_pred_mode_left[4];
|
93 |
uint8_t *segmentation_map; |
94 |
|
95 |
/**
|
96 |
* Cache of the top row needed for intra prediction
|
97 |
* 16 for luma, 8 for each chroma plane
|
98 |
*/
|
99 |
uint8_t (*top_border)[16+8+8]; |
100 |
|
101 |
/**
|
102 |
* For coeff decode, we need to know whether the above block had non-zero
|
103 |
* coefficients. This means for each macroblock, we need data for 4 luma
|
104 |
* blocks, 2 u blocks, 2 v blocks, and the luma dc block, for a total of 9
|
105 |
* per macroblock. We keep the last row in top_nnz.
|
106 |
*/
|
107 |
uint8_t (*top_nnz)[9];
|
108 |
DECLARE_ALIGNED(8, uint8_t, left_nnz)[9]; |
109 |
|
110 |
/**
|
111 |
* This is the index plus one of the last non-zero coeff
|
112 |
* for each of the blocks in the current macroblock.
|
113 |
* So, 0 -> no coeffs
|
114 |
* 1 -> dc-only (special transform)
|
115 |
* 2+-> full transform
|
116 |
*/
|
117 |
DECLARE_ALIGNED(16, uint8_t, non_zero_count_cache)[6][4]; |
118 |
DECLARE_ALIGNED(16, DCTELEM, block)[6][4][16]; |
119 |
DECLARE_ALIGNED(16, DCTELEM, block_dc)[16]; |
120 |
uint8_t intra4x4_pred_mode_mb[16];
|
121 |
|
122 |
int chroma_pred_mode; ///< 8x8c pred mode of the current macroblock |
123 |
int segment; ///< segment of the current macroblock |
124 |
|
125 |
int mbskip_enabled;
|
126 |
int sign_bias[4]; ///< one state [0, 1] per ref frame type |
127 |
int ref_count[3]; |
128 |
|
129 |
/**
|
130 |
* Base parameters for segmentation, i.e. per-macroblock parameters.
|
131 |
* These must be kept unchanged even if segmentation is not used for
|
132 |
* a frame, since the values persist between interframes.
|
133 |
*/
|
134 |
struct {
|
135 |
int enabled;
|
136 |
int absolute_vals;
|
137 |
int update_map;
|
138 |
int8_t base_quant[4];
|
139 |
int8_t filter_level[4]; ///< base loop filter level |
140 |
} segmentation; |
141 |
|
142 |
/**
|
143 |
* Macroblocks can have one of 4 different quants in a frame when
|
144 |
* segmentation is enabled.
|
145 |
* If segmentation is disabled, only the first segment's values are used.
|
146 |
*/
|
147 |
struct {
|
148 |
// [0] - DC qmul [1] - AC qmul
|
149 |
int16_t luma_qmul[2];
|
150 |
int16_t luma_dc_qmul[2]; ///< luma dc-only block quant |
151 |
int16_t chroma_qmul[2];
|
152 |
} qmat[4];
|
153 |
|
154 |
struct {
|
155 |
int simple;
|
156 |
int level;
|
157 |
int sharpness;
|
158 |
} filter; |
159 |
|
160 |
struct {
|
161 |
int enabled; ///< whether each mb can have a different strength based on mode/ref |
162 |
|
163 |
/**
|
164 |
* filter strength adjustment for the following macroblock modes:
|
165 |
* [0] - i4x4
|
166 |
* [1] - zero mv
|
167 |
* [2] - inter modes except for zero or split mv
|
168 |
* [3] - split mv
|
169 |
* i16x16 modes never have any adjustment
|
170 |
*/
|
171 |
int8_t mode[4];
|
172 |
|
173 |
/**
|
174 |
* filter strength adjustment for macroblocks that reference:
|
175 |
* [0] - intra / VP56_FRAME_CURRENT
|
176 |
* [1] - VP56_FRAME_PREVIOUS
|
177 |
* [2] - VP56_FRAME_GOLDEN
|
178 |
* [3] - altref / VP56_FRAME_GOLDEN2
|
179 |
*/
|
180 |
int8_t ref[4];
|
181 |
} lf_delta; |
182 |
|
183 |
/**
|
184 |
* These are all of the updatable probabilities for binary decisions.
|
185 |
* They are only implictly reset on keyframes, making it quite likely
|
186 |
* for an interframe to desync if a prior frame's header was corrupt
|
187 |
* or missing outright!
|
188 |
*/
|
189 |
struct {
|
190 |
uint8_t segmentid[3];
|
191 |
uint8_t mbskip; |
192 |
uint8_t intra; |
193 |
uint8_t last; |
194 |
uint8_t golden; |
195 |
uint8_t pred16x16[4];
|
196 |
uint8_t pred8x8c[3];
|
197 |
/* Padded to allow overreads */
|
198 |
uint8_t token[4][17][3][NUM_DCT_TOKENS-1]; |
199 |
uint8_t mvc[2][19]; |
200 |
} prob[2];
|
201 |
} VP8Context; |
202 |
|
203 |
static void vp8_decode_flush(AVCodecContext *avctx) |
204 |
{ |
205 |
VP8Context *s = avctx->priv_data; |
206 |
int i;
|
207 |
|
208 |
for (i = 0; i < 4; i++) |
209 |
if (s->frames[i].data[0]) |
210 |
avctx->release_buffer(avctx, &s->frames[i]); |
211 |
memset(s->framep, 0, sizeof(s->framep)); |
212 |
|
213 |
av_freep(&s->macroblocks_base); |
214 |
av_freep(&s->filter_strength); |
215 |
av_freep(&s->intra4x4_pred_mode_top); |
216 |
av_freep(&s->top_nnz); |
217 |
av_freep(&s->edge_emu_buffer); |
218 |
av_freep(&s->top_border); |
219 |
av_freep(&s->segmentation_map); |
220 |
|
221 |
s->macroblocks = NULL;
|
222 |
} |
223 |
|
224 |
static int update_dimensions(VP8Context *s, int width, int height) |
225 |
{ |
226 |
if (av_image_check_size(width, height, 0, s->avctx)) |
227 |
return AVERROR_INVALIDDATA;
|
228 |
|
229 |
vp8_decode_flush(s->avctx); |
230 |
|
231 |
avcodec_set_dimensions(s->avctx, width, height); |
232 |
|
233 |
s->mb_width = (s->avctx->coded_width +15) / 16; |
234 |
s->mb_height = (s->avctx->coded_height+15) / 16; |
235 |
|
236 |
s->macroblocks_base = av_mallocz((s->mb_width+s->mb_height*2+1)*sizeof(*s->macroblocks)); |
237 |
s->filter_strength = av_mallocz(s->mb_width*sizeof(*s->filter_strength));
|
238 |
s->intra4x4_pred_mode_top = av_mallocz(s->mb_width*4);
|
239 |
s->top_nnz = av_mallocz(s->mb_width*sizeof(*s->top_nnz));
|
240 |
s->top_border = av_mallocz((s->mb_width+1)*sizeof(*s->top_border)); |
241 |
s->segmentation_map = av_mallocz(s->mb_width*s->mb_height); |
242 |
|
243 |
if (!s->macroblocks_base || !s->filter_strength || !s->intra4x4_pred_mode_top ||
|
244 |
!s->top_nnz || !s->top_border || !s->segmentation_map) |
245 |
return AVERROR(ENOMEM);
|
246 |
|
247 |
s->macroblocks = s->macroblocks_base + 1;
|
248 |
|
249 |
return 0; |
250 |
} |
251 |
|
252 |
static void parse_segment_info(VP8Context *s) |
253 |
{ |
254 |
VP56RangeCoder *c = &s->c; |
255 |
int i;
|
256 |
|
257 |
s->segmentation.update_map = vp8_rac_get(c); |
258 |
|
259 |
if (vp8_rac_get(c)) { // update segment feature data |
260 |
s->segmentation.absolute_vals = vp8_rac_get(c); |
261 |
|
262 |
for (i = 0; i < 4; i++) |
263 |
s->segmentation.base_quant[i] = vp8_rac_get_sint(c, 7);
|
264 |
|
265 |
for (i = 0; i < 4; i++) |
266 |
s->segmentation.filter_level[i] = vp8_rac_get_sint(c, 6);
|
267 |
} |
268 |
if (s->segmentation.update_map)
|
269 |
for (i = 0; i < 3; i++) |
270 |
s->prob->segmentid[i] = vp8_rac_get(c) ? vp8_rac_get_uint(c, 8) : 255; |
271 |
} |
272 |
|
273 |
static void update_lf_deltas(VP8Context *s) |
274 |
{ |
275 |
VP56RangeCoder *c = &s->c; |
276 |
int i;
|
277 |
|
278 |
for (i = 0; i < 4; i++) |
279 |
s->lf_delta.ref[i] = vp8_rac_get_sint(c, 6);
|
280 |
|
281 |
for (i = 0; i < 4; i++) |
282 |
s->lf_delta.mode[i] = vp8_rac_get_sint(c, 6);
|
283 |
} |
284 |
|
285 |
static int setup_partitions(VP8Context *s, const uint8_t *buf, int buf_size) |
286 |
{ |
287 |
const uint8_t *sizes = buf;
|
288 |
int i;
|
289 |
|
290 |
s->num_coeff_partitions = 1 << vp8_rac_get_uint(&s->c, 2); |
291 |
|
292 |
buf += 3*(s->num_coeff_partitions-1); |
293 |
buf_size -= 3*(s->num_coeff_partitions-1); |
294 |
if (buf_size < 0) |
295 |
return -1; |
296 |
|
297 |
for (i = 0; i < s->num_coeff_partitions-1; i++) { |
298 |
int size = AV_RL24(sizes + 3*i); |
299 |
if (buf_size - size < 0) |
300 |
return -1; |
301 |
|
302 |
ff_vp56_init_range_decoder(&s->coeff_partition[i], buf, size); |
303 |
buf += size; |
304 |
buf_size -= size; |
305 |
} |
306 |
ff_vp56_init_range_decoder(&s->coeff_partition[i], buf, buf_size); |
307 |
|
308 |
return 0; |
309 |
} |
310 |
|
311 |
static void get_quants(VP8Context *s) |
312 |
{ |
313 |
VP56RangeCoder *c = &s->c; |
314 |
int i, base_qi;
|
315 |
|
316 |
int yac_qi = vp8_rac_get_uint(c, 7); |
317 |
int ydc_delta = vp8_rac_get_sint(c, 4); |
318 |
int y2dc_delta = vp8_rac_get_sint(c, 4); |
319 |
int y2ac_delta = vp8_rac_get_sint(c, 4); |
320 |
int uvdc_delta = vp8_rac_get_sint(c, 4); |
321 |
int uvac_delta = vp8_rac_get_sint(c, 4); |
322 |
|
323 |
for (i = 0; i < 4; i++) { |
324 |
if (s->segmentation.enabled) {
|
325 |
base_qi = s->segmentation.base_quant[i]; |
326 |
if (!s->segmentation.absolute_vals)
|
327 |
base_qi += yac_qi; |
328 |
} else
|
329 |
base_qi = yac_qi; |
330 |
|
331 |
s->qmat[i].luma_qmul[0] = vp8_dc_qlookup[av_clip(base_qi + ydc_delta , 0, 127)]; |
332 |
s->qmat[i].luma_qmul[1] = vp8_ac_qlookup[av_clip(base_qi , 0, 127)]; |
333 |
s->qmat[i].luma_dc_qmul[0] = 2 * vp8_dc_qlookup[av_clip(base_qi + y2dc_delta, 0, 127)]; |
334 |
s->qmat[i].luma_dc_qmul[1] = 155 * vp8_ac_qlookup[av_clip(base_qi + y2ac_delta, 0, 127)] / 100; |
335 |
s->qmat[i].chroma_qmul[0] = vp8_dc_qlookup[av_clip(base_qi + uvdc_delta, 0, 127)]; |
336 |
s->qmat[i].chroma_qmul[1] = vp8_ac_qlookup[av_clip(base_qi + uvac_delta, 0, 127)]; |
337 |
|
338 |
s->qmat[i].luma_dc_qmul[1] = FFMAX(s->qmat[i].luma_dc_qmul[1], 8); |
339 |
s->qmat[i].chroma_qmul[0] = FFMIN(s->qmat[i].chroma_qmul[0], 132); |
340 |
} |
341 |
} |
342 |
|
343 |
/**
|
344 |
* Determine which buffers golden and altref should be updated with after this frame.
|
345 |
* The spec isn't clear here, so I'm going by my understanding of what libvpx does
|
346 |
*
|
347 |
* Intra frames update all 3 references
|
348 |
* Inter frames update VP56_FRAME_PREVIOUS if the update_last flag is set
|
349 |
* If the update (golden|altref) flag is set, it's updated with the current frame
|
350 |
* if update_last is set, and VP56_FRAME_PREVIOUS otherwise.
|
351 |
* If the flag is not set, the number read means:
|
352 |
* 0: no update
|
353 |
* 1: VP56_FRAME_PREVIOUS
|
354 |
* 2: update golden with altref, or update altref with golden
|
355 |
*/
|
356 |
static VP56Frame ref_to_update(VP8Context *s, int update, VP56Frame ref) |
357 |
{ |
358 |
VP56RangeCoder *c = &s->c; |
359 |
|
360 |
if (update)
|
361 |
return VP56_FRAME_CURRENT;
|
362 |
|
363 |
switch (vp8_rac_get_uint(c, 2)) { |
364 |
case 1: |
365 |
return VP56_FRAME_PREVIOUS;
|
366 |
case 2: |
367 |
return (ref == VP56_FRAME_GOLDEN) ? VP56_FRAME_GOLDEN2 : VP56_FRAME_GOLDEN;
|
368 |
} |
369 |
return VP56_FRAME_NONE;
|
370 |
} |
371 |
|
372 |
static void update_refs(VP8Context *s) |
373 |
{ |
374 |
VP56RangeCoder *c = &s->c; |
375 |
|
376 |
int update_golden = vp8_rac_get(c);
|
377 |
int update_altref = vp8_rac_get(c);
|
378 |
|
379 |
s->update_golden = ref_to_update(s, update_golden, VP56_FRAME_GOLDEN); |
380 |
s->update_altref = ref_to_update(s, update_altref, VP56_FRAME_GOLDEN2); |
381 |
} |
382 |
|
383 |
static int decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size) |
384 |
{ |
385 |
VP56RangeCoder *c = &s->c; |
386 |
int header_size, hscale, vscale, i, j, k, l, m, ret;
|
387 |
int width = s->avctx->width;
|
388 |
int height = s->avctx->height;
|
389 |
|
390 |
s->keyframe = !(buf[0] & 1); |
391 |
s->profile = (buf[0]>>1) & 7; |
392 |
s->invisible = !(buf[0] & 0x10); |
393 |
header_size = AV_RL24(buf) >> 5;
|
394 |
buf += 3;
|
395 |
buf_size -= 3;
|
396 |
|
397 |
if (s->profile > 3) |
398 |
av_log(s->avctx, AV_LOG_WARNING, "Unknown profile %d\n", s->profile);
|
399 |
|
400 |
if (!s->profile)
|
401 |
memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_epel_pixels_tab, sizeof(s->put_pixels_tab));
|
402 |
else // profile 1-3 use bilinear, 4+ aren't defined so whatever |
403 |
memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_bilinear_pixels_tab, sizeof(s->put_pixels_tab));
|
404 |
|
405 |
if (header_size > buf_size - 7*s->keyframe) { |
406 |
av_log(s->avctx, AV_LOG_ERROR, "Header size larger than data provided\n");
|
407 |
return AVERROR_INVALIDDATA;
|
408 |
} |
409 |
|
410 |
if (s->keyframe) {
|
411 |
if (AV_RL24(buf) != 0x2a019d) { |
412 |
av_log(s->avctx, AV_LOG_ERROR, "Invalid start code 0x%x\n", AV_RL24(buf));
|
413 |
return AVERROR_INVALIDDATA;
|
414 |
} |
415 |
width = AV_RL16(buf+3) & 0x3fff; |
416 |
height = AV_RL16(buf+5) & 0x3fff; |
417 |
hscale = buf[4] >> 6; |
418 |
vscale = buf[6] >> 6; |
419 |
buf += 7;
|
420 |
buf_size -= 7;
|
421 |
|
422 |
if (hscale || vscale)
|
423 |
av_log_missing_feature(s->avctx, "Upscaling", 1); |
424 |
|
425 |
s->update_golden = s->update_altref = VP56_FRAME_CURRENT; |
426 |
for (i = 0; i < 4; i++) |
427 |
for (j = 0; j < 16; j++) |
428 |
memcpy(s->prob->token[i][j], vp8_token_default_probs[i][vp8_coeff_band[j]], |
429 |
sizeof(s->prob->token[i][j]));
|
430 |
memcpy(s->prob->pred16x16, vp8_pred16x16_prob_inter, sizeof(s->prob->pred16x16));
|
431 |
memcpy(s->prob->pred8x8c , vp8_pred8x8c_prob_inter , sizeof(s->prob->pred8x8c));
|
432 |
memcpy(s->prob->mvc , vp8_mv_default_prob , sizeof(s->prob->mvc));
|
433 |
memset(&s->segmentation, 0, sizeof(s->segmentation)); |
434 |
} |
435 |
|
436 |
if (!s->macroblocks_base || /* first frame */ |
437 |
width != s->avctx->width || height != s->avctx->height) { |
438 |
if ((ret = update_dimensions(s, width, height) < 0)) |
439 |
return ret;
|
440 |
} |
441 |
|
442 |
ff_vp56_init_range_decoder(c, buf, header_size); |
443 |
buf += header_size; |
444 |
buf_size -= header_size; |
445 |
|
446 |
if (s->keyframe) {
|
447 |
if (vp8_rac_get(c))
|
448 |
av_log(s->avctx, AV_LOG_WARNING, "Unspecified colorspace\n");
|
449 |
vp8_rac_get(c); // whether we can skip clamping in dsp functions
|
450 |
} |
451 |
|
452 |
if ((s->segmentation.enabled = vp8_rac_get(c)))
|
453 |
parse_segment_info(s); |
454 |
else
|
455 |
s->segmentation.update_map = 0; // FIXME: move this to some init function? |
456 |
|
457 |
s->filter.simple = vp8_rac_get(c); |
458 |
s->filter.level = vp8_rac_get_uint(c, 6);
|
459 |
s->filter.sharpness = vp8_rac_get_uint(c, 3);
|
460 |
|
461 |
if ((s->lf_delta.enabled = vp8_rac_get(c)))
|
462 |
if (vp8_rac_get(c))
|
463 |
update_lf_deltas(s); |
464 |
|
465 |
if (setup_partitions(s, buf, buf_size)) {
|
466 |
av_log(s->avctx, AV_LOG_ERROR, "Invalid partitions\n");
|
467 |
return AVERROR_INVALIDDATA;
|
468 |
} |
469 |
|
470 |
get_quants(s); |
471 |
|
472 |
if (!s->keyframe) {
|
473 |
update_refs(s); |
474 |
s->sign_bias[VP56_FRAME_GOLDEN] = vp8_rac_get(c); |
475 |
s->sign_bias[VP56_FRAME_GOLDEN2 /* altref */] = vp8_rac_get(c);
|
476 |
} |
477 |
|
478 |
// if we aren't saving this frame's probabilities for future frames,
|
479 |
// make a copy of the current probabilities
|
480 |
if (!(s->update_probabilities = vp8_rac_get(c)))
|
481 |
s->prob[1] = s->prob[0]; |
482 |
|
483 |
s->update_last = s->keyframe || vp8_rac_get(c); |
484 |
|
485 |
for (i = 0; i < 4; i++) |
486 |
for (j = 0; j < 8; j++) |
487 |
for (k = 0; k < 3; k++) |
488 |
for (l = 0; l < NUM_DCT_TOKENS-1; l++) |
489 |
if (vp56_rac_get_prob_branchy(c, vp8_token_update_probs[i][j][k][l])) {
|
490 |
int prob = vp8_rac_get_uint(c, 8); |
491 |
for (m = 0; vp8_coeff_band_indexes[j][m] >= 0; m++) |
492 |
s->prob->token[i][vp8_coeff_band_indexes[j][m]][k][l] = prob; |
493 |
} |
494 |
|
495 |
if ((s->mbskip_enabled = vp8_rac_get(c)))
|
496 |
s->prob->mbskip = vp8_rac_get_uint(c, 8);
|
497 |
|
498 |
if (!s->keyframe) {
|
499 |
s->prob->intra = vp8_rac_get_uint(c, 8);
|
500 |
s->prob->last = vp8_rac_get_uint(c, 8);
|
501 |
s->prob->golden = vp8_rac_get_uint(c, 8);
|
502 |
|
503 |
if (vp8_rac_get(c))
|
504 |
for (i = 0; i < 4; i++) |
505 |
s->prob->pred16x16[i] = vp8_rac_get_uint(c, 8);
|
506 |
if (vp8_rac_get(c))
|
507 |
for (i = 0; i < 3; i++) |
508 |
s->prob->pred8x8c[i] = vp8_rac_get_uint(c, 8);
|
509 |
|
510 |
// 17.2 MV probability update
|
511 |
for (i = 0; i < 2; i++) |
512 |
for (j = 0; j < 19; j++) |
513 |
if (vp56_rac_get_prob_branchy(c, vp8_mv_update_prob[i][j]))
|
514 |
s->prob->mvc[i][j] = vp8_rac_get_nn(c); |
515 |
} |
516 |
|
517 |
return 0; |
518 |
} |
519 |
|
520 |
static av_always_inline
|
521 |
void clamp_mv(VP8Context *s, VP56mv *dst, const VP56mv *src, int mb_x, int mb_y) |
522 |
{ |
523 |
#define MARGIN (16 << 2) |
524 |
dst->x = av_clip(src->x, -((mb_x << 6) + MARGIN),
|
525 |
((s->mb_width - 1 - mb_x) << 6) + MARGIN); |
526 |
dst->y = av_clip(src->y, -((mb_y << 6) + MARGIN),
|
527 |
((s->mb_height - 1 - mb_y) << 6) + MARGIN); |
528 |
} |
529 |
|
530 |
static av_always_inline
|
531 |
void find_near_mvs(VP8Context *s, VP8Macroblock *mb,
|
532 |
VP56mv near[2], VP56mv *best, uint8_t cnt[4]) |
533 |
{ |
534 |
VP8Macroblock *mb_edge[3] = { mb + 2 /* top */, |
535 |
mb - 1 /* left */, |
536 |
mb + 1 /* top-left */ }; |
537 |
enum { EDGE_TOP, EDGE_LEFT, EDGE_TOPLEFT };
|
538 |
VP56mv near_mv[4] = {{ 0 }}; |
539 |
enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV };
|
540 |
int idx = CNT_ZERO;
|
541 |
int best_idx = CNT_ZERO;
|
542 |
int cur_sign_bias = s->sign_bias[mb->ref_frame];
|
543 |
int *sign_bias = s->sign_bias;
|
544 |
|
545 |
/* Process MB on top, left and top-left */
|
546 |
#define MV_EDGE_CHECK(n)\
|
547 |
{\ |
548 |
VP8Macroblock *edge = mb_edge[n];\ |
549 |
int edge_ref = edge->ref_frame;\
|
550 |
if (edge_ref != VP56_FRAME_CURRENT) {\
|
551 |
uint32_t mv = AV_RN32A(&edge->mv);\ |
552 |
if (mv) {\
|
553 |
if (cur_sign_bias != sign_bias[edge_ref]) {\
|
554 |
/* SWAR negate of the values in mv. */\
|
555 |
mv = ~mv;\ |
556 |
mv = ((mv&0x7fff7fff) + 0x00010001) ^ (mv&0x80008000);\ |
557 |
}\ |
558 |
if (!n || mv != AV_RN32A(&near_mv[idx]))\
|
559 |
AV_WN32A(&near_mv[++idx], mv);\ |
560 |
cnt[idx] += 1 + (n != 2);\ |
561 |
} else\
|
562 |
cnt[CNT_ZERO] += 1 + (n != 2);\ |
563 |
}\ |
564 |
} |
565 |
MV_EDGE_CHECK(0)
|
566 |
MV_EDGE_CHECK(1)
|
567 |
MV_EDGE_CHECK(2)
|
568 |
|
569 |
/* If we have three distinct MVs, merge first and last if they're the same */
|
570 |
if (cnt[CNT_SPLITMV] && AV_RN32A(&near_mv[1+EDGE_TOP]) == AV_RN32A(&near_mv[1+EDGE_TOPLEFT])) |
571 |
cnt[CNT_NEAREST] += 1;
|
572 |
|
573 |
cnt[CNT_SPLITMV] = ((mb_edge[EDGE_LEFT]->mode == VP8_MVMODE_SPLIT) + |
574 |
(mb_edge[EDGE_TOP]->mode == VP8_MVMODE_SPLIT)) * 2 +
|
575 |
(mb_edge[EDGE_TOPLEFT]->mode == VP8_MVMODE_SPLIT); |
576 |
|
577 |
/* Swap near and nearest if necessary */
|
578 |
if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) {
|
579 |
FFSWAP(uint8_t, cnt[CNT_NEAREST], cnt[CNT_NEAR]); |
580 |
FFSWAP( VP56mv, near_mv[CNT_NEAREST], near_mv[CNT_NEAR]); |
581 |
} |
582 |
|
583 |
/* Choose the best mv out of 0,0 and the nearest mv */
|
584 |
if (cnt[CNT_NEAREST] >= cnt[CNT_ZERO])
|
585 |
best_idx = CNT_NEAREST; |
586 |
|
587 |
mb->mv = near_mv[best_idx]; |
588 |
near[0] = near_mv[CNT_NEAREST];
|
589 |
near[1] = near_mv[CNT_NEAR];
|
590 |
} |
591 |
|
592 |
/**
|
593 |
* Motion vector coding, 17.1.
|
594 |
*/
|
595 |
static int read_mv_component(VP56RangeCoder *c, const uint8_t *p) |
596 |
{ |
597 |
int bit, x = 0; |
598 |
|
599 |
if (vp56_rac_get_prob_branchy(c, p[0])) { |
600 |
int i;
|
601 |
|
602 |
for (i = 0; i < 3; i++) |
603 |
x += vp56_rac_get_prob(c, p[9 + i]) << i;
|
604 |
for (i = 9; i > 3; i--) |
605 |
x += vp56_rac_get_prob(c, p[9 + i]) << i;
|
606 |
if (!(x & 0xFFF0) || vp56_rac_get_prob(c, p[12])) |
607 |
x += 8;
|
608 |
} else {
|
609 |
// small_mvtree
|
610 |
const uint8_t *ps = p+2; |
611 |
bit = vp56_rac_get_prob(c, *ps); |
612 |
ps += 1 + 3*bit; |
613 |
x += 4*bit;
|
614 |
bit = vp56_rac_get_prob(c, *ps); |
615 |
ps += 1 + bit;
|
616 |
x += 2*bit;
|
617 |
x += vp56_rac_get_prob(c, *ps); |
618 |
} |
619 |
|
620 |
return (x && vp56_rac_get_prob(c, p[1])) ? -x : x; |
621 |
} |
622 |
|
623 |
static av_always_inline
|
624 |
const uint8_t *get_submv_prob(uint32_t left, uint32_t top)
|
625 |
{ |
626 |
if (left == top)
|
627 |
return vp8_submv_prob[4-!!left]; |
628 |
if (!top)
|
629 |
return vp8_submv_prob[2]; |
630 |
return vp8_submv_prob[1-!!left]; |
631 |
} |
632 |
|
633 |
/**
|
634 |
* Split motion vector prediction, 16.4.
|
635 |
* @returns the number of motion vectors parsed (2, 4 or 16)
|
636 |
*/
|
637 |
static av_always_inline
|
638 |
int decode_splitmvs(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb)
|
639 |
{ |
640 |
int part_idx;
|
641 |
int n, num;
|
642 |
VP8Macroblock *top_mb = &mb[2];
|
643 |
VP8Macroblock *left_mb = &mb[-1];
|
644 |
const uint8_t *mbsplits_left = vp8_mbsplits[left_mb->partitioning],
|
645 |
*mbsplits_top = vp8_mbsplits[top_mb->partitioning], |
646 |
*mbsplits_cur, *firstidx; |
647 |
VP56mv *top_mv = top_mb->bmv; |
648 |
VP56mv *left_mv = left_mb->bmv; |
649 |
VP56mv *cur_mv = mb->bmv; |
650 |
|
651 |
if (vp56_rac_get_prob_branchy(c, vp8_mbsplit_prob[0])) { |
652 |
if (vp56_rac_get_prob_branchy(c, vp8_mbsplit_prob[1])) { |
653 |
part_idx = VP8_SPLITMVMODE_16x8 + vp56_rac_get_prob(c, vp8_mbsplit_prob[2]);
|
654 |
} else {
|
655 |
part_idx = VP8_SPLITMVMODE_8x8; |
656 |
} |
657 |
} else {
|
658 |
part_idx = VP8_SPLITMVMODE_4x4; |
659 |
} |
660 |
|
661 |
num = vp8_mbsplit_count[part_idx]; |
662 |
mbsplits_cur = vp8_mbsplits[part_idx], |
663 |
firstidx = vp8_mbfirstidx[part_idx]; |
664 |
mb->partitioning = part_idx; |
665 |
|
666 |
for (n = 0; n < num; n++) { |
667 |
int k = firstidx[n];
|
668 |
uint32_t left, above; |
669 |
const uint8_t *submv_prob;
|
670 |
|
671 |
if (!(k & 3)) |
672 |
left = AV_RN32A(&left_mv[mbsplits_left[k + 3]]);
|
673 |
else
|
674 |
left = AV_RN32A(&cur_mv[mbsplits_cur[k - 1]]);
|
675 |
if (k <= 3) |
676 |
above = AV_RN32A(&top_mv[mbsplits_top[k + 12]]);
|
677 |
else
|
678 |
above = AV_RN32A(&cur_mv[mbsplits_cur[k - 4]]);
|
679 |
|
680 |
submv_prob = get_submv_prob(left, above); |
681 |
|
682 |
if (vp56_rac_get_prob_branchy(c, submv_prob[0])) { |
683 |
if (vp56_rac_get_prob_branchy(c, submv_prob[1])) { |
684 |
if (vp56_rac_get_prob_branchy(c, submv_prob[2])) { |
685 |
mb->bmv[n].y = mb->mv.y + read_mv_component(c, s->prob->mvc[0]);
|
686 |
mb->bmv[n].x = mb->mv.x + read_mv_component(c, s->prob->mvc[1]);
|
687 |
} else {
|
688 |
AV_ZERO32(&mb->bmv[n]); |
689 |
} |
690 |
} else {
|
691 |
AV_WN32A(&mb->bmv[n], above); |
692 |
} |
693 |
} else {
|
694 |
AV_WN32A(&mb->bmv[n], left); |
695 |
} |
696 |
} |
697 |
|
698 |
return num;
|
699 |
} |
700 |
|
701 |
static av_always_inline
|
702 |
void decode_intra4x4_modes(VP8Context *s, VP56RangeCoder *c,
|
703 |
int mb_x, int keyframe) |
704 |
{ |
705 |
uint8_t *intra4x4 = s->intra4x4_pred_mode_mb; |
706 |
if (keyframe) {
|
707 |
int x, y;
|
708 |
uint8_t* const top = s->intra4x4_pred_mode_top + 4 * mb_x; |
709 |
uint8_t* const left = s->intra4x4_pred_mode_left;
|
710 |
for (y = 0; y < 4; y++) { |
711 |
for (x = 0; x < 4; x++) { |
712 |
const uint8_t *ctx;
|
713 |
ctx = vp8_pred4x4_prob_intra[top[x]][left[y]]; |
714 |
*intra4x4 = vp8_rac_get_tree(c, vp8_pred4x4_tree, ctx); |
715 |
left[y] = top[x] = *intra4x4; |
716 |
intra4x4++; |
717 |
} |
718 |
} |
719 |
} else {
|
720 |
int i;
|
721 |
for (i = 0; i < 16; i++) |
722 |
intra4x4[i] = vp8_rac_get_tree(c, vp8_pred4x4_tree, vp8_pred4x4_prob_inter); |
723 |
} |
724 |
} |
725 |
|
726 |
static av_always_inline
|
727 |
void decode_mb_mode(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, uint8_t *segment) |
728 |
{ |
729 |
VP56RangeCoder *c = &s->c; |
730 |
|
731 |
if (s->segmentation.update_map)
|
732 |
*segment = vp8_rac_get_tree(c, vp8_segmentid_tree, s->prob->segmentid); |
733 |
s->segment = *segment; |
734 |
|
735 |
mb->skip = s->mbskip_enabled ? vp56_rac_get_prob(c, s->prob->mbskip) : 0;
|
736 |
|
737 |
if (s->keyframe) {
|
738 |
mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_intra, vp8_pred16x16_prob_intra); |
739 |
|
740 |
if (mb->mode == MODE_I4x4) {
|
741 |
decode_intra4x4_modes(s, c, mb_x, 1);
|
742 |
} else {
|
743 |
const uint32_t modes = vp8_pred4x4_mode[mb->mode] * 0x01010101u; |
744 |
AV_WN32A(s->intra4x4_pred_mode_top + 4 * mb_x, modes);
|
745 |
AV_WN32A(s->intra4x4_pred_mode_left, modes); |
746 |
} |
747 |
|
748 |
s->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, vp8_pred8x8c_prob_intra); |
749 |
mb->ref_frame = VP56_FRAME_CURRENT; |
750 |
} else if (vp56_rac_get_prob_branchy(c, s->prob->intra)) { |
751 |
VP56mv near[2], best;
|
752 |
uint8_t cnt[4] = { 0 }; |
753 |
|
754 |
// inter MB, 16.2
|
755 |
if (vp56_rac_get_prob_branchy(c, s->prob->last))
|
756 |
mb->ref_frame = vp56_rac_get_prob(c, s->prob->golden) ? |
757 |
VP56_FRAME_GOLDEN2 /* altref */ : VP56_FRAME_GOLDEN;
|
758 |
else
|
759 |
mb->ref_frame = VP56_FRAME_PREVIOUS; |
760 |
s->ref_count[mb->ref_frame-1]++;
|
761 |
|
762 |
// motion vectors, 16.3
|
763 |
find_near_mvs(s, mb, near, &best, cnt); |
764 |
if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[0]][0])) { |
765 |
if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[1]][1])) { |
766 |
if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[2]][2])) { |
767 |
if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[3]][3])) { |
768 |
mb->mode = VP8_MVMODE_SPLIT; |
769 |
clamp_mv(s, &mb->mv, &mb->mv, mb_x, mb_y); |
770 |
mb->mv = mb->bmv[decode_splitmvs(s, c, mb) - 1];
|
771 |
} else {
|
772 |
mb->mode = VP8_MVMODE_NEW; |
773 |
clamp_mv(s, &mb->mv, &mb->mv, mb_x, mb_y); |
774 |
mb->mv.y += read_mv_component(c, s->prob->mvc[0]);
|
775 |
mb->mv.x += read_mv_component(c, s->prob->mvc[1]);
|
776 |
} |
777 |
} else {
|
778 |
mb->mode = VP8_MVMODE_NEAR; |
779 |
clamp_mv(s, &mb->mv, &near[1], mb_x, mb_y);
|
780 |
} |
781 |
} else {
|
782 |
mb->mode = VP8_MVMODE_NEAREST; |
783 |
clamp_mv(s, &mb->mv, &near[0], mb_x, mb_y);
|
784 |
} |
785 |
} else {
|
786 |
mb->mode = VP8_MVMODE_ZERO; |
787 |
AV_ZERO32(&mb->mv); |
788 |
} |
789 |
if (mb->mode != VP8_MVMODE_SPLIT) {
|
790 |
mb->partitioning = VP8_SPLITMVMODE_NONE; |
791 |
mb->bmv[0] = mb->mv;
|
792 |
} |
793 |
} else {
|
794 |
// intra MB, 16.1
|
795 |
mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_inter, s->prob->pred16x16); |
796 |
|
797 |
if (mb->mode == MODE_I4x4)
|
798 |
decode_intra4x4_modes(s, c, mb_x, 0);
|
799 |
|
800 |
s->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, s->prob->pred8x8c); |
801 |
mb->ref_frame = VP56_FRAME_CURRENT; |
802 |
mb->partitioning = VP8_SPLITMVMODE_NONE; |
803 |
AV_ZERO32(&mb->bmv[0]);
|
804 |
} |
805 |
} |
806 |
|
807 |
/**
|
808 |
* @param c arithmetic bitstream reader context
|
809 |
* @param block destination for block coefficients
|
810 |
* @param probs probabilities to use when reading trees from the bitstream
|
811 |
* @param i initial coeff index, 0 unless a separate DC block is coded
|
812 |
* @param zero_nhood the initial prediction context for number of surrounding
|
813 |
* all-zero blocks (only left/top, so 0-2)
|
814 |
* @param qmul array holding the dc/ac dequant factor at position 0/1
|
815 |
* @return 0 if no coeffs were decoded
|
816 |
* otherwise, the index of the last coeff decoded plus one
|
817 |
*/
|
818 |
static int decode_block_coeffs_internal(VP56RangeCoder *c, DCTELEM block[16], |
819 |
uint8_t probs[8][3][NUM_DCT_TOKENS-1], |
820 |
int i, uint8_t *token_prob, int16_t qmul[2]) |
821 |
{ |
822 |
goto skip_eob;
|
823 |
do {
|
824 |
int coeff;
|
825 |
if (!vp56_rac_get_prob_branchy(c, token_prob[0])) // DCT_EOB |
826 |
return i;
|
827 |
|
828 |
skip_eob:
|
829 |
if (!vp56_rac_get_prob_branchy(c, token_prob[1])) { // DCT_0 |
830 |
if (++i == 16) |
831 |
return i; // invalid input; blocks should end with EOB |
832 |
token_prob = probs[i][0];
|
833 |
goto skip_eob;
|
834 |
} |
835 |
|
836 |
if (!vp56_rac_get_prob_branchy(c, token_prob[2])) { // DCT_1 |
837 |
coeff = 1;
|
838 |
token_prob = probs[i+1][1]; |
839 |
} else {
|
840 |
if (!vp56_rac_get_prob_branchy(c, token_prob[3])) { // DCT 2,3,4 |
841 |
coeff = vp56_rac_get_prob_branchy(c, token_prob[4]);
|
842 |
if (coeff)
|
843 |
coeff += vp56_rac_get_prob(c, token_prob[5]);
|
844 |
coeff += 2;
|
845 |
} else {
|
846 |
// DCT_CAT*
|
847 |
if (!vp56_rac_get_prob_branchy(c, token_prob[6])) { |
848 |
if (!vp56_rac_get_prob_branchy(c, token_prob[7])) { // DCT_CAT1 |
849 |
coeff = 5 + vp56_rac_get_prob(c, vp8_dct_cat1_prob[0]); |
850 |
} else { // DCT_CAT2 |
851 |
coeff = 7;
|
852 |
coeff += vp56_rac_get_prob(c, vp8_dct_cat2_prob[0]) << 1; |
853 |
coeff += vp56_rac_get_prob(c, vp8_dct_cat2_prob[1]);
|
854 |
} |
855 |
} else { // DCT_CAT3 and up |
856 |
int a = vp56_rac_get_prob(c, token_prob[8]); |
857 |
int b = vp56_rac_get_prob(c, token_prob[9+a]); |
858 |
int cat = (a<<1) + b; |
859 |
coeff = 3 + (8<<cat); |
860 |
coeff += vp8_rac_get_coeff(c, vp8_dct_cat_prob[cat]); |
861 |
} |
862 |
} |
863 |
token_prob = probs[i+1][2]; |
864 |
} |
865 |
block[zigzag_scan[i]] = (vp8_rac_get(c) ? -coeff : coeff) * qmul[!!i]; |
866 |
} while (++i < 16); |
867 |
|
868 |
return i;
|
869 |
} |
870 |
|
871 |
static av_always_inline
|
872 |
int decode_block_coeffs(VP56RangeCoder *c, DCTELEM block[16], |
873 |
uint8_t probs[8][3][NUM_DCT_TOKENS-1], |
874 |
int i, int zero_nhood, int16_t qmul[2]) |
875 |
{ |
876 |
uint8_t *token_prob = probs[i][zero_nhood]; |
877 |
if (!vp56_rac_get_prob_branchy(c, token_prob[0])) // DCT_EOB |
878 |
return 0; |
879 |
return decode_block_coeffs_internal(c, block, probs, i, token_prob, qmul);
|
880 |
} |
881 |
|
882 |
static av_always_inline
|
883 |
void decode_mb_coeffs(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb,
|
884 |
uint8_t t_nnz[9], uint8_t l_nnz[9]) |
885 |
{ |
886 |
int i, x, y, luma_start = 0, luma_ctx = 3; |
887 |
int nnz_pred, nnz, nnz_total = 0; |
888 |
int segment = s->segment;
|
889 |
int block_dc = 0; |
890 |
|
891 |
if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) {
|
892 |
nnz_pred = t_nnz[8] + l_nnz[8]; |
893 |
|
894 |
// decode DC values and do hadamard
|
895 |
nnz = decode_block_coeffs(c, s->block_dc, s->prob->token[1], 0, nnz_pred, |
896 |
s->qmat[segment].luma_dc_qmul); |
897 |
l_nnz[8] = t_nnz[8] = !!nnz; |
898 |
if (nnz) {
|
899 |
nnz_total += nnz; |
900 |
block_dc = 1;
|
901 |
if (nnz == 1) |
902 |
s->vp8dsp.vp8_luma_dc_wht_dc(s->block, s->block_dc); |
903 |
else
|
904 |
s->vp8dsp.vp8_luma_dc_wht(s->block, s->block_dc); |
905 |
} |
906 |
luma_start = 1;
|
907 |
luma_ctx = 0;
|
908 |
} |
909 |
|
910 |
// luma blocks
|
911 |
for (y = 0; y < 4; y++) |
912 |
for (x = 0; x < 4; x++) { |
913 |
nnz_pred = l_nnz[y] + t_nnz[x]; |
914 |
nnz = decode_block_coeffs(c, s->block[y][x], s->prob->token[luma_ctx], luma_start, |
915 |
nnz_pred, s->qmat[segment].luma_qmul); |
916 |
// nnz+block_dc may be one more than the actual last index, but we don't care
|
917 |
s->non_zero_count_cache[y][x] = nnz + block_dc; |
918 |
t_nnz[x] = l_nnz[y] = !!nnz; |
919 |
nnz_total += nnz; |
920 |
} |
921 |
|
922 |
// chroma blocks
|
923 |
// TODO: what to do about dimensions? 2nd dim for luma is x,
|
924 |
// but for chroma it's (y<<1)|x
|
925 |
for (i = 4; i < 6; i++) |
926 |
for (y = 0; y < 2; y++) |
927 |
for (x = 0; x < 2; x++) { |
928 |
nnz_pred = l_nnz[i+2*y] + t_nnz[i+2*x]; |
929 |
nnz = decode_block_coeffs(c, s->block[i][(y<<1)+x], s->prob->token[2], 0, |
930 |
nnz_pred, s->qmat[segment].chroma_qmul); |
931 |
s->non_zero_count_cache[i][(y<<1)+x] = nnz;
|
932 |
t_nnz[i+2*x] = l_nnz[i+2*y] = !!nnz; |
933 |
nnz_total += nnz; |
934 |
} |
935 |
|
936 |
// if there were no coded coeffs despite the macroblock not being marked skip,
|
937 |
// we MUST not do the inner loop filter and should not do IDCT
|
938 |
// Since skip isn't used for bitstream prediction, just manually set it.
|
939 |
if (!nnz_total)
|
940 |
mb->skip = 1;
|
941 |
} |
942 |
|
943 |
static av_always_inline
|
944 |
void backup_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr,
|
945 |
int linesize, int uvlinesize, int simple) |
946 |
{ |
947 |
AV_COPY128(top_border, src_y + 15*linesize);
|
948 |
if (!simple) {
|
949 |
AV_COPY64(top_border+16, src_cb + 7*uvlinesize); |
950 |
AV_COPY64(top_border+24, src_cr + 7*uvlinesize); |
951 |
} |
952 |
} |
953 |
|
954 |
static av_always_inline
|
955 |
void xchg_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr,
|
956 |
int linesize, int uvlinesize, int mb_x, int mb_y, int mb_width, |
957 |
int simple, int xchg) |
958 |
{ |
959 |
uint8_t *top_border_m1 = top_border-32; // for TL prediction |
960 |
src_y -= linesize; |
961 |
src_cb -= uvlinesize; |
962 |
src_cr -= uvlinesize; |
963 |
|
964 |
#define XCHG(a,b,xchg) do { \ |
965 |
if (xchg) AV_SWAP64(b,a); \
|
966 |
else AV_COPY64(b,a); \
|
967 |
} while (0) |
968 |
|
969 |
XCHG(top_border_m1+8, src_y-8, xchg); |
970 |
XCHG(top_border, src_y, xchg); |
971 |
XCHG(top_border+8, src_y+8, 1); |
972 |
if (mb_x < mb_width-1) |
973 |
XCHG(top_border+32, src_y+16, 1); |
974 |
|
975 |
// only copy chroma for normal loop filter
|
976 |
// or to initialize the top row to 127
|
977 |
if (!simple || !mb_y) {
|
978 |
XCHG(top_border_m1+16, src_cb-8, xchg); |
979 |
XCHG(top_border_m1+24, src_cr-8, xchg); |
980 |
XCHG(top_border+16, src_cb, 1); |
981 |
XCHG(top_border+24, src_cr, 1); |
982 |
} |
983 |
} |
984 |
|
985 |
static av_always_inline
|
986 |
int check_dc_pred8x8_mode(int mode, int mb_x, int mb_y) |
987 |
{ |
988 |
if (!mb_x) {
|
989 |
return mb_y ? TOP_DC_PRED8x8 : DC_128_PRED8x8;
|
990 |
} else {
|
991 |
return mb_y ? mode : LEFT_DC_PRED8x8;
|
992 |
} |
993 |
} |
994 |
|
995 |
static av_always_inline
|
996 |
int check_tm_pred8x8_mode(int mode, int mb_x, int mb_y) |
997 |
{ |
998 |
if (!mb_x) {
|
999 |
return mb_y ? VERT_PRED8x8 : DC_129_PRED8x8;
|
1000 |
} else {
|
1001 |
return mb_y ? mode : HOR_PRED8x8;
|
1002 |
} |
1003 |
} |
1004 |
|
1005 |
static av_always_inline
|
1006 |
int check_intra_pred8x8_mode(int mode, int mb_x, int mb_y) |
1007 |
{ |
1008 |
if (mode == DC_PRED8x8) {
|
1009 |
return check_dc_pred8x8_mode(mode, mb_x, mb_y);
|
1010 |
} else {
|
1011 |
return mode;
|
1012 |
} |
1013 |
} |
1014 |
|
1015 |
static av_always_inline
|
1016 |
int check_intra_pred8x8_mode_emuedge(int mode, int mb_x, int mb_y) |
1017 |
{ |
1018 |
switch (mode) {
|
1019 |
case DC_PRED8x8:
|
1020 |
return check_dc_pred8x8_mode(mode, mb_x, mb_y);
|
1021 |
case VERT_PRED8x8:
|
1022 |
return !mb_y ? DC_127_PRED8x8 : mode;
|
1023 |
case HOR_PRED8x8:
|
1024 |
return !mb_x ? DC_129_PRED8x8 : mode;
|
1025 |
case PLANE_PRED8x8 /*TM*/: |
1026 |
return check_tm_pred8x8_mode(mode, mb_x, mb_y);
|
1027 |
} |
1028 |
return mode;
|
1029 |
} |
1030 |
|
1031 |
static av_always_inline
|
1032 |
int check_tm_pred4x4_mode(int mode, int mb_x, int mb_y) |
1033 |
{ |
1034 |
if (!mb_x) {
|
1035 |
return mb_y ? VERT_VP8_PRED : DC_129_PRED;
|
1036 |
} else {
|
1037 |
return mb_y ? mode : HOR_VP8_PRED;
|
1038 |
} |
1039 |
} |
1040 |
|
1041 |
static av_always_inline
|
1042 |
int check_intra_pred4x4_mode_emuedge(int mode, int mb_x, int mb_y, int *copy_buf) |
1043 |
{ |
1044 |
switch (mode) {
|
1045 |
case VERT_PRED:
|
1046 |
if (!mb_x && mb_y) {
|
1047 |
*copy_buf = 1;
|
1048 |
return mode;
|
1049 |
} |
1050 |
/* fall-through */
|
1051 |
case DIAG_DOWN_LEFT_PRED:
|
1052 |
case VERT_LEFT_PRED:
|
1053 |
return !mb_y ? DC_127_PRED : mode;
|
1054 |
case HOR_PRED:
|
1055 |
if (!mb_y) {
|
1056 |
*copy_buf = 1;
|
1057 |
return mode;
|
1058 |
} |
1059 |
/* fall-through */
|
1060 |
case HOR_UP_PRED:
|
1061 |
return !mb_x ? DC_129_PRED : mode;
|
1062 |
case TM_VP8_PRED:
|
1063 |
return check_tm_pred4x4_mode(mode, mb_x, mb_y);
|
1064 |
case DC_PRED: // 4x4 DC doesn't use the same "H.264-style" exceptions as 16x16/8x8 DC |
1065 |
case DIAG_DOWN_RIGHT_PRED:
|
1066 |
case VERT_RIGHT_PRED:
|
1067 |
case HOR_DOWN_PRED:
|
1068 |
if (!mb_y || !mb_x)
|
1069 |
*copy_buf = 1;
|
1070 |
return mode;
|
1071 |
} |
1072 |
return mode;
|
1073 |
} |
1074 |
|
1075 |
static av_always_inline
|
1076 |
void intra_predict(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb, |
1077 |
int mb_x, int mb_y) |
1078 |
{ |
1079 |
AVCodecContext *avctx = s->avctx; |
1080 |
int x, y, mode, nnz, tr;
|
1081 |
|
1082 |
// for the first row, we need to run xchg_mb_border to init the top edge to 127
|
1083 |
// otherwise, skip it if we aren't going to deblock
|
1084 |
if (!(avctx->flags & CODEC_FLAG_EMU_EDGE && !mb_y) && (s->deblock_filter || !mb_y))
|
1085 |
xchg_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2], |
1086 |
s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width, |
1087 |
s->filter.simple, 1);
|
1088 |
|
1089 |
if (mb->mode < MODE_I4x4) {
|
1090 |
if (avctx->flags & CODEC_FLAG_EMU_EDGE) { // tested |
1091 |
mode = check_intra_pred8x8_mode_emuedge(mb->mode, mb_x, mb_y); |
1092 |
} else {
|
1093 |
mode = check_intra_pred8x8_mode(mb->mode, mb_x, mb_y); |
1094 |
} |
1095 |
s->hpc.pred16x16[mode](dst[0], s->linesize);
|
1096 |
} else {
|
1097 |
uint8_t *ptr = dst[0];
|
1098 |
uint8_t *intra4x4 = s->intra4x4_pred_mode_mb; |
1099 |
uint8_t tr_top[4] = { 127, 127, 127, 127 }; |
1100 |
|
1101 |
// all blocks on the right edge of the macroblock use bottom edge
|
1102 |
// the top macroblock for their topright edge
|
1103 |
uint8_t *tr_right = ptr - s->linesize + 16;
|
1104 |
|
1105 |
// if we're on the right edge of the frame, said edge is extended
|
1106 |
// from the top macroblock
|
1107 |
if (!(!mb_y && avctx->flags & CODEC_FLAG_EMU_EDGE) &&
|
1108 |
mb_x == s->mb_width-1) {
|
1109 |
tr = tr_right[-1]*0x01010101; |
1110 |
tr_right = (uint8_t *)&tr; |
1111 |
} |
1112 |
|
1113 |
if (mb->skip)
|
1114 |
AV_ZERO128(s->non_zero_count_cache); |
1115 |
|
1116 |
for (y = 0; y < 4; y++) { |
1117 |
uint8_t *topright = ptr + 4 - s->linesize;
|
1118 |
for (x = 0; x < 4; x++) { |
1119 |
int copy = 0, linesize = s->linesize; |
1120 |
uint8_t *dst = ptr+4*x;
|
1121 |
DECLARE_ALIGNED(4, uint8_t, copy_dst)[5*8]; |
1122 |
|
1123 |
if ((y == 0 || x == 3) && mb_y == 0 && avctx->flags & CODEC_FLAG_EMU_EDGE) { |
1124 |
topright = tr_top; |
1125 |
} else if (x == 3) |
1126 |
topright = tr_right; |
1127 |
|
1128 |
if (avctx->flags & CODEC_FLAG_EMU_EDGE) { // mb_x+x or mb_y+y is a hack but works |
1129 |
mode = check_intra_pred4x4_mode_emuedge(intra4x4[x], mb_x + x, mb_y + y, ©); |
1130 |
if (copy) {
|
1131 |
dst = copy_dst + 12;
|
1132 |
linesize = 8;
|
1133 |
if (!(mb_y + y)) {
|
1134 |
copy_dst[3] = 127U; |
1135 |
AV_WN32A(copy_dst+4, 127U * 0x01010101U); |
1136 |
} else {
|
1137 |
AV_COPY32(copy_dst+4, ptr+4*x-s->linesize); |
1138 |
if (!(mb_x + x)) {
|
1139 |
copy_dst[3] = 129U; |
1140 |
} else {
|
1141 |
copy_dst[3] = ptr[4*x-s->linesize-1]; |
1142 |
} |
1143 |
} |
1144 |
if (!(mb_x + x)) {
|
1145 |
copy_dst[11] =
|
1146 |
copy_dst[19] =
|
1147 |
copy_dst[27] =
|
1148 |
copy_dst[35] = 129U; |
1149 |
} else {
|
1150 |
copy_dst[11] = ptr[4*x -1]; |
1151 |
copy_dst[19] = ptr[4*x+s->linesize -1]; |
1152 |
copy_dst[27] = ptr[4*x+s->linesize*2-1]; |
1153 |
copy_dst[35] = ptr[4*x+s->linesize*3-1]; |
1154 |
} |
1155 |
} |
1156 |
} else {
|
1157 |
mode = intra4x4[x]; |
1158 |
} |
1159 |
s->hpc.pred4x4[mode](dst, topright, linesize); |
1160 |
if (copy) {
|
1161 |
AV_COPY32(ptr+4*x , copy_dst+12); |
1162 |
AV_COPY32(ptr+4*x+s->linesize , copy_dst+20); |
1163 |
AV_COPY32(ptr+4*x+s->linesize*2, copy_dst+28); |
1164 |
AV_COPY32(ptr+4*x+s->linesize*3, copy_dst+36); |
1165 |
} |
1166 |
|
1167 |
nnz = s->non_zero_count_cache[y][x]; |
1168 |
if (nnz) {
|
1169 |
if (nnz == 1) |
1170 |
s->vp8dsp.vp8_idct_dc_add(ptr+4*x, s->block[y][x], s->linesize);
|
1171 |
else
|
1172 |
s->vp8dsp.vp8_idct_add(ptr+4*x, s->block[y][x], s->linesize);
|
1173 |
} |
1174 |
topright += 4;
|
1175 |
} |
1176 |
|
1177 |
ptr += 4*s->linesize;
|
1178 |
intra4x4 += 4;
|
1179 |
} |
1180 |
} |
1181 |
|
1182 |
if (avctx->flags & CODEC_FLAG_EMU_EDGE) {
|
1183 |
mode = check_intra_pred8x8_mode_emuedge(s->chroma_pred_mode, mb_x, mb_y); |
1184 |
} else {
|
1185 |
mode = check_intra_pred8x8_mode(s->chroma_pred_mode, mb_x, mb_y); |
1186 |
} |
1187 |
s->hpc.pred8x8[mode](dst[1], s->uvlinesize);
|
1188 |
s->hpc.pred8x8[mode](dst[2], s->uvlinesize);
|
1189 |
|
1190 |
if (!(avctx->flags & CODEC_FLAG_EMU_EDGE && !mb_y) && (s->deblock_filter || !mb_y))
|
1191 |
xchg_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2], |
1192 |
s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width, |
1193 |
s->filter.simple, 0);
|
1194 |
} |
1195 |
|
1196 |
/**
|
1197 |
* Generic MC function.
|
1198 |
*
|
1199 |
* @param s VP8 decoding context
|
1200 |
* @param luma 1 for luma (Y) planes, 0 for chroma (Cb/Cr) planes
|
1201 |
* @param dst target buffer for block data at block position
|
1202 |
* @param src reference picture buffer at origin (0, 0)
|
1203 |
* @param mv motion vector (relative to block position) to get pixel data from
|
1204 |
* @param x_off horizontal position of block from origin (0, 0)
|
1205 |
* @param y_off vertical position of block from origin (0, 0)
|
1206 |
* @param block_w width of block (16, 8 or 4)
|
1207 |
* @param block_h height of block (always same as block_w)
|
1208 |
* @param width width of src/dst plane data
|
1209 |
* @param height height of src/dst plane data
|
1210 |
* @param linesize size of a single line of plane data, including padding
|
1211 |
* @param mc_func motion compensation function pointers (bilinear or sixtap MC)
|
1212 |
*/
|
1213 |
static av_always_inline
|
1214 |
void vp8_mc(VP8Context *s, int luma, |
1215 |
uint8_t *dst, uint8_t *src, const VP56mv *mv,
|
1216 |
int x_off, int y_off, int block_w, int block_h, |
1217 |
int width, int height, int linesize, |
1218 |
vp8_mc_func mc_func[3][3]) |
1219 |
{ |
1220 |
if (AV_RN32A(mv)) {
|
1221 |
static const uint8_t idx[3][8] = { |
1222 |
{ 0, 1, 2, 1, 2, 1, 2, 1 }, // nr. of left extra pixels, |
1223 |
// also function pointer index
|
1224 |
{ 0, 3, 5, 3, 5, 3, 5, 3 }, // nr. of extra pixels required |
1225 |
{ 0, 2, 3, 2, 3, 2, 3, 2 }, // nr. of right extra pixels |
1226 |
}; |
1227 |
int mx = (mv->x << luma)&7, mx_idx = idx[0][mx]; |
1228 |
int my = (mv->y << luma)&7, my_idx = idx[0][my]; |
1229 |
|
1230 |
x_off += mv->x >> (3 - luma);
|
1231 |
y_off += mv->y >> (3 - luma);
|
1232 |
|
1233 |
// edge emulation
|
1234 |
src += y_off * linesize + x_off; |
1235 |
if (x_off < mx_idx || x_off >= width - block_w - idx[2][mx] || |
1236 |
y_off < my_idx || y_off >= height - block_h - idx[2][my]) {
|
1237 |
s->dsp.emulated_edge_mc(s->edge_emu_buffer, src - my_idx * linesize - mx_idx, linesize, |
1238 |
block_w + idx[1][mx], block_h + idx[1][my], |
1239 |
x_off - mx_idx, y_off - my_idx, width, height); |
1240 |
src = s->edge_emu_buffer + mx_idx + linesize * my_idx; |
1241 |
} |
1242 |
mc_func[my_idx][mx_idx](dst, linesize, src, linesize, block_h, mx, my); |
1243 |
} else
|
1244 |
mc_func[0][0](dst, linesize, src + y_off * linesize + x_off, linesize, block_h, 0, 0); |
1245 |
} |
1246 |
|
1247 |
static av_always_inline
|
1248 |
void vp8_mc_part(VP8Context *s, uint8_t *dst[3], |
1249 |
AVFrame *ref_frame, int x_off, int y_off, |
1250 |
int bx_off, int by_off, |
1251 |
int block_w, int block_h, |
1252 |
int width, int height, VP56mv *mv) |
1253 |
{ |
1254 |
VP56mv uvmv = *mv; |
1255 |
|
1256 |
/* Y */
|
1257 |
vp8_mc(s, 1, dst[0] + by_off * s->linesize + bx_off, |
1258 |
ref_frame->data[0], mv, x_off + bx_off, y_off + by_off,
|
1259 |
block_w, block_h, width, height, s->linesize, |
1260 |
s->put_pixels_tab[block_w == 8]);
|
1261 |
|
1262 |
/* U/V */
|
1263 |
if (s->profile == 3) { |
1264 |
uvmv.x &= ~7;
|
1265 |
uvmv.y &= ~7;
|
1266 |
} |
1267 |
x_off >>= 1; y_off >>= 1; |
1268 |
bx_off >>= 1; by_off >>= 1; |
1269 |
width >>= 1; height >>= 1; |
1270 |
block_w >>= 1; block_h >>= 1; |
1271 |
vp8_mc(s, 0, dst[1] + by_off * s->uvlinesize + bx_off, |
1272 |
ref_frame->data[1], &uvmv, x_off + bx_off, y_off + by_off,
|
1273 |
block_w, block_h, width, height, s->uvlinesize, |
1274 |
s->put_pixels_tab[1 + (block_w == 4)]); |
1275 |
vp8_mc(s, 0, dst[2] + by_off * s->uvlinesize + bx_off, |
1276 |
ref_frame->data[2], &uvmv, x_off + bx_off, y_off + by_off,
|
1277 |
block_w, block_h, width, height, s->uvlinesize, |
1278 |
s->put_pixels_tab[1 + (block_w == 4)]); |
1279 |
} |
1280 |
|
1281 |
/* Fetch pixels for estimated mv 4 macroblocks ahead.
|
1282 |
* Optimized for 64-byte cache lines. Inspired by ffh264 prefetch_motion. */
|
1283 |
static av_always_inline void prefetch_motion(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, int mb_xy, int ref) |
1284 |
{ |
1285 |
/* Don't prefetch refs that haven't been used very often this frame. */
|
1286 |
if (s->ref_count[ref-1] > (mb_xy >> 5)) { |
1287 |
int x_off = mb_x << 4, y_off = mb_y << 4; |
1288 |
int mx = (mb->mv.x>>2) + x_off + 8; |
1289 |
int my = (mb->mv.y>>2) + y_off; |
1290 |
uint8_t **src= s->framep[ref]->data; |
1291 |
int off= mx + (my + (mb_x&3)*4)*s->linesize + 64; |
1292 |
s->dsp.prefetch(src[0]+off, s->linesize, 4); |
1293 |
off= (mx>>1) + ((my>>1) + (mb_x&7))*s->uvlinesize + 64; |
1294 |
s->dsp.prefetch(src[1]+off, src[2]-src[1], 2); |
1295 |
} |
1296 |
} |
1297 |
|
1298 |
/**
|
1299 |
* Apply motion vectors to prediction buffer, chapter 18.
|
1300 |
*/
|
1301 |
static av_always_inline
|
1302 |
void inter_predict(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb, |
1303 |
int mb_x, int mb_y) |
1304 |
{ |
1305 |
int x_off = mb_x << 4, y_off = mb_y << 4; |
1306 |
int width = 16*s->mb_width, height = 16*s->mb_height; |
1307 |
AVFrame *ref = s->framep[mb->ref_frame]; |
1308 |
VP56mv *bmv = mb->bmv; |
1309 |
|
1310 |
if (mb->mode < VP8_MVMODE_SPLIT) {
|
1311 |
vp8_mc_part(s, dst, ref, x_off, y_off, |
1312 |
0, 0, 16, 16, width, height, &mb->mv); |
1313 |
} else switch (mb->partitioning) { |
1314 |
case VP8_SPLITMVMODE_4x4: {
|
1315 |
int x, y;
|
1316 |
VP56mv uvmv; |
1317 |
|
1318 |
/* Y */
|
1319 |
for (y = 0; y < 4; y++) { |
1320 |
for (x = 0; x < 4; x++) { |
1321 |
vp8_mc(s, 1, dst[0] + 4*y*s->linesize + x*4, |
1322 |
ref->data[0], &bmv[4*y + x], |
1323 |
4*x + x_off, 4*y + y_off, 4, 4, |
1324 |
width, height, s->linesize, |
1325 |
s->put_pixels_tab[2]);
|
1326 |
} |
1327 |
} |
1328 |
|
1329 |
/* U/V */
|
1330 |
x_off >>= 1; y_off >>= 1; width >>= 1; height >>= 1; |
1331 |
for (y = 0; y < 2; y++) { |
1332 |
for (x = 0; x < 2; x++) { |
1333 |
uvmv.x = mb->bmv[ 2*y * 4 + 2*x ].x + |
1334 |
mb->bmv[ 2*y * 4 + 2*x+1].x + |
1335 |
mb->bmv[(2*y+1) * 4 + 2*x ].x + |
1336 |
mb->bmv[(2*y+1) * 4 + 2*x+1].x; |
1337 |
uvmv.y = mb->bmv[ 2*y * 4 + 2*x ].y + |
1338 |
mb->bmv[ 2*y * 4 + 2*x+1].y + |
1339 |
mb->bmv[(2*y+1) * 4 + 2*x ].y + |
1340 |
mb->bmv[(2*y+1) * 4 + 2*x+1].y; |
1341 |
uvmv.x = (uvmv.x + 2 + (uvmv.x >> (INT_BIT-1))) >> 2; |
1342 |
uvmv.y = (uvmv.y + 2 + (uvmv.y >> (INT_BIT-1))) >> 2; |
1343 |
if (s->profile == 3) { |
1344 |
uvmv.x &= ~7;
|
1345 |
uvmv.y &= ~7;
|
1346 |
} |
1347 |
vp8_mc(s, 0, dst[1] + 4*y*s->uvlinesize + x*4, |
1348 |
ref->data[1], &uvmv,
|
1349 |
4*x + x_off, 4*y + y_off, 4, 4, |
1350 |
width, height, s->uvlinesize, |
1351 |
s->put_pixels_tab[2]);
|
1352 |
vp8_mc(s, 0, dst[2] + 4*y*s->uvlinesize + x*4, |
1353 |
ref->data[2], &uvmv,
|
1354 |
4*x + x_off, 4*y + y_off, 4, 4, |
1355 |
width, height, s->uvlinesize, |
1356 |
s->put_pixels_tab[2]);
|
1357 |
} |
1358 |
} |
1359 |
break;
|
1360 |
} |
1361 |
case VP8_SPLITMVMODE_16x8:
|
1362 |
vp8_mc_part(s, dst, ref, x_off, y_off, |
1363 |
0, 0, 16, 8, width, height, &bmv[0]); |
1364 |
vp8_mc_part(s, dst, ref, x_off, y_off, |
1365 |
0, 8, 16, 8, width, height, &bmv[1]); |
1366 |
break;
|
1367 |
case VP8_SPLITMVMODE_8x16:
|
1368 |
vp8_mc_part(s, dst, ref, x_off, y_off, |
1369 |
0, 0, 8, 16, width, height, &bmv[0]); |
1370 |
vp8_mc_part(s, dst, ref, x_off, y_off, |
1371 |
8, 0, 8, 16, width, height, &bmv[1]); |
1372 |
break;
|
1373 |
case VP8_SPLITMVMODE_8x8:
|
1374 |
vp8_mc_part(s, dst, ref, x_off, y_off, |
1375 |
0, 0, 8, 8, width, height, &bmv[0]); |
1376 |
vp8_mc_part(s, dst, ref, x_off, y_off, |
1377 |
8, 0, 8, 8, width, height, &bmv[1]); |
1378 |
vp8_mc_part(s, dst, ref, x_off, y_off, |
1379 |
0, 8, 8, 8, width, height, &bmv[2]); |
1380 |
vp8_mc_part(s, dst, ref, x_off, y_off, |
1381 |
8, 8, 8, 8, width, height, &bmv[3]); |
1382 |
break;
|
1383 |
} |
1384 |
} |
1385 |
|
1386 |
static av_always_inline void idct_mb(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb) |
1387 |
{ |
1388 |
int x, y, ch;
|
1389 |
|
1390 |
if (mb->mode != MODE_I4x4) {
|
1391 |
uint8_t *y_dst = dst[0];
|
1392 |
for (y = 0; y < 4; y++) { |
1393 |
uint32_t nnz4 = AV_RN32A(s->non_zero_count_cache[y]); |
1394 |
if (nnz4) {
|
1395 |
if (nnz4&~0x01010101) { |
1396 |
for (x = 0; x < 4; x++) { |
1397 |
int nnz = s->non_zero_count_cache[y][x];
|
1398 |
if (nnz) {
|
1399 |
if (nnz == 1) |
1400 |
s->vp8dsp.vp8_idct_dc_add(y_dst+4*x, s->block[y][x], s->linesize);
|
1401 |
else
|
1402 |
s->vp8dsp.vp8_idct_add(y_dst+4*x, s->block[y][x], s->linesize);
|
1403 |
} |
1404 |
} |
1405 |
} else {
|
1406 |
s->vp8dsp.vp8_idct_dc_add4y(y_dst, s->block[y], s->linesize); |
1407 |
} |
1408 |
} |
1409 |
y_dst += 4*s->linesize;
|
1410 |
} |
1411 |
} |
1412 |
|
1413 |
for (ch = 0; ch < 2; ch++) { |
1414 |
uint32_t nnz4 = AV_RN32A(s->non_zero_count_cache[4+ch]);
|
1415 |
if (nnz4) {
|
1416 |
uint8_t *ch_dst = dst[1+ch];
|
1417 |
if (nnz4&~0x01010101) { |
1418 |
for (y = 0; y < 2; y++) { |
1419 |
for (x = 0; x < 2; x++) { |
1420 |
int nnz = s->non_zero_count_cache[4+ch][(y<<1)+x]; |
1421 |
if (nnz) {
|
1422 |
if (nnz == 1) |
1423 |
s->vp8dsp.vp8_idct_dc_add(ch_dst+4*x, s->block[4+ch][(y<<1)+x], s->uvlinesize); |
1424 |
else
|
1425 |
s->vp8dsp.vp8_idct_add(ch_dst+4*x, s->block[4+ch][(y<<1)+x], s->uvlinesize); |
1426 |
} |
1427 |
} |
1428 |
ch_dst += 4*s->uvlinesize;
|
1429 |
} |
1430 |
} else {
|
1431 |
s->vp8dsp.vp8_idct_dc_add4uv(ch_dst, s->block[4+ch], s->uvlinesize);
|
1432 |
} |
1433 |
} |
1434 |
} |
1435 |
} |
1436 |
|
1437 |
static av_always_inline void filter_level_for_mb(VP8Context *s, VP8Macroblock *mb, VP8FilterStrength *f ) |
1438 |
{ |
1439 |
int interior_limit, filter_level;
|
1440 |
|
1441 |
if (s->segmentation.enabled) {
|
1442 |
filter_level = s->segmentation.filter_level[s->segment]; |
1443 |
if (!s->segmentation.absolute_vals)
|
1444 |
filter_level += s->filter.level; |
1445 |
} else
|
1446 |
filter_level = s->filter.level; |
1447 |
|
1448 |
if (s->lf_delta.enabled) {
|
1449 |
filter_level += s->lf_delta.ref[mb->ref_frame]; |
1450 |
|
1451 |
if (mb->ref_frame == VP56_FRAME_CURRENT) {
|
1452 |
if (mb->mode == MODE_I4x4)
|
1453 |
filter_level += s->lf_delta.mode[0];
|
1454 |
} else {
|
1455 |
if (mb->mode == VP8_MVMODE_ZERO)
|
1456 |
filter_level += s->lf_delta.mode[1];
|
1457 |
else if (mb->mode == VP8_MVMODE_SPLIT) |
1458 |
filter_level += s->lf_delta.mode[3];
|
1459 |
else
|
1460 |
filter_level += s->lf_delta.mode[2];
|
1461 |
} |
1462 |
} |
1463 |
filter_level = av_clip(filter_level, 0, 63); |
1464 |
|
1465 |
interior_limit = filter_level; |
1466 |
if (s->filter.sharpness) {
|
1467 |
interior_limit >>= s->filter.sharpness > 4 ? 2 : 1; |
1468 |
interior_limit = FFMIN(interior_limit, 9 - s->filter.sharpness);
|
1469 |
} |
1470 |
interior_limit = FFMAX(interior_limit, 1);
|
1471 |
|
1472 |
f->filter_level = filter_level; |
1473 |
f->inner_limit = interior_limit; |
1474 |
f->inner_filter = !mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT; |
1475 |
} |
1476 |
|
1477 |
static av_always_inline void filter_mb(VP8Context *s, uint8_t *dst[3], VP8FilterStrength *f, int mb_x, int mb_y) |
1478 |
{ |
1479 |
int mbedge_lim, bedge_lim, hev_thresh;
|
1480 |
int filter_level = f->filter_level;
|
1481 |
int inner_limit = f->inner_limit;
|
1482 |
int inner_filter = f->inner_filter;
|
1483 |
int linesize = s->linesize;
|
1484 |
int uvlinesize = s->uvlinesize;
|
1485 |
|
1486 |
if (!filter_level)
|
1487 |
return;
|
1488 |
|
1489 |
mbedge_lim = 2*(filter_level+2) + inner_limit; |
1490 |
bedge_lim = 2* filter_level + inner_limit;
|
1491 |
hev_thresh = filter_level >= 15;
|
1492 |
|
1493 |
if (s->keyframe) {
|
1494 |
if (filter_level >= 40) |
1495 |
hev_thresh = 2;
|
1496 |
} else {
|
1497 |
if (filter_level >= 40) |
1498 |
hev_thresh = 3;
|
1499 |
else if (filter_level >= 20) |
1500 |
hev_thresh = 2;
|
1501 |
} |
1502 |
|
1503 |
if (mb_x) {
|
1504 |
s->vp8dsp.vp8_h_loop_filter16y(dst[0], linesize,
|
1505 |
mbedge_lim, inner_limit, hev_thresh); |
1506 |
s->vp8dsp.vp8_h_loop_filter8uv(dst[1], dst[2], uvlinesize, |
1507 |
mbedge_lim, inner_limit, hev_thresh); |
1508 |
} |
1509 |
|
1510 |
if (inner_filter) {
|
1511 |
s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+ 4, linesize, bedge_lim, |
1512 |
inner_limit, hev_thresh); |
1513 |
s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+ 8, linesize, bedge_lim, |
1514 |
inner_limit, hev_thresh); |
1515 |
s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+12, linesize, bedge_lim, |
1516 |
inner_limit, hev_thresh); |
1517 |
s->vp8dsp.vp8_h_loop_filter8uv_inner(dst[1] + 4, dst[2] + 4, |
1518 |
uvlinesize, bedge_lim, |
1519 |
inner_limit, hev_thresh); |
1520 |
} |
1521 |
|
1522 |
if (mb_y) {
|
1523 |
s->vp8dsp.vp8_v_loop_filter16y(dst[0], linesize,
|
1524 |
mbedge_lim, inner_limit, hev_thresh); |
1525 |
s->vp8dsp.vp8_v_loop_filter8uv(dst[1], dst[2], uvlinesize, |
1526 |
mbedge_lim, inner_limit, hev_thresh); |
1527 |
} |
1528 |
|
1529 |
if (inner_filter) {
|
1530 |
s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+ 4*linesize, |
1531 |
linesize, bedge_lim, |
1532 |
inner_limit, hev_thresh); |
1533 |
s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+ 8*linesize, |
1534 |
linesize, bedge_lim, |
1535 |
inner_limit, hev_thresh); |
1536 |
s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+12*linesize, |
1537 |
linesize, bedge_lim, |
1538 |
inner_limit, hev_thresh); |
1539 |
s->vp8dsp.vp8_v_loop_filter8uv_inner(dst[1] + 4 * uvlinesize, |
1540 |
dst[2] + 4 * uvlinesize, |
1541 |
uvlinesize, bedge_lim, |
1542 |
inner_limit, hev_thresh); |
1543 |
} |
1544 |
} |
1545 |
|
1546 |
static av_always_inline void filter_mb_simple(VP8Context *s, uint8_t *dst, VP8FilterStrength *f, int mb_x, int mb_y) |
1547 |
{ |
1548 |
int mbedge_lim, bedge_lim;
|
1549 |
int filter_level = f->filter_level;
|
1550 |
int inner_limit = f->inner_limit;
|
1551 |
int inner_filter = f->inner_filter;
|
1552 |
int linesize = s->linesize;
|
1553 |
|
1554 |
if (!filter_level)
|
1555 |
return;
|
1556 |
|
1557 |
mbedge_lim = 2*(filter_level+2) + inner_limit; |
1558 |
bedge_lim = 2* filter_level + inner_limit;
|
1559 |
|
1560 |
if (mb_x)
|
1561 |
s->vp8dsp.vp8_h_loop_filter_simple(dst, linesize, mbedge_lim); |
1562 |
if (inner_filter) {
|
1563 |
s->vp8dsp.vp8_h_loop_filter_simple(dst+ 4, linesize, bedge_lim);
|
1564 |
s->vp8dsp.vp8_h_loop_filter_simple(dst+ 8, linesize, bedge_lim);
|
1565 |
s->vp8dsp.vp8_h_loop_filter_simple(dst+12, linesize, bedge_lim);
|
1566 |
} |
1567 |
|
1568 |
if (mb_y)
|
1569 |
s->vp8dsp.vp8_v_loop_filter_simple(dst, linesize, mbedge_lim); |
1570 |
if (inner_filter) {
|
1571 |
s->vp8dsp.vp8_v_loop_filter_simple(dst+ 4*linesize, linesize, bedge_lim);
|
1572 |
s->vp8dsp.vp8_v_loop_filter_simple(dst+ 8*linesize, linesize, bedge_lim);
|
1573 |
s->vp8dsp.vp8_v_loop_filter_simple(dst+12*linesize, linesize, bedge_lim);
|
1574 |
} |
1575 |
} |
1576 |
|
1577 |
static void filter_mb_row(VP8Context *s, int mb_y) |
1578 |
{ |
1579 |
VP8FilterStrength *f = s->filter_strength; |
1580 |
uint8_t *dst[3] = {
|
1581 |
s->framep[VP56_FRAME_CURRENT]->data[0] + 16*mb_y*s->linesize, |
1582 |
s->framep[VP56_FRAME_CURRENT]->data[1] + 8*mb_y*s->uvlinesize, |
1583 |
s->framep[VP56_FRAME_CURRENT]->data[2] + 8*mb_y*s->uvlinesize |
1584 |
}; |
1585 |
int mb_x;
|
1586 |
|
1587 |
for (mb_x = 0; mb_x < s->mb_width; mb_x++) { |
1588 |
backup_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2], s->linesize, s->uvlinesize, 0); |
1589 |
filter_mb(s, dst, f++, mb_x, mb_y); |
1590 |
dst[0] += 16; |
1591 |
dst[1] += 8; |
1592 |
dst[2] += 8; |
1593 |
} |
1594 |
} |
1595 |
|
1596 |
static void filter_mb_row_simple(VP8Context *s, int mb_y) |
1597 |
{ |
1598 |
VP8FilterStrength *f = s->filter_strength; |
1599 |
uint8_t *dst = s->framep[VP56_FRAME_CURRENT]->data[0] + 16*mb_y*s->linesize; |
1600 |
int mb_x;
|
1601 |
|
1602 |
for (mb_x = 0; mb_x < s->mb_width; mb_x++) { |
1603 |
backup_mb_border(s->top_border[mb_x+1], dst, NULL, NULL, s->linesize, 0, 1); |
1604 |
filter_mb_simple(s, dst, f++, mb_x, mb_y); |
1605 |
dst += 16;
|
1606 |
} |
1607 |
} |
1608 |
|
1609 |
static int vp8_decode_frame(AVCodecContext *avctx, void *data, int *data_size, |
1610 |
AVPacket *avpkt) |
1611 |
{ |
1612 |
VP8Context *s = avctx->priv_data; |
1613 |
int ret, mb_x, mb_y, i, y, referenced;
|
1614 |
enum AVDiscard skip_thresh;
|
1615 |
AVFrame *av_uninit(curframe); |
1616 |
|
1617 |
if ((ret = decode_frame_header(s, avpkt->data, avpkt->size)) < 0) |
1618 |
return ret;
|
1619 |
|
1620 |
referenced = s->update_last || s->update_golden == VP56_FRAME_CURRENT |
1621 |
|| s->update_altref == VP56_FRAME_CURRENT; |
1622 |
|
1623 |
skip_thresh = !referenced ? AVDISCARD_NONREF : |
1624 |
!s->keyframe ? AVDISCARD_NONKEY : AVDISCARD_ALL; |
1625 |
|
1626 |
if (avctx->skip_frame >= skip_thresh) {
|
1627 |
s->invisible = 1;
|
1628 |
goto skip_decode;
|
1629 |
} |
1630 |
s->deblock_filter = s->filter.level && avctx->skip_loop_filter < skip_thresh; |
1631 |
|
1632 |
for (i = 0; i < 4; i++) |
1633 |
if (&s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] &&
|
1634 |
&s->frames[i] != s->framep[VP56_FRAME_GOLDEN] && |
1635 |
&s->frames[i] != s->framep[VP56_FRAME_GOLDEN2]) { |
1636 |
curframe = s->framep[VP56_FRAME_CURRENT] = &s->frames[i]; |
1637 |
break;
|
1638 |
} |
1639 |
if (curframe->data[0]) |
1640 |
avctx->release_buffer(avctx, curframe); |
1641 |
|
1642 |
curframe->key_frame = s->keyframe; |
1643 |
curframe->pict_type = s->keyframe ? FF_I_TYPE : FF_P_TYPE; |
1644 |
curframe->reference = referenced ? 3 : 0; |
1645 |
if ((ret = avctx->get_buffer(avctx, curframe))) {
|
1646 |
av_log(avctx, AV_LOG_ERROR, "get_buffer() failed!\n");
|
1647 |
return ret;
|
1648 |
} |
1649 |
|
1650 |
// Given that arithmetic probabilities are updated every frame, it's quite likely
|
1651 |
// that the values we have on a random interframe are complete junk if we didn't
|
1652 |
// start decode on a keyframe. So just don't display anything rather than junk.
|
1653 |
if (!s->keyframe && (!s->framep[VP56_FRAME_PREVIOUS] ||
|
1654 |
!s->framep[VP56_FRAME_GOLDEN] || |
1655 |
!s->framep[VP56_FRAME_GOLDEN2])) { |
1656 |
av_log(avctx, AV_LOG_WARNING, "Discarding interframe without a prior keyframe!\n");
|
1657 |
return AVERROR_INVALIDDATA;
|
1658 |
} |
1659 |
|
1660 |
s->linesize = curframe->linesize[0];
|
1661 |
s->uvlinesize = curframe->linesize[1];
|
1662 |
|
1663 |
if (!s->edge_emu_buffer)
|
1664 |
s->edge_emu_buffer = av_malloc(21*s->linesize);
|
1665 |
|
1666 |
memset(s->top_nnz, 0, s->mb_width*sizeof(*s->top_nnz)); |
1667 |
|
1668 |
/* Zero macroblock structures for top/top-left prediction from outside the frame. */
|
1669 |
memset(s->macroblocks + s->mb_height*2 - 1, 0, (s->mb_width+1)*sizeof(*s->macroblocks)); |
1670 |
|
1671 |
// top edge of 127 for intra prediction
|
1672 |
if (!(avctx->flags & CODEC_FLAG_EMU_EDGE)) {
|
1673 |
s->top_border[0][15] = s->top_border[0][23] = 127; |
1674 |
memset(s->top_border[1]-1, 127, s->mb_width*sizeof(*s->top_border)+1); |
1675 |
} |
1676 |
memset(s->ref_count, 0, sizeof(s->ref_count)); |
1677 |
if (s->keyframe)
|
1678 |
memset(s->intra4x4_pred_mode_top, DC_PRED, s->mb_width*4);
|
1679 |
|
1680 |
for (mb_y = 0; mb_y < s->mb_height; mb_y++) { |
1681 |
VP56RangeCoder *c = &s->coeff_partition[mb_y & (s->num_coeff_partitions-1)];
|
1682 |
VP8Macroblock *mb = s->macroblocks + (s->mb_height - mb_y - 1)*2; |
1683 |
int mb_xy = mb_y*s->mb_width;
|
1684 |
uint8_t *dst[3] = {
|
1685 |
curframe->data[0] + 16*mb_y*s->linesize, |
1686 |
curframe->data[1] + 8*mb_y*s->uvlinesize, |
1687 |
curframe->data[2] + 8*mb_y*s->uvlinesize |
1688 |
}; |
1689 |
|
1690 |
memset(mb - 1, 0, sizeof(*mb)); // zero left macroblock |
1691 |
memset(s->left_nnz, 0, sizeof(s->left_nnz)); |
1692 |
AV_WN32A(s->intra4x4_pred_mode_left, DC_PRED*0x01010101);
|
1693 |
|
1694 |
// left edge of 129 for intra prediction
|
1695 |
if (!(avctx->flags & CODEC_FLAG_EMU_EDGE)) {
|
1696 |
for (i = 0; i < 3; i++) |
1697 |
for (y = 0; y < 16>>!!i; y++) |
1698 |
dst[i][y*curframe->linesize[i]-1] = 129; |
1699 |
if (mb_y == 1) // top left edge is also 129 |
1700 |
s->top_border[0][15] = s->top_border[0][23] = s->top_border[0][31] = 129; |
1701 |
} |
1702 |
|
1703 |
for (mb_x = 0; mb_x < s->mb_width; mb_x++, mb_xy++, mb++) { |
1704 |
/* Prefetch the current frame, 4 MBs ahead */
|
1705 |
s->dsp.prefetch(dst[0] + (mb_x&3)*4*s->linesize + 64, s->linesize, 4); |
1706 |
s->dsp.prefetch(dst[1] + (mb_x&7)*s->uvlinesize + 64, dst[2] - dst[1], 2); |
1707 |
|
1708 |
decode_mb_mode(s, mb, mb_x, mb_y, s->segmentation_map + mb_xy); |
1709 |
|
1710 |
prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP56_FRAME_PREVIOUS); |
1711 |
|
1712 |
if (!mb->skip)
|
1713 |
decode_mb_coeffs(s, c, mb, s->top_nnz[mb_x], s->left_nnz); |
1714 |
|
1715 |
if (mb->mode <= MODE_I4x4)
|
1716 |
intra_predict(s, dst, mb, mb_x, mb_y); |
1717 |
else
|
1718 |
inter_predict(s, dst, mb, mb_x, mb_y); |
1719 |
|
1720 |
prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP56_FRAME_GOLDEN); |
1721 |
|
1722 |
if (!mb->skip) {
|
1723 |
idct_mb(s, dst, mb); |
1724 |
} else {
|
1725 |
AV_ZERO64(s->left_nnz); |
1726 |
AV_WN64(s->top_nnz[mb_x], 0); // array of 9, so unaligned |
1727 |
|
1728 |
// Reset DC block predictors if they would exist if the mb had coefficients
|
1729 |
if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) {
|
1730 |
s->left_nnz[8] = 0; |
1731 |
s->top_nnz[mb_x][8] = 0; |
1732 |
} |
1733 |
} |
1734 |
|
1735 |
if (s->deblock_filter)
|
1736 |
filter_level_for_mb(s, mb, &s->filter_strength[mb_x]); |
1737 |
|
1738 |
prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP56_FRAME_GOLDEN2); |
1739 |
|
1740 |
dst[0] += 16; |
1741 |
dst[1] += 8; |
1742 |
dst[2] += 8; |
1743 |
} |
1744 |
if (s->deblock_filter) {
|
1745 |
if (s->filter.simple)
|
1746 |
filter_mb_row_simple(s, mb_y); |
1747 |
else
|
1748 |
filter_mb_row(s, mb_y); |
1749 |
} |
1750 |
} |
1751 |
|
1752 |
skip_decode:
|
1753 |
// if future frames don't use the updated probabilities,
|
1754 |
// reset them to the values we saved
|
1755 |
if (!s->update_probabilities)
|
1756 |
s->prob[0] = s->prob[1]; |
1757 |
|
1758 |
// check if golden and altref are swapped
|
1759 |
if (s->update_altref == VP56_FRAME_GOLDEN &&
|
1760 |
s->update_golden == VP56_FRAME_GOLDEN2) |
1761 |
FFSWAP(AVFrame *, s->framep[VP56_FRAME_GOLDEN], s->framep[VP56_FRAME_GOLDEN2]); |
1762 |
else {
|
1763 |
if (s->update_altref != VP56_FRAME_NONE)
|
1764 |
s->framep[VP56_FRAME_GOLDEN2] = s->framep[s->update_altref]; |
1765 |
|
1766 |
if (s->update_golden != VP56_FRAME_NONE)
|
1767 |
s->framep[VP56_FRAME_GOLDEN] = s->framep[s->update_golden]; |
1768 |
} |
1769 |
|
1770 |
if (s->update_last) // move cur->prev |
1771 |
s->framep[VP56_FRAME_PREVIOUS] = s->framep[VP56_FRAME_CURRENT]; |
1772 |
|
1773 |
// release no longer referenced frames
|
1774 |
for (i = 0; i < 4; i++) |
1775 |
if (s->frames[i].data[0] && |
1776 |
&s->frames[i] != s->framep[VP56_FRAME_CURRENT] && |
1777 |
&s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] && |
1778 |
&s->frames[i] != s->framep[VP56_FRAME_GOLDEN] && |
1779 |
&s->frames[i] != s->framep[VP56_FRAME_GOLDEN2]) |
1780 |
avctx->release_buffer(avctx, &s->frames[i]); |
1781 |
|
1782 |
if (!s->invisible) {
|
1783 |
*(AVFrame*)data = *s->framep[VP56_FRAME_CURRENT]; |
1784 |
*data_size = sizeof(AVFrame);
|
1785 |
} |
1786 |
|
1787 |
return avpkt->size;
|
1788 |
} |
1789 |
|
1790 |
static av_cold int vp8_decode_init(AVCodecContext *avctx) |
1791 |
{ |
1792 |
VP8Context *s = avctx->priv_data; |
1793 |
|
1794 |
s->avctx = avctx; |
1795 |
avctx->pix_fmt = PIX_FMT_YUV420P; |
1796 |
|
1797 |
dsputil_init(&s->dsp, avctx); |
1798 |
ff_h264_pred_init(&s->hpc, CODEC_ID_VP8); |
1799 |
ff_vp8dsp_init(&s->vp8dsp); |
1800 |
|
1801 |
return 0; |
1802 |
} |
1803 |
|
1804 |
static av_cold int vp8_decode_free(AVCodecContext *avctx) |
1805 |
{ |
1806 |
vp8_decode_flush(avctx); |
1807 |
return 0; |
1808 |
} |
1809 |
|
1810 |
AVCodec ff_vp8_decoder = { |
1811 |
"vp8",
|
1812 |
AVMEDIA_TYPE_VIDEO, |
1813 |
CODEC_ID_VP8, |
1814 |
sizeof(VP8Context),
|
1815 |
vp8_decode_init, |
1816 |
NULL,
|
1817 |
vp8_decode_free, |
1818 |
vp8_decode_frame, |
1819 |
CODEC_CAP_DR1, |
1820 |
.flush = vp8_decode_flush, |
1821 |
.long_name = NULL_IF_CONFIG_SMALL("On2 VP8"),
|
1822 |
}; |