ffmpeg / libavcodec / jfdctint.c @ d2d230a7
History  View  Annotate  Download (14 KB)
1 
/*


2 
* jfdctint.c

3 
*

4 
* Copyright (C) 19911996, Thomas G. Lane.

5 
* This file is part of the Independent JPEG Group's software.

6 
* For conditions of distribution and use, see the accompanying README file.

7 
*

8 
* This file contains a slowbutaccurate integer implementation of the

9 
* forward DCT (Discrete Cosine Transform).

10 
*

11 
* A 2D DCT can be done by 1D DCT on each row followed by 1D DCT

12 
* on each column. Direct algorithms are also available, but they are

13 
* much more complex and seem not to be any faster when reduced to code.

14 
*

15 
* This implementation is based on an algorithm described in

16 
* C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1D DCT

17 
* Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,

18 
* Speech, and Signal Processing 1989 (ICASSP '89), pp. 988991.

19 
* The primary algorithm described there uses 11 multiplies and 29 adds.

20 
* We use their alternate method with 12 multiplies and 32 adds.

21 
* The advantage of this method is that no data path contains more than one

22 
* multiplication; this allows a very simple and accurate implementation in

23 
* scaled fixedpoint arithmetic, with a minimal number of shifts.

24 
*/

25  
26 
/**

27 
* @file jfdctint.c

28 
* Independent JPEG Group's slow & accurate dct.

29 
*/

30  
31 
#include <stdlib.h> 
32 
#include <stdio.h> 
33 
#include "common.h" 
34 
#include "dsputil.h" 
35  
36 
#define SHIFT_TEMPS

37 
#define DCTSIZE 8 
38 
#define BITS_IN_JSAMPLE 8 
39 
#define GLOBAL(x) x

40 
#define RIGHT_SHIFT(x, n) ((x) >> (n))

41 
#define MULTIPLY16C16(var,const) ((var)*(const)) 
42  
43 
#if 1 //def USE_ACCURATE_ROUNDING 
44 
#define DESCALE(x,n) RIGHT_SHIFT((x) + (1 << ((n)  1)), n) 
45 
#else

46 
#define DESCALE(x,n) RIGHT_SHIFT(x, n)

47 
#endif

48  
49  
50 
/*

51 
* This module is specialized to the case DCTSIZE = 8.

52 
*/

53  
54 
#if DCTSIZE != 8 
55 
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ 
56 
#endif

57  
58  
59 
/*

60 
* The poop on this scaling stuff is as follows:

61 
*

62 
* Each 1D DCT step produces outputs which are a factor of sqrt(N)

63 
* larger than the true DCT outputs. The final outputs are therefore

64 
* a factor of N larger than desired; since N=8 this can be cured by

65 
* a simple right shift at the end of the algorithm. The advantage of

66 
* this arrangement is that we save two multiplications per 1D DCT,

67 
* because the y0 and y4 outputs need not be divided by sqrt(N).

68 
* In the IJG code, this factor of 8 is removed by the quantization step

69 
* (in jcdctmgr.c), NOT in this module.

70 
*

71 
* We have to do addition and subtraction of the integer inputs, which

72 
* is no problem, and multiplication by fractional constants, which is

73 
* a problem to do in integer arithmetic. We multiply all the constants

74 
* by CONST_SCALE and convert them to integer constants (thus retaining

75 
* CONST_BITS bits of precision in the constants). After doing a

76 
* multiplication we have to divide the product by CONST_SCALE, with proper

77 
* rounding, to produce the correct output. This division can be done

78 
* cheaply as a right shift of CONST_BITS bits. We postpone shifting

79 
* as long as possible so that partial sums can be added together with

80 
* full fractional precision.

81 
*

82 
* The outputs of the first pass are scaled up by PASS1_BITS bits so that

83 
* they are represented to betterthanintegral precision. These outputs

84 
* require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16bit word

85 
* with the recommended scaling. (For 12bit sample data, the intermediate

86 
* array is int32_t anyway.)

87 
*

88 
* To avoid overflow of the 32bit intermediate results in pass 2, we must

89 
* have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis

90 
* shows that the values given below are the most effective.

91 
*/

92  
93 
#if BITS_IN_JSAMPLE == 8 
94 
#define CONST_BITS 13 
95 
#define PASS1_BITS 4 /* set this to 2 if 16x16 multiplies are faster */ 
96 
#else

97 
#define CONST_BITS 13 
98 
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */ 
99 
#endif

100  
101 
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus

102 
* causing a lot of useless floatingpoint operations at run time.

103 
* To get around this we use the following precalculated constants.

104 
* If you change CONST_BITS you may want to add appropriate values.

105 
* (With a reasonable C compiler, you can just rely on the FIX() macro...)

106 
*/

107  
108 
#if CONST_BITS == 13 
109 
#define FIX_0_298631336 ((int32_t) 2446) /* FIX(0.298631336) */ 
110 
#define FIX_0_390180644 ((int32_t) 3196) /* FIX(0.390180644) */ 
111 
#define FIX_0_541196100 ((int32_t) 4433) /* FIX(0.541196100) */ 
112 
#define FIX_0_765366865 ((int32_t) 6270) /* FIX(0.765366865) */ 
113 
#define FIX_0_899976223 ((int32_t) 7373) /* FIX(0.899976223) */ 
114 
#define FIX_1_175875602 ((int32_t) 9633) /* FIX(1.175875602) */ 
115 
#define FIX_1_501321110 ((int32_t) 12299) /* FIX(1.501321110) */ 
116 
#define FIX_1_847759065 ((int32_t) 15137) /* FIX(1.847759065) */ 
117 
#define FIX_1_961570560 ((int32_t) 16069) /* FIX(1.961570560) */ 
118 
#define FIX_2_053119869 ((int32_t) 16819) /* FIX(2.053119869) */ 
119 
#define FIX_2_562915447 ((int32_t) 20995) /* FIX(2.562915447) */ 
120 
#define FIX_3_072711026 ((int32_t) 25172) /* FIX(3.072711026) */ 
121 
#else

122 
#define FIX_0_298631336 FIX(0.298631336) 
123 
#define FIX_0_390180644 FIX(0.390180644) 
124 
#define FIX_0_541196100 FIX(0.541196100) 
125 
#define FIX_0_765366865 FIX(0.765366865) 
126 
#define FIX_0_899976223 FIX(0.899976223) 
127 
#define FIX_1_175875602 FIX(1.175875602) 
128 
#define FIX_1_501321110 FIX(1.501321110) 
129 
#define FIX_1_847759065 FIX(1.847759065) 
130 
#define FIX_1_961570560 FIX(1.961570560) 
131 
#define FIX_2_053119869 FIX(2.053119869) 
132 
#define FIX_2_562915447 FIX(2.562915447) 
133 
#define FIX_3_072711026 FIX(3.072711026) 
134 
#endif

135  
136  
137 
/* Multiply an int32_t variable by an int32_t constant to yield an int32_t result.

138 
* For 8bit samples with the recommended scaling, all the variable

139 
* and constant values involved are no more than 16 bits wide, so a

140 
* 16x16>32 bit multiply can be used instead of a full 32x32 multiply.

141 
* For 12bit samples, a full 32bit multiplication will be needed.

142 
*/

143  
144 
#if BITS_IN_JSAMPLE == 8 && CONST_BITS<=13 && PASS1_BITS<=2 
145 
#define MULTIPLY(var,const) MULTIPLY16C16(var,const) 
146 
#else

147 
#define MULTIPLY(var,const) ((var) * (const)) 
148 
#endif

149  
150  
151 
static always_inline void row_fdct(DCTELEM * data){ 
152 
int_fast32_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; 
153 
int_fast32_t tmp10, tmp11, tmp12, tmp13; 
154 
int_fast32_t z1, z2, z3, z4, z5; 
155 
DCTELEM *dataptr; 
156 
int ctr;

157 
SHIFT_TEMPS 
158  
159 
/* Pass 1: process rows. */

160 
/* Note results are scaled up by sqrt(8) compared to a true DCT; */

161 
/* furthermore, we scale the results by 2**PASS1_BITS. */

162  
163 
dataptr = data; 
164 
for (ctr = DCTSIZE1; ctr >= 0; ctr) { 
165 
tmp0 = dataptr[0] + dataptr[7]; 
166 
tmp7 = dataptr[0]  dataptr[7]; 
167 
tmp1 = dataptr[1] + dataptr[6]; 
168 
tmp6 = dataptr[1]  dataptr[6]; 
169 
tmp2 = dataptr[2] + dataptr[5]; 
170 
tmp5 = dataptr[2]  dataptr[5]; 
171 
tmp3 = dataptr[3] + dataptr[4]; 
172 
tmp4 = dataptr[3]  dataptr[4]; 
173  
174 
/* Even part per LL&M figure 1  note that published figure is faulty;

175 
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".

176 
*/

177  
178 
tmp10 = tmp0 + tmp3; 
179 
tmp13 = tmp0  tmp3; 
180 
tmp11 = tmp1 + tmp2; 
181 
tmp12 = tmp1  tmp2; 
182  
183 
dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);

184 
dataptr[4] = (DCTELEM) ((tmp10  tmp11) << PASS1_BITS);

185  
186 
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); 
187 
dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),

188 
CONST_BITSPASS1_BITS); 
189 
dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12,  FIX_1_847759065),

190 
CONST_BITSPASS1_BITS); 
191  
192 
/* Odd part per figure 8  note paper omits factor of sqrt(2).

193 
* cK represents cos(K*pi/16).

194 
* i0..i3 in the paper are tmp4..tmp7 here.

195 
*/

196  
197 
z1 = tmp4 + tmp7; 
198 
z2 = tmp5 + tmp6; 
199 
z3 = tmp4 + tmp6; 
200 
z4 = tmp5 + tmp7; 
201 
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */

202  
203 
tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (c1+c3+c5c7) */

204 
tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3c5+c7) */

205 
tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5c7) */

206 
tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3c5c7) */

207 
z1 = MULTIPLY(z1,  FIX_0_899976223); /* sqrt(2) * (c7c3) */

208 
z2 = MULTIPLY(z2,  FIX_2_562915447); /* sqrt(2) * (c1c3) */

209 
z3 = MULTIPLY(z3,  FIX_1_961570560); /* sqrt(2) * (c3c5) */

210 
z4 = MULTIPLY(z4,  FIX_0_390180644); /* sqrt(2) * (c5c3) */

211  
212 
z3 += z5; 
213 
z4 += z5; 
214  
215 
dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITSPASS1_BITS);

216 
dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITSPASS1_BITS);

217 
dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITSPASS1_BITS);

218 
dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITSPASS1_BITS);

219  
220 
dataptr += DCTSIZE; /* advance pointer to next row */

221 
} 
222 
} 
223  
224 
/*

225 
* Perform the forward DCT on one block of samples.

226 
*/

227  
228 
GLOBAL(void)

229 
ff_jpeg_fdct_islow (DCTELEM * data) 
230 
{ 
231 
int_fast32_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; 
232 
int_fast32_t tmp10, tmp11, tmp12, tmp13; 
233 
int_fast32_t z1, z2, z3, z4, z5; 
234 
DCTELEM *dataptr; 
235 
int ctr;

236 
SHIFT_TEMPS 
237  
238 
row_fdct(data); 
239  
240 
/* Pass 2: process columns.

241 
* We remove the PASS1_BITS scaling, but leave the results scaled up

242 
* by an overall factor of 8.

243 
*/

244  
245 
dataptr = data; 
246 
for (ctr = DCTSIZE1; ctr >= 0; ctr) { 
247 
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; 
248 
tmp7 = dataptr[DCTSIZE*0]  dataptr[DCTSIZE*7]; 
249 
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; 
250 
tmp6 = dataptr[DCTSIZE*1]  dataptr[DCTSIZE*6]; 
251 
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; 
252 
tmp5 = dataptr[DCTSIZE*2]  dataptr[DCTSIZE*5]; 
253 
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; 
254 
tmp4 = dataptr[DCTSIZE*3]  dataptr[DCTSIZE*4]; 
255  
256 
/* Even part per LL&M figure 1  note that published figure is faulty;

257 
* rotator "sqrt(2)*c1" should be "sqrt(2)*c6".

258 
*/

259  
260 
tmp10 = tmp0 + tmp3; 
261 
tmp13 = tmp0  tmp3; 
262 
tmp11 = tmp1 + tmp2; 
263 
tmp12 = tmp1  tmp2; 
264  
265 
dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);

266 
dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10  tmp11, PASS1_BITS);

267  
268 
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); 
269 
dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),

270 
CONST_BITS+PASS1_BITS); 
271 
dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12,  FIX_1_847759065),

272 
CONST_BITS+PASS1_BITS); 
273  
274 
/* Odd part per figure 8  note paper omits factor of sqrt(2).

275 
* cK represents cos(K*pi/16).

276 
* i0..i3 in the paper are tmp4..tmp7 here.

277 
*/

278  
279 
z1 = tmp4 + tmp7; 
280 
z2 = tmp5 + tmp6; 
281 
z3 = tmp4 + tmp6; 
282 
z4 = tmp5 + tmp7; 
283 
z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */

284  
285 
tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (c1+c3+c5c7) */

286 
tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3c5+c7) */

287 
tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5c7) */

288 
tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3c5c7) */

289 
z1 = MULTIPLY(z1,  FIX_0_899976223); /* sqrt(2) * (c7c3) */

290 
z2 = MULTIPLY(z2,  FIX_2_562915447); /* sqrt(2) * (c1c3) */

291 
z3 = MULTIPLY(z3,  FIX_1_961570560); /* sqrt(2) * (c3c5) */

292 
z4 = MULTIPLY(z4,  FIX_0_390180644); /* sqrt(2) * (c5c3) */

293  
294 
z3 += z5; 
295 
z4 += z5; 
296  
297 
dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp4 + z1 + z3,

298 
CONST_BITS+PASS1_BITS); 
299 
dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp5 + z2 + z4,

300 
CONST_BITS+PASS1_BITS); 
301 
dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp6 + z2 + z3,

302 
CONST_BITS+PASS1_BITS); 
303 
dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp7 + z1 + z4,

304 
CONST_BITS+PASS1_BITS); 
305  
306 
dataptr++; /* advance pointer to next column */

307 
} 
308 
} 
309  
310 
/*

311 
* The secret of DCT248 is really simple  you do the usual 1DCT

312 
* on the rows and then, instead of doing even and odd, part on the colums

313 
* you do even part two times.

314 
*/

315 
GLOBAL(void)

316 
ff_fdct248_islow (DCTELEM * data) 
317 
{ 
318 
int_fast32_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; 
319 
int_fast32_t tmp10, tmp11, tmp12, tmp13; 
320 
int_fast32_t z1; 
321 
DCTELEM *dataptr; 
322 
int ctr;

323 
SHIFT_TEMPS 
324  
325 
row_fdct(data); 
326  
327 
/* Pass 2: process columns.

328 
* We remove the PASS1_BITS scaling, but leave the results scaled up

329 
* by an overall factor of 8.

330 
*/

331  
332 
dataptr = data; 
333 
for (ctr = DCTSIZE1; ctr >= 0; ctr) { 
334 
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*1]; 
335 
tmp1 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3]; 
336 
tmp2 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5]; 
337 
tmp3 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7]; 
338 
tmp4 = dataptr[DCTSIZE*0]  dataptr[DCTSIZE*1]; 
339 
tmp5 = dataptr[DCTSIZE*2]  dataptr[DCTSIZE*3]; 
340 
tmp6 = dataptr[DCTSIZE*4]  dataptr[DCTSIZE*5]; 
341 
tmp7 = dataptr[DCTSIZE*6]  dataptr[DCTSIZE*7]; 
342  
343 
tmp10 = tmp0 + tmp3; 
344 
tmp11 = tmp1 + tmp2; 
345 
tmp12 = tmp1  tmp2; 
346 
tmp13 = tmp0  tmp3; 
347  
348 
dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);

349 
dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10  tmp11, PASS1_BITS);

350  
351 
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); 
352 
dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),

353 
CONST_BITS+PASS1_BITS); 
354 
dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12,  FIX_1_847759065),

355 
CONST_BITS+PASS1_BITS); 
356  
357 
tmp10 = tmp4 + tmp7; 
358 
tmp11 = tmp5 + tmp6; 
359 
tmp12 = tmp5  tmp6; 
360 
tmp13 = tmp4  tmp7; 
361  
362 
dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS);

363 
dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp10  tmp11, PASS1_BITS);

364  
365 
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); 
366 
dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),

367 
CONST_BITS+PASS1_BITS); 
368 
dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12,  FIX_1_847759065),

369 
CONST_BITS+PASS1_BITS); 
370  
371 
dataptr++; /* advance pointer to next column */

372 
} 
373 
} 