ffmpeg / libavcodec / cook.c @ d36beb3f
History  View  Annotate  Download (43.3 KB)
1 
/*


2 
* COOK compatible decoder

3 
* Copyright (c) 2003 Sascha Sommer

4 
* Copyright (c) 2005 Benjamin Larsson

5 
*

6 
* This file is part of FFmpeg.

7 
*

8 
* FFmpeg is free software; you can redistribute it and/or

9 
* modify it under the terms of the GNU Lesser General Public

10 
* License as published by the Free Software Foundation; either

11 
* version 2.1 of the License, or (at your option) any later version.

12 
*

13 
* FFmpeg is distributed in the hope that it will be useful,

14 
* but WITHOUT ANY WARRANTY; without even the implied warranty of

15 
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

16 
* Lesser General Public License for more details.

17 
*

18 
* You should have received a copy of the GNU Lesser General Public

19 
* License along with FFmpeg; if not, write to the Free Software

20 
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 021101301 USA

21 
*/

22  
23 
/**

24 
* @file

25 
* Cook compatible decoder. Bastardization of the G.722.1 standard.

26 
* This decoder handles RealNetworks, RealAudio G2 data.

27 
* Cook is identified by the codec name cook in RM files.

28 
*

29 
* To use this decoder, a calling application must supply the extradata

30 
* bytes provided from the RM container; 8+ bytes for mono streams and

31 
* 16+ for stereo streams (maybe more).

32 
*

33 
* Codec technicalities (all this assume a buffer length of 1024):

34 
* Cook works with several different techniques to achieve its compression.

35 
* In the timedomain the buffer is divided into 8 pieces and quantized. If

36 
* two neighboring pieces have different quantization index a smooth

37 
* quantization curve is used to get a smooth overlap between the different

38 
* pieces.

39 
* To get to the transformdomain Cook uses a modulated lapped transform.

40 
* The transform domain has 50 subbands with 20 elements each. This

41 
* means only a maximum of 50*20=1000 coefficients are used out of the 1024

42 
* available.

43 
*/

44  
45 
#include <math.h> 
46 
#include <stddef.h> 
47 
#include <stdio.h> 
48  
49 
#include "libavutil/lfg.h" 
50 
#include "libavutil/random_seed.h" 
51 
#include "avcodec.h" 
52 
#include "get_bits.h" 
53 
#include "dsputil.h" 
54 
#include "bytestream.h" 
55 
#include "fft.h" 
56  
57 
#include "cookdata.h" 
58  
59 
/* the different Cook versions */

60 
#define MONO 0x1000001 
61 
#define STEREO 0x1000002 
62 
#define JOINT_STEREO 0x1000003 
63 
#define MC_COOK 0x2000000 //multichannel Cook, not supported 
64  
65 
#define SUBBAND_SIZE 20 
66 
#define MAX_SUBPACKETS 5 
67 
//#define COOKDEBUG

68  
69 
typedef struct { 
70 
int *now;

71 
int *previous;

72 
} cook_gains; 
73  
74 
typedef struct { 
75 
int ch_idx;

76 
int size;

77 
int num_channels;

78 
int cookversion;

79 
int samples_per_frame;

80 
int subbands;

81 
int js_subband_start;

82 
int js_vlc_bits;

83 
int samples_per_channel;

84 
int log2_numvector_size;

85 
unsigned int channel_mask; 
86 
VLC ccpl; ///< channel coupling

87 
int joint_stereo;

88 
int bits_per_subpacket;

89 
int bits_per_subpdiv;

90 
int total_subbands;

91 
int numvector_size; ///< 1 << log2_numvector_size; 
92  
93 
float mono_previous_buffer1[1024]; 
94 
float mono_previous_buffer2[1024]; 
95 
/** gain buffers */

96 
cook_gains gains1; 
97 
cook_gains gains2; 
98 
int gain_1[9]; 
99 
int gain_2[9]; 
100 
int gain_3[9]; 
101 
int gain_4[9]; 
102 
} COOKSubpacket; 
103  
104 
typedef struct cook { 
105 
/*

106 
* The following 5 functions provide the lowlevel arithmetic on

107 
* the internal audio buffers.

108 
*/

109 
void (* scalar_dequant)(struct cook *q, int index, int quant_index, 
110 
int* subband_coef_index, int* subband_coef_sign, 
111 
float* mlt_p);

112  
113 
void (* decouple) (struct cook *q, 
114 
COOKSubpacket *p, 
115 
int subband,

116 
float f1, float f2, 
117 
float *decode_buffer,

118 
float *mlt_buffer1, float *mlt_buffer2); 
119  
120 
void (* imlt_window) (struct cook *q, float *buffer1, 
121 
cook_gains *gains_ptr, float *previous_buffer);

122  
123 
void (* interpolate) (struct cook *q, float* buffer, 
124 
int gain_index, int gain_index_next); 
125  
126 
void (* saturate_output) (struct cook *q, int chan, int16_t *out); 
127  
128 
AVCodecContext* avctx; 
129 
GetBitContext gb; 
130 
/* stream data */

131 
int nb_channels;

132 
int bit_rate;

133 
int sample_rate;

134 
int num_vectors;

135 
int samples_per_channel;

136 
/* states */

137 
AVLFG random_state; 
138  
139 
/* transform data */

140 
FFTContext mdct_ctx; 
141 
float* mlt_window;

142  
143 
/* VLC data */

144 
VLC envelope_quant_index[13];

145 
VLC sqvh[7]; //scalar quantization 
146  
147 
/* generatable tables and related variables */

148 
int gain_size_factor;

149 
float gain_table[23]; 
150  
151 
/* data buffers */

152  
153 
uint8_t* decoded_bytes_buffer; 
154 
DECLARE_ALIGNED(16, float,mono_mdct_output)[2048]; 
155 
float decode_buffer_1[1024]; 
156 
float decode_buffer_2[1024]; 
157 
float decode_buffer_0[1060]; /* static allocation for joint decode */ 
158  
159 
const float *cplscales[5]; 
160 
int num_subpackets;

161 
COOKSubpacket subpacket[MAX_SUBPACKETS]; 
162 
} COOKContext; 
163  
164 
static float pow2tab[127]; 
165 
static float rootpow2tab[127]; 
166  
167 
/* debug functions */

168  
169 
#ifdef COOKDEBUG

170 
static void dump_float_table(float* table, int size, int delimiter) { 
171 
int i=0; 
172 
av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i); 
173 
for (i=0 ; i<size ; i++) { 
174 
av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]); 
175 
if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1); 
176 
} 
177 
} 
178  
179 
static void dump_int_table(int* table, int size, int delimiter) { 
180 
int i=0; 
181 
av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i); 
182 
for (i=0 ; i<size ; i++) { 
183 
av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]); 
184 
if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1); 
185 
} 
186 
} 
187  
188 
static void dump_short_table(short* table, int size, int delimiter) { 
189 
int i=0; 
190 
av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i); 
191 
for (i=0 ; i<size ; i++) { 
192 
av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]); 
193 
if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1); 
194 
} 
195 
} 
196  
197 
#endif

198  
199 
/*************** init functions ***************/

200  
201 
/* table generator */

202 
static av_cold void init_pow2table(void){ 
203 
int i;

204 
for (i=63 ; i<64 ; i++){ 
205 
pow2tab[63+i]= pow(2, i); 
206 
rootpow2tab[63+i]=sqrt(pow(2, i)); 
207 
} 
208 
} 
209  
210 
/* table generator */

211 
static av_cold void init_gain_table(COOKContext *q) { 
212 
int i;

213 
q>gain_size_factor = q>samples_per_channel/8;

214 
for (i=0 ; i<23 ; i++) { 
215 
q>gain_table[i] = pow(pow2tab[i+52] ,

216 
(1.0/(double)q>gain_size_factor)); 
217 
} 
218 
} 
219  
220  
221 
static av_cold int init_cook_vlc_tables(COOKContext *q) { 
222 
int i, result;

223  
224 
result = 0;

225 
for (i=0 ; i<13 ; i++) { 
226 
result = init_vlc (&q>envelope_quant_index[i], 9, 24, 
227 
envelope_quant_index_huffbits[i], 1, 1, 
228 
envelope_quant_index_huffcodes[i], 2, 2, 0); 
229 
} 
230 
av_log(q>avctx,AV_LOG_DEBUG,"sqvh VLC init\n");

231 
for (i=0 ; i<7 ; i++) { 
232 
result = init_vlc (&q>sqvh[i], vhvlcsize_tab[i], vhsize_tab[i], 
233 
cvh_huffbits[i], 1, 1, 
234 
cvh_huffcodes[i], 2, 2, 0); 
235 
} 
236  
237 
for(i=0;i<q>num_subpackets;i++){ 
238 
if (q>subpacket[i].joint_stereo==1){ 
239 
result = init_vlc (&q>subpacket[i].ccpl, 6, (1<<q>subpacket[i].js_vlc_bits)1, 
240 
ccpl_huffbits[q>subpacket[i].js_vlc_bits2], 1, 1, 
241 
ccpl_huffcodes[q>subpacket[i].js_vlc_bits2], 2, 2, 0); 
242 
av_log(q>avctx,AV_LOG_DEBUG,"subpacket %i Jointstereo VLC used.\n",i);

243 
} 
244 
} 
245  
246 
av_log(q>avctx,AV_LOG_DEBUG,"VLC tables initialized.\n");

247 
return result;

248 
} 
249  
250 
static av_cold int init_cook_mlt(COOKContext *q) { 
251 
int j;

252 
int mlt_size = q>samples_per_channel;

253  
254 
if ((q>mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0) 
255 
return 1; 
256  
257 
/* Initialize the MLT window: simple sine window. */

258 
ff_sine_window_init(q>mlt_window, mlt_size); 
259 
for(j=0 ; j<mlt_size ; j++) 
260 
q>mlt_window[j] *= sqrt(2.0 / q>samples_per_channel); 
261  
262 
/* Initialize the MDCT. */

263 
if (ff_mdct_init(&q>mdct_ctx, av_log2(mlt_size)+1, 1, 1.0)) { 
264 
av_free(q>mlt_window); 
265 
return 1; 
266 
} 
267 
av_log(q>avctx,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",

268 
av_log2(mlt_size)+1);

269  
270 
return 0; 
271 
} 
272  
273 
static const float *maybe_reformat_buffer32 (COOKContext *q, const float *ptr, int n) 
274 
{ 
275 
if (1) 
276 
return ptr;

277 
} 
278  
279 
static av_cold void init_cplscales_table (COOKContext *q) { 
280 
int i;

281 
for (i=0;i<5;i++) 
282 
q>cplscales[i] = maybe_reformat_buffer32 (q, cplscales[i], (1<<(i+2))1); 
283 
} 
284  
285 
/*************** init functions end ***********/

286  
287 
#define DECODE_BYTES_PAD1(bytes) (3  ((bytes)+3) % 4) 
288 
#define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes))) 
289  
290 
/**

291 
* Cook indata decoding, every 32 bits are XORed with 0x37c511f2.

292 
* Why? No idea, some checksum/error detection method maybe.

293 
*

294 
* Out buffer size: extra bytes are needed to cope with

295 
* padding/misalignment.

296 
* Subpackets passed to the decoder can contain two, consecutive

297 
* halfsubpackets, of identical but arbitrary size.

298 
* 1234 1234 1234 1234 extraA extraB

299 
* Case 1: AAAA BBBB 0 0

300 
* Case 2: AAAA ABBB BB 3 3

301 
* Case 3: AAAA AABB BBBB 2 2

302 
* Case 4: AAAA AAAB BBBB BB 1 5

303 
*

304 
* Nice way to waste CPU cycles.

305 
*

306 
* @param inbuffer pointer to byte array of indata

307 
* @param out pointer to byte array of outdata

308 
* @param bytes number of bytes

309 
*/

310  
311 
static inline int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){ 
312 
int i, off;

313 
uint32_t c; 
314 
const uint32_t* buf;

315 
uint32_t* obuf = (uint32_t*) out; 
316 
/* FIXME: 64 bit platforms would be able to do 64 bits at a time.

317 
* I'm too lazy though, should be something like

318 
* for(i=0 ; i<bitamount/64 ; i++)

319 
* (int64_t)out[i] = 0x37c511f237c511f2^av_be2ne64(int64_t)in[i]);

320 
* Buffer alignment needs to be checked. */

321  
322 
off = (intptr_t)inbuffer & 3;

323 
buf = (const uint32_t*) (inbuffer  off);

324 
c = av_be2ne32((0x37c511f2 >> (off*8))  (0x37c511f2 << (32(off*8)))); 
325 
bytes += 3 + off;

326 
for (i = 0; i < bytes/4; i++) 
327 
obuf[i] = c ^ buf[i]; 
328  
329 
return off;

330 
} 
331  
332 
/**

333 
* Cook uninit

334 
*/

335  
336 
static av_cold int cook_decode_close(AVCodecContext *avctx) 
337 
{ 
338 
int i;

339 
COOKContext *q = avctx>priv_data; 
340 
av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");

341  
342 
/* Free allocated memory buffers. */

343 
av_free(q>mlt_window); 
344 
av_free(q>decoded_bytes_buffer); 
345  
346 
/* Free the transform. */

347 
ff_mdct_end(&q>mdct_ctx); 
348  
349 
/* Free the VLC tables. */

350 
for (i=0 ; i<13 ; i++) { 
351 
free_vlc(&q>envelope_quant_index[i]); 
352 
} 
353 
for (i=0 ; i<7 ; i++) { 
354 
free_vlc(&q>sqvh[i]); 
355 
} 
356 
for (i=0 ; i<q>num_subpackets ; i++) { 
357 
free_vlc(&q>subpacket[i].ccpl); 
358 
} 
359  
360 
av_log(avctx,AV_LOG_DEBUG,"Memory deallocated.\n");

361  
362 
return 0; 
363 
} 
364  
365 
/**

366 
* Fill the gain array for the timedomain quantization.

367 
*

368 
* @param gb pointer to the GetBitContext

369 
* @param gaininfo[9] array of gain indexes

370 
*/

371  
372 
static void decode_gain_info(GetBitContext *gb, int *gaininfo) 
373 
{ 
374 
int i, n;

375  
376 
while (get_bits1(gb)) {}

377 
n = get_bits_count(gb)  1; //amount of elements*2 to update 
378  
379 
i = 0;

380 
while (n) {

381 
int index = get_bits(gb, 3); 
382 
int gain = get_bits1(gb) ? get_bits(gb, 4)  7 : 1; 
383  
384 
while (i <= index) gaininfo[i++] = gain;

385 
} 
386 
while (i <= 8) gaininfo[i++] = 0; 
387 
} 
388  
389 
/**

390 
* Create the quant index table needed for the envelope.

391 
*

392 
* @param q pointer to the COOKContext

393 
* @param quant_index_table pointer to the array

394 
*/

395  
396 
static void decode_envelope(COOKContext *q, COOKSubpacket *p, int* quant_index_table) { 
397 
int i,j, vlc_index;

398  
399 
quant_index_table[0]= get_bits(&q>gb,6)  6; //This is used later in categorize 
400  
401 
for (i=1 ; i < p>total_subbands ; i++){ 
402 
vlc_index=i; 
403 
if (i >= p>js_subband_start * 2) { 
404 
vlc_index=p>js_subband_start; 
405 
} else {

406 
vlc_index/=2;

407 
if(vlc_index < 1) vlc_index = 1; 
408 
} 
409 
if (vlc_index>13) vlc_index = 13; //the VLC tables >13 are identical to No. 13 
410  
411 
j = get_vlc2(&q>gb, q>envelope_quant_index[vlc_index1].table,

412 
q>envelope_quant_index[vlc_index1].bits,2); 
413 
quant_index_table[i] = quant_index_table[i1] + j  12; //differential encoding 
414 
} 
415 
} 
416  
417 
/**

418 
* Calculate the category and category_index vector.

419 
*

420 
* @param q pointer to the COOKContext

421 
* @param quant_index_table pointer to the array

422 
* @param category pointer to the category array

423 
* @param category_index pointer to the category_index array

424 
*/

425  
426 
static void categorize(COOKContext *q, COOKSubpacket *p, int* quant_index_table, 
427 
int* category, int* category_index){ 
428 
int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;

429 
int exp_index2[102]; 
430 
int exp_index1[102]; 
431  
432 
int tmp_categorize_array[128*2]; 
433 
int tmp_categorize_array1_idx=p>numvector_size;

434 
int tmp_categorize_array2_idx=p>numvector_size;

435  
436 
bits_left = p>bits_per_subpacket  get_bits_count(&q>gb); 
437  
438 
if(bits_left > q>samples_per_channel) {

439 
bits_left = q>samples_per_channel + 
440 
((bits_left  q>samples_per_channel)*5)/8; 
441 
//av_log(q>avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);

442 
} 
443  
444 
memset(&exp_index1,0,102*sizeof(int)); 
445 
memset(&exp_index2,0,102*sizeof(int)); 
446 
memset(&tmp_categorize_array,0,128*2*sizeof(int)); 
447  
448 
bias=32;

449  
450 
/* Estimate bias. */

451 
for (i=32 ; i>0 ; i=i/2){ 
452 
num_bits = 0;

453 
index = 0;

454 
for (j=p>total_subbands ; j>0 ; j){ 
455 
exp_idx = av_clip((i  quant_index_table[index] + bias) / 2, 0, 7); 
456 
index++; 
457 
num_bits+=expbits_tab[exp_idx]; 
458 
} 
459 
if(num_bits >= bits_left  32){ 
460 
bias+=i; 
461 
} 
462 
} 
463  
464 
/* Calculate total number of bits. */

465 
num_bits=0;

466 
for (i=0 ; i<p>total_subbands ; i++) { 
467 
exp_idx = av_clip((bias  quant_index_table[i]) / 2, 0, 7); 
468 
num_bits += expbits_tab[exp_idx]; 
469 
exp_index1[i] = exp_idx; 
470 
exp_index2[i] = exp_idx; 
471 
} 
472 
tmpbias1 = tmpbias2 = num_bits; 
473  
474 
for (j = 1 ; j < p>numvector_size ; j++) { 
475 
if (tmpbias1 + tmpbias2 > 2*bits_left) { /* > */ 
476 
int max = 999999; 
477 
index=1;

478 
for (i=0 ; i<p>total_subbands ; i++){ 
479 
if (exp_index1[i] < 7) { 
480 
v = (2*exp_index1[i])  quant_index_table[i] + bias;

481 
if ( v >= max) {

482 
max = v; 
483 
index = i; 
484 
} 
485 
} 
486 
} 
487 
if(index==1)break; 
488 
tmp_categorize_array[tmp_categorize_array1_idx++] = index; 
489 
tmpbias1 = expbits_tab[exp_index1[index]]  
490 
expbits_tab[exp_index1[index]+1];

491 
++exp_index1[index]; 
492 
} else { /* < */ 
493 
int min = 999999; 
494 
index=1;

495 
for (i=0 ; i<p>total_subbands ; i++){ 
496 
if(exp_index2[i] > 0){ 
497 
v = (2*exp_index2[i])quant_index_table[i]+bias;

498 
if ( v < min) {

499 
min = v; 
500 
index = i; 
501 
} 
502 
} 
503 
} 
504 
if(index == 1)break; 
505 
tmp_categorize_array[tmp_categorize_array2_idx] = index; 
506 
tmpbias2 = expbits_tab[exp_index2[index]]  
507 
expbits_tab[exp_index2[index]1];

508 
exp_index2[index]; 
509 
} 
510 
} 
511  
512 
for(i=0 ; i<p>total_subbands ; i++) 
513 
category[i] = exp_index2[i]; 
514  
515 
for(i=0 ; i<p>numvector_size1 ; i++) 
516 
category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++]; 
517  
518 
} 
519  
520  
521 
/**

522 
* Expand the category vector.

523 
*

524 
* @param q pointer to the COOKContext

525 
* @param category pointer to the category array

526 
* @param category_index pointer to the category_index array

527 
*/

528  
529 
static inline void expand_category(COOKContext *q, int* category, 
530 
int* category_index){

531 
int i;

532 
for(i=0 ; i<q>num_vectors ; i++){ 
533 
++category[category_index[i]]; 
534 
} 
535 
} 
536  
537 
/**

538 
* The real requantization of the mltcoefs

539 
*

540 
* @param q pointer to the COOKContext

541 
* @param index index

542 
* @param quant_index quantisation index

543 
* @param subband_coef_index array of indexes to quant_centroid_tab

544 
* @param subband_coef_sign signs of coefficients

545 
* @param mlt_p pointer into the mlt buffer

546 
*/

547  
548 
static void scalar_dequant_float(COOKContext *q, int index, int quant_index, 
549 
int* subband_coef_index, int* subband_coef_sign, 
550 
float* mlt_p){

551 
int i;

552 
float f1;

553  
554 
for(i=0 ; i<SUBBAND_SIZE ; i++) { 
555 
if (subband_coef_index[i]) {

556 
f1 = quant_centroid_tab[index][subband_coef_index[i]]; 
557 
if (subband_coef_sign[i]) f1 = f1;

558 
} else {

559 
/* noise coding if subband_coef_index[i] == 0 */

560 
f1 = dither_tab[index]; 
561 
if (av_lfg_get(&q>random_state) < 0x80000000) f1 = f1; 
562 
} 
563 
mlt_p[i] = f1 * rootpow2tab[quant_index+63];

564 
} 
565 
} 
566 
/**

567 
* Unpack the subband_coef_index and subband_coef_sign vectors.

568 
*

569 
* @param q pointer to the COOKContext

570 
* @param category pointer to the category array

571 
* @param subband_coef_index array of indexes to quant_centroid_tab

572 
* @param subband_coef_sign signs of coefficients

573 
*/

574  
575 
static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category, int* subband_coef_index, 
576 
int* subband_coef_sign) {

577 
int i,j;

578 
int vlc, vd ,tmp, result;

579  
580 
vd = vd_tab[category]; 
581 
result = 0;

582 
for(i=0 ; i<vpr_tab[category] ; i++){ 
583 
vlc = get_vlc2(&q>gb, q>sqvh[category].table, q>sqvh[category].bits, 3);

584 
if (p>bits_per_subpacket < get_bits_count(&q>gb)){

585 
vlc = 0;

586 
result = 1;

587 
} 
588 
for(j=vd1 ; j>=0 ; j){ 
589 
tmp = (vlc * invradix_tab[category])/0x100000;

590 
subband_coef_index[vd*i+j] = vlc  tmp * (kmax_tab[category]+1);

591 
vlc = tmp; 
592 
} 
593 
for(j=0 ; j<vd ; j++){ 
594 
if (subband_coef_index[i*vd + j]) {

595 
if(get_bits_count(&q>gb) < p>bits_per_subpacket){

596 
subband_coef_sign[i*vd+j] = get_bits1(&q>gb); 
597 
} else {

598 
result=1;

599 
subband_coef_sign[i*vd+j]=0;

600 
} 
601 
} else {

602 
subband_coef_sign[i*vd+j]=0;

603 
} 
604 
} 
605 
} 
606 
return result;

607 
} 
608  
609  
610 
/**

611 
* Fill the mlt_buffer with mlt coefficients.

612 
*

613 
* @param q pointer to the COOKContext

614 
* @param category pointer to the category array

615 
* @param quant_index_table pointer to the array

616 
* @param mlt_buffer pointer to mlt coefficients

617 
*/

618  
619  
620 
static void decode_vectors(COOKContext* q, COOKSubpacket* p, int* category, 
621 
int *quant_index_table, float* mlt_buffer){ 
622 
/* A zero in this table means that the subband coefficient is

623 
random noise coded. */

624 
int subband_coef_index[SUBBAND_SIZE];

625 
/* A zero in this table means that the subband coefficient is a

626 
positive multiplicator. */

627 
int subband_coef_sign[SUBBAND_SIZE];

628 
int band, j;

629 
int index=0; 
630  
631 
for(band=0 ; band<p>total_subbands ; band++){ 
632 
index = category[band]; 
633 
if(category[band] < 7){ 
634 
if(unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)){

635 
index=7;

636 
for(j=0 ; j<p>total_subbands ; j++) category[band+j]=7; 
637 
} 
638 
} 
639 
if(index>=7) { 
640 
memset(subband_coef_index, 0, sizeof(subband_coef_index)); 
641 
memset(subband_coef_sign, 0, sizeof(subband_coef_sign)); 
642 
} 
643 
q>scalar_dequant(q, index, quant_index_table[band], 
644 
subband_coef_index, subband_coef_sign, 
645 
&mlt_buffer[band * SUBBAND_SIZE]); 
646 
} 
647  
648 
if(p>total_subbands*SUBBAND_SIZE >= q>samples_per_channel){

649 
return;

650 
} /* FIXME: should this be removed, or moved into loop above? */

651 
} 
652  
653  
654 
/**

655 
* function for decoding mono data

656 
*

657 
* @param q pointer to the COOKContext

658 
* @param mlt_buffer pointer to mlt coefficients

659 
*/

660  
661 
static void mono_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer) { 
662  
663 
int category_index[128]; 
664 
int quant_index_table[102]; 
665 
int category[128]; 
666  
667 
memset(&category, 0, 128*sizeof(int)); 
668 
memset(&category_index, 0, 128*sizeof(int)); 
669  
670 
decode_envelope(q, p, quant_index_table); 
671 
q>num_vectors = get_bits(&q>gb,p>log2_numvector_size); 
672 
categorize(q, p, quant_index_table, category, category_index); 
673 
expand_category(q, category, category_index); 
674 
decode_vectors(q, p, category, quant_index_table, mlt_buffer); 
675 
} 
676  
677  
678 
/**

679 
* the actual requantization of the timedomain samples

680 
*

681 
* @param q pointer to the COOKContext

682 
* @param buffer pointer to the timedomain buffer

683 
* @param gain_index index for the block multiplier

684 
* @param gain_index_next index for the next block multiplier

685 
*/

686  
687 
static void interpolate_float(COOKContext *q, float* buffer, 
688 
int gain_index, int gain_index_next){ 
689 
int i;

690 
float fc1, fc2;

691 
fc1 = pow2tab[gain_index+63];

692  
693 
if(gain_index == gain_index_next){ //static gain 
694 
for(i=0 ; i<q>gain_size_factor ; i++){ 
695 
buffer[i]*=fc1; 
696 
} 
697 
return;

698 
} else { //smooth gain 
699 
fc2 = q>gain_table[11 + (gain_index_nextgain_index)];

700 
for(i=0 ; i<q>gain_size_factor ; i++){ 
701 
buffer[i]*=fc1; 
702 
fc1*=fc2; 
703 
} 
704 
return;

705 
} 
706 
} 
707  
708 
/**

709 
* Apply transform window, overlap buffers.

710 
*

711 
* @param q pointer to the COOKContext

712 
* @param inbuffer pointer to the mltcoefficients

713 
* @param gains_ptr current and previous gains

714 
* @param previous_buffer pointer to the previous buffer to be used for overlapping

715 
*/

716  
717 
static void imlt_window_float (COOKContext *q, float *inbuffer, 
718 
cook_gains *gains_ptr, float *previous_buffer)

719 
{ 
720 
const float fc = pow2tab[gains_ptr>previous[0] + 63]; 
721 
int i;

722 
/* The weird thing here, is that the two halves of the time domain

723 
* buffer are swapped. Also, the newest data, that we save away for

724 
* next frame, has the wrong sign. Hence the subtraction below.

725 
* Almost sounds like a complex conjugate/reverse data/FFT effect.

726 
*/

727  
728 
/* Apply window and overlap */

729 
for(i = 0; i < q>samples_per_channel; i++){ 
730 
inbuffer[i] = inbuffer[i] * fc * q>mlt_window[i]  
731 
previous_buffer[i] * q>mlt_window[q>samples_per_channel  1  i];

732 
} 
733 
} 
734  
735 
/**

736 
* The modulated lapped transform, this takes transform coefficients

737 
* and transforms them into timedomain samples.

738 
* Apply transform window, overlap buffers, apply gain profile

739 
* and buffer management.

740 
*

741 
* @param q pointer to the COOKContext

742 
* @param inbuffer pointer to the mltcoefficients

743 
* @param gains_ptr current and previous gains

744 
* @param previous_buffer pointer to the previous buffer to be used for overlapping

745 
*/

746  
747 
static void imlt_gain(COOKContext *q, float *inbuffer, 
748 
cook_gains *gains_ptr, float* previous_buffer)

749 
{ 
750 
float *buffer0 = q>mono_mdct_output;

751 
float *buffer1 = q>mono_mdct_output + q>samples_per_channel;

752 
int i;

753  
754 
/* Inverse modified discrete cosine transform */

755 
ff_imdct_calc(&q>mdct_ctx, q>mono_mdct_output, inbuffer); 
756  
757 
q>imlt_window (q, buffer1, gains_ptr, previous_buffer); 
758  
759 
/* Apply gain profile */

760 
for (i = 0; i < 8; i++) { 
761 
if (gains_ptr>now[i]  gains_ptr>now[i + 1]) 
762 
q>interpolate(q, &buffer1[q>gain_size_factor * i], 
763 
gains_ptr>now[i], gains_ptr>now[i + 1]);

764 
} 
765  
766 
/* Save away the current to be previous block. */

767 
memcpy(previous_buffer, buffer0, sizeof(float)*q>samples_per_channel); 
768 
} 
769  
770  
771 
/**

772 
* function for getting the jointstereo coupling information

773 
*

774 
* @param q pointer to the COOKContext

775 
* @param decouple_tab decoupling array

776 
*

777 
*/

778  
779 
static void decouple_info(COOKContext *q, COOKSubpacket *p, int* decouple_tab){ 
780 
int length, i;

781  
782 
if(get_bits1(&q>gb)) {

783 
if(cplband[p>js_subband_start] > cplband[p>subbands1]) return; 
784  
785 
length = cplband[p>subbands1]  cplband[p>js_subband_start] + 1; 
786 
for (i=0 ; i<length ; i++) { 
787 
decouple_tab[cplband[p>js_subband_start] + i] = get_vlc2(&q>gb, p>ccpl.table, p>ccpl.bits, 2);

788 
} 
789 
return;

790 
} 
791  
792 
if(cplband[p>js_subband_start] > cplband[p>subbands1]) return; 
793  
794 
length = cplband[p>subbands1]  cplband[p>js_subband_start] + 1; 
795 
for (i=0 ; i<length ; i++) { 
796 
decouple_tab[cplband[p>js_subband_start] + i] = get_bits(&q>gb, p>js_vlc_bits); 
797 
} 
798 
return;

799 
} 
800  
801 
/*

802 
* function decouples a pair of signals from a single signal via multiplication.

803 
*

804 
* @param q pointer to the COOKContext

805 
* @param subband index of the current subband

806 
* @param f1 multiplier for channel 1 extraction

807 
* @param f2 multiplier for channel 2 extraction

808 
* @param decode_buffer input buffer

809 
* @param mlt_buffer1 pointer to left channel mlt coefficients

810 
* @param mlt_buffer2 pointer to right channel mlt coefficients

811 
*/

812 
static void decouple_float (COOKContext *q, 
813 
COOKSubpacket *p, 
814 
int subband,

815 
float f1, float f2, 
816 
float *decode_buffer,

817 
float *mlt_buffer1, float *mlt_buffer2) 
818 
{ 
819 
int j, tmp_idx;

820 
for (j=0 ; j<SUBBAND_SIZE ; j++) { 
821 
tmp_idx = ((p>js_subband_start + subband)*SUBBAND_SIZE)+j; 
822 
mlt_buffer1[SUBBAND_SIZE*subband + j] = f1 * decode_buffer[tmp_idx]; 
823 
mlt_buffer2[SUBBAND_SIZE*subband + j] = f2 * decode_buffer[tmp_idx]; 
824 
} 
825 
} 
826  
827 
/**

828 
* function for decoding joint stereo data

829 
*

830 
* @param q pointer to the COOKContext

831 
* @param mlt_buffer1 pointer to left channel mlt coefficients

832 
* @param mlt_buffer2 pointer to right channel mlt coefficients

833 
*/

834  
835 
static void joint_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer1, 
836 
float* mlt_buffer2) {

837 
int i,j;

838 
int decouple_tab[SUBBAND_SIZE];

839 
float *decode_buffer = q>decode_buffer_0;

840 
int idx, cpl_tmp;

841 
float f1,f2;

842 
const float* cplscale; 
843  
844 
memset(decouple_tab, 0, sizeof(decouple_tab)); 
845 
memset(decode_buffer, 0, sizeof(decode_buffer)); 
846  
847 
/* Make sure the buffers are zeroed out. */

848 
memset(mlt_buffer1,0, 1024*sizeof(float)); 
849 
memset(mlt_buffer2,0, 1024*sizeof(float)); 
850 
decouple_info(q, p, decouple_tab); 
851 
mono_decode(q, p, decode_buffer); 
852  
853 
/* The two channels are stored interleaved in decode_buffer. */

854 
for (i=0 ; i<p>js_subband_start ; i++) { 
855 
for (j=0 ; j<SUBBAND_SIZE ; j++) { 
856 
mlt_buffer1[i*20+j] = decode_buffer[i*40+j]; 
857 
mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j]; 
858 
} 
859 
} 
860  
861 
/* When we reach js_subband_start (the higher frequencies)

862 
the coefficients are stored in a coupling scheme. */

863 
idx = (1 << p>js_vlc_bits)  1; 
864 
for (i=p>js_subband_start ; i<p>subbands ; i++) {

865 
cpl_tmp = cplband[i]; 
866 
idx =decouple_tab[cpl_tmp]; 
867 
cplscale = q>cplscales[p>js_vlc_bits2]; //choose decoupler table 
868 
f1 = cplscale[decouple_tab[cpl_tmp]]; 
869 
f2 = cplscale[idx1];

870 
q>decouple (q, p, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2); 
871 
idx = (1 << p>js_vlc_bits)  1; 
872 
} 
873 
} 
874  
875 
/**

876 
* First part of subpacket decoding:

877 
* decode raw stream bytes and read gain info.

878 
*

879 
* @param q pointer to the COOKContext

880 
* @param inbuffer pointer to raw stream data

881 
* @param gains_ptr array of current/prev gain pointers

882 
*/

883  
884 
static inline void 
885 
decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p, const uint8_t *inbuffer,

886 
cook_gains *gains_ptr) 
887 
{ 
888 
int offset;

889  
890 
offset = decode_bytes(inbuffer, q>decoded_bytes_buffer, 
891 
p>bits_per_subpacket/8);

892 
init_get_bits(&q>gb, q>decoded_bytes_buffer + offset, 
893 
p>bits_per_subpacket); 
894 
decode_gain_info(&q>gb, gains_ptr>now); 
895  
896 
/* Swap current and previous gains */

897 
FFSWAP(int *, gains_ptr>now, gains_ptr>previous);

898 
} 
899  
900 
/**

901 
* Saturate the output signal to signed 16bit integers.

902 
*

903 
* @param q pointer to the COOKContext

904 
* @param chan channel to saturate

905 
* @param out pointer to the output vector

906 
*/

907 
static void 
908 
saturate_output_float (COOKContext *q, int chan, int16_t *out)

909 
{ 
910 
int j;

911 
float *output = q>mono_mdct_output + q>samples_per_channel;

912 
/* Clip and convert floats to 16 bits.

913 
*/

914 
for (j = 0; j < q>samples_per_channel; j++) { 
915 
out[chan + q>nb_channels * j] = 
916 
av_clip_int16(lrintf(output[j])); 
917 
} 
918 
} 
919  
920 
/**

921 
* Final part of subpacket decoding:

922 
* Apply modulated lapped transform, gain compensation,

923 
* clip and convert to integer.

924 
*

925 
* @param q pointer to the COOKContext

926 
* @param decode_buffer pointer to the mlt coefficients

927 
* @param gains_ptr array of current/prev gain pointers

928 
* @param previous_buffer pointer to the previous buffer to be used for overlapping

929 
* @param out pointer to the output buffer

930 
* @param chan 0: left or single channel, 1: right channel

931 
*/

932  
933 
static inline void 
934 
mlt_compensate_output(COOKContext *q, float *decode_buffer,

935 
cook_gains *gains_ptr, float *previous_buffer,

936 
int16_t *out, int chan)

937 
{ 
938 
imlt_gain(q, decode_buffer, gains_ptr, previous_buffer); 
939 
q>saturate_output (q, chan, out); 
940 
} 
941  
942  
943 
/**

944 
* Cook subpacket decoding. This function returns one decoded subpacket,

945 
* usually 1024 samples per channel.

946 
*

947 
* @param q pointer to the COOKContext

948 
* @param inbuffer pointer to the inbuffer

949 
* @param outbuffer pointer to the outbuffer

950 
*/

951 
static void decode_subpacket(COOKContext *q, COOKSubpacket* p, const uint8_t *inbuffer, int16_t *outbuffer) { 
952 
int sub_packet_size = p>size;

953 
/* packet dump */

954 
// for (i=0 ; i<sub_packet_size ; i++) {

955 
// av_log(q>avctx, AV_LOG_ERROR, "%02x", inbuffer[i]);

956 
// }

957 
// av_log(q>avctx, AV_LOG_ERROR, "\n");

958 
memset(q>decode_buffer_1,0,sizeof(q>decode_buffer_1)); 
959 
decode_bytes_and_gain(q, p, inbuffer, &p>gains1); 
960  
961 
if (p>joint_stereo) {

962 
joint_decode(q, p, q>decode_buffer_1, q>decode_buffer_2); 
963 
} else {

964 
mono_decode(q, p, q>decode_buffer_1); 
965  
966 
if (p>num_channels == 2) { 
967 
decode_bytes_and_gain(q, p, inbuffer + sub_packet_size/2, &p>gains2);

968 
mono_decode(q, p, q>decode_buffer_2); 
969 
} 
970 
} 
971  
972 
mlt_compensate_output(q, q>decode_buffer_1, &p>gains1, 
973 
p>mono_previous_buffer1, outbuffer, p>ch_idx); 
974  
975 
if (p>num_channels == 2) { 
976 
if (p>joint_stereo) {

977 
mlt_compensate_output(q, q>decode_buffer_2, &p>gains1, 
978 
p>mono_previous_buffer2, outbuffer, p>ch_idx + 1);

979 
} else {

980 
mlt_compensate_output(q, q>decode_buffer_2, &p>gains2, 
981 
p>mono_previous_buffer2, outbuffer, p>ch_idx + 1);

982 
} 
983 
} 
984  
985 
} 
986  
987  
988 
/**

989 
* Cook frame decoding

990 
*

991 
* @param avctx pointer to the AVCodecContext

992 
*/

993  
994 
static int cook_decode_frame(AVCodecContext *avctx, 
995 
void *data, int *data_size, 
996 
AVPacket *avpkt) { 
997 
const uint8_t *buf = avpkt>data;

998 
int buf_size = avpkt>size;

999 
COOKContext *q = avctx>priv_data; 
1000 
int i;

1001 
int offset = 0; 
1002 
int chidx = 0; 
1003  
1004 
if (buf_size < avctx>block_align)

1005 
return buf_size;

1006  
1007 
/* estimate subpacket sizes */

1008 
q>subpacket[0].size = avctx>block_align;

1009  
1010 
for(i=1;i<q>num_subpackets;i++){ 
1011 
q>subpacket[i].size = 2 * buf[avctx>block_align  q>num_subpackets + i];

1012 
q>subpacket[0].size = q>subpacket[i].size + 1; 
1013 
if (q>subpacket[0].size < 0) { 
1014 
av_log(avctx,AV_LOG_DEBUG,"frame subpacket size total > avctx>block_align!\n");

1015 
return 1; 
1016 
} 
1017 
} 
1018  
1019 
/* decode supbackets */

1020 
*data_size = 0;

1021 
for(i=0;i<q>num_subpackets;i++){ 
1022 
q>subpacket[i].bits_per_subpacket = (q>subpacket[i].size*8)>>q>subpacket[i].bits_per_subpdiv;

1023 
q>subpacket[i].ch_idx = chidx; 
1024 
av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] size %i js %i %i block_align %i\n",i,q>subpacket[i].size,q>subpacket[i].joint_stereo,offset,avctx>block_align);

1025 
decode_subpacket(q, &q>subpacket[i], buf + offset, (int16_t*)data); 
1026 
offset += q>subpacket[i].size; 
1027 
chidx += q>subpacket[i].num_channels; 
1028 
av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] %i %i\n",i,q>subpacket[i].size * 8,get_bits_count(&q>gb)); 
1029 
} 
1030 
*data_size = sizeof(int16_t) * q>nb_channels * q>samples_per_channel;

1031  
1032 
/* Discard the first two frames: no valid audio. */

1033 
if (avctx>frame_number < 2) *data_size = 0; 
1034  
1035 
return avctx>block_align;

1036 
} 
1037  
1038 
#ifdef COOKDEBUG

1039 
static void dump_cook_context(COOKContext *q) 
1040 
{ 
1041 
//int i=0;

1042 
#define PRINT(a,b) av_log(q>avctx,AV_LOG_ERROR," %s = %d\n", a, b); 
1043 
av_log(q>avctx,AV_LOG_ERROR,"COOKextradata\n");

1044 
av_log(q>avctx,AV_LOG_ERROR,"cookversion=%x\n",q>subpacket[0].cookversion); 
1045 
if (q>subpacket[0].cookversion > STEREO) { 
1046 
PRINT("js_subband_start",q>subpacket[0].js_subband_start); 
1047 
PRINT("js_vlc_bits",q>subpacket[0].js_vlc_bits); 
1048 
} 
1049 
av_log(q>avctx,AV_LOG_ERROR,"COOKContext\n");

1050 
PRINT("nb_channels",q>nb_channels);

1051 
PRINT("bit_rate",q>bit_rate);

1052 
PRINT("sample_rate",q>sample_rate);

1053 
PRINT("samples_per_channel",q>subpacket[0].samples_per_channel); 
1054 
PRINT("samples_per_frame",q>subpacket[0].samples_per_frame); 
1055 
PRINT("subbands",q>subpacket[0].subbands); 
1056 
PRINT("random_state",q>random_state);

1057 
PRINT("js_subband_start",q>subpacket[0].js_subband_start); 
1058 
PRINT("log2_numvector_size",q>subpacket[0].log2_numvector_size); 
1059 
PRINT("numvector_size",q>subpacket[0].numvector_size); 
1060 
PRINT("total_subbands",q>subpacket[0].total_subbands); 
1061 
} 
1062 
#endif

1063  
1064 
static av_cold int cook_count_channels(unsigned int mask){ 
1065 
int i;

1066 
int channels = 0; 
1067 
for(i = 0;i<32;i++){ 
1068 
if(mask & (1<<i)) 
1069 
++channels; 
1070 
} 
1071 
return channels;

1072 
} 
1073  
1074 
/**

1075 
* Cook initialization

1076 
*

1077 
* @param avctx pointer to the AVCodecContext

1078 
*/

1079  
1080 
static av_cold int cook_decode_init(AVCodecContext *avctx) 
1081 
{ 
1082 
COOKContext *q = avctx>priv_data; 
1083 
const uint8_t *edata_ptr = avctx>extradata;

1084 
const uint8_t *edata_ptr_end = edata_ptr + avctx>extradata_size;

1085 
int extradata_size = avctx>extradata_size;

1086 
int s = 0; 
1087 
unsigned int channel_mask = 0; 
1088 
q>avctx = avctx; 
1089  
1090 
/* Take care of the codec specific extradata. */

1091 
if (extradata_size <= 0) { 
1092 
av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");

1093 
return 1; 
1094 
} 
1095 
av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx>extradata_size);

1096  
1097 
/* Take data from the AVCodecContext (RM container). */

1098 
q>sample_rate = avctx>sample_rate; 
1099 
q>nb_channels = avctx>channels; 
1100 
q>bit_rate = avctx>bit_rate; 
1101  
1102 
/* Initialize RNG. */

1103 
av_lfg_init(&q>random_state, 0);

1104  
1105 
while(edata_ptr < edata_ptr_end){

1106 
/* 8 for mono, 16 for stereo, ? for multichannel

1107 
Swap to right endianness so we don't need to care later on. */

1108 
if (extradata_size >= 8){ 
1109 
q>subpacket[s].cookversion = bytestream_get_be32(&edata_ptr); 
1110 
q>subpacket[s].samples_per_frame = bytestream_get_be16(&edata_ptr); 
1111 
q>subpacket[s].subbands = bytestream_get_be16(&edata_ptr); 
1112 
extradata_size = 8;

1113 
} 
1114 
if (avctx>extradata_size >= 8){ 
1115 
bytestream_get_be32(&edata_ptr); //Unknown unused

1116 
q>subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr); 
1117 
q>subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr); 
1118 
extradata_size = 8;

1119 
} 
1120  
1121 
/* Initialize extradata related variables. */

1122 
q>subpacket[s].samples_per_channel = q>subpacket[s].samples_per_frame / q>nb_channels; 
1123 
q>subpacket[s].bits_per_subpacket = avctx>block_align * 8;

1124  
1125 
/* Initialize default data states. */

1126 
q>subpacket[s].log2_numvector_size = 5;

1127 
q>subpacket[s].total_subbands = q>subpacket[s].subbands; 
1128 
q>subpacket[s].num_channels = 1;

1129  
1130 
/* Initialize versiondependent variables */

1131  
1132 
av_log(avctx,AV_LOG_DEBUG,"subpacket[%i].cookversion=%x\n",s,q>subpacket[s].cookversion);

1133 
q>subpacket[s].joint_stereo = 0;

1134 
switch (q>subpacket[s].cookversion) {

1135 
case MONO:

1136 
if (q>nb_channels != 1) { 
1137 
av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");

1138 
return 1; 
1139 
} 
1140 
av_log(avctx,AV_LOG_DEBUG,"MONO\n");

1141 
break;

1142 
case STEREO:

1143 
if (q>nb_channels != 1) { 
1144 
q>subpacket[s].bits_per_subpdiv = 1;

1145 
q>subpacket[s].num_channels = 2;

1146 
} 
1147 
av_log(avctx,AV_LOG_DEBUG,"STEREO\n");

1148 
break;

1149 
case JOINT_STEREO:

1150 
if (q>nb_channels != 2) { 
1151 
av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");

1152 
return 1; 
1153 
} 
1154 
av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");

1155 
if (avctx>extradata_size >= 16){ 
1156 
q>subpacket[s].total_subbands = q>subpacket[s].subbands + q>subpacket[s].js_subband_start; 
1157 
q>subpacket[s].joint_stereo = 1;

1158 
q>subpacket[s].num_channels = 2;

1159 
} 
1160 
if (q>subpacket[s].samples_per_channel > 256) { 
1161 
q>subpacket[s].log2_numvector_size = 6;

1162 
} 
1163 
if (q>subpacket[s].samples_per_channel > 512) { 
1164 
q>subpacket[s].log2_numvector_size = 7;

1165 
} 
1166 
break;

1167 
case MC_COOK:

1168 
av_log(avctx,AV_LOG_DEBUG,"MULTI_CHANNEL\n");

1169 
if(extradata_size >= 4) 
1170 
channel_mask = q>subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr); 
1171  
1172 
if(cook_count_channels(q>subpacket[s].channel_mask) > 1){ 
1173 
q>subpacket[s].total_subbands = q>subpacket[s].subbands + q>subpacket[s].js_subband_start; 
1174 
q>subpacket[s].joint_stereo = 1;

1175 
q>subpacket[s].num_channels = 2;

1176 
q>subpacket[s].samples_per_channel = q>subpacket[s].samples_per_frame >> 1;

1177  
1178 
if (q>subpacket[s].samples_per_channel > 256) { 
1179 
q>subpacket[s].log2_numvector_size = 6;

1180 
} 
1181 
if (q>subpacket[s].samples_per_channel > 512) { 
1182 
q>subpacket[s].log2_numvector_size = 7;

1183 
} 
1184 
}else

1185 
q>subpacket[s].samples_per_channel = q>subpacket[s].samples_per_frame; 
1186  
1187 
break;

1188 
default:

1189 
av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");

1190 
return 1; 
1191 
break;

1192 
} 
1193  
1194 
if(s > 1 && q>subpacket[s].samples_per_channel != q>samples_per_channel) { 
1195 
av_log(avctx,AV_LOG_ERROR,"different number of samples per channel!\n");

1196 
return 1; 
1197 
} else

1198 
q>samples_per_channel = q>subpacket[0].samples_per_channel;

1199  
1200  
1201 
/* Initialize variable relations */

1202 
q>subpacket[s].numvector_size = (1 << q>subpacket[s].log2_numvector_size);

1203  
1204 
/* Try to catch some obviously faulty streams, othervise it might be exploitable */

1205 
if (q>subpacket[s].total_subbands > 53) { 
1206 
av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");

1207 
return 1; 
1208 
} 
1209  
1210 
if ((q>subpacket[s].js_vlc_bits > 6)  (q>subpacket[s].js_vlc_bits < 0)) { 
1211 
av_log(avctx,AV_LOG_ERROR,"js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q>subpacket[s].js_vlc_bits);

1212 
return 1; 
1213 
} 
1214  
1215 
if (q>subpacket[s].subbands > 50) { 
1216 
av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");

1217 
return 1; 
1218 
} 
1219 
q>subpacket[s].gains1.now = q>subpacket[s].gain_1; 
1220 
q>subpacket[s].gains1.previous = q>subpacket[s].gain_2; 
1221 
q>subpacket[s].gains2.now = q>subpacket[s].gain_3; 
1222 
q>subpacket[s].gains2.previous = q>subpacket[s].gain_4; 
1223  
1224 
q>num_subpackets++; 
1225 
s++; 
1226 
if (s > MAX_SUBPACKETS) {

1227 
av_log(avctx,AV_LOG_ERROR,"Too many subpackets > 5, report file!\n");

1228 
return 1; 
1229 
} 
1230 
} 
1231 
/* Generate tables */

1232 
init_pow2table(); 
1233 
init_gain_table(q); 
1234 
init_cplscales_table(q); 
1235  
1236 
if (init_cook_vlc_tables(q) != 0) 
1237 
return 1; 
1238  
1239  
1240 
if(avctx>block_align >= UINT_MAX/2) 
1241 
return 1; 
1242  
1243 
/* Pad the databuffer with:

1244 
DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),

1245 
FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */

1246 
q>decoded_bytes_buffer = 
1247 
av_mallocz(avctx>block_align 
1248 
+ DECODE_BYTES_PAD1(avctx>block_align) 
1249 
+ FF_INPUT_BUFFER_PADDING_SIZE); 
1250 
if (q>decoded_bytes_buffer == NULL) 
1251 
return 1; 
1252  
1253 
/* Initialize transform. */

1254 
if ( init_cook_mlt(q) != 0 ) 
1255 
return 1; 
1256  
1257 
/* Initialize COOK signal arithmetic handling */

1258 
if (1) { 
1259 
q>scalar_dequant = scalar_dequant_float; 
1260 
q>decouple = decouple_float; 
1261 
q>imlt_window = imlt_window_float; 
1262 
q>interpolate = interpolate_float; 
1263 
q>saturate_output = saturate_output_float; 
1264 
} 
1265  
1266 
/* Try to catch some obviously faulty streams, othervise it might be exploitable */

1267 
if ((q>samples_per_channel == 256)  (q>samples_per_channel == 512)  (q>samples_per_channel == 1024)) { 
1268 
} else {

1269 
av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q>samples_per_channel);

1270 
return 1; 
1271 
} 
1272  
1273 
avctx>sample_fmt = AV_SAMPLE_FMT_S16; 
1274 
if (channel_mask)

1275 
avctx>channel_layout = channel_mask; 
1276 
else

1277 
avctx>channel_layout = (avctx>channels==2) ? CH_LAYOUT_STEREO : CH_LAYOUT_MONO;

1278  
1279 
#ifdef COOKDEBUG

1280 
dump_cook_context(q); 
1281 
#endif

1282 
return 0; 
1283 
} 
1284  
1285  
1286 
AVCodec ff_cook_decoder = 
1287 
{ 
1288 
.name = "cook",

1289 
.type = AVMEDIA_TYPE_AUDIO, 
1290 
.id = CODEC_ID_COOK, 
1291 
.priv_data_size = sizeof(COOKContext),

1292 
.init = cook_decode_init, 
1293 
.close = cook_decode_close, 
1294 
.decode = cook_decode_frame, 
1295 
.long_name = NULL_IF_CONFIG_SMALL("COOK"),

1296 
}; 