Statistics
| Branch: | Revision:

ffmpeg / libavcodec / cook.c @ d36beb3f

History | View | Annotate | Download (43.3 KB)

1
/*
2
 * COOK compatible decoder
3
 * Copyright (c) 2003 Sascha Sommer
4
 * Copyright (c) 2005 Benjamin Larsson
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22

    
23
/**
24
 * @file
25
 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26
 * This decoder handles RealNetworks, RealAudio G2 data.
27
 * Cook is identified by the codec name cook in RM files.
28
 *
29
 * To use this decoder, a calling application must supply the extradata
30
 * bytes provided from the RM container; 8+ bytes for mono streams and
31
 * 16+ for stereo streams (maybe more).
32
 *
33
 * Codec technicalities (all this assume a buffer length of 1024):
34
 * Cook works with several different techniques to achieve its compression.
35
 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36
 * two neighboring pieces have different quantization index a smooth
37
 * quantization curve is used to get a smooth overlap between the different
38
 * pieces.
39
 * To get to the transformdomain Cook uses a modulated lapped transform.
40
 * The transform domain has 50 subbands with 20 elements each. This
41
 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
42
 * available.
43
 */
44

    
45
#include <math.h>
46
#include <stddef.h>
47
#include <stdio.h>
48

    
49
#include "libavutil/lfg.h"
50
#include "libavutil/random_seed.h"
51
#include "avcodec.h"
52
#include "get_bits.h"
53
#include "dsputil.h"
54
#include "bytestream.h"
55
#include "fft.h"
56

    
57
#include "cookdata.h"
58

    
59
/* the different Cook versions */
60
#define MONO            0x1000001
61
#define STEREO          0x1000002
62
#define JOINT_STEREO    0x1000003
63
#define MC_COOK         0x2000000   //multichannel Cook, not supported
64

    
65
#define SUBBAND_SIZE    20
66
#define MAX_SUBPACKETS   5
67
//#define COOKDEBUG
68

    
69
typedef struct {
70
    int *now;
71
    int *previous;
72
} cook_gains;
73

    
74
typedef struct {
75
    int                 ch_idx;
76
    int                 size;
77
    int                 num_channels;
78
    int                 cookversion;
79
    int                 samples_per_frame;
80
    int                 subbands;
81
    int                 js_subband_start;
82
    int                 js_vlc_bits;
83
    int                 samples_per_channel;
84
    int                 log2_numvector_size;
85
    unsigned int        channel_mask;
86
    VLC                 ccpl;                 ///< channel coupling
87
    int                 joint_stereo;
88
    int                 bits_per_subpacket;
89
    int                 bits_per_subpdiv;
90
    int                 total_subbands;
91
    int                 numvector_size;       ///< 1 << log2_numvector_size;
92

    
93
    float               mono_previous_buffer1[1024];
94
    float               mono_previous_buffer2[1024];
95
    /** gain buffers */
96
    cook_gains          gains1;
97
    cook_gains          gains2;
98
    int                 gain_1[9];
99
    int                 gain_2[9];
100
    int                 gain_3[9];
101
    int                 gain_4[9];
102
} COOKSubpacket;
103

    
104
typedef struct cook {
105
    /*
106
     * The following 5 functions provide the lowlevel arithmetic on
107
     * the internal audio buffers.
108
     */
109
    void (* scalar_dequant)(struct cook *q, int index, int quant_index,
110
                            int* subband_coef_index, int* subband_coef_sign,
111
                            float* mlt_p);
112

    
113
    void (* decouple) (struct cook *q,
114
                       COOKSubpacket *p,
115
                       int subband,
116
                       float f1, float f2,
117
                       float *decode_buffer,
118
                       float *mlt_buffer1, float *mlt_buffer2);
119

    
120
    void (* imlt_window) (struct cook *q, float *buffer1,
121
                          cook_gains *gains_ptr, float *previous_buffer);
122

    
123
    void (* interpolate) (struct cook *q, float* buffer,
124
                          int gain_index, int gain_index_next);
125

    
126
    void (* saturate_output) (struct cook *q, int chan, int16_t *out);
127

    
128
    AVCodecContext*     avctx;
129
    GetBitContext       gb;
130
    /* stream data */
131
    int                 nb_channels;
132
    int                 bit_rate;
133
    int                 sample_rate;
134
    int                 num_vectors;
135
    int                 samples_per_channel;
136
    /* states */
137
    AVLFG               random_state;
138

    
139
    /* transform data */
140
    FFTContext          mdct_ctx;
141
    float*              mlt_window;
142

    
143
    /* VLC data */
144
    VLC                 envelope_quant_index[13];
145
    VLC                 sqvh[7];          //scalar quantization
146

    
147
    /* generatable tables and related variables */
148
    int                 gain_size_factor;
149
    float               gain_table[23];
150

    
151
    /* data buffers */
152

    
153
    uint8_t*            decoded_bytes_buffer;
154
    DECLARE_ALIGNED(16, float,mono_mdct_output)[2048];
155
    float               decode_buffer_1[1024];
156
    float               decode_buffer_2[1024];
157
    float               decode_buffer_0[1060]; /* static allocation for joint decode */
158

    
159
    const float         *cplscales[5];
160
    int                 num_subpackets;
161
    COOKSubpacket       subpacket[MAX_SUBPACKETS];
162
} COOKContext;
163

    
164
static float     pow2tab[127];
165
static float rootpow2tab[127];
166

    
167
/* debug functions */
168

    
169
#ifdef COOKDEBUG
170
static void dump_float_table(float* table, int size, int delimiter) {
171
    int i=0;
172
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
173
    for (i=0 ; i<size ; i++) {
174
        av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
175
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
176
    }
177
}
178

    
179
static void dump_int_table(int* table, int size, int delimiter) {
180
    int i=0;
181
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
182
    for (i=0 ; i<size ; i++) {
183
        av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
184
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
185
    }
186
}
187

    
188
static void dump_short_table(short* table, int size, int delimiter) {
189
    int i=0;
190
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
191
    for (i=0 ; i<size ; i++) {
192
        av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
193
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
194
    }
195
}
196

    
197
#endif
198

    
199
/*************** init functions ***************/
200

    
201
/* table generator */
202
static av_cold void init_pow2table(void){
203
    int i;
204
    for (i=-63 ; i<64 ; i++){
205
            pow2tab[63+i]=     pow(2, i);
206
        rootpow2tab[63+i]=sqrt(pow(2, i));
207
    }
208
}
209

    
210
/* table generator */
211
static av_cold void init_gain_table(COOKContext *q) {
212
    int i;
213
    q->gain_size_factor = q->samples_per_channel/8;
214
    for (i=0 ; i<23 ; i++) {
215
        q->gain_table[i] = pow(pow2tab[i+52] ,
216
                               (1.0/(double)q->gain_size_factor));
217
    }
218
}
219

    
220

    
221
static av_cold int init_cook_vlc_tables(COOKContext *q) {
222
    int i, result;
223

    
224
    result = 0;
225
    for (i=0 ; i<13 ; i++) {
226
        result |= init_vlc (&q->envelope_quant_index[i], 9, 24,
227
            envelope_quant_index_huffbits[i], 1, 1,
228
            envelope_quant_index_huffcodes[i], 2, 2, 0);
229
    }
230
    av_log(q->avctx,AV_LOG_DEBUG,"sqvh VLC init\n");
231
    for (i=0 ; i<7 ; i++) {
232
        result |= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
233
            cvh_huffbits[i], 1, 1,
234
            cvh_huffcodes[i], 2, 2, 0);
235
    }
236

    
237
    for(i=0;i<q->num_subpackets;i++){
238
        if (q->subpacket[i].joint_stereo==1){
239
            result |= init_vlc (&q->subpacket[i].ccpl, 6, (1<<q->subpacket[i].js_vlc_bits)-1,
240
                ccpl_huffbits[q->subpacket[i].js_vlc_bits-2], 1, 1,
241
                ccpl_huffcodes[q->subpacket[i].js_vlc_bits-2], 2, 2, 0);
242
            av_log(q->avctx,AV_LOG_DEBUG,"subpacket %i Joint-stereo VLC used.\n",i);
243
        }
244
    }
245

    
246
    av_log(q->avctx,AV_LOG_DEBUG,"VLC tables initialized.\n");
247
    return result;
248
}
249

    
250
static av_cold int init_cook_mlt(COOKContext *q) {
251
    int j;
252
    int mlt_size = q->samples_per_channel;
253

    
254
    if ((q->mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0)
255
      return -1;
256

    
257
    /* Initialize the MLT window: simple sine window. */
258
    ff_sine_window_init(q->mlt_window, mlt_size);
259
    for(j=0 ; j<mlt_size ; j++)
260
        q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
261

    
262
    /* Initialize the MDCT. */
263
    if (ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1, 1.0)) {
264
      av_free(q->mlt_window);
265
      return -1;
266
    }
267
    av_log(q->avctx,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",
268
           av_log2(mlt_size)+1);
269

    
270
    return 0;
271
}
272

    
273
static const float *maybe_reformat_buffer32 (COOKContext *q, const float *ptr, int n)
274
{
275
    if (1)
276
        return ptr;
277
}
278

    
279
static av_cold void init_cplscales_table (COOKContext *q) {
280
    int i;
281
    for (i=0;i<5;i++)
282
        q->cplscales[i] = maybe_reformat_buffer32 (q, cplscales[i], (1<<(i+2))-1);
283
}
284

    
285
/*************** init functions end ***********/
286

    
287
#define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
288
#define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
289

    
290
/**
291
 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
292
 * Why? No idea, some checksum/error detection method maybe.
293
 *
294
 * Out buffer size: extra bytes are needed to cope with
295
 * padding/misalignment.
296
 * Subpackets passed to the decoder can contain two, consecutive
297
 * half-subpackets, of identical but arbitrary size.
298
 *          1234 1234 1234 1234  extraA extraB
299
 * Case 1:  AAAA BBBB              0      0
300
 * Case 2:  AAAA ABBB BB--         3      3
301
 * Case 3:  AAAA AABB BBBB         2      2
302
 * Case 4:  AAAA AAAB BBBB BB--    1      5
303
 *
304
 * Nice way to waste CPU cycles.
305
 *
306
 * @param inbuffer  pointer to byte array of indata
307
 * @param out       pointer to byte array of outdata
308
 * @param bytes     number of bytes
309
 */
310

    
311
static inline int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
312
    int i, off;
313
    uint32_t c;
314
    const uint32_t* buf;
315
    uint32_t* obuf = (uint32_t*) out;
316
    /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
317
     * I'm too lazy though, should be something like
318
     * for(i=0 ; i<bitamount/64 ; i++)
319
     *     (int64_t)out[i] = 0x37c511f237c511f2^av_be2ne64(int64_t)in[i]);
320
     * Buffer alignment needs to be checked. */
321

    
322
    off = (intptr_t)inbuffer & 3;
323
    buf = (const uint32_t*) (inbuffer - off);
324
    c = av_be2ne32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8))));
325
    bytes += 3 + off;
326
    for (i = 0; i < bytes/4; i++)
327
        obuf[i] = c ^ buf[i];
328

    
329
    return off;
330
}
331

    
332
/**
333
 * Cook uninit
334
 */
335

    
336
static av_cold int cook_decode_close(AVCodecContext *avctx)
337
{
338
    int i;
339
    COOKContext *q = avctx->priv_data;
340
    av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");
341

    
342
    /* Free allocated memory buffers. */
343
    av_free(q->mlt_window);
344
    av_free(q->decoded_bytes_buffer);
345

    
346
    /* Free the transform. */
347
    ff_mdct_end(&q->mdct_ctx);
348

    
349
    /* Free the VLC tables. */
350
    for (i=0 ; i<13 ; i++) {
351
        free_vlc(&q->envelope_quant_index[i]);
352
    }
353
    for (i=0 ; i<7 ; i++) {
354
        free_vlc(&q->sqvh[i]);
355
    }
356
    for (i=0 ; i<q->num_subpackets ; i++) {
357
        free_vlc(&q->subpacket[i].ccpl);
358
    }
359

    
360
    av_log(avctx,AV_LOG_DEBUG,"Memory deallocated.\n");
361

    
362
    return 0;
363
}
364

    
365
/**
366
 * Fill the gain array for the timedomain quantization.
367
 *
368
 * @param gb          pointer to the GetBitContext
369
 * @param gaininfo[9] array of gain indexes
370
 */
371

    
372
static void decode_gain_info(GetBitContext *gb, int *gaininfo)
373
{
374
    int i, n;
375

    
376
    while (get_bits1(gb)) {}
377
    n = get_bits_count(gb) - 1;     //amount of elements*2 to update
378

    
379
    i = 0;
380
    while (n--) {
381
        int index = get_bits(gb, 3);
382
        int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
383

    
384
        while (i <= index) gaininfo[i++] = gain;
385
    }
386
    while (i <= 8) gaininfo[i++] = 0;
387
}
388

    
389
/**
390
 * Create the quant index table needed for the envelope.
391
 *
392
 * @param q                 pointer to the COOKContext
393
 * @param quant_index_table pointer to the array
394
 */
395

    
396
static void decode_envelope(COOKContext *q, COOKSubpacket *p, int* quant_index_table) {
397
    int i,j, vlc_index;
398

    
399
    quant_index_table[0]= get_bits(&q->gb,6) - 6;       //This is used later in categorize
400

    
401
    for (i=1 ; i < p->total_subbands ; i++){
402
        vlc_index=i;
403
        if (i >= p->js_subband_start * 2) {
404
            vlc_index-=p->js_subband_start;
405
        } else {
406
            vlc_index/=2;
407
            if(vlc_index < 1) vlc_index = 1;
408
        }
409
        if (vlc_index>13) vlc_index = 13;           //the VLC tables >13 are identical to No. 13
410

    
411
        j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
412
                     q->envelope_quant_index[vlc_index-1].bits,2);
413
        quant_index_table[i] = quant_index_table[i-1] + j - 12;    //differential encoding
414
    }
415
}
416

    
417
/**
418
 * Calculate the category and category_index vector.
419
 *
420
 * @param q                     pointer to the COOKContext
421
 * @param quant_index_table     pointer to the array
422
 * @param category              pointer to the category array
423
 * @param category_index        pointer to the category_index array
424
 */
425

    
426
static void categorize(COOKContext *q, COOKSubpacket *p, int* quant_index_table,
427
                       int* category, int* category_index){
428
    int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
429
    int exp_index2[102];
430
    int exp_index1[102];
431

    
432
    int tmp_categorize_array[128*2];
433
    int tmp_categorize_array1_idx=p->numvector_size;
434
    int tmp_categorize_array2_idx=p->numvector_size;
435

    
436
    bits_left =  p->bits_per_subpacket - get_bits_count(&q->gb);
437

    
438
    if(bits_left > q->samples_per_channel) {
439
        bits_left = q->samples_per_channel +
440
                    ((bits_left - q->samples_per_channel)*5)/8;
441
        //av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
442
    }
443

    
444
    memset(&exp_index1,0,102*sizeof(int));
445
    memset(&exp_index2,0,102*sizeof(int));
446
    memset(&tmp_categorize_array,0,128*2*sizeof(int));
447

    
448
    bias=-32;
449

    
450
    /* Estimate bias. */
451
    for (i=32 ; i>0 ; i=i/2){
452
        num_bits = 0;
453
        index = 0;
454
        for (j=p->total_subbands ; j>0 ; j--){
455
            exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
456
            index++;
457
            num_bits+=expbits_tab[exp_idx];
458
        }
459
        if(num_bits >= bits_left - 32){
460
            bias+=i;
461
        }
462
    }
463

    
464
    /* Calculate total number of bits. */
465
    num_bits=0;
466
    for (i=0 ; i<p->total_subbands ; i++) {
467
        exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
468
        num_bits += expbits_tab[exp_idx];
469
        exp_index1[i] = exp_idx;
470
        exp_index2[i] = exp_idx;
471
    }
472
    tmpbias1 = tmpbias2 = num_bits;
473

    
474
    for (j = 1 ; j < p->numvector_size ; j++) {
475
        if (tmpbias1 + tmpbias2 > 2*bits_left) {  /* ---> */
476
            int max = -999999;
477
            index=-1;
478
            for (i=0 ; i<p->total_subbands ; i++){
479
                if (exp_index1[i] < 7) {
480
                    v = (-2*exp_index1[i]) - quant_index_table[i] + bias;
481
                    if ( v >= max) {
482
                        max = v;
483
                        index = i;
484
                    }
485
                }
486
            }
487
            if(index==-1)break;
488
            tmp_categorize_array[tmp_categorize_array1_idx++] = index;
489
            tmpbias1 -= expbits_tab[exp_index1[index]] -
490
                        expbits_tab[exp_index1[index]+1];
491
            ++exp_index1[index];
492
        } else {  /* <--- */
493
            int min = 999999;
494
            index=-1;
495
            for (i=0 ; i<p->total_subbands ; i++){
496
                if(exp_index2[i] > 0){
497
                    v = (-2*exp_index2[i])-quant_index_table[i]+bias;
498
                    if ( v < min) {
499
                        min = v;
500
                        index = i;
501
                    }
502
                }
503
            }
504
            if(index == -1)break;
505
            tmp_categorize_array[--tmp_categorize_array2_idx] = index;
506
            tmpbias2 -= expbits_tab[exp_index2[index]] -
507
                        expbits_tab[exp_index2[index]-1];
508
            --exp_index2[index];
509
        }
510
    }
511

    
512
    for(i=0 ; i<p->total_subbands ; i++)
513
        category[i] = exp_index2[i];
514

    
515
    for(i=0 ; i<p->numvector_size-1 ; i++)
516
        category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
517

    
518
}
519

    
520

    
521
/**
522
 * Expand the category vector.
523
 *
524
 * @param q                     pointer to the COOKContext
525
 * @param category              pointer to the category array
526
 * @param category_index        pointer to the category_index array
527
 */
528

    
529
static inline void expand_category(COOKContext *q, int* category,
530
                                   int* category_index){
531
    int i;
532
    for(i=0 ; i<q->num_vectors ; i++){
533
        ++category[category_index[i]];
534
    }
535
}
536

    
537
/**
538
 * The real requantization of the mltcoefs
539
 *
540
 * @param q                     pointer to the COOKContext
541
 * @param index                 index
542
 * @param quant_index           quantisation index
543
 * @param subband_coef_index    array of indexes to quant_centroid_tab
544
 * @param subband_coef_sign     signs of coefficients
545
 * @param mlt_p                 pointer into the mlt buffer
546
 */
547

    
548
static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
549
                           int* subband_coef_index, int* subband_coef_sign,
550
                           float* mlt_p){
551
    int i;
552
    float f1;
553

    
554
    for(i=0 ; i<SUBBAND_SIZE ; i++) {
555
        if (subband_coef_index[i]) {
556
            f1 = quant_centroid_tab[index][subband_coef_index[i]];
557
            if (subband_coef_sign[i]) f1 = -f1;
558
        } else {
559
            /* noise coding if subband_coef_index[i] == 0 */
560
            f1 = dither_tab[index];
561
            if (av_lfg_get(&q->random_state) < 0x80000000) f1 = -f1;
562
        }
563
        mlt_p[i] = f1 * rootpow2tab[quant_index+63];
564
    }
565
}
566
/**
567
 * Unpack the subband_coef_index and subband_coef_sign vectors.
568
 *
569
 * @param q                     pointer to the COOKContext
570
 * @param category              pointer to the category array
571
 * @param subband_coef_index    array of indexes to quant_centroid_tab
572
 * @param subband_coef_sign     signs of coefficients
573
 */
574

    
575
static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category, int* subband_coef_index,
576
                       int* subband_coef_sign) {
577
    int i,j;
578
    int vlc, vd ,tmp, result;
579

    
580
    vd = vd_tab[category];
581
    result = 0;
582
    for(i=0 ; i<vpr_tab[category] ; i++){
583
        vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
584
        if (p->bits_per_subpacket < get_bits_count(&q->gb)){
585
            vlc = 0;
586
            result = 1;
587
        }
588
        for(j=vd-1 ; j>=0 ; j--){
589
            tmp = (vlc * invradix_tab[category])/0x100000;
590
            subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
591
            vlc = tmp;
592
        }
593
        for(j=0 ; j<vd ; j++){
594
            if (subband_coef_index[i*vd + j]) {
595
                if(get_bits_count(&q->gb) < p->bits_per_subpacket){
596
                    subband_coef_sign[i*vd+j] = get_bits1(&q->gb);
597
                } else {
598
                    result=1;
599
                    subband_coef_sign[i*vd+j]=0;
600
                }
601
            } else {
602
                subband_coef_sign[i*vd+j]=0;
603
            }
604
        }
605
    }
606
    return result;
607
}
608

    
609

    
610
/**
611
 * Fill the mlt_buffer with mlt coefficients.
612
 *
613
 * @param q                 pointer to the COOKContext
614
 * @param category          pointer to the category array
615
 * @param quant_index_table pointer to the array
616
 * @param mlt_buffer        pointer to mlt coefficients
617
 */
618

    
619

    
620
static void decode_vectors(COOKContext* q, COOKSubpacket* p, int* category,
621
                           int *quant_index_table, float* mlt_buffer){
622
    /* A zero in this table means that the subband coefficient is
623
       random noise coded. */
624
    int subband_coef_index[SUBBAND_SIZE];
625
    /* A zero in this table means that the subband coefficient is a
626
       positive multiplicator. */
627
    int subband_coef_sign[SUBBAND_SIZE];
628
    int band, j;
629
    int index=0;
630

    
631
    for(band=0 ; band<p->total_subbands ; band++){
632
        index = category[band];
633
        if(category[band] < 7){
634
            if(unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)){
635
                index=7;
636
                for(j=0 ; j<p->total_subbands ; j++) category[band+j]=7;
637
            }
638
        }
639
        if(index>=7) {
640
            memset(subband_coef_index, 0, sizeof(subband_coef_index));
641
            memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
642
        }
643
        q->scalar_dequant(q, index, quant_index_table[band],
644
                          subband_coef_index, subband_coef_sign,
645
                          &mlt_buffer[band * SUBBAND_SIZE]);
646
    }
647

    
648
    if(p->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
649
        return;
650
    } /* FIXME: should this be removed, or moved into loop above? */
651
}
652

    
653

    
654
/**
655
 * function for decoding mono data
656
 *
657
 * @param q                 pointer to the COOKContext
658
 * @param mlt_buffer        pointer to mlt coefficients
659
 */
660

    
661
static void mono_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer) {
662

    
663
    int category_index[128];
664
    int quant_index_table[102];
665
    int category[128];
666

    
667
    memset(&category, 0, 128*sizeof(int));
668
    memset(&category_index, 0, 128*sizeof(int));
669

    
670
    decode_envelope(q, p, quant_index_table);
671
    q->num_vectors = get_bits(&q->gb,p->log2_numvector_size);
672
    categorize(q, p, quant_index_table, category, category_index);
673
    expand_category(q, category, category_index);
674
    decode_vectors(q, p, category, quant_index_table, mlt_buffer);
675
}
676

    
677

    
678
/**
679
 * the actual requantization of the timedomain samples
680
 *
681
 * @param q                 pointer to the COOKContext
682
 * @param buffer            pointer to the timedomain buffer
683
 * @param gain_index        index for the block multiplier
684
 * @param gain_index_next   index for the next block multiplier
685
 */
686

    
687
static void interpolate_float(COOKContext *q, float* buffer,
688
                        int gain_index, int gain_index_next){
689
    int i;
690
    float fc1, fc2;
691
    fc1 = pow2tab[gain_index+63];
692

    
693
    if(gain_index == gain_index_next){              //static gain
694
        for(i=0 ; i<q->gain_size_factor ; i++){
695
            buffer[i]*=fc1;
696
        }
697
        return;
698
    } else {                                        //smooth gain
699
        fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
700
        for(i=0 ; i<q->gain_size_factor ; i++){
701
            buffer[i]*=fc1;
702
            fc1*=fc2;
703
        }
704
        return;
705
    }
706
}
707

    
708
/**
709
 * Apply transform window, overlap buffers.
710
 *
711
 * @param q                 pointer to the COOKContext
712
 * @param inbuffer          pointer to the mltcoefficients
713
 * @param gains_ptr         current and previous gains
714
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
715
 */
716

    
717
static void imlt_window_float (COOKContext *q, float *inbuffer,
718
                               cook_gains *gains_ptr, float *previous_buffer)
719
{
720
    const float fc = pow2tab[gains_ptr->previous[0] + 63];
721
    int i;
722
    /* The weird thing here, is that the two halves of the time domain
723
     * buffer are swapped. Also, the newest data, that we save away for
724
     * next frame, has the wrong sign. Hence the subtraction below.
725
     * Almost sounds like a complex conjugate/reverse data/FFT effect.
726
     */
727

    
728
    /* Apply window and overlap */
729
    for(i = 0; i < q->samples_per_channel; i++){
730
        inbuffer[i] = inbuffer[i] * fc * q->mlt_window[i] -
731
          previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
732
    }
733
}
734

    
735
/**
736
 * The modulated lapped transform, this takes transform coefficients
737
 * and transforms them into timedomain samples.
738
 * Apply transform window, overlap buffers, apply gain profile
739
 * and buffer management.
740
 *
741
 * @param q                 pointer to the COOKContext
742
 * @param inbuffer          pointer to the mltcoefficients
743
 * @param gains_ptr         current and previous gains
744
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
745
 */
746

    
747
static void imlt_gain(COOKContext *q, float *inbuffer,
748
                      cook_gains *gains_ptr, float* previous_buffer)
749
{
750
    float *buffer0 = q->mono_mdct_output;
751
    float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
752
    int i;
753

    
754
    /* Inverse modified discrete cosine transform */
755
    ff_imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
756

    
757
    q->imlt_window (q, buffer1, gains_ptr, previous_buffer);
758

    
759
    /* Apply gain profile */
760
    for (i = 0; i < 8; i++) {
761
        if (gains_ptr->now[i] || gains_ptr->now[i + 1])
762
            q->interpolate(q, &buffer1[q->gain_size_factor * i],
763
                           gains_ptr->now[i], gains_ptr->now[i + 1]);
764
    }
765

    
766
    /* Save away the current to be previous block. */
767
    memcpy(previous_buffer, buffer0, sizeof(float)*q->samples_per_channel);
768
}
769

    
770

    
771
/**
772
 * function for getting the jointstereo coupling information
773
 *
774
 * @param q                 pointer to the COOKContext
775
 * @param decouple_tab      decoupling array
776
 *
777
 */
778

    
779
static void decouple_info(COOKContext *q, COOKSubpacket *p, int* decouple_tab){
780
    int length, i;
781

    
782
    if(get_bits1(&q->gb)) {
783
        if(cplband[p->js_subband_start] > cplband[p->subbands-1]) return;
784

    
785
        length = cplband[p->subbands-1] - cplband[p->js_subband_start] + 1;
786
        for (i=0 ; i<length ; i++) {
787
            decouple_tab[cplband[p->js_subband_start] + i] = get_vlc2(&q->gb, p->ccpl.table, p->ccpl.bits, 2);
788
        }
789
        return;
790
    }
791

    
792
    if(cplband[p->js_subband_start] > cplband[p->subbands-1]) return;
793

    
794
    length = cplband[p->subbands-1] - cplband[p->js_subband_start] + 1;
795
    for (i=0 ; i<length ; i++) {
796
       decouple_tab[cplband[p->js_subband_start] + i] = get_bits(&q->gb, p->js_vlc_bits);
797
    }
798
    return;
799
}
800

    
801
/*
802
 * function decouples a pair of signals from a single signal via multiplication.
803
 *
804
 * @param q                 pointer to the COOKContext
805
 * @param subband           index of the current subband
806
 * @param f1                multiplier for channel 1 extraction
807
 * @param f2                multiplier for channel 2 extraction
808
 * @param decode_buffer     input buffer
809
 * @param mlt_buffer1       pointer to left channel mlt coefficients
810
 * @param mlt_buffer2       pointer to right channel mlt coefficients
811
 */
812
static void decouple_float (COOKContext *q,
813
                            COOKSubpacket *p,
814
                            int subband,
815
                            float f1, float f2,
816
                            float *decode_buffer,
817
                            float *mlt_buffer1, float *mlt_buffer2)
818
{
819
    int j, tmp_idx;
820
    for (j=0 ; j<SUBBAND_SIZE ; j++) {
821
        tmp_idx = ((p->js_subband_start + subband)*SUBBAND_SIZE)+j;
822
        mlt_buffer1[SUBBAND_SIZE*subband + j] = f1 * decode_buffer[tmp_idx];
823
        mlt_buffer2[SUBBAND_SIZE*subband + j] = f2 * decode_buffer[tmp_idx];
824
    }
825
}
826

    
827
/**
828
 * function for decoding joint stereo data
829
 *
830
 * @param q                 pointer to the COOKContext
831
 * @param mlt_buffer1       pointer to left channel mlt coefficients
832
 * @param mlt_buffer2       pointer to right channel mlt coefficients
833
 */
834

    
835
static void joint_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer1,
836
                         float* mlt_buffer2) {
837
    int i,j;
838
    int decouple_tab[SUBBAND_SIZE];
839
    float *decode_buffer = q->decode_buffer_0;
840
    int idx, cpl_tmp;
841
    float f1,f2;
842
    const float* cplscale;
843

    
844
    memset(decouple_tab, 0, sizeof(decouple_tab));
845
    memset(decode_buffer, 0, sizeof(decode_buffer));
846

    
847
    /* Make sure the buffers are zeroed out. */
848
    memset(mlt_buffer1,0, 1024*sizeof(float));
849
    memset(mlt_buffer2,0, 1024*sizeof(float));
850
    decouple_info(q, p, decouple_tab);
851
    mono_decode(q, p, decode_buffer);
852

    
853
    /* The two channels are stored interleaved in decode_buffer. */
854
    for (i=0 ; i<p->js_subband_start ; i++) {
855
        for (j=0 ; j<SUBBAND_SIZE ; j++) {
856
            mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
857
            mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
858
        }
859
    }
860

    
861
    /* When we reach js_subband_start (the higher frequencies)
862
       the coefficients are stored in a coupling scheme. */
863
    idx = (1 << p->js_vlc_bits) - 1;
864
    for (i=p->js_subband_start ; i<p->subbands ; i++) {
865
        cpl_tmp = cplband[i];
866
        idx -=decouple_tab[cpl_tmp];
867
        cplscale = q->cplscales[p->js_vlc_bits-2];  //choose decoupler table
868
        f1 = cplscale[decouple_tab[cpl_tmp]];
869
        f2 = cplscale[idx-1];
870
        q->decouple (q, p, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
871
        idx = (1 << p->js_vlc_bits) - 1;
872
    }
873
}
874

    
875
/**
876
 * First part of subpacket decoding:
877
 *  decode raw stream bytes and read gain info.
878
 *
879
 * @param q                 pointer to the COOKContext
880
 * @param inbuffer          pointer to raw stream data
881
 * @param gains_ptr         array of current/prev gain pointers
882
 */
883

    
884
static inline void
885
decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p, const uint8_t *inbuffer,
886
                      cook_gains *gains_ptr)
887
{
888
    int offset;
889

    
890
    offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
891
                          p->bits_per_subpacket/8);
892
    init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
893
                  p->bits_per_subpacket);
894
    decode_gain_info(&q->gb, gains_ptr->now);
895

    
896
    /* Swap current and previous gains */
897
    FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
898
}
899

    
900
 /**
901
 * Saturate the output signal to signed 16bit integers.
902
 *
903
 * @param q                 pointer to the COOKContext
904
 * @param chan              channel to saturate
905
 * @param out               pointer to the output vector
906
 */
907
static void
908
saturate_output_float (COOKContext *q, int chan, int16_t *out)
909
{
910
    int j;
911
    float *output = q->mono_mdct_output + q->samples_per_channel;
912
    /* Clip and convert floats to 16 bits.
913
     */
914
    for (j = 0; j < q->samples_per_channel; j++) {
915
        out[chan + q->nb_channels * j] =
916
          av_clip_int16(lrintf(output[j]));
917
    }
918
}
919

    
920
/**
921
 * Final part of subpacket decoding:
922
 *  Apply modulated lapped transform, gain compensation,
923
 *  clip and convert to integer.
924
 *
925
 * @param q                 pointer to the COOKContext
926
 * @param decode_buffer     pointer to the mlt coefficients
927
 * @param gains_ptr         array of current/prev gain pointers
928
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
929
 * @param out               pointer to the output buffer
930
 * @param chan              0: left or single channel, 1: right channel
931
 */
932

    
933
static inline void
934
mlt_compensate_output(COOKContext *q, float *decode_buffer,
935
                      cook_gains *gains_ptr, float *previous_buffer,
936
                      int16_t *out, int chan)
937
{
938
    imlt_gain(q, decode_buffer, gains_ptr, previous_buffer);
939
    q->saturate_output (q, chan, out);
940
}
941

    
942

    
943
/**
944
 * Cook subpacket decoding. This function returns one decoded subpacket,
945
 * usually 1024 samples per channel.
946
 *
947
 * @param q                 pointer to the COOKContext
948
 * @param inbuffer          pointer to the inbuffer
949
 * @param outbuffer         pointer to the outbuffer
950
 */
951
static void decode_subpacket(COOKContext *q, COOKSubpacket* p, const uint8_t *inbuffer, int16_t *outbuffer) {
952
    int sub_packet_size = p->size;
953
    /* packet dump */
954
//    for (i=0 ; i<sub_packet_size ; i++) {
955
//        av_log(q->avctx, AV_LOG_ERROR, "%02x", inbuffer[i]);
956
//    }
957
//    av_log(q->avctx, AV_LOG_ERROR, "\n");
958
    memset(q->decode_buffer_1,0,sizeof(q->decode_buffer_1));
959
    decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
960

    
961
    if (p->joint_stereo) {
962
        joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2);
963
    } else {
964
        mono_decode(q, p, q->decode_buffer_1);
965

    
966
        if (p->num_channels == 2) {
967
            decode_bytes_and_gain(q, p, inbuffer + sub_packet_size/2, &p->gains2);
968
            mono_decode(q, p, q->decode_buffer_2);
969
        }
970
    }
971

    
972
    mlt_compensate_output(q, q->decode_buffer_1, &p->gains1,
973
                          p->mono_previous_buffer1, outbuffer, p->ch_idx);
974

    
975
    if (p->num_channels == 2) {
976
        if (p->joint_stereo) {
977
            mlt_compensate_output(q, q->decode_buffer_2, &p->gains1,
978
                                  p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
979
         } else {
980
            mlt_compensate_output(q, q->decode_buffer_2, &p->gains2,
981
                                  p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
982
         }
983
     }
984

    
985
}
986

    
987

    
988
/**
989
 * Cook frame decoding
990
 *
991
 * @param avctx     pointer to the AVCodecContext
992
 */
993

    
994
static int cook_decode_frame(AVCodecContext *avctx,
995
            void *data, int *data_size,
996
            AVPacket *avpkt) {
997
    const uint8_t *buf = avpkt->data;
998
    int buf_size = avpkt->size;
999
    COOKContext *q = avctx->priv_data;
1000
    int i;
1001
    int offset = 0;
1002
    int chidx = 0;
1003

    
1004
    if (buf_size < avctx->block_align)
1005
        return buf_size;
1006

    
1007
    /* estimate subpacket sizes */
1008
    q->subpacket[0].size = avctx->block_align;
1009

    
1010
    for(i=1;i<q->num_subpackets;i++){
1011
        q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
1012
        q->subpacket[0].size -= q->subpacket[i].size + 1;
1013
        if (q->subpacket[0].size < 0) {
1014
            av_log(avctx,AV_LOG_DEBUG,"frame subpacket size total > avctx->block_align!\n");
1015
            return -1;
1016
        }
1017
    }
1018

    
1019
    /* decode supbackets */
1020
    *data_size = 0;
1021
    for(i=0;i<q->num_subpackets;i++){
1022
        q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size*8)>>q->subpacket[i].bits_per_subpdiv;
1023
        q->subpacket[i].ch_idx = chidx;
1024
        av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] size %i js %i %i block_align %i\n",i,q->subpacket[i].size,q->subpacket[i].joint_stereo,offset,avctx->block_align);
1025
        decode_subpacket(q, &q->subpacket[i], buf + offset, (int16_t*)data);
1026
        offset += q->subpacket[i].size;
1027
        chidx += q->subpacket[i].num_channels;
1028
        av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] %i %i\n",i,q->subpacket[i].size * 8,get_bits_count(&q->gb));
1029
    }
1030
    *data_size = sizeof(int16_t) * q->nb_channels * q->samples_per_channel;
1031

    
1032
    /* Discard the first two frames: no valid audio. */
1033
    if (avctx->frame_number < 2) *data_size = 0;
1034

    
1035
    return avctx->block_align;
1036
}
1037

    
1038
#ifdef COOKDEBUG
1039
static void dump_cook_context(COOKContext *q)
1040
{
1041
    //int i=0;
1042
#define PRINT(a,b) av_log(q->avctx,AV_LOG_ERROR," %s = %d\n", a, b);
1043
    av_log(q->avctx,AV_LOG_ERROR,"COOKextradata\n");
1044
    av_log(q->avctx,AV_LOG_ERROR,"cookversion=%x\n",q->subpacket[0].cookversion);
1045
    if (q->subpacket[0].cookversion > STEREO) {
1046
        PRINT("js_subband_start",q->subpacket[0].js_subband_start);
1047
        PRINT("js_vlc_bits",q->subpacket[0].js_vlc_bits);
1048
    }
1049
    av_log(q->avctx,AV_LOG_ERROR,"COOKContext\n");
1050
    PRINT("nb_channels",q->nb_channels);
1051
    PRINT("bit_rate",q->bit_rate);
1052
    PRINT("sample_rate",q->sample_rate);
1053
    PRINT("samples_per_channel",q->subpacket[0].samples_per_channel);
1054
    PRINT("samples_per_frame",q->subpacket[0].samples_per_frame);
1055
    PRINT("subbands",q->subpacket[0].subbands);
1056
    PRINT("random_state",q->random_state);
1057
    PRINT("js_subband_start",q->subpacket[0].js_subband_start);
1058
    PRINT("log2_numvector_size",q->subpacket[0].log2_numvector_size);
1059
    PRINT("numvector_size",q->subpacket[0].numvector_size);
1060
    PRINT("total_subbands",q->subpacket[0].total_subbands);
1061
}
1062
#endif
1063

    
1064
static av_cold int cook_count_channels(unsigned int mask){
1065
    int i;
1066
    int channels = 0;
1067
    for(i = 0;i<32;i++){
1068
        if(mask & (1<<i))
1069
            ++channels;
1070
    }
1071
    return channels;
1072
}
1073

    
1074
/**
1075
 * Cook initialization
1076
 *
1077
 * @param avctx     pointer to the AVCodecContext
1078
 */
1079

    
1080
static av_cold int cook_decode_init(AVCodecContext *avctx)
1081
{
1082
    COOKContext *q = avctx->priv_data;
1083
    const uint8_t *edata_ptr = avctx->extradata;
1084
    const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size;
1085
    int extradata_size = avctx->extradata_size;
1086
    int s = 0;
1087
    unsigned int channel_mask = 0;
1088
    q->avctx = avctx;
1089

    
1090
    /* Take care of the codec specific extradata. */
1091
    if (extradata_size <= 0) {
1092
        av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");
1093
        return -1;
1094
    }
1095
    av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
1096

    
1097
    /* Take data from the AVCodecContext (RM container). */
1098
    q->sample_rate = avctx->sample_rate;
1099
    q->nb_channels = avctx->channels;
1100
    q->bit_rate = avctx->bit_rate;
1101

    
1102
    /* Initialize RNG. */
1103
    av_lfg_init(&q->random_state, 0);
1104

    
1105
    while(edata_ptr < edata_ptr_end){
1106
        /* 8 for mono, 16 for stereo, ? for multichannel
1107
           Swap to right endianness so we don't need to care later on. */
1108
        if (extradata_size >= 8){
1109
            q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr);
1110
            q->subpacket[s].samples_per_frame =  bytestream_get_be16(&edata_ptr);
1111
            q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr);
1112
            extradata_size -= 8;
1113
        }
1114
        if (avctx->extradata_size >= 8){
1115
            bytestream_get_be32(&edata_ptr);    //Unknown unused
1116
            q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr);
1117
            q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr);
1118
            extradata_size -= 8;
1119
        }
1120

    
1121
        /* Initialize extradata related variables. */
1122
        q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame / q->nb_channels;
1123
        q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
1124

    
1125
        /* Initialize default data states. */
1126
        q->subpacket[s].log2_numvector_size = 5;
1127
        q->subpacket[s].total_subbands = q->subpacket[s].subbands;
1128
        q->subpacket[s].num_channels = 1;
1129

    
1130
        /* Initialize version-dependent variables */
1131

    
1132
        av_log(avctx,AV_LOG_DEBUG,"subpacket[%i].cookversion=%x\n",s,q->subpacket[s].cookversion);
1133
        q->subpacket[s].joint_stereo = 0;
1134
        switch (q->subpacket[s].cookversion) {
1135
            case MONO:
1136
                if (q->nb_channels != 1) {
1137
                    av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
1138
                    return -1;
1139
                }
1140
                av_log(avctx,AV_LOG_DEBUG,"MONO\n");
1141
                break;
1142
            case STEREO:
1143
                if (q->nb_channels != 1) {
1144
                    q->subpacket[s].bits_per_subpdiv = 1;
1145
                    q->subpacket[s].num_channels = 2;
1146
                }
1147
                av_log(avctx,AV_LOG_DEBUG,"STEREO\n");
1148
                break;
1149
            case JOINT_STEREO:
1150
                if (q->nb_channels != 2) {
1151
                    av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
1152
                    return -1;
1153
                }
1154
                av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");
1155
                if (avctx->extradata_size >= 16){
1156
                    q->subpacket[s].total_subbands = q->subpacket[s].subbands + q->subpacket[s].js_subband_start;
1157
                    q->subpacket[s].joint_stereo = 1;
1158
                    q->subpacket[s].num_channels = 2;
1159
                }
1160
                if (q->subpacket[s].samples_per_channel > 256) {
1161
                    q->subpacket[s].log2_numvector_size  = 6;
1162
                }
1163
                if (q->subpacket[s].samples_per_channel > 512) {
1164
                    q->subpacket[s].log2_numvector_size  = 7;
1165
                }
1166
                break;
1167
            case MC_COOK:
1168
                av_log(avctx,AV_LOG_DEBUG,"MULTI_CHANNEL\n");
1169
                if(extradata_size >= 4)
1170
                    channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr);
1171

    
1172
                if(cook_count_channels(q->subpacket[s].channel_mask) > 1){
1173
                    q->subpacket[s].total_subbands = q->subpacket[s].subbands + q->subpacket[s].js_subband_start;
1174
                    q->subpacket[s].joint_stereo = 1;
1175
                    q->subpacket[s].num_channels = 2;
1176
                    q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame >> 1;
1177

    
1178
                    if (q->subpacket[s].samples_per_channel > 256) {
1179
                        q->subpacket[s].log2_numvector_size  = 6;
1180
                    }
1181
                    if (q->subpacket[s].samples_per_channel > 512) {
1182
                        q->subpacket[s].log2_numvector_size  = 7;
1183
                    }
1184
                }else
1185
                    q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame;
1186

    
1187
                break;
1188
            default:
1189
                av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
1190
                return -1;
1191
                break;
1192
        }
1193

    
1194
        if(s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
1195
            av_log(avctx,AV_LOG_ERROR,"different number of samples per channel!\n");
1196
            return -1;
1197
        } else
1198
            q->samples_per_channel = q->subpacket[0].samples_per_channel;
1199

    
1200

    
1201
        /* Initialize variable relations */
1202
        q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);
1203

    
1204
        /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1205
        if (q->subpacket[s].total_subbands > 53) {
1206
            av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
1207
            return -1;
1208
        }
1209

    
1210
        if ((q->subpacket[s].js_vlc_bits > 6) || (q->subpacket[s].js_vlc_bits < 0)) {
1211
            av_log(avctx,AV_LOG_ERROR,"js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->subpacket[s].js_vlc_bits);
1212
            return -1;
1213
        }
1214

    
1215
        if (q->subpacket[s].subbands > 50) {
1216
            av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");
1217
            return -1;
1218
        }
1219
        q->subpacket[s].gains1.now      = q->subpacket[s].gain_1;
1220
        q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
1221
        q->subpacket[s].gains2.now      = q->subpacket[s].gain_3;
1222
        q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
1223

    
1224
        q->num_subpackets++;
1225
        s++;
1226
        if (s > MAX_SUBPACKETS) {
1227
            av_log(avctx,AV_LOG_ERROR,"Too many subpackets > 5, report file!\n");
1228
            return -1;
1229
        }
1230
    }
1231
    /* Generate tables */
1232
    init_pow2table();
1233
    init_gain_table(q);
1234
    init_cplscales_table(q);
1235

    
1236
    if (init_cook_vlc_tables(q) != 0)
1237
        return -1;
1238

    
1239

    
1240
    if(avctx->block_align >= UINT_MAX/2)
1241
        return -1;
1242

    
1243
    /* Pad the databuffer with:
1244
       DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1245
       FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1246
        q->decoded_bytes_buffer =
1247
          av_mallocz(avctx->block_align
1248
                     + DECODE_BYTES_PAD1(avctx->block_align)
1249
                     + FF_INPUT_BUFFER_PADDING_SIZE);
1250
    if (q->decoded_bytes_buffer == NULL)
1251
        return -1;
1252

    
1253
    /* Initialize transform. */
1254
    if ( init_cook_mlt(q) != 0 )
1255
        return -1;
1256

    
1257
    /* Initialize COOK signal arithmetic handling */
1258
    if (1) {
1259
        q->scalar_dequant  = scalar_dequant_float;
1260
        q->decouple        = decouple_float;
1261
        q->imlt_window     = imlt_window_float;
1262
        q->interpolate     = interpolate_float;
1263
        q->saturate_output = saturate_output_float;
1264
    }
1265

    
1266
    /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1267
    if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
1268
    } else {
1269
        av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
1270
        return -1;
1271
    }
1272

    
1273
    avctx->sample_fmt = AV_SAMPLE_FMT_S16;
1274
    if (channel_mask)
1275
        avctx->channel_layout = channel_mask;
1276
    else
1277
        avctx->channel_layout = (avctx->channels==2) ? CH_LAYOUT_STEREO : CH_LAYOUT_MONO;
1278

    
1279
#ifdef COOKDEBUG
1280
    dump_cook_context(q);
1281
#endif
1282
    return 0;
1283
}
1284

    
1285

    
1286
AVCodec ff_cook_decoder =
1287
{
1288
    .name = "cook",
1289
    .type = AVMEDIA_TYPE_AUDIO,
1290
    .id = CODEC_ID_COOK,
1291
    .priv_data_size = sizeof(COOKContext),
1292
    .init = cook_decode_init,
1293
    .close = cook_decode_close,
1294
    .decode = cook_decode_frame,
1295
    .long_name = NULL_IF_CONFIG_SMALL("COOK"),
1296
};