ffmpeg / libavcodec / mpegaudiodec.c @ d36beb3f
History | View | Annotate | Download (72.9 KB)
1 |
/*
|
---|---|
2 |
* MPEG Audio decoder
|
3 |
* Copyright (c) 2001, 2002 Fabrice Bellard
|
4 |
*
|
5 |
* This file is part of FFmpeg.
|
6 |
*
|
7 |
* FFmpeg is free software; you can redistribute it and/or
|
8 |
* modify it under the terms of the GNU Lesser General Public
|
9 |
* License as published by the Free Software Foundation; either
|
10 |
* version 2.1 of the License, or (at your option) any later version.
|
11 |
*
|
12 |
* FFmpeg is distributed in the hope that it will be useful,
|
13 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
15 |
* Lesser General Public License for more details.
|
16 |
*
|
17 |
* You should have received a copy of the GNU Lesser General Public
|
18 |
* License along with FFmpeg; if not, write to the Free Software
|
19 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
20 |
*/
|
21 |
|
22 |
/**
|
23 |
* @file
|
24 |
* MPEG Audio decoder.
|
25 |
*/
|
26 |
|
27 |
#include "avcodec.h" |
28 |
#include "get_bits.h" |
29 |
#include "dsputil.h" |
30 |
|
31 |
/*
|
32 |
* TODO:
|
33 |
* - in low precision mode, use more 16 bit multiplies in synth filter
|
34 |
* - test lsf / mpeg25 extensively.
|
35 |
*/
|
36 |
|
37 |
#include "mpegaudio.h" |
38 |
#include "mpegaudiodecheader.h" |
39 |
|
40 |
#include "mathops.h" |
41 |
|
42 |
#if CONFIG_FLOAT
|
43 |
# define SHR(a,b) ((a)*(1.0f/(1<<(b)))) |
44 |
# define compute_antialias compute_antialias_float
|
45 |
# define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5)) |
46 |
# define FIXR(x) ((float)(x)) |
47 |
# define FIXHR(x) ((float)(x)) |
48 |
# define MULH3(x, y, s) ((s)*(y)*(x))
|
49 |
# define MULLx(x, y, s) ((y)*(x))
|
50 |
# define RENAME(a) a ## _float |
51 |
#else
|
52 |
# define SHR(a,b) ((a)>>(b))
|
53 |
# define compute_antialias compute_antialias_integer
|
54 |
/* WARNING: only correct for posititive numbers */
|
55 |
# define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5)) |
56 |
# define FIXR(a) ((int)((a) * FRAC_ONE + 0.5)) |
57 |
# define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5)) |
58 |
# define MULH3(x, y, s) MULH((s)*(x), y)
|
59 |
# define MULLx(x, y, s) MULL(x,y,s)
|
60 |
# define RENAME(a) a
|
61 |
#endif
|
62 |
|
63 |
/****************/
|
64 |
|
65 |
#define HEADER_SIZE 4 |
66 |
|
67 |
#include "mpegaudiodata.h" |
68 |
#include "mpegaudiodectab.h" |
69 |
|
70 |
#if CONFIG_FLOAT
|
71 |
# include "fft.h" |
72 |
#else
|
73 |
# include "dct32.c" |
74 |
#endif
|
75 |
|
76 |
static void compute_antialias(MPADecodeContext *s, GranuleDef *g); |
77 |
static void apply_window_mp3_c(MPA_INT *synth_buf, MPA_INT *window, |
78 |
int *dither_state, OUT_INT *samples, int incr); |
79 |
|
80 |
/* vlc structure for decoding layer 3 huffman tables */
|
81 |
static VLC huff_vlc[16]; |
82 |
static VLC_TYPE huff_vlc_tables[
|
83 |
0+128+128+128+130+128+154+166+ |
84 |
142+204+190+170+542+460+662+414 |
85 |
][2];
|
86 |
static const int huff_vlc_tables_sizes[16] = { |
87 |
0, 128, 128, 128, 130, 128, 154, 166, |
88 |
142, 204, 190, 170, 542, 460, 662, 414 |
89 |
}; |
90 |
static VLC huff_quad_vlc[2]; |
91 |
static VLC_TYPE huff_quad_vlc_tables[128+16][2]; |
92 |
static const int huff_quad_vlc_tables_sizes[2] = { |
93 |
128, 16 |
94 |
}; |
95 |
/* computed from band_size_long */
|
96 |
static uint16_t band_index_long[9][23]; |
97 |
#include "mpegaudio_tablegen.h" |
98 |
/* intensity stereo coef table */
|
99 |
static INTFLOAT is_table[2][16]; |
100 |
static INTFLOAT is_table_lsf[2][2][16]; |
101 |
static int32_t csa_table[8][4]; |
102 |
static float csa_table_float[8][4]; |
103 |
static INTFLOAT mdct_win[8][36]; |
104 |
|
105 |
static int16_t division_tab3[1<<6 ]; |
106 |
static int16_t division_tab5[1<<8 ]; |
107 |
static int16_t division_tab9[1<<11]; |
108 |
|
109 |
static int16_t * const division_tabs[4] = { |
110 |
division_tab3, division_tab5, NULL, division_tab9
|
111 |
}; |
112 |
|
113 |
/* lower 2 bits: modulo 3, higher bits: shift */
|
114 |
static uint16_t scale_factor_modshift[64]; |
115 |
/* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
|
116 |
static int32_t scale_factor_mult[15][3]; |
117 |
/* mult table for layer 2 group quantization */
|
118 |
|
119 |
#define SCALE_GEN(v) \
|
120 |
{ FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) } |
121 |
|
122 |
static const int32_t scale_factor_mult2[3][3] = { |
123 |
SCALE_GEN(4.0 / 3.0), /* 3 steps */ |
124 |
SCALE_GEN(4.0 / 5.0), /* 5 steps */ |
125 |
SCALE_GEN(4.0 / 9.0), /* 9 steps */ |
126 |
}; |
127 |
|
128 |
DECLARE_ALIGNED(16, MPA_INT, RENAME(ff_mpa_synth_window))[512+256]; |
129 |
|
130 |
/**
|
131 |
* Convert region offsets to region sizes and truncate
|
132 |
* size to big_values.
|
133 |
*/
|
134 |
static void ff_region_offset2size(GranuleDef *g){ |
135 |
int i, k, j=0; |
136 |
g->region_size[2] = (576 / 2); |
137 |
for(i=0;i<3;i++) { |
138 |
k = FFMIN(g->region_size[i], g->big_values); |
139 |
g->region_size[i] = k - j; |
140 |
j = k; |
141 |
} |
142 |
} |
143 |
|
144 |
static void ff_init_short_region(MPADecodeContext *s, GranuleDef *g){ |
145 |
if (g->block_type == 2) |
146 |
g->region_size[0] = (36 / 2); |
147 |
else {
|
148 |
if (s->sample_rate_index <= 2) |
149 |
g->region_size[0] = (36 / 2); |
150 |
else if (s->sample_rate_index != 8) |
151 |
g->region_size[0] = (54 / 2); |
152 |
else
|
153 |
g->region_size[0] = (108 / 2); |
154 |
} |
155 |
g->region_size[1] = (576 / 2); |
156 |
} |
157 |
|
158 |
static void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2){ |
159 |
int l;
|
160 |
g->region_size[0] =
|
161 |
band_index_long[s->sample_rate_index][ra1 + 1] >> 1; |
162 |
/* should not overflow */
|
163 |
l = FFMIN(ra1 + ra2 + 2, 22); |
164 |
g->region_size[1] =
|
165 |
band_index_long[s->sample_rate_index][l] >> 1;
|
166 |
} |
167 |
|
168 |
static void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g){ |
169 |
if (g->block_type == 2) { |
170 |
if (g->switch_point) {
|
171 |
/* if switched mode, we handle the 36 first samples as
|
172 |
long blocks. For 8000Hz, we handle the 48 first
|
173 |
exponents as long blocks (XXX: check this!) */
|
174 |
if (s->sample_rate_index <= 2) |
175 |
g->long_end = 8;
|
176 |
else if (s->sample_rate_index != 8) |
177 |
g->long_end = 6;
|
178 |
else
|
179 |
g->long_end = 4; /* 8000 Hz */ |
180 |
|
181 |
g->short_start = 2 + (s->sample_rate_index != 8); |
182 |
} else {
|
183 |
g->long_end = 0;
|
184 |
g->short_start = 0;
|
185 |
} |
186 |
} else {
|
187 |
g->short_start = 13;
|
188 |
g->long_end = 22;
|
189 |
} |
190 |
} |
191 |
|
192 |
/* layer 1 unscaling */
|
193 |
/* n = number of bits of the mantissa minus 1 */
|
194 |
static inline int l1_unscale(int n, int mant, int scale_factor) |
195 |
{ |
196 |
int shift, mod;
|
197 |
int64_t val; |
198 |
|
199 |
shift = scale_factor_modshift[scale_factor]; |
200 |
mod = shift & 3;
|
201 |
shift >>= 2;
|
202 |
val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]); |
203 |
shift += n; |
204 |
/* NOTE: at this point, 1 <= shift >= 21 + 15 */
|
205 |
return (int)((val + (1LL << (shift - 1))) >> shift); |
206 |
} |
207 |
|
208 |
static inline int l2_unscale_group(int steps, int mant, int scale_factor) |
209 |
{ |
210 |
int shift, mod, val;
|
211 |
|
212 |
shift = scale_factor_modshift[scale_factor]; |
213 |
mod = shift & 3;
|
214 |
shift >>= 2;
|
215 |
|
216 |
val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod]; |
217 |
/* NOTE: at this point, 0 <= shift <= 21 */
|
218 |
if (shift > 0) |
219 |
val = (val + (1 << (shift - 1))) >> shift; |
220 |
return val;
|
221 |
} |
222 |
|
223 |
/* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
|
224 |
static inline int l3_unscale(int value, int exponent) |
225 |
{ |
226 |
unsigned int m; |
227 |
int e;
|
228 |
|
229 |
e = table_4_3_exp [4*value + (exponent&3)]; |
230 |
m = table_4_3_value[4*value + (exponent&3)]; |
231 |
e -= (exponent >> 2);
|
232 |
assert(e>=1);
|
233 |
if (e > 31) |
234 |
return 0; |
235 |
m = (m + (1 << (e-1))) >> e; |
236 |
|
237 |
return m;
|
238 |
} |
239 |
|
240 |
/* all integer n^(4/3) computation code */
|
241 |
#define DEV_ORDER 13 |
242 |
|
243 |
#define POW_FRAC_BITS 24 |
244 |
#define POW_FRAC_ONE (1 << POW_FRAC_BITS) |
245 |
#define POW_FIX(a) ((int)((a) * POW_FRAC_ONE)) |
246 |
#define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
|
247 |
|
248 |
static int dev_4_3_coefs[DEV_ORDER]; |
249 |
|
250 |
#if 0 /* unused */
|
251 |
static int pow_mult3[3] = {
|
252 |
POW_FIX(1.0),
|
253 |
POW_FIX(1.25992104989487316476),
|
254 |
POW_FIX(1.58740105196819947474),
|
255 |
};
|
256 |
#endif
|
257 |
|
258 |
static av_cold void int_pow_init(void) |
259 |
{ |
260 |
int i, a;
|
261 |
|
262 |
a = POW_FIX(1.0); |
263 |
for(i=0;i<DEV_ORDER;i++) { |
264 |
a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1); |
265 |
dev_4_3_coefs[i] = a; |
266 |
} |
267 |
} |
268 |
|
269 |
#if 0 /* unused, remove? */
|
270 |
/* return the mantissa and the binary exponent */
|
271 |
static int int_pow(int i, int *exp_ptr)
|
272 |
{
|
273 |
int e, er, eq, j;
|
274 |
int a, a1;
|
275 |
|
276 |
/* renormalize */
|
277 |
a = i;
|
278 |
e = POW_FRAC_BITS;
|
279 |
while (a < (1 << (POW_FRAC_BITS - 1))) {
|
280 |
a = a << 1;
|
281 |
e--;
|
282 |
}
|
283 |
a -= (1 << POW_FRAC_BITS);
|
284 |
a1 = 0;
|
285 |
for(j = DEV_ORDER - 1; j >= 0; j--)
|
286 |
a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
|
287 |
a = (1 << POW_FRAC_BITS) + a1;
|
288 |
/* exponent compute (exact) */
|
289 |
e = e * 4;
|
290 |
er = e % 3;
|
291 |
eq = e / 3;
|
292 |
a = POW_MULL(a, pow_mult3[er]);
|
293 |
while (a >= 2 * POW_FRAC_ONE) {
|
294 |
a = a >> 1;
|
295 |
eq++;
|
296 |
}
|
297 |
/* convert to float */
|
298 |
while (a < POW_FRAC_ONE) {
|
299 |
a = a << 1;
|
300 |
eq--;
|
301 |
}
|
302 |
/* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
|
303 |
#if POW_FRAC_BITS > FRAC_BITS
|
304 |
a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
|
305 |
/* correct overflow */
|
306 |
if (a >= 2 * (1 << FRAC_BITS)) {
|
307 |
a = a >> 1;
|
308 |
eq++;
|
309 |
}
|
310 |
#endif
|
311 |
*exp_ptr = eq; |
312 |
return a;
|
313 |
} |
314 |
#endif
|
315 |
|
316 |
static av_cold int decode_init(AVCodecContext * avctx) |
317 |
{ |
318 |
MPADecodeContext *s = avctx->priv_data; |
319 |
static int init=0; |
320 |
int i, j, k;
|
321 |
|
322 |
s->avctx = avctx; |
323 |
s->apply_window_mp3 = apply_window_mp3_c; |
324 |
#if HAVE_MMX && CONFIG_FLOAT
|
325 |
ff_mpegaudiodec_init_mmx(s); |
326 |
#endif
|
327 |
#if CONFIG_FLOAT
|
328 |
ff_dct_init(&s->dct, 5, DCT_II);
|
329 |
#endif
|
330 |
if (HAVE_ALTIVEC && CONFIG_FLOAT) ff_mpegaudiodec_init_altivec(s);
|
331 |
|
332 |
avctx->sample_fmt= OUT_FMT; |
333 |
s->error_recognition= avctx->error_recognition; |
334 |
|
335 |
if (!init && !avctx->parse_only) {
|
336 |
int offset;
|
337 |
|
338 |
/* scale factors table for layer 1/2 */
|
339 |
for(i=0;i<64;i++) { |
340 |
int shift, mod;
|
341 |
/* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
|
342 |
shift = (i / 3);
|
343 |
mod = i % 3;
|
344 |
scale_factor_modshift[i] = mod | (shift << 2);
|
345 |
} |
346 |
|
347 |
/* scale factor multiply for layer 1 */
|
348 |
for(i=0;i<15;i++) { |
349 |
int n, norm;
|
350 |
n = i + 2;
|
351 |
norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1); |
352 |
scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS); |
353 |
scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS); |
354 |
scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS); |
355 |
dprintf(avctx, "%d: norm=%x s=%x %x %x\n",
|
356 |
i, norm, |
357 |
scale_factor_mult[i][0],
|
358 |
scale_factor_mult[i][1],
|
359 |
scale_factor_mult[i][2]);
|
360 |
} |
361 |
|
362 |
RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window)); |
363 |
|
364 |
/* huffman decode tables */
|
365 |
offset = 0;
|
366 |
for(i=1;i<16;i++) { |
367 |
const HuffTable *h = &mpa_huff_tables[i];
|
368 |
int xsize, x, y;
|
369 |
uint8_t tmp_bits [512];
|
370 |
uint16_t tmp_codes[512];
|
371 |
|
372 |
memset(tmp_bits , 0, sizeof(tmp_bits )); |
373 |
memset(tmp_codes, 0, sizeof(tmp_codes)); |
374 |
|
375 |
xsize = h->xsize; |
376 |
|
377 |
j = 0;
|
378 |
for(x=0;x<xsize;x++) { |
379 |
for(y=0;y<xsize;y++){ |
380 |
tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ]; |
381 |
tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++]; |
382 |
} |
383 |
} |
384 |
|
385 |
/* XXX: fail test */
|
386 |
huff_vlc[i].table = huff_vlc_tables+offset; |
387 |
huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i]; |
388 |
init_vlc(&huff_vlc[i], 7, 512, |
389 |
tmp_bits, 1, 1, tmp_codes, 2, 2, |
390 |
INIT_VLC_USE_NEW_STATIC); |
391 |
offset += huff_vlc_tables_sizes[i]; |
392 |
} |
393 |
assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables)); |
394 |
|
395 |
offset = 0;
|
396 |
for(i=0;i<2;i++) { |
397 |
huff_quad_vlc[i].table = huff_quad_vlc_tables+offset; |
398 |
huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i]; |
399 |
init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16, |
400 |
mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, |
401 |
INIT_VLC_USE_NEW_STATIC); |
402 |
offset += huff_quad_vlc_tables_sizes[i]; |
403 |
} |
404 |
assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables)); |
405 |
|
406 |
for(i=0;i<9;i++) { |
407 |
k = 0;
|
408 |
for(j=0;j<22;j++) { |
409 |
band_index_long[i][j] = k; |
410 |
k += band_size_long[i][j]; |
411 |
} |
412 |
band_index_long[i][22] = k;
|
413 |
} |
414 |
|
415 |
/* compute n ^ (4/3) and store it in mantissa/exp format */
|
416 |
|
417 |
int_pow_init(); |
418 |
mpegaudio_tableinit(); |
419 |
|
420 |
for (i = 0; i < 4; i++) |
421 |
if (ff_mpa_quant_bits[i] < 0) |
422 |
for (j = 0; j < (1<<(-ff_mpa_quant_bits[i]+1)); j++) { |
423 |
int val1, val2, val3, steps;
|
424 |
int val = j;
|
425 |
steps = ff_mpa_quant_steps[i]; |
426 |
val1 = val % steps; |
427 |
val /= steps; |
428 |
val2 = val % steps; |
429 |
val3 = val / steps; |
430 |
division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8); |
431 |
} |
432 |
|
433 |
|
434 |
for(i=0;i<7;i++) { |
435 |
float f;
|
436 |
INTFLOAT v; |
437 |
if (i != 6) { |
438 |
f = tan((double)i * M_PI / 12.0); |
439 |
v = FIXR(f / (1.0 + f)); |
440 |
} else {
|
441 |
v = FIXR(1.0); |
442 |
} |
443 |
is_table[0][i] = v;
|
444 |
is_table[1][6 - i] = v; |
445 |
} |
446 |
/* invalid values */
|
447 |
for(i=7;i<16;i++) |
448 |
is_table[0][i] = is_table[1][i] = 0.0; |
449 |
|
450 |
for(i=0;i<16;i++) { |
451 |
double f;
|
452 |
int e, k;
|
453 |
|
454 |
for(j=0;j<2;j++) { |
455 |
e = -(j + 1) * ((i + 1) >> 1); |
456 |
f = pow(2.0, e / 4.0); |
457 |
k = i & 1;
|
458 |
is_table_lsf[j][k ^ 1][i] = FIXR(f);
|
459 |
is_table_lsf[j][k][i] = FIXR(1.0); |
460 |
dprintf(avctx, "is_table_lsf %d %d: %x %x\n",
|
461 |
i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]); |
462 |
} |
463 |
} |
464 |
|
465 |
for(i=0;i<8;i++) { |
466 |
float ci, cs, ca;
|
467 |
ci = ci_table[i]; |
468 |
cs = 1.0 / sqrt(1.0 + ci * ci); |
469 |
ca = cs * ci; |
470 |
csa_table[i][0] = FIXHR(cs/4); |
471 |
csa_table[i][1] = FIXHR(ca/4); |
472 |
csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4); |
473 |
csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4); |
474 |
csa_table_float[i][0] = cs;
|
475 |
csa_table_float[i][1] = ca;
|
476 |
csa_table_float[i][2] = ca + cs;
|
477 |
csa_table_float[i][3] = ca - cs;
|
478 |
} |
479 |
|
480 |
/* compute mdct windows */
|
481 |
for(i=0;i<36;i++) { |
482 |
for(j=0; j<4; j++){ |
483 |
double d;
|
484 |
|
485 |
if(j==2 && i%3 != 1) |
486 |
continue;
|
487 |
|
488 |
d= sin(M_PI * (i + 0.5) / 36.0); |
489 |
if(j==1){ |
490 |
if (i>=30) d= 0; |
491 |
else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0); |
492 |
else if(i>=18) d= 1; |
493 |
}else if(j==3){ |
494 |
if (i< 6) d= 0; |
495 |
else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0); |
496 |
else if(i< 18) d= 1; |
497 |
} |
498 |
//merge last stage of imdct into the window coefficients
|
499 |
d*= 0.5 / cos(M_PI*(2*i + 19)/72); |
500 |
|
501 |
if(j==2) |
502 |
mdct_win[j][i/3] = FIXHR((d / (1<<5))); |
503 |
else
|
504 |
mdct_win[j][i ] = FIXHR((d / (1<<5))); |
505 |
} |
506 |
} |
507 |
|
508 |
/* NOTE: we do frequency inversion adter the MDCT by changing
|
509 |
the sign of the right window coefs */
|
510 |
for(j=0;j<4;j++) { |
511 |
for(i=0;i<36;i+=2) { |
512 |
mdct_win[j + 4][i] = mdct_win[j][i];
|
513 |
mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1]; |
514 |
} |
515 |
} |
516 |
|
517 |
init = 1;
|
518 |
} |
519 |
|
520 |
if (avctx->codec_id == CODEC_ID_MP3ADU)
|
521 |
s->adu_mode = 1;
|
522 |
return 0; |
523 |
} |
524 |
|
525 |
|
526 |
#if CONFIG_FLOAT
|
527 |
static inline float round_sample(float *sum) |
528 |
{ |
529 |
float sum1=*sum;
|
530 |
*sum = 0;
|
531 |
return sum1;
|
532 |
} |
533 |
|
534 |
/* signed 16x16 -> 32 multiply add accumulate */
|
535 |
#define MACS(rt, ra, rb) rt+=(ra)*(rb)
|
536 |
|
537 |
/* signed 16x16 -> 32 multiply */
|
538 |
#define MULS(ra, rb) ((ra)*(rb))
|
539 |
|
540 |
#define MLSS(rt, ra, rb) rt-=(ra)*(rb)
|
541 |
|
542 |
#elif FRAC_BITS <= 15 |
543 |
|
544 |
static inline int round_sample(int *sum) |
545 |
{ |
546 |
int sum1;
|
547 |
sum1 = (*sum) >> OUT_SHIFT; |
548 |
*sum &= (1<<OUT_SHIFT)-1; |
549 |
return av_clip(sum1, OUT_MIN, OUT_MAX);
|
550 |
} |
551 |
|
552 |
/* signed 16x16 -> 32 multiply add accumulate */
|
553 |
#define MACS(rt, ra, rb) MAC16(rt, ra, rb)
|
554 |
|
555 |
/* signed 16x16 -> 32 multiply */
|
556 |
#define MULS(ra, rb) MUL16(ra, rb)
|
557 |
|
558 |
#define MLSS(rt, ra, rb) MLS16(rt, ra, rb)
|
559 |
|
560 |
#else
|
561 |
|
562 |
static inline int round_sample(int64_t *sum) |
563 |
{ |
564 |
int sum1;
|
565 |
sum1 = (int)((*sum) >> OUT_SHIFT);
|
566 |
*sum &= (1<<OUT_SHIFT)-1; |
567 |
return av_clip(sum1, OUT_MIN, OUT_MAX);
|
568 |
} |
569 |
|
570 |
# define MULS(ra, rb) MUL64(ra, rb)
|
571 |
# define MACS(rt, ra, rb) MAC64(rt, ra, rb)
|
572 |
# define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
|
573 |
#endif
|
574 |
|
575 |
#define SUM8(op, sum, w, p) \
|
576 |
{ \ |
577 |
op(sum, (w)[0 * 64], (p)[0 * 64]); \ |
578 |
op(sum, (w)[1 * 64], (p)[1 * 64]); \ |
579 |
op(sum, (w)[2 * 64], (p)[2 * 64]); \ |
580 |
op(sum, (w)[3 * 64], (p)[3 * 64]); \ |
581 |
op(sum, (w)[4 * 64], (p)[4 * 64]); \ |
582 |
op(sum, (w)[5 * 64], (p)[5 * 64]); \ |
583 |
op(sum, (w)[6 * 64], (p)[6 * 64]); \ |
584 |
op(sum, (w)[7 * 64], (p)[7 * 64]); \ |
585 |
} |
586 |
|
587 |
#define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
|
588 |
{ \ |
589 |
INTFLOAT tmp;\ |
590 |
tmp = p[0 * 64];\ |
591 |
op1(sum1, (w1)[0 * 64], tmp);\ |
592 |
op2(sum2, (w2)[0 * 64], tmp);\ |
593 |
tmp = p[1 * 64];\ |
594 |
op1(sum1, (w1)[1 * 64], tmp);\ |
595 |
op2(sum2, (w2)[1 * 64], tmp);\ |
596 |
tmp = p[2 * 64];\ |
597 |
op1(sum1, (w1)[2 * 64], tmp);\ |
598 |
op2(sum2, (w2)[2 * 64], tmp);\ |
599 |
tmp = p[3 * 64];\ |
600 |
op1(sum1, (w1)[3 * 64], tmp);\ |
601 |
op2(sum2, (w2)[3 * 64], tmp);\ |
602 |
tmp = p[4 * 64];\ |
603 |
op1(sum1, (w1)[4 * 64], tmp);\ |
604 |
op2(sum2, (w2)[4 * 64], tmp);\ |
605 |
tmp = p[5 * 64];\ |
606 |
op1(sum1, (w1)[5 * 64], tmp);\ |
607 |
op2(sum2, (w2)[5 * 64], tmp);\ |
608 |
tmp = p[6 * 64];\ |
609 |
op1(sum1, (w1)[6 * 64], tmp);\ |
610 |
op2(sum2, (w2)[6 * 64], tmp);\ |
611 |
tmp = p[7 * 64];\ |
612 |
op1(sum1, (w1)[7 * 64], tmp);\ |
613 |
op2(sum2, (w2)[7 * 64], tmp);\ |
614 |
} |
615 |
|
616 |
void av_cold RENAME(ff_mpa_synth_init)(MPA_INT *window)
|
617 |
{ |
618 |
int i, j;
|
619 |
|
620 |
/* max = 18760, max sum over all 16 coefs : 44736 */
|
621 |
for(i=0;i<257;i++) { |
622 |
INTFLOAT v; |
623 |
v = ff_mpa_enwindow[i]; |
624 |
#if CONFIG_FLOAT
|
625 |
v *= 1.0 / (1LL<<(16 + FRAC_BITS)); |
626 |
#elif WFRAC_BITS < 16 |
627 |
v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS); |
628 |
#endif
|
629 |
window[i] = v; |
630 |
if ((i & 63) != 0) |
631 |
v = -v; |
632 |
if (i != 0) |
633 |
window[512 - i] = v;
|
634 |
} |
635 |
|
636 |
// Needed for avoiding shuffles in ASM implementations
|
637 |
for(i=0; i < 8; i++) |
638 |
for(j=0; j < 16; j++) |
639 |
window[512+16*i+j] = window[64*i+32-j]; |
640 |
|
641 |
for(i=0; i < 8; i++) |
642 |
for(j=0; j < 16; j++) |
643 |
window[512+128+16*i+j] = window[64*i+48-j]; |
644 |
} |
645 |
|
646 |
static void apply_window_mp3_c(MPA_INT *synth_buf, MPA_INT *window, |
647 |
int *dither_state, OUT_INT *samples, int incr) |
648 |
{ |
649 |
register const MPA_INT *w, *w2, *p; |
650 |
int j;
|
651 |
OUT_INT *samples2; |
652 |
#if CONFIG_FLOAT
|
653 |
float sum, sum2;
|
654 |
#elif FRAC_BITS <= 15 |
655 |
int sum, sum2;
|
656 |
#else
|
657 |
int64_t sum, sum2; |
658 |
#endif
|
659 |
|
660 |
/* copy to avoid wrap */
|
661 |
memcpy(synth_buf + 512, synth_buf, 32 * sizeof(*synth_buf)); |
662 |
|
663 |
samples2 = samples + 31 * incr;
|
664 |
w = window; |
665 |
w2 = window + 31;
|
666 |
|
667 |
sum = *dither_state; |
668 |
p = synth_buf + 16;
|
669 |
SUM8(MACS, sum, w, p); |
670 |
p = synth_buf + 48;
|
671 |
SUM8(MLSS, sum, w + 32, p);
|
672 |
*samples = round_sample(&sum); |
673 |
samples += incr; |
674 |
w++; |
675 |
|
676 |
/* we calculate two samples at the same time to avoid one memory
|
677 |
access per two sample */
|
678 |
for(j=1;j<16;j++) { |
679 |
sum2 = 0;
|
680 |
p = synth_buf + 16 + j;
|
681 |
SUM8P2(sum, MACS, sum2, MLSS, w, w2, p); |
682 |
p = synth_buf + 48 - j;
|
683 |
SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p); |
684 |
|
685 |
*samples = round_sample(&sum); |
686 |
samples += incr; |
687 |
sum += sum2; |
688 |
*samples2 = round_sample(&sum); |
689 |
samples2 -= incr; |
690 |
w++; |
691 |
w2--; |
692 |
} |
693 |
|
694 |
p = synth_buf + 32;
|
695 |
SUM8(MLSS, sum, w + 32, p);
|
696 |
*samples = round_sample(&sum); |
697 |
*dither_state= sum; |
698 |
} |
699 |
|
700 |
|
701 |
/* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
|
702 |
32 samples. */
|
703 |
/* XXX: optimize by avoiding ring buffer usage */
|
704 |
#if !CONFIG_FLOAT
|
705 |
void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset, |
706 |
MPA_INT *window, int *dither_state,
|
707 |
OUT_INT *samples, int incr,
|
708 |
INTFLOAT sb_samples[SBLIMIT]) |
709 |
{ |
710 |
register MPA_INT *synth_buf;
|
711 |
int offset;
|
712 |
#if FRAC_BITS <= 15 |
713 |
int32_t tmp[32];
|
714 |
int j;
|
715 |
#endif
|
716 |
|
717 |
offset = *synth_buf_offset; |
718 |
synth_buf = synth_buf_ptr + offset; |
719 |
|
720 |
#if FRAC_BITS <= 15 |
721 |
dct32(tmp, sb_samples); |
722 |
for(j=0;j<32;j++) { |
723 |
/* NOTE: can cause a loss in precision if very high amplitude
|
724 |
sound */
|
725 |
synth_buf[j] = av_clip_int16(tmp[j]); |
726 |
} |
727 |
#else
|
728 |
dct32(synth_buf, sb_samples); |
729 |
#endif
|
730 |
|
731 |
apply_window_mp3_c(synth_buf, window, dither_state, samples, incr); |
732 |
|
733 |
offset = (offset - 32) & 511; |
734 |
*synth_buf_offset = offset; |
735 |
} |
736 |
#endif
|
737 |
|
738 |
#define C3 FIXHR(0.86602540378443864676/2) |
739 |
|
740 |
/* 0.5 / cos(pi*(2*i+1)/36) */
|
741 |
static const INTFLOAT icos36[9] = { |
742 |
FIXR(0.50190991877167369479), |
743 |
FIXR(0.51763809020504152469), //0 |
744 |
FIXR(0.55168895948124587824), |
745 |
FIXR(0.61038729438072803416), |
746 |
FIXR(0.70710678118654752439), //1 |
747 |
FIXR(0.87172339781054900991), |
748 |
FIXR(1.18310079157624925896), |
749 |
FIXR(1.93185165257813657349), //2 |
750 |
FIXR(5.73685662283492756461), |
751 |
}; |
752 |
|
753 |
/* 0.5 / cos(pi*(2*i+1)/36) */
|
754 |
static const INTFLOAT icos36h[9] = { |
755 |
FIXHR(0.50190991877167369479/2), |
756 |
FIXHR(0.51763809020504152469/2), //0 |
757 |
FIXHR(0.55168895948124587824/2), |
758 |
FIXHR(0.61038729438072803416/2), |
759 |
FIXHR(0.70710678118654752439/2), //1 |
760 |
FIXHR(0.87172339781054900991/2), |
761 |
FIXHR(1.18310079157624925896/4), |
762 |
FIXHR(1.93185165257813657349/4), //2 |
763 |
// FIXHR(5.73685662283492756461),
|
764 |
}; |
765 |
|
766 |
/* 12 points IMDCT. We compute it "by hand" by factorizing obvious
|
767 |
cases. */
|
768 |
static void imdct12(INTFLOAT *out, INTFLOAT *in) |
769 |
{ |
770 |
INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2; |
771 |
|
772 |
in0= in[0*3]; |
773 |
in1= in[1*3] + in[0*3]; |
774 |
in2= in[2*3] + in[1*3]; |
775 |
in3= in[3*3] + in[2*3]; |
776 |
in4= in[4*3] + in[3*3]; |
777 |
in5= in[5*3] + in[4*3]; |
778 |
in5 += in3; |
779 |
in3 += in1; |
780 |
|
781 |
in2= MULH3(in2, C3, 2);
|
782 |
in3= MULH3(in3, C3, 4);
|
783 |
|
784 |
t1 = in0 - in4; |
785 |
t2 = MULH3(in1 - in5, icos36h[4], 2); |
786 |
|
787 |
out[ 7]=
|
788 |
out[10]= t1 + t2;
|
789 |
out[ 1]=
|
790 |
out[ 4]= t1 - t2;
|
791 |
|
792 |
in0 += SHR(in4, 1);
|
793 |
in4 = in0 + in2; |
794 |
in5 += 2*in1;
|
795 |
in1 = MULH3(in5 + in3, icos36h[1], 1); |
796 |
out[ 8]=
|
797 |
out[ 9]= in4 + in1;
|
798 |
out[ 2]=
|
799 |
out[ 3]= in4 - in1;
|
800 |
|
801 |
in0 -= in2; |
802 |
in5 = MULH3(in5 - in3, icos36h[7], 2); |
803 |
out[ 0]=
|
804 |
out[ 5]= in0 - in5;
|
805 |
out[ 6]=
|
806 |
out[11]= in0 + in5;
|
807 |
} |
808 |
|
809 |
/* cos(pi*i/18) */
|
810 |
#define C1 FIXHR(0.98480775301220805936/2) |
811 |
#define C2 FIXHR(0.93969262078590838405/2) |
812 |
#define C3 FIXHR(0.86602540378443864676/2) |
813 |
#define C4 FIXHR(0.76604444311897803520/2) |
814 |
#define C5 FIXHR(0.64278760968653932632/2) |
815 |
#define C6 FIXHR(0.5/2) |
816 |
#define C7 FIXHR(0.34202014332566873304/2) |
817 |
#define C8 FIXHR(0.17364817766693034885/2) |
818 |
|
819 |
|
820 |
/* using Lee like decomposition followed by hand coded 9 points DCT */
|
821 |
static void imdct36(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, INTFLOAT *win) |
822 |
{ |
823 |
int i, j;
|
824 |
INTFLOAT t0, t1, t2, t3, s0, s1, s2, s3; |
825 |
INTFLOAT tmp[18], *tmp1, *in1;
|
826 |
|
827 |
for(i=17;i>=1;i--) |
828 |
in[i] += in[i-1];
|
829 |
for(i=17;i>=3;i-=2) |
830 |
in[i] += in[i-2];
|
831 |
|
832 |
for(j=0;j<2;j++) { |
833 |
tmp1 = tmp + j; |
834 |
in1 = in + j; |
835 |
|
836 |
t2 = in1[2*4] + in1[2*8] - in1[2*2]; |
837 |
|
838 |
t3 = in1[2*0] + SHR(in1[2*6],1); |
839 |
t1 = in1[2*0] - in1[2*6]; |
840 |
tmp1[ 6] = t1 - SHR(t2,1); |
841 |
tmp1[16] = t1 + t2;
|
842 |
|
843 |
t0 = MULH3(in1[2*2] + in1[2*4] , C2, 2); |
844 |
t1 = MULH3(in1[2*4] - in1[2*8] , -2*C8, 1); |
845 |
t2 = MULH3(in1[2*2] + in1[2*8] , -C4, 2); |
846 |
|
847 |
tmp1[10] = t3 - t0 - t2;
|
848 |
tmp1[ 2] = t3 + t0 + t1;
|
849 |
tmp1[14] = t3 + t2 - t1;
|
850 |
|
851 |
tmp1[ 4] = MULH3(in1[2*5] + in1[2*7] - in1[2*1], -C3, 2); |
852 |
t2 = MULH3(in1[2*1] + in1[2*5], C1, 2); |
853 |
t3 = MULH3(in1[2*5] - in1[2*7], -2*C7, 1); |
854 |
t0 = MULH3(in1[2*3], C3, 2); |
855 |
|
856 |
t1 = MULH3(in1[2*1] + in1[2*7], -C5, 2); |
857 |
|
858 |
tmp1[ 0] = t2 + t3 + t0;
|
859 |
tmp1[12] = t2 + t1 - t0;
|
860 |
tmp1[ 8] = t3 - t1 - t0;
|
861 |
} |
862 |
|
863 |
i = 0;
|
864 |
for(j=0;j<4;j++) { |
865 |
t0 = tmp[i]; |
866 |
t1 = tmp[i + 2];
|
867 |
s0 = t1 + t0; |
868 |
s2 = t1 - t0; |
869 |
|
870 |
t2 = tmp[i + 1];
|
871 |
t3 = tmp[i + 3];
|
872 |
s1 = MULH3(t3 + t2, icos36h[j], 2);
|
873 |
s3 = MULLx(t3 - t2, icos36[8 - j], FRAC_BITS);
|
874 |
|
875 |
t0 = s0 + s1; |
876 |
t1 = s0 - s1; |
877 |
out[(9 + j)*SBLIMIT] = MULH3(t1, win[9 + j], 1) + buf[9 + j]; |
878 |
out[(8 - j)*SBLIMIT] = MULH3(t1, win[8 - j], 1) + buf[8 - j]; |
879 |
buf[9 + j] = MULH3(t0, win[18 + 9 + j], 1); |
880 |
buf[8 - j] = MULH3(t0, win[18 + 8 - j], 1); |
881 |
|
882 |
t0 = s2 + s3; |
883 |
t1 = s2 - s3; |
884 |
out[(9 + 8 - j)*SBLIMIT] = MULH3(t1, win[9 + 8 - j], 1) + buf[9 + 8 - j]; |
885 |
out[( j)*SBLIMIT] = MULH3(t1, win[ j], 1) + buf[ j];
|
886 |
buf[9 + 8 - j] = MULH3(t0, win[18 + 9 + 8 - j], 1); |
887 |
buf[ + j] = MULH3(t0, win[18 + j], 1); |
888 |
i += 4;
|
889 |
} |
890 |
|
891 |
s0 = tmp[16];
|
892 |
s1 = MULH3(tmp[17], icos36h[4], 2); |
893 |
t0 = s0 + s1; |
894 |
t1 = s0 - s1; |
895 |
out[(9 + 4)*SBLIMIT] = MULH3(t1, win[9 + 4], 1) + buf[9 + 4]; |
896 |
out[(8 - 4)*SBLIMIT] = MULH3(t1, win[8 - 4], 1) + buf[8 - 4]; |
897 |
buf[9 + 4] = MULH3(t0, win[18 + 9 + 4], 1); |
898 |
buf[8 - 4] = MULH3(t0, win[18 + 8 - 4], 1); |
899 |
} |
900 |
|
901 |
/* return the number of decoded frames */
|
902 |
static int mp_decode_layer1(MPADecodeContext *s) |
903 |
{ |
904 |
int bound, i, v, n, ch, j, mant;
|
905 |
uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT]; |
906 |
uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT]; |
907 |
|
908 |
if (s->mode == MPA_JSTEREO)
|
909 |
bound = (s->mode_ext + 1) * 4; |
910 |
else
|
911 |
bound = SBLIMIT; |
912 |
|
913 |
/* allocation bits */
|
914 |
for(i=0;i<bound;i++) { |
915 |
for(ch=0;ch<s->nb_channels;ch++) { |
916 |
allocation[ch][i] = get_bits(&s->gb, 4);
|
917 |
} |
918 |
} |
919 |
for(i=bound;i<SBLIMIT;i++) {
|
920 |
allocation[0][i] = get_bits(&s->gb, 4); |
921 |
} |
922 |
|
923 |
/* scale factors */
|
924 |
for(i=0;i<bound;i++) { |
925 |
for(ch=0;ch<s->nb_channels;ch++) { |
926 |
if (allocation[ch][i])
|
927 |
scale_factors[ch][i] = get_bits(&s->gb, 6);
|
928 |
} |
929 |
} |
930 |
for(i=bound;i<SBLIMIT;i++) {
|
931 |
if (allocation[0][i]) { |
932 |
scale_factors[0][i] = get_bits(&s->gb, 6); |
933 |
scale_factors[1][i] = get_bits(&s->gb, 6); |
934 |
} |
935 |
} |
936 |
|
937 |
/* compute samples */
|
938 |
for(j=0;j<12;j++) { |
939 |
for(i=0;i<bound;i++) { |
940 |
for(ch=0;ch<s->nb_channels;ch++) { |
941 |
n = allocation[ch][i]; |
942 |
if (n) {
|
943 |
mant = get_bits(&s->gb, n + 1);
|
944 |
v = l1_unscale(n, mant, scale_factors[ch][i]); |
945 |
} else {
|
946 |
v = 0;
|
947 |
} |
948 |
s->sb_samples[ch][j][i] = v; |
949 |
} |
950 |
} |
951 |
for(i=bound;i<SBLIMIT;i++) {
|
952 |
n = allocation[0][i];
|
953 |
if (n) {
|
954 |
mant = get_bits(&s->gb, n + 1);
|
955 |
v = l1_unscale(n, mant, scale_factors[0][i]);
|
956 |
s->sb_samples[0][j][i] = v;
|
957 |
v = l1_unscale(n, mant, scale_factors[1][i]);
|
958 |
s->sb_samples[1][j][i] = v;
|
959 |
} else {
|
960 |
s->sb_samples[0][j][i] = 0; |
961 |
s->sb_samples[1][j][i] = 0; |
962 |
} |
963 |
} |
964 |
} |
965 |
return 12; |
966 |
} |
967 |
|
968 |
static int mp_decode_layer2(MPADecodeContext *s) |
969 |
{ |
970 |
int sblimit; /* number of used subbands */ |
971 |
const unsigned char *alloc_table; |
972 |
int table, bit_alloc_bits, i, j, ch, bound, v;
|
973 |
unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT]; |
974 |
unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT]; |
975 |
unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf; |
976 |
int scale, qindex, bits, steps, k, l, m, b;
|
977 |
|
978 |
/* select decoding table */
|
979 |
table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
|
980 |
s->sample_rate, s->lsf); |
981 |
sblimit = ff_mpa_sblimit_table[table]; |
982 |
alloc_table = ff_mpa_alloc_tables[table]; |
983 |
|
984 |
if (s->mode == MPA_JSTEREO)
|
985 |
bound = (s->mode_ext + 1) * 4; |
986 |
else
|
987 |
bound = sblimit; |
988 |
|
989 |
dprintf(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
|
990 |
|
991 |
/* sanity check */
|
992 |
if( bound > sblimit ) bound = sblimit;
|
993 |
|
994 |
/* parse bit allocation */
|
995 |
j = 0;
|
996 |
for(i=0;i<bound;i++) { |
997 |
bit_alloc_bits = alloc_table[j]; |
998 |
for(ch=0;ch<s->nb_channels;ch++) { |
999 |
bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits); |
1000 |
} |
1001 |
j += 1 << bit_alloc_bits;
|
1002 |
} |
1003 |
for(i=bound;i<sblimit;i++) {
|
1004 |
bit_alloc_bits = alloc_table[j]; |
1005 |
v = get_bits(&s->gb, bit_alloc_bits); |
1006 |
bit_alloc[0][i] = v;
|
1007 |
bit_alloc[1][i] = v;
|
1008 |
j += 1 << bit_alloc_bits;
|
1009 |
} |
1010 |
|
1011 |
/* scale codes */
|
1012 |
for(i=0;i<sblimit;i++) { |
1013 |
for(ch=0;ch<s->nb_channels;ch++) { |
1014 |
if (bit_alloc[ch][i])
|
1015 |
scale_code[ch][i] = get_bits(&s->gb, 2);
|
1016 |
} |
1017 |
} |
1018 |
|
1019 |
/* scale factors */
|
1020 |
for(i=0;i<sblimit;i++) { |
1021 |
for(ch=0;ch<s->nb_channels;ch++) { |
1022 |
if (bit_alloc[ch][i]) {
|
1023 |
sf = scale_factors[ch][i]; |
1024 |
switch(scale_code[ch][i]) {
|
1025 |
default:
|
1026 |
case 0: |
1027 |
sf[0] = get_bits(&s->gb, 6); |
1028 |
sf[1] = get_bits(&s->gb, 6); |
1029 |
sf[2] = get_bits(&s->gb, 6); |
1030 |
break;
|
1031 |
case 2: |
1032 |
sf[0] = get_bits(&s->gb, 6); |
1033 |
sf[1] = sf[0]; |
1034 |
sf[2] = sf[0]; |
1035 |
break;
|
1036 |
case 1: |
1037 |
sf[0] = get_bits(&s->gb, 6); |
1038 |
sf[2] = get_bits(&s->gb, 6); |
1039 |
sf[1] = sf[0]; |
1040 |
break;
|
1041 |
case 3: |
1042 |
sf[0] = get_bits(&s->gb, 6); |
1043 |
sf[2] = get_bits(&s->gb, 6); |
1044 |
sf[1] = sf[2]; |
1045 |
break;
|
1046 |
} |
1047 |
} |
1048 |
} |
1049 |
} |
1050 |
|
1051 |
/* samples */
|
1052 |
for(k=0;k<3;k++) { |
1053 |
for(l=0;l<12;l+=3) { |
1054 |
j = 0;
|
1055 |
for(i=0;i<bound;i++) { |
1056 |
bit_alloc_bits = alloc_table[j]; |
1057 |
for(ch=0;ch<s->nb_channels;ch++) { |
1058 |
b = bit_alloc[ch][i]; |
1059 |
if (b) {
|
1060 |
scale = scale_factors[ch][i][k]; |
1061 |
qindex = alloc_table[j+b]; |
1062 |
bits = ff_mpa_quant_bits[qindex]; |
1063 |
if (bits < 0) { |
1064 |
int v2;
|
1065 |
/* 3 values at the same time */
|
1066 |
v = get_bits(&s->gb, -bits); |
1067 |
v2 = division_tabs[qindex][v]; |
1068 |
steps = ff_mpa_quant_steps[qindex]; |
1069 |
|
1070 |
s->sb_samples[ch][k * 12 + l + 0][i] = |
1071 |
l2_unscale_group(steps, v2 & 15, scale);
|
1072 |
s->sb_samples[ch][k * 12 + l + 1][i] = |
1073 |
l2_unscale_group(steps, (v2 >> 4) & 15, scale); |
1074 |
s->sb_samples[ch][k * 12 + l + 2][i] = |
1075 |
l2_unscale_group(steps, v2 >> 8 , scale);
|
1076 |
} else {
|
1077 |
for(m=0;m<3;m++) { |
1078 |
v = get_bits(&s->gb, bits); |
1079 |
v = l1_unscale(bits - 1, v, scale);
|
1080 |
s->sb_samples[ch][k * 12 + l + m][i] = v;
|
1081 |
} |
1082 |
} |
1083 |
} else {
|
1084 |
s->sb_samples[ch][k * 12 + l + 0][i] = 0; |
1085 |
s->sb_samples[ch][k * 12 + l + 1][i] = 0; |
1086 |
s->sb_samples[ch][k * 12 + l + 2][i] = 0; |
1087 |
} |
1088 |
} |
1089 |
/* next subband in alloc table */
|
1090 |
j += 1 << bit_alloc_bits;
|
1091 |
} |
1092 |
/* XXX: find a way to avoid this duplication of code */
|
1093 |
for(i=bound;i<sblimit;i++) {
|
1094 |
bit_alloc_bits = alloc_table[j]; |
1095 |
b = bit_alloc[0][i];
|
1096 |
if (b) {
|
1097 |
int mant, scale0, scale1;
|
1098 |
scale0 = scale_factors[0][i][k];
|
1099 |
scale1 = scale_factors[1][i][k];
|
1100 |
qindex = alloc_table[j+b]; |
1101 |
bits = ff_mpa_quant_bits[qindex]; |
1102 |
if (bits < 0) { |
1103 |
/* 3 values at the same time */
|
1104 |
v = get_bits(&s->gb, -bits); |
1105 |
steps = ff_mpa_quant_steps[qindex]; |
1106 |
mant = v % steps; |
1107 |
v = v / steps; |
1108 |
s->sb_samples[0][k * 12 + l + 0][i] = |
1109 |
l2_unscale_group(steps, mant, scale0); |
1110 |
s->sb_samples[1][k * 12 + l + 0][i] = |
1111 |
l2_unscale_group(steps, mant, scale1); |
1112 |
mant = v % steps; |
1113 |
v = v / steps; |
1114 |
s->sb_samples[0][k * 12 + l + 1][i] = |
1115 |
l2_unscale_group(steps, mant, scale0); |
1116 |
s->sb_samples[1][k * 12 + l + 1][i] = |
1117 |
l2_unscale_group(steps, mant, scale1); |
1118 |
s->sb_samples[0][k * 12 + l + 2][i] = |
1119 |
l2_unscale_group(steps, v, scale0); |
1120 |
s->sb_samples[1][k * 12 + l + 2][i] = |
1121 |
l2_unscale_group(steps, v, scale1); |
1122 |
} else {
|
1123 |
for(m=0;m<3;m++) { |
1124 |
mant = get_bits(&s->gb, bits); |
1125 |
s->sb_samples[0][k * 12 + l + m][i] = |
1126 |
l1_unscale(bits - 1, mant, scale0);
|
1127 |
s->sb_samples[1][k * 12 + l + m][i] = |
1128 |
l1_unscale(bits - 1, mant, scale1);
|
1129 |
} |
1130 |
} |
1131 |
} else {
|
1132 |
s->sb_samples[0][k * 12 + l + 0][i] = 0; |
1133 |
s->sb_samples[0][k * 12 + l + 1][i] = 0; |
1134 |
s->sb_samples[0][k * 12 + l + 2][i] = 0; |
1135 |
s->sb_samples[1][k * 12 + l + 0][i] = 0; |
1136 |
s->sb_samples[1][k * 12 + l + 1][i] = 0; |
1137 |
s->sb_samples[1][k * 12 + l + 2][i] = 0; |
1138 |
} |
1139 |
/* next subband in alloc table */
|
1140 |
j += 1 << bit_alloc_bits;
|
1141 |
} |
1142 |
/* fill remaining samples to zero */
|
1143 |
for(i=sblimit;i<SBLIMIT;i++) {
|
1144 |
for(ch=0;ch<s->nb_channels;ch++) { |
1145 |
s->sb_samples[ch][k * 12 + l + 0][i] = 0; |
1146 |
s->sb_samples[ch][k * 12 + l + 1][i] = 0; |
1147 |
s->sb_samples[ch][k * 12 + l + 2][i] = 0; |
1148 |
} |
1149 |
} |
1150 |
} |
1151 |
} |
1152 |
return 3 * 12; |
1153 |
} |
1154 |
|
1155 |
#define SPLIT(dst,sf,n)\
|
1156 |
if(n==3){\ |
1157 |
int m= (sf*171)>>9;\ |
1158 |
dst= sf - 3*m;\
|
1159 |
sf=m;\ |
1160 |
}else if(n==4){\ |
1161 |
dst= sf&3;\
|
1162 |
sf>>=2;\
|
1163 |
}else if(n==5){\ |
1164 |
int m= (sf*205)>>10;\ |
1165 |
dst= sf - 5*m;\
|
1166 |
sf=m;\ |
1167 |
}else if(n==6){\ |
1168 |
int m= (sf*171)>>10;\ |
1169 |
dst= sf - 6*m;\
|
1170 |
sf=m;\ |
1171 |
}else{\
|
1172 |
dst=0;\
|
1173 |
} |
1174 |
|
1175 |
static av_always_inline void lsf_sf_expand(int *slen, |
1176 |
int sf, int n1, int n2, int n3) |
1177 |
{ |
1178 |
SPLIT(slen[3], sf, n3)
|
1179 |
SPLIT(slen[2], sf, n2)
|
1180 |
SPLIT(slen[1], sf, n1)
|
1181 |
slen[0] = sf;
|
1182 |
} |
1183 |
|
1184 |
static void exponents_from_scale_factors(MPADecodeContext *s, |
1185 |
GranuleDef *g, |
1186 |
int16_t *exponents) |
1187 |
{ |
1188 |
const uint8_t *bstab, *pretab;
|
1189 |
int len, i, j, k, l, v0, shift, gain, gains[3]; |
1190 |
int16_t *exp_ptr; |
1191 |
|
1192 |
exp_ptr = exponents; |
1193 |
gain = g->global_gain - 210;
|
1194 |
shift = g->scalefac_scale + 1;
|
1195 |
|
1196 |
bstab = band_size_long[s->sample_rate_index]; |
1197 |
pretab = mpa_pretab[g->preflag]; |
1198 |
for(i=0;i<g->long_end;i++) { |
1199 |
v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
|
1200 |
len = bstab[i]; |
1201 |
for(j=len;j>0;j--) |
1202 |
*exp_ptr++ = v0; |
1203 |
} |
1204 |
|
1205 |
if (g->short_start < 13) { |
1206 |
bstab = band_size_short[s->sample_rate_index]; |
1207 |
gains[0] = gain - (g->subblock_gain[0] << 3); |
1208 |
gains[1] = gain - (g->subblock_gain[1] << 3); |
1209 |
gains[2] = gain - (g->subblock_gain[2] << 3); |
1210 |
k = g->long_end; |
1211 |
for(i=g->short_start;i<13;i++) { |
1212 |
len = bstab[i]; |
1213 |
for(l=0;l<3;l++) { |
1214 |
v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
|
1215 |
for(j=len;j>0;j--) |
1216 |
*exp_ptr++ = v0; |
1217 |
} |
1218 |
} |
1219 |
} |
1220 |
} |
1221 |
|
1222 |
/* handle n = 0 too */
|
1223 |
static inline int get_bitsz(GetBitContext *s, int n) |
1224 |
{ |
1225 |
if (n == 0) |
1226 |
return 0; |
1227 |
else
|
1228 |
return get_bits(s, n);
|
1229 |
} |
1230 |
|
1231 |
|
1232 |
static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){ |
1233 |
if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
|
1234 |
s->gb= s->in_gb; |
1235 |
s->in_gb.buffer=NULL;
|
1236 |
assert((get_bits_count(&s->gb) & 7) == 0); |
1237 |
skip_bits_long(&s->gb, *pos - *end_pos); |
1238 |
*end_pos2= |
1239 |
*end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos; |
1240 |
*pos= get_bits_count(&s->gb); |
1241 |
} |
1242 |
} |
1243 |
|
1244 |
/* Following is a optimized code for
|
1245 |
INTFLOAT v = *src
|
1246 |
if(get_bits1(&s->gb))
|
1247 |
v = -v;
|
1248 |
*dst = v;
|
1249 |
*/
|
1250 |
#if CONFIG_FLOAT
|
1251 |
#define READ_FLIP_SIGN(dst,src)\
|
1252 |
v = AV_RN32A(src) ^ (get_bits1(&s->gb)<<31);\
|
1253 |
AV_WN32A(dst, v); |
1254 |
#else
|
1255 |
#define READ_FLIP_SIGN(dst,src)\
|
1256 |
v= -get_bits1(&s->gb);\ |
1257 |
*(dst) = (*(src) ^ v) - v; |
1258 |
#endif
|
1259 |
|
1260 |
static int huffman_decode(MPADecodeContext *s, GranuleDef *g, |
1261 |
int16_t *exponents, int end_pos2)
|
1262 |
{ |
1263 |
int s_index;
|
1264 |
int i;
|
1265 |
int last_pos, bits_left;
|
1266 |
VLC *vlc; |
1267 |
int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
|
1268 |
|
1269 |
/* low frequencies (called big values) */
|
1270 |
s_index = 0;
|
1271 |
for(i=0;i<3;i++) { |
1272 |
int j, k, l, linbits;
|
1273 |
j = g->region_size[i]; |
1274 |
if (j == 0) |
1275 |
continue;
|
1276 |
/* select vlc table */
|
1277 |
k = g->table_select[i]; |
1278 |
l = mpa_huff_data[k][0];
|
1279 |
linbits = mpa_huff_data[k][1];
|
1280 |
vlc = &huff_vlc[l]; |
1281 |
|
1282 |
if(!l){
|
1283 |
memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j); |
1284 |
s_index += 2*j;
|
1285 |
continue;
|
1286 |
} |
1287 |
|
1288 |
/* read huffcode and compute each couple */
|
1289 |
for(;j>0;j--) { |
1290 |
int exponent, x, y;
|
1291 |
int v;
|
1292 |
int pos= get_bits_count(&s->gb);
|
1293 |
|
1294 |
if (pos >= end_pos){
|
1295 |
// av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
|
1296 |
switch_buffer(s, &pos, &end_pos, &end_pos2); |
1297 |
// av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
|
1298 |
if(pos >= end_pos)
|
1299 |
break;
|
1300 |
} |
1301 |
y = get_vlc2(&s->gb, vlc->table, 7, 3); |
1302 |
|
1303 |
if(!y){
|
1304 |
g->sb_hybrid[s_index ] = |
1305 |
g->sb_hybrid[s_index+1] = 0; |
1306 |
s_index += 2;
|
1307 |
continue;
|
1308 |
} |
1309 |
|
1310 |
exponent= exponents[s_index]; |
1311 |
|
1312 |
dprintf(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
|
1313 |
i, g->region_size[i] - j, x, y, exponent); |
1314 |
if(y&16){ |
1315 |
x = y >> 5;
|
1316 |
y = y & 0x0f;
|
1317 |
if (x < 15){ |
1318 |
READ_FLIP_SIGN(g->sb_hybrid+s_index, RENAME(expval_table)[ exponent ]+x) |
1319 |
}else{
|
1320 |
x += get_bitsz(&s->gb, linbits); |
1321 |
v = l3_unscale(x, exponent); |
1322 |
if (get_bits1(&s->gb))
|
1323 |
v = -v; |
1324 |
g->sb_hybrid[s_index] = v; |
1325 |
} |
1326 |
if (y < 15){ |
1327 |
READ_FLIP_SIGN(g->sb_hybrid+s_index+1, RENAME(expval_table)[ exponent ]+y)
|
1328 |
}else{
|
1329 |
y += get_bitsz(&s->gb, linbits); |
1330 |
v = l3_unscale(y, exponent); |
1331 |
if (get_bits1(&s->gb))
|
1332 |
v = -v; |
1333 |
g->sb_hybrid[s_index+1] = v;
|
1334 |
} |
1335 |
}else{
|
1336 |
x = y >> 5;
|
1337 |
y = y & 0x0f;
|
1338 |
x += y; |
1339 |
if (x < 15){ |
1340 |
READ_FLIP_SIGN(g->sb_hybrid+s_index+!!y, RENAME(expval_table)[ exponent ]+x) |
1341 |
}else{
|
1342 |
x += get_bitsz(&s->gb, linbits); |
1343 |
v = l3_unscale(x, exponent); |
1344 |
if (get_bits1(&s->gb))
|
1345 |
v = -v; |
1346 |
g->sb_hybrid[s_index+!!y] = v; |
1347 |
} |
1348 |
g->sb_hybrid[s_index+ !y] = 0;
|
1349 |
} |
1350 |
s_index+=2;
|
1351 |
} |
1352 |
} |
1353 |
|
1354 |
/* high frequencies */
|
1355 |
vlc = &huff_quad_vlc[g->count1table_select]; |
1356 |
last_pos=0;
|
1357 |
while (s_index <= 572) { |
1358 |
int pos, code;
|
1359 |
pos = get_bits_count(&s->gb); |
1360 |
if (pos >= end_pos) {
|
1361 |
if (pos > end_pos2 && last_pos){
|
1362 |
/* some encoders generate an incorrect size for this
|
1363 |
part. We must go back into the data */
|
1364 |
s_index -= 4;
|
1365 |
skip_bits_long(&s->gb, last_pos - pos); |
1366 |
av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
|
1367 |
if(s->error_recognition >= FF_ER_COMPLIANT)
|
1368 |
s_index=0;
|
1369 |
break;
|
1370 |
} |
1371 |
// av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
|
1372 |
switch_buffer(s, &pos, &end_pos, &end_pos2); |
1373 |
// av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
|
1374 |
if(pos >= end_pos)
|
1375 |
break;
|
1376 |
} |
1377 |
last_pos= pos; |
1378 |
|
1379 |
code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
|
1380 |
dprintf(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
|
1381 |
g->sb_hybrid[s_index+0]=
|
1382 |
g->sb_hybrid[s_index+1]=
|
1383 |
g->sb_hybrid[s_index+2]=
|
1384 |
g->sb_hybrid[s_index+3]= 0; |
1385 |
while(code){
|
1386 |
static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0}; |
1387 |
int v;
|
1388 |
int pos= s_index+idxtab[code];
|
1389 |
code ^= 8>>idxtab[code];
|
1390 |
READ_FLIP_SIGN(g->sb_hybrid+pos, RENAME(exp_table)+exponents[pos]) |
1391 |
} |
1392 |
s_index+=4;
|
1393 |
} |
1394 |
/* skip extension bits */
|
1395 |
bits_left = end_pos2 - get_bits_count(&s->gb); |
1396 |
//av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
|
1397 |
if (bits_left < 0 && s->error_recognition >= FF_ER_COMPLIANT) { |
1398 |
av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
|
1399 |
s_index=0;
|
1400 |
}else if(bits_left > 0 && s->error_recognition >= FF_ER_AGGRESSIVE){ |
1401 |
av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
|
1402 |
s_index=0;
|
1403 |
} |
1404 |
memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index)); |
1405 |
skip_bits_long(&s->gb, bits_left); |
1406 |
|
1407 |
i= get_bits_count(&s->gb); |
1408 |
switch_buffer(s, &i, &end_pos, &end_pos2); |
1409 |
|
1410 |
return 0; |
1411 |
} |
1412 |
|
1413 |
/* Reorder short blocks from bitstream order to interleaved order. It
|
1414 |
would be faster to do it in parsing, but the code would be far more
|
1415 |
complicated */
|
1416 |
static void reorder_block(MPADecodeContext *s, GranuleDef *g) |
1417 |
{ |
1418 |
int i, j, len;
|
1419 |
INTFLOAT *ptr, *dst, *ptr1; |
1420 |
INTFLOAT tmp[576];
|
1421 |
|
1422 |
if (g->block_type != 2) |
1423 |
return;
|
1424 |
|
1425 |
if (g->switch_point) {
|
1426 |
if (s->sample_rate_index != 8) { |
1427 |
ptr = g->sb_hybrid + 36;
|
1428 |
} else {
|
1429 |
ptr = g->sb_hybrid + 48;
|
1430 |
} |
1431 |
} else {
|
1432 |
ptr = g->sb_hybrid; |
1433 |
} |
1434 |
|
1435 |
for(i=g->short_start;i<13;i++) { |
1436 |
len = band_size_short[s->sample_rate_index][i]; |
1437 |
ptr1 = ptr; |
1438 |
dst = tmp; |
1439 |
for(j=len;j>0;j--) { |
1440 |
*dst++ = ptr[0*len];
|
1441 |
*dst++ = ptr[1*len];
|
1442 |
*dst++ = ptr[2*len];
|
1443 |
ptr++; |
1444 |
} |
1445 |
ptr+=2*len;
|
1446 |
memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1)); |
1447 |
} |
1448 |
} |
1449 |
|
1450 |
#define ISQRT2 FIXR(0.70710678118654752440) |
1451 |
|
1452 |
static void compute_stereo(MPADecodeContext *s, |
1453 |
GranuleDef *g0, GranuleDef *g1) |
1454 |
{ |
1455 |
int i, j, k, l;
|
1456 |
int sf_max, sf, len, non_zero_found;
|
1457 |
INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;
|
1458 |
int non_zero_found_short[3]; |
1459 |
|
1460 |
/* intensity stereo */
|
1461 |
if (s->mode_ext & MODE_EXT_I_STEREO) {
|
1462 |
if (!s->lsf) {
|
1463 |
is_tab = is_table; |
1464 |
sf_max = 7;
|
1465 |
} else {
|
1466 |
is_tab = is_table_lsf[g1->scalefac_compress & 1];
|
1467 |
sf_max = 16;
|
1468 |
} |
1469 |
|
1470 |
tab0 = g0->sb_hybrid + 576;
|
1471 |
tab1 = g1->sb_hybrid + 576;
|
1472 |
|
1473 |
non_zero_found_short[0] = 0; |
1474 |
non_zero_found_short[1] = 0; |
1475 |
non_zero_found_short[2] = 0; |
1476 |
k = (13 - g1->short_start) * 3 + g1->long_end - 3; |
1477 |
for(i = 12;i >= g1->short_start;i--) { |
1478 |
/* for last band, use previous scale factor */
|
1479 |
if (i != 11) |
1480 |
k -= 3;
|
1481 |
len = band_size_short[s->sample_rate_index][i]; |
1482 |
for(l=2;l>=0;l--) { |
1483 |
tab0 -= len; |
1484 |
tab1 -= len; |
1485 |
if (!non_zero_found_short[l]) {
|
1486 |
/* test if non zero band. if so, stop doing i-stereo */
|
1487 |
for(j=0;j<len;j++) { |
1488 |
if (tab1[j] != 0) { |
1489 |
non_zero_found_short[l] = 1;
|
1490 |
goto found1;
|
1491 |
} |
1492 |
} |
1493 |
sf = g1->scale_factors[k + l]; |
1494 |
if (sf >= sf_max)
|
1495 |
goto found1;
|
1496 |
|
1497 |
v1 = is_tab[0][sf];
|
1498 |
v2 = is_tab[1][sf];
|
1499 |
for(j=0;j<len;j++) { |
1500 |
tmp0 = tab0[j]; |
1501 |
tab0[j] = MULLx(tmp0, v1, FRAC_BITS); |
1502 |
tab1[j] = MULLx(tmp0, v2, FRAC_BITS); |
1503 |
} |
1504 |
} else {
|
1505 |
found1:
|
1506 |
if (s->mode_ext & MODE_EXT_MS_STEREO) {
|
1507 |
/* lower part of the spectrum : do ms stereo
|
1508 |
if enabled */
|
1509 |
for(j=0;j<len;j++) { |
1510 |
tmp0 = tab0[j]; |
1511 |
tmp1 = tab1[j]; |
1512 |
tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS); |
1513 |
tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS); |
1514 |
} |
1515 |
} |
1516 |
} |
1517 |
} |
1518 |
} |
1519 |
|
1520 |
non_zero_found = non_zero_found_short[0] |
|
1521 |
non_zero_found_short[1] |
|
1522 |
non_zero_found_short[2];
|
1523 |
|
1524 |
for(i = g1->long_end - 1;i >= 0;i--) { |
1525 |
len = band_size_long[s->sample_rate_index][i]; |
1526 |
tab0 -= len; |
1527 |
tab1 -= len; |
1528 |
/* test if non zero band. if so, stop doing i-stereo */
|
1529 |
if (!non_zero_found) {
|
1530 |
for(j=0;j<len;j++) { |
1531 |
if (tab1[j] != 0) { |
1532 |
non_zero_found = 1;
|
1533 |
goto found2;
|
1534 |
} |
1535 |
} |
1536 |
/* for last band, use previous scale factor */
|
1537 |
k = (i == 21) ? 20 : i; |
1538 |
sf = g1->scale_factors[k]; |
1539 |
if (sf >= sf_max)
|
1540 |
goto found2;
|
1541 |
v1 = is_tab[0][sf];
|
1542 |
v2 = is_tab[1][sf];
|
1543 |
for(j=0;j<len;j++) { |
1544 |
tmp0 = tab0[j]; |
1545 |
tab0[j] = MULLx(tmp0, v1, FRAC_BITS); |
1546 |
tab1[j] = MULLx(tmp0, v2, FRAC_BITS); |
1547 |
} |
1548 |
} else {
|
1549 |
found2:
|
1550 |
if (s->mode_ext & MODE_EXT_MS_STEREO) {
|
1551 |
/* lower part of the spectrum : do ms stereo
|
1552 |
if enabled */
|
1553 |
for(j=0;j<len;j++) { |
1554 |
tmp0 = tab0[j]; |
1555 |
tmp1 = tab1[j]; |
1556 |
tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS); |
1557 |
tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS); |
1558 |
} |
1559 |
} |
1560 |
} |
1561 |
} |
1562 |
} else if (s->mode_ext & MODE_EXT_MS_STEREO) { |
1563 |
/* ms stereo ONLY */
|
1564 |
/* NOTE: the 1/sqrt(2) normalization factor is included in the
|
1565 |
global gain */
|
1566 |
tab0 = g0->sb_hybrid; |
1567 |
tab1 = g1->sb_hybrid; |
1568 |
for(i=0;i<576;i++) { |
1569 |
tmp0 = tab0[i]; |
1570 |
tmp1 = tab1[i]; |
1571 |
tab0[i] = tmp0 + tmp1; |
1572 |
tab1[i] = tmp0 - tmp1; |
1573 |
} |
1574 |
} |
1575 |
} |
1576 |
|
1577 |
#if !CONFIG_FLOAT
|
1578 |
static void compute_antialias_integer(MPADecodeContext *s, |
1579 |
GranuleDef *g) |
1580 |
{ |
1581 |
int32_t *ptr, *csa; |
1582 |
int n, i;
|
1583 |
|
1584 |
/* we antialias only "long" bands */
|
1585 |
if (g->block_type == 2) { |
1586 |
if (!g->switch_point)
|
1587 |
return;
|
1588 |
/* XXX: check this for 8000Hz case */
|
1589 |
n = 1;
|
1590 |
} else {
|
1591 |
n = SBLIMIT - 1;
|
1592 |
} |
1593 |
|
1594 |
ptr = g->sb_hybrid + 18;
|
1595 |
for(i = n;i > 0;i--) { |
1596 |
int tmp0, tmp1, tmp2;
|
1597 |
csa = &csa_table[0][0]; |
1598 |
#define INT_AA(j) \
|
1599 |
tmp0 = ptr[-1-j];\
|
1600 |
tmp1 = ptr[ j];\ |
1601 |
tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\ |
1602 |
ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\ |
1603 |
ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j])); |
1604 |
|
1605 |
INT_AA(0)
|
1606 |
INT_AA(1)
|
1607 |
INT_AA(2)
|
1608 |
INT_AA(3)
|
1609 |
INT_AA(4)
|
1610 |
INT_AA(5)
|
1611 |
INT_AA(6)
|
1612 |
INT_AA(7)
|
1613 |
|
1614 |
ptr += 18;
|
1615 |
} |
1616 |
} |
1617 |
#endif
|
1618 |
|
1619 |
static void compute_imdct(MPADecodeContext *s, |
1620 |
GranuleDef *g, |
1621 |
INTFLOAT *sb_samples, |
1622 |
INTFLOAT *mdct_buf) |
1623 |
{ |
1624 |
INTFLOAT *win, *win1, *out_ptr, *ptr, *buf, *ptr1; |
1625 |
INTFLOAT out2[12];
|
1626 |
int i, j, mdct_long_end, sblimit;
|
1627 |
|
1628 |
/* find last non zero block */
|
1629 |
ptr = g->sb_hybrid + 576;
|
1630 |
ptr1 = g->sb_hybrid + 2 * 18; |
1631 |
while (ptr >= ptr1) {
|
1632 |
int32_t *p; |
1633 |
ptr -= 6;
|
1634 |
p= (int32_t*)ptr; |
1635 |
if(p[0] | p[1] | p[2] | p[3] | p[4] | p[5]) |
1636 |
break;
|
1637 |
} |
1638 |
sblimit = ((ptr - g->sb_hybrid) / 18) + 1; |
1639 |
|
1640 |
if (g->block_type == 2) { |
1641 |
/* XXX: check for 8000 Hz */
|
1642 |
if (g->switch_point)
|
1643 |
mdct_long_end = 2;
|
1644 |
else
|
1645 |
mdct_long_end = 0;
|
1646 |
} else {
|
1647 |
mdct_long_end = sblimit; |
1648 |
} |
1649 |
|
1650 |
buf = mdct_buf; |
1651 |
ptr = g->sb_hybrid; |
1652 |
for(j=0;j<mdct_long_end;j++) { |
1653 |
/* apply window & overlap with previous buffer */
|
1654 |
out_ptr = sb_samples + j; |
1655 |
/* select window */
|
1656 |
if (g->switch_point && j < 2) |
1657 |
win1 = mdct_win[0];
|
1658 |
else
|
1659 |
win1 = mdct_win[g->block_type]; |
1660 |
/* select frequency inversion */
|
1661 |
win = win1 + ((4 * 36) & -(j & 1)); |
1662 |
imdct36(out_ptr, buf, ptr, win); |
1663 |
out_ptr += 18*SBLIMIT;
|
1664 |
ptr += 18;
|
1665 |
buf += 18;
|
1666 |
} |
1667 |
for(j=mdct_long_end;j<sblimit;j++) {
|
1668 |
/* select frequency inversion */
|
1669 |
win = mdct_win[2] + ((4 * 36) & -(j & 1)); |
1670 |
out_ptr = sb_samples + j; |
1671 |
|
1672 |
for(i=0; i<6; i++){ |
1673 |
*out_ptr = buf[i]; |
1674 |
out_ptr += SBLIMIT; |
1675 |
} |
1676 |
imdct12(out2, ptr + 0);
|
1677 |
for(i=0;i<6;i++) { |
1678 |
*out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*1]; |
1679 |
buf[i + 6*2] = MULH3(out2[i + 6], win[i + 6], 1); |
1680 |
out_ptr += SBLIMIT; |
1681 |
} |
1682 |
imdct12(out2, ptr + 1);
|
1683 |
for(i=0;i<6;i++) { |
1684 |
*out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*2]; |
1685 |
buf[i + 6*0] = MULH3(out2[i + 6], win[i + 6], 1); |
1686 |
out_ptr += SBLIMIT; |
1687 |
} |
1688 |
imdct12(out2, ptr + 2);
|
1689 |
for(i=0;i<6;i++) { |
1690 |
buf[i + 6*0] = MULH3(out2[i ], win[i ], 1) + buf[i + 6*0]; |
1691 |
buf[i + 6*1] = MULH3(out2[i + 6], win[i + 6], 1); |
1692 |
buf[i + 6*2] = 0; |
1693 |
} |
1694 |
ptr += 18;
|
1695 |
buf += 18;
|
1696 |
} |
1697 |
/* zero bands */
|
1698 |
for(j=sblimit;j<SBLIMIT;j++) {
|
1699 |
/* overlap */
|
1700 |
out_ptr = sb_samples + j; |
1701 |
for(i=0;i<18;i++) { |
1702 |
*out_ptr = buf[i]; |
1703 |
buf[i] = 0;
|
1704 |
out_ptr += SBLIMIT; |
1705 |
} |
1706 |
buf += 18;
|
1707 |
} |
1708 |
} |
1709 |
|
1710 |
/* main layer3 decoding function */
|
1711 |
static int mp_decode_layer3(MPADecodeContext *s) |
1712 |
{ |
1713 |
int nb_granules, main_data_begin, private_bits;
|
1714 |
int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
|
1715 |
GranuleDef *g; |
1716 |
int16_t exponents[576]; //FIXME try INTFLOAT |
1717 |
|
1718 |
/* read side info */
|
1719 |
if (s->lsf) {
|
1720 |
main_data_begin = get_bits(&s->gb, 8);
|
1721 |
private_bits = get_bits(&s->gb, s->nb_channels); |
1722 |
nb_granules = 1;
|
1723 |
} else {
|
1724 |
main_data_begin = get_bits(&s->gb, 9);
|
1725 |
if (s->nb_channels == 2) |
1726 |
private_bits = get_bits(&s->gb, 3);
|
1727 |
else
|
1728 |
private_bits = get_bits(&s->gb, 5);
|
1729 |
nb_granules = 2;
|
1730 |
for(ch=0;ch<s->nb_channels;ch++) { |
1731 |
s->granules[ch][0].scfsi = 0;/* all scale factors are transmitted */ |
1732 |
s->granules[ch][1].scfsi = get_bits(&s->gb, 4); |
1733 |
} |
1734 |
} |
1735 |
|
1736 |
for(gr=0;gr<nb_granules;gr++) { |
1737 |
for(ch=0;ch<s->nb_channels;ch++) { |
1738 |
dprintf(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
|
1739 |
g = &s->granules[ch][gr]; |
1740 |
g->part2_3_length = get_bits(&s->gb, 12);
|
1741 |
g->big_values = get_bits(&s->gb, 9);
|
1742 |
if(g->big_values > 288){ |
1743 |
av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
|
1744 |
return -1; |
1745 |
} |
1746 |
|
1747 |
g->global_gain = get_bits(&s->gb, 8);
|
1748 |
/* if MS stereo only is selected, we precompute the
|
1749 |
1/sqrt(2) renormalization factor */
|
1750 |
if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
|
1751 |
MODE_EXT_MS_STEREO) |
1752 |
g->global_gain -= 2;
|
1753 |
if (s->lsf)
|
1754 |
g->scalefac_compress = get_bits(&s->gb, 9);
|
1755 |
else
|
1756 |
g->scalefac_compress = get_bits(&s->gb, 4);
|
1757 |
blocksplit_flag = get_bits1(&s->gb); |
1758 |
if (blocksplit_flag) {
|
1759 |
g->block_type = get_bits(&s->gb, 2);
|
1760 |
if (g->block_type == 0){ |
1761 |
av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
|
1762 |
return -1; |
1763 |
} |
1764 |
g->switch_point = get_bits1(&s->gb); |
1765 |
for(i=0;i<2;i++) |
1766 |
g->table_select[i] = get_bits(&s->gb, 5);
|
1767 |
for(i=0;i<3;i++) |
1768 |
g->subblock_gain[i] = get_bits(&s->gb, 3);
|
1769 |
ff_init_short_region(s, g); |
1770 |
} else {
|
1771 |
int region_address1, region_address2;
|
1772 |
g->block_type = 0;
|
1773 |
g->switch_point = 0;
|
1774 |
for(i=0;i<3;i++) |
1775 |
g->table_select[i] = get_bits(&s->gb, 5);
|
1776 |
/* compute huffman coded region sizes */
|
1777 |
region_address1 = get_bits(&s->gb, 4);
|
1778 |
region_address2 = get_bits(&s->gb, 3);
|
1779 |
dprintf(s->avctx, "region1=%d region2=%d\n",
|
1780 |
region_address1, region_address2); |
1781 |
ff_init_long_region(s, g, region_address1, region_address2); |
1782 |
} |
1783 |
ff_region_offset2size(g); |
1784 |
ff_compute_band_indexes(s, g); |
1785 |
|
1786 |
g->preflag = 0;
|
1787 |
if (!s->lsf)
|
1788 |
g->preflag = get_bits1(&s->gb); |
1789 |
g->scalefac_scale = get_bits1(&s->gb); |
1790 |
g->count1table_select = get_bits1(&s->gb); |
1791 |
dprintf(s->avctx, "block_type=%d switch_point=%d\n",
|
1792 |
g->block_type, g->switch_point); |
1793 |
} |
1794 |
} |
1795 |
|
1796 |
if (!s->adu_mode) {
|
1797 |
const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3); |
1798 |
assert((get_bits_count(&s->gb) & 7) == 0); |
1799 |
/* now we get bits from the main_data_begin offset */
|
1800 |
dprintf(s->avctx, "seekback: %d\n", main_data_begin);
|
1801 |
//av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
|
1802 |
|
1803 |
memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES); |
1804 |
s->in_gb= s->gb; |
1805 |
init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
|
1806 |
skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
|
1807 |
} |
1808 |
|
1809 |
for(gr=0;gr<nb_granules;gr++) { |
1810 |
for(ch=0;ch<s->nb_channels;ch++) { |
1811 |
g = &s->granules[ch][gr]; |
1812 |
if(get_bits_count(&s->gb)<0){ |
1813 |
av_log(s->avctx, AV_LOG_DEBUG, "mdb:%d, lastbuf:%d skipping granule %d\n",
|
1814 |
main_data_begin, s->last_buf_size, gr); |
1815 |
skip_bits_long(&s->gb, g->part2_3_length); |
1816 |
memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid)); |
1817 |
if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
|
1818 |
skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits); |
1819 |
s->gb= s->in_gb; |
1820 |
s->in_gb.buffer=NULL;
|
1821 |
} |
1822 |
continue;
|
1823 |
} |
1824 |
|
1825 |
bits_pos = get_bits_count(&s->gb); |
1826 |
|
1827 |
if (!s->lsf) {
|
1828 |
uint8_t *sc; |
1829 |
int slen, slen1, slen2;
|
1830 |
|
1831 |
/* MPEG1 scale factors */
|
1832 |
slen1 = slen_table[0][g->scalefac_compress];
|
1833 |
slen2 = slen_table[1][g->scalefac_compress];
|
1834 |
dprintf(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
|
1835 |
if (g->block_type == 2) { |
1836 |
n = g->switch_point ? 17 : 18; |
1837 |
j = 0;
|
1838 |
if(slen1){
|
1839 |
for(i=0;i<n;i++) |
1840 |
g->scale_factors[j++] = get_bits(&s->gb, slen1); |
1841 |
}else{
|
1842 |
for(i=0;i<n;i++) |
1843 |
g->scale_factors[j++] = 0;
|
1844 |
} |
1845 |
if(slen2){
|
1846 |
for(i=0;i<18;i++) |
1847 |
g->scale_factors[j++] = get_bits(&s->gb, slen2); |
1848 |
for(i=0;i<3;i++) |
1849 |
g->scale_factors[j++] = 0;
|
1850 |
}else{
|
1851 |
for(i=0;i<21;i++) |
1852 |
g->scale_factors[j++] = 0;
|
1853 |
} |
1854 |
} else {
|
1855 |
sc = s->granules[ch][0].scale_factors;
|
1856 |
j = 0;
|
1857 |
for(k=0;k<4;k++) { |
1858 |
n = (k == 0 ? 6 : 5); |
1859 |
if ((g->scfsi & (0x8 >> k)) == 0) { |
1860 |
slen = (k < 2) ? slen1 : slen2;
|
1861 |
if(slen){
|
1862 |
for(i=0;i<n;i++) |
1863 |
g->scale_factors[j++] = get_bits(&s->gb, slen); |
1864 |
}else{
|
1865 |
for(i=0;i<n;i++) |
1866 |
g->scale_factors[j++] = 0;
|
1867 |
} |
1868 |
} else {
|
1869 |
/* simply copy from last granule */
|
1870 |
for(i=0;i<n;i++) { |
1871 |
g->scale_factors[j] = sc[j]; |
1872 |
j++; |
1873 |
} |
1874 |
} |
1875 |
} |
1876 |
g->scale_factors[j++] = 0;
|
1877 |
} |
1878 |
} else {
|
1879 |
int tindex, tindex2, slen[4], sl, sf; |
1880 |
|
1881 |
/* LSF scale factors */
|
1882 |
if (g->block_type == 2) { |
1883 |
tindex = g->switch_point ? 2 : 1; |
1884 |
} else {
|
1885 |
tindex = 0;
|
1886 |
} |
1887 |
sf = g->scalefac_compress; |
1888 |
if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) { |
1889 |
/* intensity stereo case */
|
1890 |
sf >>= 1;
|
1891 |
if (sf < 180) { |
1892 |
lsf_sf_expand(slen, sf, 6, 6, 0); |
1893 |
tindex2 = 3;
|
1894 |
} else if (sf < 244) { |
1895 |
lsf_sf_expand(slen, sf - 180, 4, 4, 0); |
1896 |
tindex2 = 4;
|
1897 |
} else {
|
1898 |
lsf_sf_expand(slen, sf - 244, 3, 0, 0); |
1899 |
tindex2 = 5;
|
1900 |
} |
1901 |
} else {
|
1902 |
/* normal case */
|
1903 |
if (sf < 400) { |
1904 |
lsf_sf_expand(slen, sf, 5, 4, 4); |
1905 |
tindex2 = 0;
|
1906 |
} else if (sf < 500) { |
1907 |
lsf_sf_expand(slen, sf - 400, 5, 4, 0); |
1908 |
tindex2 = 1;
|
1909 |
} else {
|
1910 |
lsf_sf_expand(slen, sf - 500, 3, 0, 0); |
1911 |
tindex2 = 2;
|
1912 |
g->preflag = 1;
|
1913 |
} |
1914 |
} |
1915 |
|
1916 |
j = 0;
|
1917 |
for(k=0;k<4;k++) { |
1918 |
n = lsf_nsf_table[tindex2][tindex][k]; |
1919 |
sl = slen[k]; |
1920 |
if(sl){
|
1921 |
for(i=0;i<n;i++) |
1922 |
g->scale_factors[j++] = get_bits(&s->gb, sl); |
1923 |
}else{
|
1924 |
for(i=0;i<n;i++) |
1925 |
g->scale_factors[j++] = 0;
|
1926 |
} |
1927 |
} |
1928 |
/* XXX: should compute exact size */
|
1929 |
for(;j<40;j++) |
1930 |
g->scale_factors[j] = 0;
|
1931 |
} |
1932 |
|
1933 |
exponents_from_scale_factors(s, g, exponents); |
1934 |
|
1935 |
/* read Huffman coded residue */
|
1936 |
huffman_decode(s, g, exponents, bits_pos + g->part2_3_length); |
1937 |
} /* ch */
|
1938 |
|
1939 |
if (s->nb_channels == 2) |
1940 |
compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]); |
1941 |
|
1942 |
for(ch=0;ch<s->nb_channels;ch++) { |
1943 |
g = &s->granules[ch][gr]; |
1944 |
|
1945 |
reorder_block(s, g); |
1946 |
compute_antialias(s, g); |
1947 |
compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]); |
1948 |
} |
1949 |
} /* gr */
|
1950 |
if(get_bits_count(&s->gb)<0) |
1951 |
skip_bits_long(&s->gb, -get_bits_count(&s->gb)); |
1952 |
return nb_granules * 18; |
1953 |
} |
1954 |
|
1955 |
static int mp_decode_frame(MPADecodeContext *s, |
1956 |
OUT_INT *samples, const uint8_t *buf, int buf_size) |
1957 |
{ |
1958 |
int i, nb_frames, ch;
|
1959 |
OUT_INT *samples_ptr; |
1960 |
|
1961 |
init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
|
1962 |
|
1963 |
/* skip error protection field */
|
1964 |
if (s->error_protection)
|
1965 |
skip_bits(&s->gb, 16);
|
1966 |
|
1967 |
dprintf(s->avctx, "frame %d:\n", s->frame_count);
|
1968 |
switch(s->layer) {
|
1969 |
case 1: |
1970 |
s->avctx->frame_size = 384;
|
1971 |
nb_frames = mp_decode_layer1(s); |
1972 |
break;
|
1973 |
case 2: |
1974 |
s->avctx->frame_size = 1152;
|
1975 |
nb_frames = mp_decode_layer2(s); |
1976 |
break;
|
1977 |
case 3: |
1978 |
s->avctx->frame_size = s->lsf ? 576 : 1152; |
1979 |
default:
|
1980 |
nb_frames = mp_decode_layer3(s); |
1981 |
|
1982 |
s->last_buf_size=0;
|
1983 |
if(s->in_gb.buffer){
|
1984 |
align_get_bits(&s->gb); |
1985 |
i= get_bits_left(&s->gb)>>3;
|
1986 |
if(i >= 0 && i <= BACKSTEP_SIZE){ |
1987 |
memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
|
1988 |
s->last_buf_size=i; |
1989 |
}else
|
1990 |
av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
|
1991 |
s->gb= s->in_gb; |
1992 |
s->in_gb.buffer= NULL;
|
1993 |
} |
1994 |
|
1995 |
align_get_bits(&s->gb); |
1996 |
assert((get_bits_count(&s->gb) & 7) == 0); |
1997 |
i= get_bits_left(&s->gb)>>3;
|
1998 |
|
1999 |
if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){ |
2000 |
if(i<0) |
2001 |
av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
|
2002 |
i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE); |
2003 |
} |
2004 |
assert(i <= buf_size - HEADER_SIZE && i>= 0);
|
2005 |
memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i); |
2006 |
s->last_buf_size += i; |
2007 |
|
2008 |
break;
|
2009 |
} |
2010 |
|
2011 |
/* apply the synthesis filter */
|
2012 |
for(ch=0;ch<s->nb_channels;ch++) { |
2013 |
samples_ptr = samples + ch; |
2014 |
for(i=0;i<nb_frames;i++) { |
2015 |
RENAME(ff_mpa_synth_filter)( |
2016 |
#if CONFIG_FLOAT
|
2017 |
s, |
2018 |
#endif
|
2019 |
s->synth_buf[ch], &(s->synth_buf_offset[ch]), |
2020 |
RENAME(ff_mpa_synth_window), &s->dither_state, |
2021 |
samples_ptr, s->nb_channels, |
2022 |
s->sb_samples[ch][i]); |
2023 |
samples_ptr += 32 * s->nb_channels;
|
2024 |
} |
2025 |
} |
2026 |
|
2027 |
return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels; |
2028 |
} |
2029 |
|
2030 |
static int decode_frame(AVCodecContext * avctx, |
2031 |
void *data, int *data_size, |
2032 |
AVPacket *avpkt) |
2033 |
{ |
2034 |
const uint8_t *buf = avpkt->data;
|
2035 |
int buf_size = avpkt->size;
|
2036 |
MPADecodeContext *s = avctx->priv_data; |
2037 |
uint32_t header; |
2038 |
int out_size;
|
2039 |
OUT_INT *out_samples = data; |
2040 |
|
2041 |
if(buf_size < HEADER_SIZE)
|
2042 |
return -1; |
2043 |
|
2044 |
header = AV_RB32(buf); |
2045 |
if(ff_mpa_check_header(header) < 0){ |
2046 |
av_log(avctx, AV_LOG_ERROR, "Header missing\n");
|
2047 |
return -1; |
2048 |
} |
2049 |
|
2050 |
if (ff_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) { |
2051 |
/* free format: prepare to compute frame size */
|
2052 |
s->frame_size = -1;
|
2053 |
return -1; |
2054 |
} |
2055 |
/* update codec info */
|
2056 |
avctx->channels = s->nb_channels; |
2057 |
if (!avctx->bit_rate)
|
2058 |
avctx->bit_rate = s->bit_rate; |
2059 |
avctx->sub_id = s->layer; |
2060 |
|
2061 |
if(*data_size < 1152*avctx->channels*sizeof(OUT_INT)) |
2062 |
return -1; |
2063 |
*data_size = 0;
|
2064 |
|
2065 |
if(s->frame_size<=0 || s->frame_size > buf_size){ |
2066 |
av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
|
2067 |
return -1; |
2068 |
}else if(s->frame_size < buf_size){ |
2069 |
av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
|
2070 |
buf_size= s->frame_size; |
2071 |
} |
2072 |
|
2073 |
out_size = mp_decode_frame(s, out_samples, buf, buf_size); |
2074 |
if(out_size>=0){ |
2075 |
*data_size = out_size; |
2076 |
avctx->sample_rate = s->sample_rate; |
2077 |
//FIXME maybe move the other codec info stuff from above here too
|
2078 |
}else
|
2079 |
av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed |
2080 |
s->frame_size = 0;
|
2081 |
return buf_size;
|
2082 |
} |
2083 |
|
2084 |
static void flush(AVCodecContext *avctx){ |
2085 |
MPADecodeContext *s = avctx->priv_data; |
2086 |
memset(s->synth_buf, 0, sizeof(s->synth_buf)); |
2087 |
s->last_buf_size= 0;
|
2088 |
} |
2089 |
|
2090 |
#if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER
|
2091 |
static int decode_frame_adu(AVCodecContext * avctx, |
2092 |
void *data, int *data_size, |
2093 |
AVPacket *avpkt) |
2094 |
{ |
2095 |
const uint8_t *buf = avpkt->data;
|
2096 |
int buf_size = avpkt->size;
|
2097 |
MPADecodeContext *s = avctx->priv_data; |
2098 |
uint32_t header; |
2099 |
int len, out_size;
|
2100 |
OUT_INT *out_samples = data; |
2101 |
|
2102 |
len = buf_size; |
2103 |
|
2104 |
// Discard too short frames
|
2105 |
if (buf_size < HEADER_SIZE) {
|
2106 |
*data_size = 0;
|
2107 |
return buf_size;
|
2108 |
} |
2109 |
|
2110 |
|
2111 |
if (len > MPA_MAX_CODED_FRAME_SIZE)
|
2112 |
len = MPA_MAX_CODED_FRAME_SIZE; |
2113 |
|
2114 |
// Get header and restore sync word
|
2115 |
header = AV_RB32(buf) | 0xffe00000;
|
2116 |
|
2117 |
if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame |
2118 |
*data_size = 0;
|
2119 |
return buf_size;
|
2120 |
} |
2121 |
|
2122 |
ff_mpegaudio_decode_header((MPADecodeHeader *)s, header); |
2123 |
/* update codec info */
|
2124 |
avctx->sample_rate = s->sample_rate; |
2125 |
avctx->channels = s->nb_channels; |
2126 |
if (!avctx->bit_rate)
|
2127 |
avctx->bit_rate = s->bit_rate; |
2128 |
avctx->sub_id = s->layer; |
2129 |
|
2130 |
s->frame_size = len; |
2131 |
|
2132 |
if (avctx->parse_only) {
|
2133 |
out_size = buf_size; |
2134 |
} else {
|
2135 |
out_size = mp_decode_frame(s, out_samples, buf, buf_size); |
2136 |
} |
2137 |
|
2138 |
*data_size = out_size; |
2139 |
return buf_size;
|
2140 |
} |
2141 |
#endif /* CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER */ |
2142 |
|
2143 |
#if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER
|
2144 |
|
2145 |
/**
|
2146 |
* Context for MP3On4 decoder
|
2147 |
*/
|
2148 |
typedef struct MP3On4DecodeContext { |
2149 |
int frames; ///< number of mp3 frames per block (number of mp3 decoder instances) |
2150 |
int syncword; ///< syncword patch |
2151 |
const uint8_t *coff; ///< channels offsets in output buffer |
2152 |
MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance |
2153 |
} MP3On4DecodeContext; |
2154 |
|
2155 |
#include "mpeg4audio.h" |
2156 |
|
2157 |
/* Next 3 arrays are indexed by channel config number (passed via codecdata) */
|
2158 |
static const uint8_t mp3Frames[8] = {0,1,1,2,3,3,4,5}; /* number of mp3 decoder instances */ |
2159 |
/* offsets into output buffer, assume output order is FL FR BL BR C LFE */
|
2160 |
static const uint8_t chan_offset[8][5] = { |
2161 |
{0},
|
2162 |
{0}, // C |
2163 |
{0}, // FLR |
2164 |
{2,0}, // C FLR |
2165 |
{2,0,3}, // C FLR BS |
2166 |
{4,0,2}, // C FLR BLRS |
2167 |
{4,0,2,5}, // C FLR BLRS LFE |
2168 |
{4,0,2,6,5}, // C FLR BLRS BLR LFE |
2169 |
}; |
2170 |
|
2171 |
|
2172 |
static int decode_init_mp3on4(AVCodecContext * avctx) |
2173 |
{ |
2174 |
MP3On4DecodeContext *s = avctx->priv_data; |
2175 |
MPEG4AudioConfig cfg; |
2176 |
int i;
|
2177 |
|
2178 |
if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) { |
2179 |
av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
|
2180 |
return -1; |
2181 |
} |
2182 |
|
2183 |
ff_mpeg4audio_get_config(&cfg, avctx->extradata, avctx->extradata_size); |
2184 |
if (!cfg.chan_config || cfg.chan_config > 7) { |
2185 |
av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
|
2186 |
return -1; |
2187 |
} |
2188 |
s->frames = mp3Frames[cfg.chan_config]; |
2189 |
s->coff = chan_offset[cfg.chan_config]; |
2190 |
avctx->channels = ff_mpeg4audio_channels[cfg.chan_config]; |
2191 |
|
2192 |
if (cfg.sample_rate < 16000) |
2193 |
s->syncword = 0xffe00000;
|
2194 |
else
|
2195 |
s->syncword = 0xfff00000;
|
2196 |
|
2197 |
/* Init the first mp3 decoder in standard way, so that all tables get builded
|
2198 |
* We replace avctx->priv_data with the context of the first decoder so that
|
2199 |
* decode_init() does not have to be changed.
|
2200 |
* Other decoders will be initialized here copying data from the first context
|
2201 |
*/
|
2202 |
// Allocate zeroed memory for the first decoder context
|
2203 |
s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext)); |
2204 |
// Put decoder context in place to make init_decode() happy
|
2205 |
avctx->priv_data = s->mp3decctx[0];
|
2206 |
decode_init(avctx); |
2207 |
// Restore mp3on4 context pointer
|
2208 |
avctx->priv_data = s; |
2209 |
s->mp3decctx[0]->adu_mode = 1; // Set adu mode |
2210 |
|
2211 |
/* Create a separate codec/context for each frame (first is already ok).
|
2212 |
* Each frame is 1 or 2 channels - up to 5 frames allowed
|
2213 |
*/
|
2214 |
for (i = 1; i < s->frames; i++) { |
2215 |
s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
|
2216 |
s->mp3decctx[i]->adu_mode = 1;
|
2217 |
s->mp3decctx[i]->avctx = avctx; |
2218 |
} |
2219 |
|
2220 |
return 0; |
2221 |
} |
2222 |
|
2223 |
|
2224 |
static av_cold int decode_close_mp3on4(AVCodecContext * avctx) |
2225 |
{ |
2226 |
MP3On4DecodeContext *s = avctx->priv_data; |
2227 |
int i;
|
2228 |
|
2229 |
for (i = 0; i < s->frames; i++) |
2230 |
if (s->mp3decctx[i])
|
2231 |
av_free(s->mp3decctx[i]); |
2232 |
|
2233 |
return 0; |
2234 |
} |
2235 |
|
2236 |
|
2237 |
static int decode_frame_mp3on4(AVCodecContext * avctx, |
2238 |
void *data, int *data_size, |
2239 |
AVPacket *avpkt) |
2240 |
{ |
2241 |
const uint8_t *buf = avpkt->data;
|
2242 |
int buf_size = avpkt->size;
|
2243 |
MP3On4DecodeContext *s = avctx->priv_data; |
2244 |
MPADecodeContext *m; |
2245 |
int fsize, len = buf_size, out_size = 0; |
2246 |
uint32_t header; |
2247 |
OUT_INT *out_samples = data; |
2248 |
OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS]; |
2249 |
OUT_INT *outptr, *bp; |
2250 |
int fr, j, n;
|
2251 |
|
2252 |
if(*data_size < MPA_FRAME_SIZE * MPA_MAX_CHANNELS * s->frames * sizeof(OUT_INT)) |
2253 |
return -1; |
2254 |
|
2255 |
*data_size = 0;
|
2256 |
// Discard too short frames
|
2257 |
if (buf_size < HEADER_SIZE)
|
2258 |
return -1; |
2259 |
|
2260 |
// If only one decoder interleave is not needed
|
2261 |
outptr = s->frames == 1 ? out_samples : decoded_buf;
|
2262 |
|
2263 |
avctx->bit_rate = 0;
|
2264 |
|
2265 |
for (fr = 0; fr < s->frames; fr++) { |
2266 |
fsize = AV_RB16(buf) >> 4;
|
2267 |
fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE); |
2268 |
m = s->mp3decctx[fr]; |
2269 |
assert (m != NULL);
|
2270 |
|
2271 |
header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header |
2272 |
|
2273 |
if (ff_mpa_check_header(header) < 0) // Bad header, discard block |
2274 |
break;
|
2275 |
|
2276 |
ff_mpegaudio_decode_header((MPADecodeHeader *)m, header); |
2277 |
out_size += mp_decode_frame(m, outptr, buf, fsize); |
2278 |
buf += fsize; |
2279 |
len -= fsize; |
2280 |
|
2281 |
if(s->frames > 1) { |
2282 |
n = m->avctx->frame_size*m->nb_channels; |
2283 |
/* interleave output data */
|
2284 |
bp = out_samples + s->coff[fr]; |
2285 |
if(m->nb_channels == 1) { |
2286 |
for(j = 0; j < n; j++) { |
2287 |
*bp = decoded_buf[j]; |
2288 |
bp += avctx->channels; |
2289 |
} |
2290 |
} else {
|
2291 |
for(j = 0; j < n; j++) { |
2292 |
bp[0] = decoded_buf[j++];
|
2293 |
bp[1] = decoded_buf[j];
|
2294 |
bp += avctx->channels; |
2295 |
} |
2296 |
} |
2297 |
} |
2298 |
avctx->bit_rate += m->bit_rate; |
2299 |
} |
2300 |
|
2301 |
/* update codec info */
|
2302 |
avctx->sample_rate = s->mp3decctx[0]->sample_rate;
|
2303 |
|
2304 |
*data_size = out_size; |
2305 |
return buf_size;
|
2306 |
} |
2307 |
#endif /* CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER */ |
2308 |
|
2309 |
#if !CONFIG_FLOAT
|
2310 |
#if CONFIG_MP1_DECODER
|
2311 |
AVCodec ff_mp1_decoder = |
2312 |
{ |
2313 |
"mp1",
|
2314 |
AVMEDIA_TYPE_AUDIO, |
2315 |
CODEC_ID_MP1, |
2316 |
sizeof(MPADecodeContext),
|
2317 |
decode_init, |
2318 |
NULL,
|
2319 |
NULL,
|
2320 |
decode_frame, |
2321 |
CODEC_CAP_PARSE_ONLY, |
2322 |
.flush= flush, |
2323 |
.long_name= NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
|
2324 |
}; |
2325 |
#endif
|
2326 |
#if CONFIG_MP2_DECODER
|
2327 |
AVCodec ff_mp2_decoder = |
2328 |
{ |
2329 |
"mp2",
|
2330 |
AVMEDIA_TYPE_AUDIO, |
2331 |
CODEC_ID_MP2, |
2332 |
sizeof(MPADecodeContext),
|
2333 |
decode_init, |
2334 |
NULL,
|
2335 |
NULL,
|
2336 |
decode_frame, |
2337 |
CODEC_CAP_PARSE_ONLY, |
2338 |
.flush= flush, |
2339 |
.long_name= NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
|
2340 |
}; |
2341 |
#endif
|
2342 |
#if CONFIG_MP3_DECODER
|
2343 |
AVCodec ff_mp3_decoder = |
2344 |
{ |
2345 |
"mp3",
|
2346 |
AVMEDIA_TYPE_AUDIO, |
2347 |
CODEC_ID_MP3, |
2348 |
sizeof(MPADecodeContext),
|
2349 |
decode_init, |
2350 |
NULL,
|
2351 |
NULL,
|
2352 |
decode_frame, |
2353 |
CODEC_CAP_PARSE_ONLY, |
2354 |
.flush= flush, |
2355 |
.long_name= NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
|
2356 |
}; |
2357 |
#endif
|
2358 |
#if CONFIG_MP3ADU_DECODER
|
2359 |
AVCodec ff_mp3adu_decoder = |
2360 |
{ |
2361 |
"mp3adu",
|
2362 |
AVMEDIA_TYPE_AUDIO, |
2363 |
CODEC_ID_MP3ADU, |
2364 |
sizeof(MPADecodeContext),
|
2365 |
decode_init, |
2366 |
NULL,
|
2367 |
NULL,
|
2368 |
decode_frame_adu, |
2369 |
CODEC_CAP_PARSE_ONLY, |
2370 |
.flush= flush, |
2371 |
.long_name= NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
|
2372 |
}; |
2373 |
#endif
|
2374 |
#if CONFIG_MP3ON4_DECODER
|
2375 |
AVCodec ff_mp3on4_decoder = |
2376 |
{ |
2377 |
"mp3on4",
|
2378 |
AVMEDIA_TYPE_AUDIO, |
2379 |
CODEC_ID_MP3ON4, |
2380 |
sizeof(MP3On4DecodeContext),
|
2381 |
decode_init_mp3on4, |
2382 |
NULL,
|
2383 |
decode_close_mp3on4, |
2384 |
decode_frame_mp3on4, |
2385 |
.flush= flush, |
2386 |
.long_name= NULL_IF_CONFIG_SMALL("MP3onMP4"),
|
2387 |
}; |
2388 |
#endif
|
2389 |
#endif
|