ffmpeg / libavcodec / ra144enc.c @ d36beb3f
History | View | Annotate | Download (17.4 KB)
1 |
/*
|
---|---|
2 |
* Real Audio 1.0 (14.4K) encoder
|
3 |
* Copyright (c) 2010 Francesco Lavra <francescolavra@interfree.it>
|
4 |
*
|
5 |
* This file is part of FFmpeg.
|
6 |
*
|
7 |
* FFmpeg is free software; you can redistribute it and/or
|
8 |
* modify it under the terms of the GNU Lesser General Public
|
9 |
* License as published by the Free Software Foundation; either
|
10 |
* version 2.1 of the License, or (at your option) any later version.
|
11 |
*
|
12 |
* FFmpeg is distributed in the hope that it will be useful,
|
13 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
15 |
* Lesser General Public License for more details.
|
16 |
*
|
17 |
* You should have received a copy of the GNU Lesser General Public
|
18 |
* License along with FFmpeg; if not, write to the Free Software
|
19 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
20 |
*/
|
21 |
|
22 |
/**
|
23 |
* @file
|
24 |
* Real Audio 1.0 (14.4K) encoder
|
25 |
* @author Francesco Lavra <francescolavra@interfree.it>
|
26 |
*/
|
27 |
|
28 |
#include <float.h> |
29 |
|
30 |
#include "avcodec.h" |
31 |
#include "put_bits.h" |
32 |
#include "celp_filters.h" |
33 |
#include "ra144.h" |
34 |
|
35 |
|
36 |
static av_cold int ra144_encode_init(AVCodecContext * avctx) |
37 |
{ |
38 |
RA144Context *ractx; |
39 |
int ret;
|
40 |
|
41 |
if (avctx->sample_fmt != AV_SAMPLE_FMT_S16) {
|
42 |
av_log(avctx, AV_LOG_ERROR, "invalid sample format\n");
|
43 |
return -1; |
44 |
} |
45 |
if (avctx->channels != 1) { |
46 |
av_log(avctx, AV_LOG_ERROR, "invalid number of channels: %d\n",
|
47 |
avctx->channels); |
48 |
return -1; |
49 |
} |
50 |
avctx->frame_size = NBLOCKS * BLOCKSIZE; |
51 |
avctx->bit_rate = 8000;
|
52 |
ractx = avctx->priv_data; |
53 |
ractx->lpc_coef[0] = ractx->lpc_tables[0]; |
54 |
ractx->lpc_coef[1] = ractx->lpc_tables[1]; |
55 |
ractx->avctx = avctx; |
56 |
ret = ff_lpc_init(&ractx->lpc_ctx, avctx->frame_size, LPC_ORDER, |
57 |
AV_LPC_TYPE_LEVINSON); |
58 |
return ret;
|
59 |
} |
60 |
|
61 |
|
62 |
static av_cold int ra144_encode_close(AVCodecContext *avctx) |
63 |
{ |
64 |
RA144Context *ractx = avctx->priv_data; |
65 |
ff_lpc_end(&ractx->lpc_ctx); |
66 |
return 0; |
67 |
} |
68 |
|
69 |
|
70 |
/**
|
71 |
* Quantize a value by searching a sorted table for the element with the
|
72 |
* nearest value
|
73 |
*
|
74 |
* @param value value to quantize
|
75 |
* @param table array containing the quantization table
|
76 |
* @param size size of the quantization table
|
77 |
* @return index of the quantization table corresponding to the element with the
|
78 |
* nearest value
|
79 |
*/
|
80 |
static int quantize(int value, const int16_t *table, unsigned int size) |
81 |
{ |
82 |
unsigned int low = 0, high = size - 1; |
83 |
|
84 |
while (1) { |
85 |
int index = (low + high) >> 1; |
86 |
int error = table[index] - value;
|
87 |
|
88 |
if (index == low)
|
89 |
return table[high] + error > value ? low : high;
|
90 |
if (error > 0) { |
91 |
high = index; |
92 |
} else {
|
93 |
low = index; |
94 |
} |
95 |
} |
96 |
} |
97 |
|
98 |
|
99 |
/**
|
100 |
* Orthogonalize a vector to another vector
|
101 |
*
|
102 |
* @param v vector to orthogonalize
|
103 |
* @param u vector against which orthogonalization is performed
|
104 |
*/
|
105 |
static void orthogonalize(float *v, const float *u) |
106 |
{ |
107 |
int i;
|
108 |
float num = 0, den = 0; |
109 |
|
110 |
for (i = 0; i < BLOCKSIZE; i++) { |
111 |
num += v[i] * u[i]; |
112 |
den += u[i] * u[i]; |
113 |
} |
114 |
num /= den; |
115 |
for (i = 0; i < BLOCKSIZE; i++) |
116 |
v[i] -= num * u[i]; |
117 |
} |
118 |
|
119 |
|
120 |
/**
|
121 |
* Calculate match score and gain of an LPC-filtered vector with respect to
|
122 |
* input data, possibly othogonalizing it to up to 2 other vectors
|
123 |
*
|
124 |
* @param work array used to calculate the filtered vector
|
125 |
* @param coefs coefficients of the LPC filter
|
126 |
* @param vect original vector
|
127 |
* @param ortho1 first vector against which orthogonalization is performed
|
128 |
* @param ortho2 second vector against which orthogonalization is performed
|
129 |
* @param data input data
|
130 |
* @param score pointer to variable where match score is returned
|
131 |
* @param gain pointer to variable where gain is returned
|
132 |
*/
|
133 |
static void get_match_score(float *work, const float *coefs, float *vect, |
134 |
const float *ortho1, const float *ortho2, |
135 |
const float *data, float *score, float *gain) |
136 |
{ |
137 |
float c, g;
|
138 |
int i;
|
139 |
|
140 |
ff_celp_lp_synthesis_filterf(work, coefs, vect, BLOCKSIZE, LPC_ORDER); |
141 |
if (ortho1)
|
142 |
orthogonalize(work, ortho1); |
143 |
if (ortho2)
|
144 |
orthogonalize(work, ortho2); |
145 |
c = g = 0;
|
146 |
for (i = 0; i < BLOCKSIZE; i++) { |
147 |
g += work[i] * work[i]; |
148 |
c += data[i] * work[i]; |
149 |
} |
150 |
if (c <= 0) { |
151 |
*score = 0;
|
152 |
return;
|
153 |
} |
154 |
*gain = c / g; |
155 |
*score = *gain * c; |
156 |
} |
157 |
|
158 |
|
159 |
/**
|
160 |
* Create a vector from the adaptive codebook at a given lag value
|
161 |
*
|
162 |
* @param vect array where vector is stored
|
163 |
* @param cb adaptive codebook
|
164 |
* @param lag lag value
|
165 |
*/
|
166 |
static void create_adapt_vect(float *vect, const int16_t *cb, int lag) |
167 |
{ |
168 |
int i;
|
169 |
|
170 |
cb += BUFFERSIZE - lag; |
171 |
for (i = 0; i < FFMIN(BLOCKSIZE, lag); i++) |
172 |
vect[i] = cb[i]; |
173 |
if (lag < BLOCKSIZE)
|
174 |
for (i = 0; i < BLOCKSIZE - lag; i++) |
175 |
vect[lag + i] = cb[i]; |
176 |
} |
177 |
|
178 |
|
179 |
/**
|
180 |
* Search the adaptive codebook for the best entry and gain and remove its
|
181 |
* contribution from input data
|
182 |
*
|
183 |
* @param adapt_cb array from which the adaptive codebook is extracted
|
184 |
* @param work array used to calculate LPC-filtered vectors
|
185 |
* @param coefs coefficients of the LPC filter
|
186 |
* @param data input data
|
187 |
* @return index of the best entry of the adaptive codebook
|
188 |
*/
|
189 |
static int adaptive_cb_search(const int16_t *adapt_cb, float *work, |
190 |
const float *coefs, float *data) |
191 |
{ |
192 |
int i, best_vect;
|
193 |
float score, gain, best_score, best_gain;
|
194 |
float exc[BLOCKSIZE];
|
195 |
|
196 |
gain = best_score = 0;
|
197 |
for (i = BLOCKSIZE / 2; i <= BUFFERSIZE; i++) { |
198 |
create_adapt_vect(exc, adapt_cb, i); |
199 |
get_match_score(work, coefs, exc, NULL, NULL, data, &score, &gain); |
200 |
if (score > best_score) {
|
201 |
best_score = score; |
202 |
best_vect = i; |
203 |
best_gain = gain; |
204 |
} |
205 |
} |
206 |
if (!best_score)
|
207 |
return 0; |
208 |
|
209 |
/**
|
210 |
* Re-calculate the filtered vector from the vector with maximum match score
|
211 |
* and remove its contribution from input data.
|
212 |
*/
|
213 |
create_adapt_vect(exc, adapt_cb, best_vect); |
214 |
ff_celp_lp_synthesis_filterf(work, coefs, exc, BLOCKSIZE, LPC_ORDER); |
215 |
for (i = 0; i < BLOCKSIZE; i++) |
216 |
data[i] -= best_gain * work[i]; |
217 |
return (best_vect - BLOCKSIZE / 2 + 1); |
218 |
} |
219 |
|
220 |
|
221 |
/**
|
222 |
* Find the best vector of a fixed codebook by applying an LPC filter to
|
223 |
* codebook entries, possibly othogonalizing them to up to 2 other vectors and
|
224 |
* matching the results with input data
|
225 |
*
|
226 |
* @param work array used to calculate the filtered vectors
|
227 |
* @param coefs coefficients of the LPC filter
|
228 |
* @param cb fixed codebook
|
229 |
* @param ortho1 first vector against which orthogonalization is performed
|
230 |
* @param ortho2 second vector against which orthogonalization is performed
|
231 |
* @param data input data
|
232 |
* @param idx pointer to variable where the index of the best codebook entry is
|
233 |
* returned
|
234 |
* @param gain pointer to variable where the gain of the best codebook entry is
|
235 |
* returned
|
236 |
*/
|
237 |
static void find_best_vect(float *work, const float *coefs, |
238 |
const int8_t cb[][BLOCKSIZE], const float *ortho1, |
239 |
const float *ortho2, float *data, int *idx, |
240 |
float *gain)
|
241 |
{ |
242 |
int i, j;
|
243 |
float g, score, best_score;
|
244 |
float vect[BLOCKSIZE];
|
245 |
|
246 |
*idx = *gain = best_score = 0;
|
247 |
for (i = 0; i < FIXED_CB_SIZE; i++) { |
248 |
for (j = 0; j < BLOCKSIZE; j++) |
249 |
vect[j] = cb[i][j]; |
250 |
get_match_score(work, coefs, vect, ortho1, ortho2, data, &score, &g); |
251 |
if (score > best_score) {
|
252 |
best_score = score; |
253 |
*idx = i; |
254 |
*gain = g; |
255 |
} |
256 |
} |
257 |
} |
258 |
|
259 |
|
260 |
/**
|
261 |
* Search the two fixed codebooks for the best entry and gain
|
262 |
*
|
263 |
* @param work array used to calculate LPC-filtered vectors
|
264 |
* @param coefs coefficients of the LPC filter
|
265 |
* @param data input data
|
266 |
* @param cba_idx index of the best entry of the adaptive codebook
|
267 |
* @param cb1_idx pointer to variable where the index of the best entry of the
|
268 |
* first fixed codebook is returned
|
269 |
* @param cb2_idx pointer to variable where the index of the best entry of the
|
270 |
* second fixed codebook is returned
|
271 |
*/
|
272 |
static void fixed_cb_search(float *work, const float *coefs, float *data, |
273 |
int cba_idx, int *cb1_idx, int *cb2_idx) |
274 |
{ |
275 |
int i, ortho_cb1;
|
276 |
float gain;
|
277 |
float cba_vect[BLOCKSIZE], cb1_vect[BLOCKSIZE];
|
278 |
float vect[BLOCKSIZE];
|
279 |
|
280 |
/**
|
281 |
* The filtered vector from the adaptive codebook can be retrieved from
|
282 |
* work, because this function is called just after adaptive_cb_search().
|
283 |
*/
|
284 |
if (cba_idx)
|
285 |
memcpy(cba_vect, work, sizeof(cba_vect));
|
286 |
|
287 |
find_best_vect(work, coefs, ff_cb1_vects, cba_idx ? cba_vect : NULL, NULL, |
288 |
data, cb1_idx, &gain); |
289 |
|
290 |
/**
|
291 |
* Re-calculate the filtered vector from the vector with maximum match score
|
292 |
* and remove its contribution from input data.
|
293 |
*/
|
294 |
if (gain) {
|
295 |
for (i = 0; i < BLOCKSIZE; i++) |
296 |
vect[i] = ff_cb1_vects[*cb1_idx][i]; |
297 |
ff_celp_lp_synthesis_filterf(work, coefs, vect, BLOCKSIZE, LPC_ORDER); |
298 |
if (cba_idx)
|
299 |
orthogonalize(work, cba_vect); |
300 |
for (i = 0; i < BLOCKSIZE; i++) |
301 |
data[i] -= gain * work[i]; |
302 |
memcpy(cb1_vect, work, sizeof(cb1_vect));
|
303 |
ortho_cb1 = 1;
|
304 |
} else
|
305 |
ortho_cb1 = 0;
|
306 |
|
307 |
find_best_vect(work, coefs, ff_cb2_vects, cba_idx ? cba_vect : NULL,
|
308 |
ortho_cb1 ? cb1_vect : NULL, data, cb2_idx, &gain);
|
309 |
} |
310 |
|
311 |
|
312 |
/**
|
313 |
* Encode a subblock of the current frame
|
314 |
*
|
315 |
* @param ractx encoder context
|
316 |
* @param sblock_data input data of the subblock
|
317 |
* @param lpc_coefs coefficients of the LPC filter
|
318 |
* @param rms RMS of the reflection coefficients
|
319 |
* @param pb pointer to PutBitContext of the current frame
|
320 |
*/
|
321 |
static void ra144_encode_subblock(RA144Context *ractx, |
322 |
const int16_t *sblock_data,
|
323 |
const int16_t *lpc_coefs, unsigned int rms, |
324 |
PutBitContext *pb) |
325 |
{ |
326 |
float data[BLOCKSIZE], work[LPC_ORDER + BLOCKSIZE];
|
327 |
float coefs[LPC_ORDER];
|
328 |
float zero[BLOCKSIZE], cba[BLOCKSIZE], cb1[BLOCKSIZE], cb2[BLOCKSIZE];
|
329 |
int16_t cba_vect[BLOCKSIZE]; |
330 |
int cba_idx, cb1_idx, cb2_idx, gain;
|
331 |
int i, n, m[3]; |
332 |
float g[3]; |
333 |
float error, best_error;
|
334 |
|
335 |
for (i = 0; i < LPC_ORDER; i++) { |
336 |
work[i] = ractx->curr_sblock[BLOCKSIZE + i]; |
337 |
coefs[i] = lpc_coefs[i] * (1/4096.0); |
338 |
} |
339 |
|
340 |
/**
|
341 |
* Calculate the zero-input response of the LPC filter and subtract it from
|
342 |
* input data.
|
343 |
*/
|
344 |
memset(data, 0, sizeof(data)); |
345 |
ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, data, BLOCKSIZE, |
346 |
LPC_ORDER); |
347 |
for (i = 0; i < BLOCKSIZE; i++) { |
348 |
zero[i] = work[LPC_ORDER + i]; |
349 |
data[i] = sblock_data[i] - zero[i]; |
350 |
} |
351 |
|
352 |
/**
|
353 |
* Codebook search is performed without taking into account the contribution
|
354 |
* of the previous subblock, since it has been just subtracted from input
|
355 |
* data.
|
356 |
*/
|
357 |
memset(work, 0, LPC_ORDER * sizeof(*work)); |
358 |
|
359 |
cba_idx = adaptive_cb_search(ractx->adapt_cb, work + LPC_ORDER, coefs, |
360 |
data); |
361 |
if (cba_idx) {
|
362 |
/**
|
363 |
* The filtered vector from the adaptive codebook can be retrieved from
|
364 |
* work, see implementation of adaptive_cb_search().
|
365 |
*/
|
366 |
memcpy(cba, work + LPC_ORDER, sizeof(cba));
|
367 |
|
368 |
ff_copy_and_dup(cba_vect, ractx->adapt_cb, cba_idx + BLOCKSIZE / 2 - 1); |
369 |
m[0] = (ff_irms(cba_vect) * rms) >> 12; |
370 |
} |
371 |
fixed_cb_search(work + LPC_ORDER, coefs, data, cba_idx, &cb1_idx, &cb2_idx); |
372 |
for (i = 0; i < BLOCKSIZE; i++) { |
373 |
cb1[i] = ff_cb1_vects[cb1_idx][i]; |
374 |
cb2[i] = ff_cb2_vects[cb2_idx][i]; |
375 |
} |
376 |
ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, cb1, BLOCKSIZE, |
377 |
LPC_ORDER); |
378 |
memcpy(cb1, work + LPC_ORDER, sizeof(cb1));
|
379 |
m[1] = (ff_cb1_base[cb1_idx] * rms) >> 8; |
380 |
ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, cb2, BLOCKSIZE, |
381 |
LPC_ORDER); |
382 |
memcpy(cb2, work + LPC_ORDER, sizeof(cb2));
|
383 |
m[2] = (ff_cb2_base[cb2_idx] * rms) >> 8; |
384 |
best_error = FLT_MAX; |
385 |
gain = 0;
|
386 |
for (n = 0; n < 256; n++) { |
387 |
g[1] = ((ff_gain_val_tab[n][1] * m[1]) >> ff_gain_exp_tab[n]) * |
388 |
(1/4096.0); |
389 |
g[2] = ((ff_gain_val_tab[n][2] * m[2]) >> ff_gain_exp_tab[n]) * |
390 |
(1/4096.0); |
391 |
error = 0;
|
392 |
if (cba_idx) {
|
393 |
g[0] = ((ff_gain_val_tab[n][0] * m[0]) >> ff_gain_exp_tab[n]) * |
394 |
(1/4096.0); |
395 |
for (i = 0; i < BLOCKSIZE; i++) { |
396 |
data[i] = zero[i] + g[0] * cba[i] + g[1] * cb1[i] + |
397 |
g[2] * cb2[i];
|
398 |
error += (data[i] - sblock_data[i]) * |
399 |
(data[i] - sblock_data[i]); |
400 |
} |
401 |
} else {
|
402 |
for (i = 0; i < BLOCKSIZE; i++) { |
403 |
data[i] = zero[i] + g[1] * cb1[i] + g[2] * cb2[i]; |
404 |
error += (data[i] - sblock_data[i]) * |
405 |
(data[i] - sblock_data[i]); |
406 |
} |
407 |
} |
408 |
if (error < best_error) {
|
409 |
best_error = error; |
410 |
gain = n; |
411 |
} |
412 |
} |
413 |
put_bits(pb, 7, cba_idx);
|
414 |
put_bits(pb, 8, gain);
|
415 |
put_bits(pb, 7, cb1_idx);
|
416 |
put_bits(pb, 7, cb2_idx);
|
417 |
ff_subblock_synthesis(ractx, lpc_coefs, cba_idx, cb1_idx, cb2_idx, rms, |
418 |
gain); |
419 |
} |
420 |
|
421 |
|
422 |
static int ra144_encode_frame(AVCodecContext *avctx, uint8_t *frame, |
423 |
int buf_size, void *data) |
424 |
{ |
425 |
static const uint8_t sizes[LPC_ORDER] = {64, 32, 32, 16, 16, 8, 8, 8, 8, 4}; |
426 |
static const uint8_t bit_sizes[LPC_ORDER] = {6, 5, 5, 4, 4, 3, 3, 3, 3, 2}; |
427 |
RA144Context *ractx; |
428 |
PutBitContext pb; |
429 |
int32_t lpc_data[NBLOCKS * BLOCKSIZE]; |
430 |
int32_t lpc_coefs[LPC_ORDER][MAX_LPC_ORDER]; |
431 |
int shift[LPC_ORDER];
|
432 |
int16_t block_coefs[NBLOCKS][LPC_ORDER]; |
433 |
int lpc_refl[LPC_ORDER]; /**< reflection coefficients of the frame */ |
434 |
unsigned int refl_rms[NBLOCKS]; /**< RMS of the reflection coefficients */ |
435 |
int energy = 0; |
436 |
int i, idx;
|
437 |
|
438 |
if (buf_size < FRAMESIZE) {
|
439 |
av_log(avctx, AV_LOG_ERROR, "output buffer too small\n");
|
440 |
return 0; |
441 |
} |
442 |
ractx = avctx->priv_data; |
443 |
|
444 |
/**
|
445 |
* Since the LPC coefficients are calculated on a frame centered over the
|
446 |
* fourth subframe, to encode a given frame, data from the next frame is
|
447 |
* needed. In each call to this function, the previous frame (whose data are
|
448 |
* saved in the encoder context) is encoded, and data from the current frame
|
449 |
* are saved in the encoder context to be used in the next function call.
|
450 |
*/
|
451 |
for (i = 0; i < (2 * BLOCKSIZE + BLOCKSIZE / 2); i++) { |
452 |
lpc_data[i] = ractx->curr_block[BLOCKSIZE + BLOCKSIZE / 2 + i];
|
453 |
energy += (lpc_data[i] * lpc_data[i]) >> 4;
|
454 |
} |
455 |
for (i = 2 * BLOCKSIZE + BLOCKSIZE / 2; i < NBLOCKS * BLOCKSIZE; i++) { |
456 |
lpc_data[i] = *((int16_t *)data + i - 2 * BLOCKSIZE - BLOCKSIZE / 2) >> |
457 |
2;
|
458 |
energy += (lpc_data[i] * lpc_data[i]) >> 4;
|
459 |
} |
460 |
energy = ff_energy_tab[quantize(ff_t_sqrt(energy >> 5) >> 10, ff_energy_tab, |
461 |
32)];
|
462 |
|
463 |
ff_lpc_calc_coefs(&ractx->lpc_ctx, lpc_data, NBLOCKS * BLOCKSIZE, LPC_ORDER, |
464 |
LPC_ORDER, 16, lpc_coefs, shift, AV_LPC_TYPE_LEVINSON,
|
465 |
0, ORDER_METHOD_EST, 12, 0); |
466 |
for (i = 0; i < LPC_ORDER; i++) |
467 |
block_coefs[NBLOCKS - 1][i] = -(lpc_coefs[LPC_ORDER - 1][i] << |
468 |
(12 - shift[LPC_ORDER - 1])); |
469 |
|
470 |
/**
|
471 |
* TODO: apply perceptual weighting of the input speech through bandwidth
|
472 |
* expansion of the LPC filter.
|
473 |
*/
|
474 |
|
475 |
if (ff_eval_refl(lpc_refl, block_coefs[NBLOCKS - 1], avctx)) { |
476 |
/**
|
477 |
* The filter is unstable: use the coefficients of the previous frame.
|
478 |
*/
|
479 |
ff_int_to_int16(block_coefs[NBLOCKS - 1], ractx->lpc_coef[1]); |
480 |
ff_eval_refl(lpc_refl, block_coefs[NBLOCKS - 1], avctx);
|
481 |
} |
482 |
init_put_bits(&pb, frame, buf_size); |
483 |
for (i = 0; i < LPC_ORDER; i++) { |
484 |
idx = quantize(lpc_refl[i], ff_lpc_refl_cb[i], sizes[i]); |
485 |
put_bits(&pb, bit_sizes[i], idx); |
486 |
lpc_refl[i] = ff_lpc_refl_cb[i][idx]; |
487 |
} |
488 |
ractx->lpc_refl_rms[0] = ff_rms(lpc_refl);
|
489 |
ff_eval_coefs(ractx->lpc_coef[0], lpc_refl);
|
490 |
refl_rms[0] = ff_interp(ractx, block_coefs[0], 1, 1, ractx->old_energy); |
491 |
refl_rms[1] = ff_interp(ractx, block_coefs[1], 2, |
492 |
energy <= ractx->old_energy, |
493 |
ff_t_sqrt(energy * ractx->old_energy) >> 12);
|
494 |
refl_rms[2] = ff_interp(ractx, block_coefs[2], 3, 0, energy); |
495 |
refl_rms[3] = ff_rescale_rms(ractx->lpc_refl_rms[0], energy); |
496 |
ff_int_to_int16(block_coefs[NBLOCKS - 1], ractx->lpc_coef[0]); |
497 |
put_bits(&pb, 5, quantize(energy, ff_energy_tab, 32)); |
498 |
for (i = 0; i < NBLOCKS; i++) |
499 |
ra144_encode_subblock(ractx, ractx->curr_block + i * BLOCKSIZE, |
500 |
block_coefs[i], refl_rms[i], &pb); |
501 |
flush_put_bits(&pb); |
502 |
ractx->old_energy = energy; |
503 |
ractx->lpc_refl_rms[1] = ractx->lpc_refl_rms[0]; |
504 |
FFSWAP(unsigned int *, ractx->lpc_coef[0], ractx->lpc_coef[1]); |
505 |
for (i = 0; i < NBLOCKS * BLOCKSIZE; i++) |
506 |
ractx->curr_block[i] = *((int16_t *)data + i) >> 2;
|
507 |
return FRAMESIZE;
|
508 |
} |
509 |
|
510 |
|
511 |
AVCodec ff_ra_144_encoder = |
512 |
{ |
513 |
"real_144",
|
514 |
AVMEDIA_TYPE_AUDIO, |
515 |
CODEC_ID_RA_144, |
516 |
sizeof(RA144Context),
|
517 |
ra144_encode_init, |
518 |
ra144_encode_frame, |
519 |
ra144_encode_close, |
520 |
.long_name = NULL_IF_CONFIG_SMALL("RealAudio 1.0 (14.4K) encoder"),
|
521 |
}; |