ffmpeg / libavcodec / twinvq.c @ d36beb3f
History | View | Annotate | Download (36.6 KB)
1 |
/*
|
---|---|
2 |
* TwinVQ decoder
|
3 |
* Copyright (c) 2009 Vitor Sessak
|
4 |
*
|
5 |
* This file is part of FFmpeg.
|
6 |
*
|
7 |
* FFmpeg is free software; you can redistribute it and/or
|
8 |
* modify it under the terms of the GNU Lesser General Public
|
9 |
* License as published by the Free Software Foundation; either
|
10 |
* version 2.1 of the License, or (at your option) any later version.
|
11 |
*
|
12 |
* FFmpeg is distributed in the hope that it will be useful,
|
13 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
15 |
* Lesser General Public License for more details.
|
16 |
*
|
17 |
* You should have received a copy of the GNU Lesser General Public
|
18 |
* License along with FFmpeg; if not, write to the Free Software
|
19 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
20 |
*/
|
21 |
|
22 |
#include "avcodec.h" |
23 |
#include "get_bits.h" |
24 |
#include "dsputil.h" |
25 |
#include "fft.h" |
26 |
#include "lsp.h" |
27 |
|
28 |
#include <math.h> |
29 |
#include <stdint.h> |
30 |
|
31 |
#include "twinvq_data.h" |
32 |
|
33 |
enum FrameType {
|
34 |
FT_SHORT = 0, ///< Short frame (divided in n sub-blocks) |
35 |
FT_MEDIUM, ///< Medium frame (divided in m<n sub-blocks)
|
36 |
FT_LONG, ///< Long frame (single sub-block + PPC)
|
37 |
FT_PPC, ///< Periodic Peak Component (part of the long frame)
|
38 |
}; |
39 |
|
40 |
/**
|
41 |
* Parameters and tables that are different for each frame type
|
42 |
*/
|
43 |
struct FrameMode {
|
44 |
uint8_t sub; ///< Number subblocks in each frame
|
45 |
const uint16_t *bark_tab;
|
46 |
|
47 |
/** number of distinct bark scale envelope values */
|
48 |
uint8_t bark_env_size; |
49 |
|
50 |
const int16_t *bark_cb; ///< codebook for the bark scale envelope (BSE) |
51 |
uint8_t bark_n_coef;///< number of BSE CB coefficients to read
|
52 |
uint8_t bark_n_bit; ///< number of bits of the BSE coefs
|
53 |
|
54 |
//@{
|
55 |
/** main codebooks for spectrum data */
|
56 |
const int16_t *cb0;
|
57 |
const int16_t *cb1;
|
58 |
//@}
|
59 |
|
60 |
uint8_t cb_len_read; ///< number of spectrum coefficients to read
|
61 |
}; |
62 |
|
63 |
/**
|
64 |
* Parameters and tables that are different for every combination of
|
65 |
* bitrate/sample rate
|
66 |
*/
|
67 |
typedef struct { |
68 |
struct FrameMode fmode[3]; ///< frame type-dependant parameters |
69 |
|
70 |
uint16_t size; ///< frame size in samples
|
71 |
uint8_t n_lsp; ///< number of lsp coefficients
|
72 |
const float *lspcodebook; |
73 |
|
74 |
/* number of bits of the different LSP CB coefficients */
|
75 |
uint8_t lsp_bit0; |
76 |
uint8_t lsp_bit1; |
77 |
uint8_t lsp_bit2; |
78 |
|
79 |
uint8_t lsp_split; ///< number of CB entries for the LSP decoding
|
80 |
const int16_t *ppc_shape_cb; ///< PPC shape CB |
81 |
|
82 |
/** number of the bits for the PPC period value */
|
83 |
uint8_t ppc_period_bit; |
84 |
|
85 |
uint8_t ppc_shape_bit; ///< number of bits of the PPC shape CB coeffs
|
86 |
uint8_t ppc_shape_len; ///< size of PPC shape CB
|
87 |
uint8_t pgain_bit; ///< bits for PPC gain
|
88 |
|
89 |
/** constant for peak period to peak width conversion */
|
90 |
uint16_t peak_per2wid; |
91 |
} ModeTab; |
92 |
|
93 |
static const ModeTab mode_08_08 = { |
94 |
{ |
95 |
{ 8, bark_tab_s08_64, 10, tab.fcb08s , 1, 5, tab.cb0808s0, tab.cb0808s1, 18}, |
96 |
{ 2, bark_tab_m08_256, 20, tab.fcb08m , 2, 5, tab.cb0808m0, tab.cb0808m1, 16}, |
97 |
{ 1, bark_tab_l08_512, 30, tab.fcb08l , 3, 6, tab.cb0808l0, tab.cb0808l1, 17} |
98 |
}, |
99 |
512 , 12, tab.lsp08, 1, 5, 3, 3, tab.shape08 , 8, 28, 20, 6, 40 |
100 |
}; |
101 |
|
102 |
static const ModeTab mode_11_08 = { |
103 |
{ |
104 |
{ 8, bark_tab_s11_64, 10, tab.fcb11s , 1, 5, tab.cb1108s0, tab.cb1108s1, 29}, |
105 |
{ 2, bark_tab_m11_256, 20, tab.fcb11m , 2, 5, tab.cb1108m0, tab.cb1108m1, 24}, |
106 |
{ 1, bark_tab_l11_512, 30, tab.fcb11l , 3, 6, tab.cb1108l0, tab.cb1108l1, 27} |
107 |
}, |
108 |
512 , 16, tab.lsp11, 1, 6, 4, 3, tab.shape11 , 9, 36, 30, 7, 90 |
109 |
}; |
110 |
|
111 |
static const ModeTab mode_11_10 = { |
112 |
{ |
113 |
{ 8, bark_tab_s11_64, 10, tab.fcb11s , 1, 5, tab.cb1110s0, tab.cb1110s1, 21}, |
114 |
{ 2, bark_tab_m11_256, 20, tab.fcb11m , 2, 5, tab.cb1110m0, tab.cb1110m1, 18}, |
115 |
{ 1, bark_tab_l11_512, 30, tab.fcb11l , 3, 6, tab.cb1110l0, tab.cb1110l1, 20} |
116 |
}, |
117 |
512 , 16, tab.lsp11, 1, 6, 4, 3, tab.shape11 , 9, 36, 30, 7, 90 |
118 |
}; |
119 |
|
120 |
static const ModeTab mode_16_16 = { |
121 |
{ |
122 |
{ 8, bark_tab_s16_128, 10, tab.fcb16s , 1, 5, tab.cb1616s0, tab.cb1616s1, 16}, |
123 |
{ 2, bark_tab_m16_512, 20, tab.fcb16m , 2, 5, tab.cb1616m0, tab.cb1616m1, 15}, |
124 |
{ 1, bark_tab_l16_1024,30, tab.fcb16l , 3, 6, tab.cb1616l0, tab.cb1616l1, 16} |
125 |
}, |
126 |
1024, 16, tab.lsp16, 1, 6, 4, 3, tab.shape16 , 9, 56, 60, 7, 180 |
127 |
}; |
128 |
|
129 |
static const ModeTab mode_22_20 = { |
130 |
{ |
131 |
{ 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2220s0, tab.cb2220s1, 18}, |
132 |
{ 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2220m0, tab.cb2220m1, 17}, |
133 |
{ 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2220l0, tab.cb2220l1, 18} |
134 |
}, |
135 |
1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144 |
136 |
}; |
137 |
|
138 |
static const ModeTab mode_22_24 = { |
139 |
{ |
140 |
{ 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2224s0, tab.cb2224s1, 15}, |
141 |
{ 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2224m0, tab.cb2224m1, 14}, |
142 |
{ 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2224l0, tab.cb2224l1, 15} |
143 |
}, |
144 |
1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144 |
145 |
}; |
146 |
|
147 |
static const ModeTab mode_22_32 = { |
148 |
{ |
149 |
{ 4, bark_tab_s22_128, 10, tab.fcb22s_2, 1, 6, tab.cb2232s0, tab.cb2232s1, 11}, |
150 |
{ 2, bark_tab_m22_256, 20, tab.fcb22m_2, 2, 6, tab.cb2232m0, tab.cb2232m1, 11}, |
151 |
{ 1, bark_tab_l22_512, 32, tab.fcb22l_2, 4, 6, tab.cb2232l0, tab.cb2232l1, 12} |
152 |
}, |
153 |
512 , 16, tab.lsp22_2, 1, 6, 4, 4, tab.shape22_2, 9, 56, 36, 7, 72 |
154 |
}; |
155 |
|
156 |
static const ModeTab mode_44_40 = { |
157 |
{ |
158 |
{16, bark_tab_s44_128, 10, tab.fcb44s , 1, 6, tab.cb4440s0, tab.cb4440s1, 18}, |
159 |
{ 4, bark_tab_m44_512, 20, tab.fcb44m , 2, 6, tab.cb4440m0, tab.cb4440m1, 17}, |
160 |
{ 1, bark_tab_l44_2048,40, tab.fcb44l , 4, 6, tab.cb4440l0, tab.cb4440l1, 17} |
161 |
}, |
162 |
2048, 20, tab.lsp44, 1, 6, 4, 4, tab.shape44 , 9, 84, 54, 7, 432 |
163 |
}; |
164 |
|
165 |
static const ModeTab mode_44_48 = { |
166 |
{ |
167 |
{16, bark_tab_s44_128, 10, tab.fcb44s , 1, 6, tab.cb4448s0, tab.cb4448s1, 15}, |
168 |
{ 4, bark_tab_m44_512, 20, tab.fcb44m , 2, 6, tab.cb4448m0, tab.cb4448m1, 14}, |
169 |
{ 1, bark_tab_l44_2048,40, tab.fcb44l , 4, 6, tab.cb4448l0, tab.cb4448l1, 14} |
170 |
}, |
171 |
2048, 20, tab.lsp44, 1, 6, 4, 4, tab.shape44 , 9, 84, 54, 7, 432 |
172 |
}; |
173 |
|
174 |
typedef struct TwinContext { |
175 |
AVCodecContext *avctx; |
176 |
DSPContext dsp; |
177 |
FFTContext mdct_ctx[3];
|
178 |
|
179 |
const ModeTab *mtab;
|
180 |
|
181 |
// history
|
182 |
float lsp_hist[2][20]; ///< LSP coefficients of the last frame |
183 |
float bark_hist[3][2][40]; ///< BSE coefficients of last frame |
184 |
|
185 |
// bitstream parameters
|
186 |
int16_t permut[4][4096]; |
187 |
uint8_t length[4][2]; ///< main codebook stride |
188 |
uint8_t length_change[4];
|
189 |
uint8_t bits_main_spec[2][4][2]; ///< bits for the main codebook |
190 |
int bits_main_spec_change[4]; |
191 |
int n_div[4]; |
192 |
|
193 |
float *spectrum;
|
194 |
float *curr_frame; ///< non-interleaved output |
195 |
float *prev_frame; ///< non-interleaved previous frame |
196 |
int last_block_pos[2]; |
197 |
|
198 |
float *cos_tabs[3]; |
199 |
|
200 |
// scratch buffers
|
201 |
float *tmp_buf;
|
202 |
} TwinContext; |
203 |
|
204 |
#define PPC_SHAPE_CB_SIZE 64 |
205 |
#define PPC_SHAPE_LEN_MAX 60 |
206 |
#define SUB_AMP_MAX 4500.0 |
207 |
#define MULAW_MU 100.0 |
208 |
#define GAIN_BITS 8 |
209 |
#define AMP_MAX 13000.0 |
210 |
#define SUB_GAIN_BITS 5 |
211 |
#define WINDOW_TYPE_BITS 4 |
212 |
#define PGAIN_MU 200 |
213 |
#define LSP_COEFS_MAX 20 |
214 |
#define LSP_SPLIT_MAX 4 |
215 |
#define CHANNELS_MAX 2 |
216 |
#define SUBBLOCKS_MAX 16 |
217 |
#define BARK_N_COEF_MAX 4 |
218 |
|
219 |
/** @note not speed critical, hence not optimized */
|
220 |
static void memset_float(float *buf, float val, int size) |
221 |
{ |
222 |
while (size--)
|
223 |
*buf++ = val; |
224 |
} |
225 |
|
226 |
/**
|
227 |
* Evaluate a single LPC amplitude spectrum envelope coefficient from the line
|
228 |
* spectrum pairs.
|
229 |
*
|
230 |
* @param lsp a vector of the cosinus of the LSP values
|
231 |
* @param cos_val cos(PI*i/N) where i is the index of the LPC amplitude
|
232 |
* @param order the order of the LSP (and the size of the *lsp buffer). Must
|
233 |
* be a multiple of four.
|
234 |
* @return the LPC value
|
235 |
*
|
236 |
* @todo reuse code from vorbis_dec.c: vorbis_floor0_decode
|
237 |
*/
|
238 |
static float eval_lpc_spectrum(const float *lsp, float cos_val, int order) |
239 |
{ |
240 |
int j;
|
241 |
float p = 0.5f; |
242 |
float q = 0.5f; |
243 |
float two_cos_w = 2.0f*cos_val; |
244 |
|
245 |
for (j = 0; j + 1 < order; j += 2*2) { |
246 |
// Unroll the loop once since order is a multiple of four
|
247 |
q *= lsp[j ] - two_cos_w; |
248 |
p *= lsp[j+1] - two_cos_w;
|
249 |
|
250 |
q *= lsp[j+2] - two_cos_w;
|
251 |
p *= lsp[j+3] - two_cos_w;
|
252 |
} |
253 |
|
254 |
p *= p * (2.0f - two_cos_w); |
255 |
q *= q * (2.0f + two_cos_w); |
256 |
|
257 |
return 0.5 / (p + q); |
258 |
} |
259 |
|
260 |
/**
|
261 |
* Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
|
262 |
*/
|
263 |
static void eval_lpcenv(TwinContext *tctx, const float *cos_vals, float *lpc) |
264 |
{ |
265 |
int i;
|
266 |
const ModeTab *mtab = tctx->mtab;
|
267 |
int size_s = mtab->size / mtab->fmode[FT_SHORT].sub;
|
268 |
|
269 |
for (i = 0; i < size_s/2; i++) { |
270 |
float cos_i = tctx->cos_tabs[0][i]; |
271 |
lpc[i] = eval_lpc_spectrum(cos_vals, cos_i, mtab->n_lsp); |
272 |
lpc[size_s-i-1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp);
|
273 |
} |
274 |
} |
275 |
|
276 |
static void interpolate(float *out, float v1, float v2, int size) |
277 |
{ |
278 |
int i;
|
279 |
float step = (v1 - v2)/(size + 1); |
280 |
|
281 |
for (i = 0; i < size; i++) { |
282 |
v2 += step; |
283 |
out[i] = v2; |
284 |
} |
285 |
} |
286 |
|
287 |
static inline float get_cos(int idx, int part, const float *cos_tab, int size) |
288 |
{ |
289 |
return part ? -cos_tab[size - idx - 1] : |
290 |
cos_tab[ idx ]; |
291 |
} |
292 |
|
293 |
/**
|
294 |
* Evaluate the LPC amplitude spectrum envelope from the line spectrum pairs.
|
295 |
* Probably for speed reasons, the coefficients are evaluated as
|
296 |
* siiiibiiiisiiiibiiiisiiiibiiiisiiiibiiiis ...
|
297 |
* where s is an evaluated value, i is a value interpolated from the others
|
298 |
* and b might be either calculated or interpolated, depending on an
|
299 |
* unexplained condition.
|
300 |
*
|
301 |
* @param step the size of a block "siiiibiiii"
|
302 |
* @param in the cosinus of the LSP data
|
303 |
* @param part is 0 for 0...PI (positive cossinus values) and 1 for PI...2PI
|
304 |
(negative cossinus values)
|
305 |
* @param size the size of the whole output
|
306 |
*/
|
307 |
static inline void eval_lpcenv_or_interp(TwinContext *tctx, |
308 |
enum FrameType ftype,
|
309 |
float *out, const float *in, |
310 |
int size, int step, int part) |
311 |
{ |
312 |
int i;
|
313 |
const ModeTab *mtab = tctx->mtab;
|
314 |
const float *cos_tab = tctx->cos_tabs[ftype]; |
315 |
|
316 |
// Fill the 's'
|
317 |
for (i = 0; i < size; i += step) |
318 |
out[i] = |
319 |
eval_lpc_spectrum(in, |
320 |
get_cos(i, part, cos_tab, size), |
321 |
mtab->n_lsp); |
322 |
|
323 |
// Fill the 'iiiibiiii'
|
324 |
for (i = step; i <= size - 2*step; i += step) { |
325 |
if (out[i + step] + out[i - step] > 1.95*out[i] || |
326 |
out[i + step] >= out[i - step]) { |
327 |
interpolate(out + i - step + 1, out[i], out[i-step], step - 1); |
328 |
} else {
|
329 |
out[i - step/2] =
|
330 |
eval_lpc_spectrum(in, |
331 |
get_cos(i-step/2, part, cos_tab, size),
|
332 |
mtab->n_lsp); |
333 |
interpolate(out + i - step + 1, out[i-step/2], out[i-step ], step/2 - 1); |
334 |
interpolate(out + i - step/2 + 1, out[i ], out[i-step/2], step/2 - 1); |
335 |
} |
336 |
} |
337 |
|
338 |
interpolate(out + size - 2*step + 1, out[size-step], out[size - 2*step], step - 1); |
339 |
} |
340 |
|
341 |
static void eval_lpcenv_2parts(TwinContext *tctx, enum FrameType ftype, |
342 |
const float *buf, float *lpc, |
343 |
int size, int step) |
344 |
{ |
345 |
eval_lpcenv_or_interp(tctx, ftype, lpc , buf, size/2, step, 0); |
346 |
eval_lpcenv_or_interp(tctx, ftype, lpc + size/2, buf, size/2, 2*step, 1); |
347 |
|
348 |
interpolate(lpc+size/2-step+1, lpc[size/2], lpc[size/2-step], step); |
349 |
|
350 |
memset_float(lpc + size - 2*step + 1, lpc[size - 2*step], 2*step - 1); |
351 |
} |
352 |
|
353 |
/**
|
354 |
* Inverse quantization. Read CB coefficients for cb1 and cb2 from the
|
355 |
* bitstream, sum the corresponding vectors and write the result to *out
|
356 |
* after permutation.
|
357 |
*/
|
358 |
static void dequant(TwinContext *tctx, GetBitContext *gb, float *out, |
359 |
enum FrameType ftype,
|
360 |
const int16_t *cb0, const int16_t *cb1, int cb_len) |
361 |
{ |
362 |
int pos = 0; |
363 |
int i, j;
|
364 |
|
365 |
for (i = 0; i < tctx->n_div[ftype]; i++) { |
366 |
int tmp0, tmp1;
|
367 |
int sign0 = 1; |
368 |
int sign1 = 1; |
369 |
const int16_t *tab0, *tab1;
|
370 |
int length = tctx->length[ftype][i >= tctx->length_change[ftype]];
|
371 |
int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]);
|
372 |
|
373 |
int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part]; |
374 |
if (bits == 7) { |
375 |
if (get_bits1(gb))
|
376 |
sign0 = -1;
|
377 |
bits = 6;
|
378 |
} |
379 |
tmp0 = get_bits(gb, bits); |
380 |
|
381 |
bits = tctx->bits_main_spec[1][ftype][bitstream_second_part];
|
382 |
|
383 |
if (bits == 7) { |
384 |
if (get_bits1(gb))
|
385 |
sign1 = -1;
|
386 |
|
387 |
bits = 6;
|
388 |
} |
389 |
tmp1 = get_bits(gb, bits); |
390 |
|
391 |
tab0 = cb0 + tmp0*cb_len; |
392 |
tab1 = cb1 + tmp1*cb_len; |
393 |
|
394 |
for (j = 0; j < length; j++) |
395 |
out[tctx->permut[ftype][pos+j]] = sign0*tab0[j] + sign1*tab1[j]; |
396 |
|
397 |
pos += length; |
398 |
} |
399 |
|
400 |
} |
401 |
|
402 |
static inline float mulawinv(float y, float clip, float mu) |
403 |
{ |
404 |
y = av_clipf(y/clip, -1, 1); |
405 |
return clip * FFSIGN(y) * (exp(log(1+mu) * fabs(y)) - 1) / mu; |
406 |
} |
407 |
|
408 |
/**
|
409 |
* Evaluate a*b/400 rounded to the nearest integer. When, for example,
|
410 |
* a*b == 200 and the nearest integer is ill-defined, use a table to emulate
|
411 |
* the following broken float-based implementation used by the binary decoder:
|
412 |
*
|
413 |
* \code
|
414 |
* static int very_broken_op(int a, int b)
|
415 |
* {
|
416 |
* static float test; // Ugh, force gcc to do the division first...
|
417 |
*
|
418 |
* test = a/400.;
|
419 |
* return b * test + 0.5;
|
420 |
* }
|
421 |
* \endcode
|
422 |
*
|
423 |
* @note if this function is replaced by just ROUNDED_DIV(a*b,400.), the stddev
|
424 |
* between the original file (before encoding with Yamaha encoder) and the
|
425 |
* decoded output increases, which leads one to believe that the encoder expects
|
426 |
* exactly this broken calculation.
|
427 |
*/
|
428 |
static int very_broken_op(int a, int b) |
429 |
{ |
430 |
int x = a*b + 200; |
431 |
int size;
|
432 |
const uint8_t *rtab;
|
433 |
|
434 |
if (x%400 || b%5) |
435 |
return x/400; |
436 |
|
437 |
x /= 400;
|
438 |
|
439 |
size = tabs[b/5].size;
|
440 |
rtab = tabs[b/5].tab;
|
441 |
return x - rtab[size*av_log2(2*(x - 1)/size)+(x - 1)%size]; |
442 |
} |
443 |
|
444 |
/**
|
445 |
* Sum to data a periodic peak of a given period, width and shape.
|
446 |
*
|
447 |
* @param period the period of the peak divised by 400.0
|
448 |
*/
|
449 |
static void add_peak(int period, int width, const float *shape, |
450 |
float ppc_gain, float *speech, int len) |
451 |
{ |
452 |
int i, j;
|
453 |
|
454 |
const float *shape_end = shape + len; |
455 |
int center;
|
456 |
|
457 |
// First peak centered around zero
|
458 |
for (i = 0; i < width/2; i++) |
459 |
speech[i] += ppc_gain * *shape++; |
460 |
|
461 |
for (i = 1; i < ROUNDED_DIV(len,width) ; i++) { |
462 |
center = very_broken_op(period, i); |
463 |
for (j = -width/2; j < (width+1)/2; j++) |
464 |
speech[j+center] += ppc_gain * *shape++; |
465 |
} |
466 |
|
467 |
// For the last block, be careful not to go beyond the end of the buffer
|
468 |
center = very_broken_op(period, i); |
469 |
for (j = -width/2; j < (width + 1)/2 && shape < shape_end; j++) |
470 |
speech[j+center] += ppc_gain * *shape++; |
471 |
} |
472 |
|
473 |
static void decode_ppc(TwinContext *tctx, int period_coef, const float *shape, |
474 |
float ppc_gain, float *speech) |
475 |
{ |
476 |
const ModeTab *mtab = tctx->mtab;
|
477 |
int isampf = tctx->avctx->sample_rate/1000; |
478 |
int ibps = tctx->avctx->bit_rate/(1000 * tctx->avctx->channels); |
479 |
int min_period = ROUNDED_DIV( 40*2*mtab->size, isampf); |
480 |
int max_period = ROUNDED_DIV(6*40*2*mtab->size, isampf); |
481 |
int period_range = max_period - min_period;
|
482 |
|
483 |
// This is actually the period multiplied by 400. It is just linearly coded
|
484 |
// between its maximum and minimum value.
|
485 |
int period = min_period +
|
486 |
ROUNDED_DIV(period_coef*period_range, (1 << mtab->ppc_period_bit) - 1); |
487 |
int width;
|
488 |
|
489 |
if (isampf == 22 && ibps == 32) { |
490 |
// For some unknown reason, NTT decided to code this case differently...
|
491 |
width = ROUNDED_DIV((period + 800)* mtab->peak_per2wid, 400*mtab->size); |
492 |
} else
|
493 |
width = (period )* mtab->peak_per2wid/(400*mtab->size);
|
494 |
|
495 |
add_peak(period, width, shape, ppc_gain, speech, mtab->ppc_shape_len); |
496 |
} |
497 |
|
498 |
static void dec_gain(TwinContext *tctx, GetBitContext *gb, enum FrameType ftype, |
499 |
float *out)
|
500 |
{ |
501 |
const ModeTab *mtab = tctx->mtab;
|
502 |
int i, j;
|
503 |
int sub = mtab->fmode[ftype].sub;
|
504 |
float step = AMP_MAX / ((1 << GAIN_BITS) - 1); |
505 |
float sub_step = SUB_AMP_MAX / ((1 << SUB_GAIN_BITS) - 1); |
506 |
|
507 |
if (ftype == FT_LONG) {
|
508 |
for (i = 0; i < tctx->avctx->channels; i++) |
509 |
out[i] = (1./(1<<13)) * |
510 |
mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS), |
511 |
AMP_MAX, MULAW_MU); |
512 |
} else {
|
513 |
for (i = 0; i < tctx->avctx->channels; i++) { |
514 |
float val = (1./(1<<23)) * |
515 |
mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS), |
516 |
AMP_MAX, MULAW_MU); |
517 |
|
518 |
for (j = 0; j < sub; j++) { |
519 |
out[i*sub + j] = |
520 |
val*mulawinv(sub_step* 0.5 + |
521 |
sub_step* get_bits(gb, SUB_GAIN_BITS), |
522 |
SUB_AMP_MAX, MULAW_MU); |
523 |
} |
524 |
} |
525 |
} |
526 |
} |
527 |
|
528 |
/**
|
529 |
* Rearrange the LSP coefficients so that they have a minimum distance of
|
530 |
* min_dist. This function does it exactly as described in section of 3.2.4
|
531 |
* of the G.729 specification (but interestingly is different from what the
|
532 |
* reference decoder actually does).
|
533 |
*/
|
534 |
static void rearrange_lsp(int order, float *lsp, float min_dist) |
535 |
{ |
536 |
int i;
|
537 |
float min_dist2 = min_dist * 0.5; |
538 |
for (i = 1; i < order; i++) |
539 |
if (lsp[i] - lsp[i-1] < min_dist) { |
540 |
float avg = (lsp[i] + lsp[i-1]) * 0.5; |
541 |
|
542 |
lsp[i-1] = avg - min_dist2;
|
543 |
lsp[i ] = avg + min_dist2; |
544 |
} |
545 |
} |
546 |
|
547 |
static void decode_lsp(TwinContext *tctx, int lpc_idx1, uint8_t *lpc_idx2, |
548 |
int lpc_hist_idx, float *lsp, float *hist) |
549 |
{ |
550 |
const ModeTab *mtab = tctx->mtab;
|
551 |
int i, j;
|
552 |
|
553 |
const float *cb = mtab->lspcodebook; |
554 |
const float *cb2 = cb + (1 << mtab->lsp_bit1)*mtab->n_lsp; |
555 |
const float *cb3 = cb2 + (1 << mtab->lsp_bit2)*mtab->n_lsp; |
556 |
|
557 |
const int8_t funny_rounding[4] = { |
558 |
-2,
|
559 |
mtab->lsp_split == 4 ? -2 : 1, |
560 |
mtab->lsp_split == 4 ? -2 : 1, |
561 |
0
|
562 |
}; |
563 |
|
564 |
j = 0;
|
565 |
for (i = 0; i < mtab->lsp_split; i++) { |
566 |
int chunk_end = ((i + 1)*mtab->n_lsp + funny_rounding[i])/mtab->lsp_split; |
567 |
for (; j < chunk_end; j++)
|
568 |
lsp[j] = cb [lpc_idx1 * mtab->n_lsp + j] + |
569 |
cb2[lpc_idx2[i] * mtab->n_lsp + j]; |
570 |
} |
571 |
|
572 |
rearrange_lsp(mtab->n_lsp, lsp, 0.0001); |
573 |
|
574 |
for (i = 0; i < mtab->n_lsp; i++) { |
575 |
float tmp1 = 1. - cb3[lpc_hist_idx*mtab->n_lsp + i]; |
576 |
float tmp2 = hist[i] * cb3[lpc_hist_idx*mtab->n_lsp + i];
|
577 |
hist[i] = lsp[i]; |
578 |
lsp[i] = lsp[i] * tmp1 + tmp2; |
579 |
} |
580 |
|
581 |
rearrange_lsp(mtab->n_lsp, lsp, 0.0001); |
582 |
rearrange_lsp(mtab->n_lsp, lsp, 0.000095); |
583 |
ff_sort_nearly_sorted_floats(lsp, mtab->n_lsp); |
584 |
} |
585 |
|
586 |
static void dec_lpc_spectrum_inv(TwinContext *tctx, float *lsp, |
587 |
enum FrameType ftype, float *lpc) |
588 |
{ |
589 |
int i;
|
590 |
int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub;
|
591 |
|
592 |
for (i = 0; i < tctx->mtab->n_lsp; i++) |
593 |
lsp[i] = 2*cos(lsp[i]);
|
594 |
|
595 |
switch (ftype) {
|
596 |
case FT_LONG:
|
597 |
eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8);
|
598 |
break;
|
599 |
case FT_MEDIUM:
|
600 |
eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2);
|
601 |
break;
|
602 |
case FT_SHORT:
|
603 |
eval_lpcenv(tctx, lsp, lpc); |
604 |
break;
|
605 |
} |
606 |
} |
607 |
|
608 |
static void imdct_and_window(TwinContext *tctx, enum FrameType ftype, int wtype, |
609 |
float *in, float *prev, int ch) |
610 |
{ |
611 |
const ModeTab *mtab = tctx->mtab;
|
612 |
int bsize = mtab->size / mtab->fmode[ftype].sub;
|
613 |
int size = mtab->size;
|
614 |
float *buf1 = tctx->tmp_buf;
|
615 |
int j;
|
616 |
int wsize; // Window size |
617 |
float *out = tctx->curr_frame + 2*ch*mtab->size; |
618 |
float *out2 = out;
|
619 |
float *prev_buf;
|
620 |
int first_wsize;
|
621 |
|
622 |
static const uint8_t wtype_to_wsize[] = {0, 0, 2, 2, 2, 1, 0, 1, 1}; |
623 |
int types_sizes[] = {
|
624 |
mtab->size / mtab->fmode[FT_LONG ].sub, |
625 |
mtab->size / mtab->fmode[FT_MEDIUM].sub, |
626 |
mtab->size / (2*mtab->fmode[FT_SHORT ].sub),
|
627 |
}; |
628 |
|
629 |
wsize = types_sizes[wtype_to_wsize[wtype]]; |
630 |
first_wsize = wsize; |
631 |
prev_buf = prev + (size - bsize)/2;
|
632 |
|
633 |
for (j = 0; j < mtab->fmode[ftype].sub; j++) { |
634 |
int sub_wtype = ftype == FT_MEDIUM ? 8 : wtype; |
635 |
|
636 |
if (!j && wtype == 4) |
637 |
sub_wtype = 4;
|
638 |
else if (j == mtab->fmode[ftype].sub-1 && wtype == 7) |
639 |
sub_wtype = 7;
|
640 |
|
641 |
wsize = types_sizes[wtype_to_wsize[sub_wtype]]; |
642 |
|
643 |
ff_imdct_half(&tctx->mdct_ctx[ftype], buf1 + bsize*j, in + bsize*j); |
644 |
|
645 |
tctx->dsp.vector_fmul_window(out2, |
646 |
prev_buf + (bsize-wsize)/2,
|
647 |
buf1 + bsize*j, |
648 |
ff_sine_windows[av_log2(wsize)], |
649 |
0.0, |
650 |
wsize/2);
|
651 |
out2 += wsize; |
652 |
|
653 |
memcpy(out2, buf1 + bsize*j + wsize/2, (bsize - wsize/2)*sizeof(float)); |
654 |
|
655 |
out2 += ftype == FT_MEDIUM ? (bsize-wsize)/2 : bsize - wsize;
|
656 |
|
657 |
prev_buf = buf1 + bsize*j + bsize/2;
|
658 |
} |
659 |
|
660 |
tctx->last_block_pos[ch] = (size + first_wsize)/2;
|
661 |
} |
662 |
|
663 |
static void imdct_output(TwinContext *tctx, enum FrameType ftype, int wtype, |
664 |
float *out)
|
665 |
{ |
666 |
const ModeTab *mtab = tctx->mtab;
|
667 |
float *prev_buf = tctx->prev_frame + tctx->last_block_pos[0]; |
668 |
int i, j;
|
669 |
|
670 |
for (i = 0; i < tctx->avctx->channels; i++) { |
671 |
imdct_and_window(tctx, ftype, wtype, |
672 |
tctx->spectrum + i*mtab->size, |
673 |
prev_buf + 2*i*mtab->size,
|
674 |
i); |
675 |
} |
676 |
|
677 |
if (tctx->avctx->channels == 2) { |
678 |
for (i = 0; i < mtab->size - tctx->last_block_pos[0]; i++) { |
679 |
float f1 = prev_buf[ i];
|
680 |
float f2 = prev_buf[2*mtab->size + i]; |
681 |
out[2*i ] = f1 + f2;
|
682 |
out[2*i + 1] = f1 - f2; |
683 |
} |
684 |
for (j = 0; i < mtab->size; j++,i++) { |
685 |
float f1 = tctx->curr_frame[ j];
|
686 |
float f2 = tctx->curr_frame[2*mtab->size + j]; |
687 |
out[2*i ] = f1 + f2;
|
688 |
out[2*i + 1] = f1 - f2; |
689 |
} |
690 |
} else {
|
691 |
memcpy(out, prev_buf, |
692 |
(mtab->size - tctx->last_block_pos[0]) * sizeof(*out)); |
693 |
|
694 |
out += mtab->size - tctx->last_block_pos[0];
|
695 |
|
696 |
memcpy(out, tctx->curr_frame, |
697 |
(tctx->last_block_pos[0]) * sizeof(*out)); |
698 |
} |
699 |
|
700 |
} |
701 |
|
702 |
static void dec_bark_env(TwinContext *tctx, const uint8_t *in, int use_hist, |
703 |
int ch, float *out, float gain, enum FrameType ftype) |
704 |
{ |
705 |
const ModeTab *mtab = tctx->mtab;
|
706 |
int i,j;
|
707 |
float *hist = tctx->bark_hist[ftype][ch];
|
708 |
float val = ((const float []) {0.4, 0.35, 0.28})[ftype]; |
709 |
int bark_n_coef = mtab->fmode[ftype].bark_n_coef;
|
710 |
int fw_cb_len = mtab->fmode[ftype].bark_env_size / bark_n_coef;
|
711 |
int idx = 0; |
712 |
|
713 |
for (i = 0; i < fw_cb_len; i++) |
714 |
for (j = 0; j < bark_n_coef; j++, idx++) { |
715 |
float tmp2 =
|
716 |
mtab->fmode[ftype].bark_cb[fw_cb_len*in[j] + i] * (1./4096); |
717 |
float st = use_hist ?
|
718 |
(1. - val) * tmp2 + val*hist[idx] + 1. : tmp2 + 1.; |
719 |
|
720 |
hist[idx] = tmp2; |
721 |
if (st < -1.) st = 1.; |
722 |
|
723 |
memset_float(out, st * gain, mtab->fmode[ftype].bark_tab[idx]); |
724 |
out += mtab->fmode[ftype].bark_tab[idx]; |
725 |
} |
726 |
|
727 |
} |
728 |
|
729 |
static void read_and_decode_spectrum(TwinContext *tctx, GetBitContext *gb, |
730 |
float *out, enum FrameType ftype) |
731 |
{ |
732 |
const ModeTab *mtab = tctx->mtab;
|
733 |
int channels = tctx->avctx->channels;
|
734 |
int sub = mtab->fmode[ftype].sub;
|
735 |
int block_size = mtab->size / sub;
|
736 |
float gain[CHANNELS_MAX*SUBBLOCKS_MAX];
|
737 |
float ppc_shape[PPC_SHAPE_LEN_MAX * CHANNELS_MAX * 4]; |
738 |
uint8_t bark1[CHANNELS_MAX][SUBBLOCKS_MAX][BARK_N_COEF_MAX]; |
739 |
uint8_t bark_use_hist[CHANNELS_MAX][SUBBLOCKS_MAX]; |
740 |
|
741 |
uint8_t lpc_idx1[CHANNELS_MAX]; |
742 |
uint8_t lpc_idx2[CHANNELS_MAX][LSP_SPLIT_MAX]; |
743 |
uint8_t lpc_hist_idx[CHANNELS_MAX]; |
744 |
|
745 |
int i, j, k;
|
746 |
|
747 |
dequant(tctx, gb, out, ftype, |
748 |
mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1, |
749 |
mtab->fmode[ftype].cb_len_read); |
750 |
|
751 |
for (i = 0; i < channels; i++) |
752 |
for (j = 0; j < sub; j++) |
753 |
for (k = 0; k < mtab->fmode[ftype].bark_n_coef; k++) |
754 |
bark1[i][j][k] = |
755 |
get_bits(gb, mtab->fmode[ftype].bark_n_bit); |
756 |
|
757 |
for (i = 0; i < channels; i++) |
758 |
for (j = 0; j < sub; j++) |
759 |
bark_use_hist[i][j] = get_bits1(gb); |
760 |
|
761 |
dec_gain(tctx, gb, ftype, gain); |
762 |
|
763 |
for (i = 0; i < channels; i++) { |
764 |
lpc_hist_idx[i] = get_bits(gb, tctx->mtab->lsp_bit0); |
765 |
lpc_idx1 [i] = get_bits(gb, tctx->mtab->lsp_bit1); |
766 |
|
767 |
for (j = 0; j < tctx->mtab->lsp_split; j++) |
768 |
lpc_idx2[i][j] = get_bits(gb, tctx->mtab->lsp_bit2); |
769 |
} |
770 |
|
771 |
if (ftype == FT_LONG) {
|
772 |
int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len*channels - 1)/ |
773 |
tctx->n_div[3];
|
774 |
dequant(tctx, gb, ppc_shape, FT_PPC, mtab->ppc_shape_cb, |
775 |
mtab->ppc_shape_cb + cb_len_p*PPC_SHAPE_CB_SIZE, cb_len_p); |
776 |
} |
777 |
|
778 |
for (i = 0; i < channels; i++) { |
779 |
float *chunk = out + mtab->size * i;
|
780 |
float lsp[LSP_COEFS_MAX];
|
781 |
|
782 |
for (j = 0; j < sub; j++) { |
783 |
dec_bark_env(tctx, bark1[i][j], bark_use_hist[i][j], i, |
784 |
tctx->tmp_buf, gain[sub*i+j], ftype); |
785 |
|
786 |
tctx->dsp.vector_fmul(chunk + block_size*j, chunk + block_size*j, tctx->tmp_buf, |
787 |
block_size); |
788 |
|
789 |
} |
790 |
|
791 |
if (ftype == FT_LONG) {
|
792 |
float pgain_step = 25000. / ((1 << mtab->pgain_bit) - 1); |
793 |
int p_coef = get_bits(gb, tctx->mtab->ppc_period_bit);
|
794 |
int g_coef = get_bits(gb, tctx->mtab->pgain_bit);
|
795 |
float v = 1./8192* |
796 |
mulawinv(pgain_step*g_coef+ pgain_step/2, 25000., PGAIN_MU); |
797 |
|
798 |
decode_ppc(tctx, p_coef, ppc_shape + i*mtab->ppc_shape_len, v, |
799 |
chunk); |
800 |
} |
801 |
|
802 |
decode_lsp(tctx, lpc_idx1[i], lpc_idx2[i], lpc_hist_idx[i], lsp, |
803 |
tctx->lsp_hist[i]); |
804 |
|
805 |
dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf); |
806 |
|
807 |
for (j = 0; j < mtab->fmode[ftype].sub; j++) { |
808 |
tctx->dsp.vector_fmul(chunk, chunk, tctx->tmp_buf, block_size); |
809 |
chunk += block_size; |
810 |
} |
811 |
} |
812 |
} |
813 |
|
814 |
static int twin_decode_frame(AVCodecContext * avctx, void *data, |
815 |
int *data_size, AVPacket *avpkt)
|
816 |
{ |
817 |
const uint8_t *buf = avpkt->data;
|
818 |
int buf_size = avpkt->size;
|
819 |
TwinContext *tctx = avctx->priv_data; |
820 |
GetBitContext gb; |
821 |
const ModeTab *mtab = tctx->mtab;
|
822 |
float *out = data;
|
823 |
enum FrameType ftype;
|
824 |
int window_type;
|
825 |
static const enum FrameType wtype_to_ftype_table[] = { |
826 |
FT_LONG, FT_LONG, FT_SHORT, FT_LONG, |
827 |
FT_MEDIUM, FT_LONG, FT_LONG, FT_MEDIUM, FT_MEDIUM |
828 |
}; |
829 |
|
830 |
if (buf_size*8 < avctx->bit_rate*mtab->size/avctx->sample_rate + 8) { |
831 |
av_log(avctx, AV_LOG_ERROR, |
832 |
"Frame too small (%d bytes). Truncated file?\n", buf_size);
|
833 |
*data_size = 0;
|
834 |
return buf_size;
|
835 |
} |
836 |
|
837 |
init_get_bits(&gb, buf, buf_size * 8);
|
838 |
skip_bits(&gb, get_bits(&gb, 8));
|
839 |
window_type = get_bits(&gb, WINDOW_TYPE_BITS); |
840 |
|
841 |
if (window_type > 8) { |
842 |
av_log(avctx, AV_LOG_ERROR, "Invalid window type, broken sample?\n");
|
843 |
return -1; |
844 |
} |
845 |
|
846 |
ftype = wtype_to_ftype_table[window_type]; |
847 |
|
848 |
read_and_decode_spectrum(tctx, &gb, tctx->spectrum, ftype); |
849 |
|
850 |
imdct_output(tctx, ftype, window_type, out); |
851 |
|
852 |
FFSWAP(float*, tctx->curr_frame, tctx->prev_frame);
|
853 |
|
854 |
if (tctx->avctx->frame_number < 2) { |
855 |
*data_size=0;
|
856 |
return buf_size;
|
857 |
} |
858 |
|
859 |
*data_size = mtab->size*avctx->channels*4;
|
860 |
|
861 |
return buf_size;
|
862 |
} |
863 |
|
864 |
/**
|
865 |
* Init IMDCT and windowing tables
|
866 |
*/
|
867 |
static av_cold void init_mdct_win(TwinContext *tctx) |
868 |
{ |
869 |
int i,j;
|
870 |
const ModeTab *mtab = tctx->mtab;
|
871 |
int size_s = mtab->size / mtab->fmode[FT_SHORT].sub;
|
872 |
int size_m = mtab->size / mtab->fmode[FT_MEDIUM].sub;
|
873 |
int channels = tctx->avctx->channels;
|
874 |
float norm = channels == 1 ? 2. : 1.; |
875 |
|
876 |
for (i = 0; i < 3; i++) { |
877 |
int bsize = tctx->mtab->size/tctx->mtab->fmode[i].sub;
|
878 |
ff_mdct_init(&tctx->mdct_ctx[i], av_log2(bsize) + 1, 1, |
879 |
-sqrt(norm/bsize) / (1<<15)); |
880 |
} |
881 |
|
882 |
tctx->tmp_buf = av_malloc(mtab->size * sizeof(*tctx->tmp_buf));
|
883 |
|
884 |
tctx->spectrum = av_malloc(2*mtab->size*channels*sizeof(float)); |
885 |
tctx->curr_frame = av_malloc(2*mtab->size*channels*sizeof(float)); |
886 |
tctx->prev_frame = av_malloc(2*mtab->size*channels*sizeof(float)); |
887 |
|
888 |
for (i = 0; i < 3; i++) { |
889 |
int m = 4*mtab->size/mtab->fmode[i].sub; |
890 |
double freq = 2*M_PI/m; |
891 |
tctx->cos_tabs[i] = av_malloc((m/4)*sizeof(*tctx->cos_tabs)); |
892 |
|
893 |
for (j = 0; j <= m/8; j++) |
894 |
tctx->cos_tabs[i][j] = cos((2*j + 1)*freq); |
895 |
for (j = 1; j < m/8; j++) |
896 |
tctx->cos_tabs[i][m/4-j] = tctx->cos_tabs[i][j];
|
897 |
} |
898 |
|
899 |
|
900 |
ff_init_ff_sine_windows(av_log2(size_m)); |
901 |
ff_init_ff_sine_windows(av_log2(size_s/2));
|
902 |
ff_init_ff_sine_windows(av_log2(mtab->size)); |
903 |
} |
904 |
|
905 |
/**
|
906 |
* Interpret the data as if it were a num_blocks x line_len[0] matrix and for
|
907 |
* each line do a cyclic permutation, i.e.
|
908 |
* abcdefghijklm -> defghijklmabc
|
909 |
* where the amount to be shifted is evaluated depending on the column.
|
910 |
*/
|
911 |
static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks, |
912 |
int block_size,
|
913 |
const uint8_t line_len[2], int length_div, |
914 |
enum FrameType ftype)
|
915 |
|
916 |
{ |
917 |
int i,j;
|
918 |
|
919 |
for (i = 0; i < line_len[0]; i++) { |
920 |
int shift;
|
921 |
|
922 |
if (num_blocks == 1 || |
923 |
(ftype == FT_LONG && num_vect % num_blocks) || |
924 |
(ftype != FT_LONG && num_vect & 1 ) ||
|
925 |
i == line_len[1]) {
|
926 |
shift = 0;
|
927 |
} else if (ftype == FT_LONG) { |
928 |
shift = i; |
929 |
} else
|
930 |
shift = i*i; |
931 |
|
932 |
for (j = 0; j < num_vect && (j+num_vect*i < block_size*num_blocks); j++) |
933 |
tab[i*num_vect+j] = i*num_vect + (j + shift) % num_vect; |
934 |
} |
935 |
} |
936 |
|
937 |
/**
|
938 |
* Interpret the input data as in the following table:
|
939 |
*
|
940 |
* \verbatim
|
941 |
*
|
942 |
* abcdefgh
|
943 |
* ijklmnop
|
944 |
* qrstuvw
|
945 |
* x123456
|
946 |
*
|
947 |
* \endverbatim
|
948 |
*
|
949 |
* and transpose it, giving the output
|
950 |
* aiqxbjr1cks2dlt3emu4fvn5gow6hp
|
951 |
*/
|
952 |
static void transpose_perm(int16_t *out, int16_t *in, int num_vect, |
953 |
const uint8_t line_len[2], int length_div) |
954 |
{ |
955 |
int i,j;
|
956 |
int cont= 0; |
957 |
for (i = 0; i < num_vect; i++) |
958 |
for (j = 0; j < line_len[i >= length_div]; j++) |
959 |
out[cont++] = in[j*num_vect + i]; |
960 |
} |
961 |
|
962 |
static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size) |
963 |
{ |
964 |
int block_size = size/n_blocks;
|
965 |
int i;
|
966 |
|
967 |
for (i = 0; i < size; i++) |
968 |
out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks; |
969 |
} |
970 |
|
971 |
static av_cold void construct_perm_table(TwinContext *tctx,enum FrameType ftype) |
972 |
{ |
973 |
int block_size;
|
974 |
const ModeTab *mtab = tctx->mtab;
|
975 |
int size = tctx->avctx->channels*mtab->fmode[ftype].sub;
|
976 |
int16_t *tmp_perm = (int16_t *) tctx->tmp_buf; |
977 |
|
978 |
if (ftype == FT_PPC) {
|
979 |
size = tctx->avctx->channels; |
980 |
block_size = mtab->ppc_shape_len; |
981 |
} else
|
982 |
block_size = mtab->size / mtab->fmode[ftype].sub; |
983 |
|
984 |
permutate_in_line(tmp_perm, tctx->n_div[ftype], size, |
985 |
block_size, tctx->length[ftype], |
986 |
tctx->length_change[ftype], ftype); |
987 |
|
988 |
transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype], |
989 |
tctx->length[ftype], tctx->length_change[ftype]); |
990 |
|
991 |
linear_perm(tctx->permut[ftype], tctx->permut[ftype], size, |
992 |
size*block_size); |
993 |
} |
994 |
|
995 |
static av_cold void init_bitstream_params(TwinContext *tctx) |
996 |
{ |
997 |
const ModeTab *mtab = tctx->mtab;
|
998 |
int n_ch = tctx->avctx->channels;
|
999 |
int total_fr_bits = tctx->avctx->bit_rate*mtab->size/
|
1000 |
tctx->avctx->sample_rate; |
1001 |
|
1002 |
int lsp_bits_per_block = n_ch*(mtab->lsp_bit0 + mtab->lsp_bit1 +
|
1003 |
mtab->lsp_split*mtab->lsp_bit2); |
1004 |
|
1005 |
int ppc_bits = n_ch*(mtab->pgain_bit + mtab->ppc_shape_bit +
|
1006 |
mtab->ppc_period_bit); |
1007 |
|
1008 |
int bsize_no_main_cb[3]; |
1009 |
int bse_bits[3]; |
1010 |
int i;
|
1011 |
enum FrameType frametype;
|
1012 |
|
1013 |
for (i = 0; i < 3; i++) |
1014 |
// +1 for history usage switch
|
1015 |
bse_bits[i] = n_ch * |
1016 |
(mtab->fmode[i].bark_n_coef * mtab->fmode[i].bark_n_bit + 1);
|
1017 |
|
1018 |
bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits + |
1019 |
WINDOW_TYPE_BITS + n_ch*GAIN_BITS; |
1020 |
|
1021 |
for (i = 0; i < 2; i++) |
1022 |
bsize_no_main_cb[i] = |
1023 |
lsp_bits_per_block + n_ch*GAIN_BITS + WINDOW_TYPE_BITS + |
1024 |
mtab->fmode[i].sub*(bse_bits[i] + n_ch*SUB_GAIN_BITS); |
1025 |
|
1026 |
// The remaining bits are all used for the main spectrum coefficients
|
1027 |
for (i = 0; i < 4; i++) { |
1028 |
int bit_size;
|
1029 |
int vect_size;
|
1030 |
int rounded_up, rounded_down, num_rounded_down, num_rounded_up;
|
1031 |
if (i == 3) { |
1032 |
bit_size = n_ch * mtab->ppc_shape_bit; |
1033 |
vect_size = n_ch * mtab->ppc_shape_len; |
1034 |
} else {
|
1035 |
bit_size = total_fr_bits - bsize_no_main_cb[i]; |
1036 |
vect_size = n_ch * mtab->size; |
1037 |
} |
1038 |
|
1039 |
tctx->n_div[i] = (bit_size + 13) / 14; |
1040 |
|
1041 |
rounded_up = (bit_size + tctx->n_div[i] - 1)/tctx->n_div[i];
|
1042 |
rounded_down = (bit_size )/tctx->n_div[i]; |
1043 |
num_rounded_down = rounded_up * tctx->n_div[i] - bit_size; |
1044 |
num_rounded_up = tctx->n_div[i] - num_rounded_down; |
1045 |
tctx->bits_main_spec[0][i][0] = (rounded_up + 1)/2; |
1046 |
tctx->bits_main_spec[1][i][0] = (rounded_up )/2; |
1047 |
tctx->bits_main_spec[0][i][1] = (rounded_down + 1)/2; |
1048 |
tctx->bits_main_spec[1][i][1] = (rounded_down )/2; |
1049 |
tctx->bits_main_spec_change[i] = num_rounded_up; |
1050 |
|
1051 |
rounded_up = (vect_size + tctx->n_div[i] - 1)/tctx->n_div[i];
|
1052 |
rounded_down = (vect_size )/tctx->n_div[i]; |
1053 |
num_rounded_down = rounded_up * tctx->n_div[i] - vect_size; |
1054 |
num_rounded_up = tctx->n_div[i] - num_rounded_down; |
1055 |
tctx->length[i][0] = rounded_up;
|
1056 |
tctx->length[i][1] = rounded_down;
|
1057 |
tctx->length_change[i] = num_rounded_up; |
1058 |
} |
1059 |
|
1060 |
for (frametype = FT_SHORT; frametype <= FT_PPC; frametype++)
|
1061 |
construct_perm_table(tctx, frametype); |
1062 |
} |
1063 |
|
1064 |
static av_cold int twin_decode_init(AVCodecContext *avctx) |
1065 |
{ |
1066 |
TwinContext *tctx = avctx->priv_data; |
1067 |
int isampf = avctx->sample_rate/1000; |
1068 |
int ibps = avctx->bit_rate/(1000 * avctx->channels); |
1069 |
|
1070 |
tctx->avctx = avctx; |
1071 |
avctx->sample_fmt = AV_SAMPLE_FMT_FLT; |
1072 |
|
1073 |
if (avctx->channels > CHANNELS_MAX) {
|
1074 |
av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %i\n",
|
1075 |
avctx->channels); |
1076 |
return -1; |
1077 |
} |
1078 |
|
1079 |
switch ((isampf << 8) + ibps) { |
1080 |
case (8 <<8) + 8: tctx->mtab = &mode_08_08; break; |
1081 |
case (11<<8) + 8: tctx->mtab = &mode_11_08; break; |
1082 |
case (11<<8) + 10: tctx->mtab = &mode_11_10; break; |
1083 |
case (16<<8) + 16: tctx->mtab = &mode_16_16; break; |
1084 |
case (22<<8) + 20: tctx->mtab = &mode_22_20; break; |
1085 |
case (22<<8) + 24: tctx->mtab = &mode_22_24; break; |
1086 |
case (22<<8) + 32: tctx->mtab = &mode_22_32; break; |
1087 |
case (44<<8) + 40: tctx->mtab = &mode_44_40; break; |
1088 |
case (44<<8) + 48: tctx->mtab = &mode_44_48; break; |
1089 |
default:
|
1090 |
av_log(avctx, AV_LOG_ERROR, "This version does not support %d kHz - %d kbit/s/ch mode.\n", isampf, isampf);
|
1091 |
return -1; |
1092 |
} |
1093 |
|
1094 |
dsputil_init(&tctx->dsp, avctx); |
1095 |
init_mdct_win(tctx); |
1096 |
init_bitstream_params(tctx); |
1097 |
|
1098 |
memset_float(tctx->bark_hist[0][0], 0.1, FF_ARRAY_ELEMS(tctx->bark_hist)); |
1099 |
|
1100 |
return 0; |
1101 |
} |
1102 |
|
1103 |
static av_cold int twin_decode_close(AVCodecContext *avctx) |
1104 |
{ |
1105 |
TwinContext *tctx = avctx->priv_data; |
1106 |
int i;
|
1107 |
|
1108 |
for (i = 0; i < 3; i++) { |
1109 |
ff_mdct_end(&tctx->mdct_ctx[i]); |
1110 |
av_free(tctx->cos_tabs[i]); |
1111 |
} |
1112 |
|
1113 |
|
1114 |
av_free(tctx->curr_frame); |
1115 |
av_free(tctx->spectrum); |
1116 |
av_free(tctx->prev_frame); |
1117 |
av_free(tctx->tmp_buf); |
1118 |
|
1119 |
return 0; |
1120 |
} |
1121 |
|
1122 |
AVCodec ff_twinvq_decoder = |
1123 |
{ |
1124 |
"twinvq",
|
1125 |
AVMEDIA_TYPE_AUDIO, |
1126 |
CODEC_ID_TWINVQ, |
1127 |
sizeof(TwinContext),
|
1128 |
twin_decode_init, |
1129 |
NULL,
|
1130 |
twin_decode_close, |
1131 |
twin_decode_frame, |
1132 |
.long_name = NULL_IF_CONFIG_SMALL("VQF TwinVQ"),
|
1133 |
}; |