ffmpeg / libavcodec / vp3.c @ d37f007d
History | View | Annotate | Download (94.1 KB)
1 |
/*
|
---|---|
2 |
* Copyright (C) 2003-2004 the ffmpeg project
|
3 |
*
|
4 |
* This file is part of FFmpeg.
|
5 |
*
|
6 |
* FFmpeg is free software; you can redistribute it and/or
|
7 |
* modify it under the terms of the GNU Lesser General Public
|
8 |
* License as published by the Free Software Foundation; either
|
9 |
* version 2.1 of the License, or (at your option) any later version.
|
10 |
*
|
11 |
* FFmpeg is distributed in the hope that it will be useful,
|
12 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
14 |
* Lesser General Public License for more details.
|
15 |
*
|
16 |
* You should have received a copy of the GNU Lesser General Public
|
17 |
* License along with FFmpeg; if not, write to the Free Software
|
18 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
19 |
*/
|
20 |
|
21 |
/**
|
22 |
* @file vp3.c
|
23 |
* On2 VP3 Video Decoder
|
24 |
*
|
25 |
* VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
|
26 |
* For more information about the VP3 coding process, visit:
|
27 |
* http://multimedia.cx/
|
28 |
*
|
29 |
* Theora decoder by Alex Beregszaszi
|
30 |
*/
|
31 |
|
32 |
#include <stdio.h> |
33 |
#include <stdlib.h> |
34 |
#include <string.h> |
35 |
#include <unistd.h> |
36 |
|
37 |
#include "avcodec.h" |
38 |
#include "dsputil.h" |
39 |
#include "bitstream.h" |
40 |
|
41 |
#include "vp3data.h" |
42 |
#include "xiph.h" |
43 |
|
44 |
#define FRAGMENT_PIXELS 8 |
45 |
|
46 |
/*
|
47 |
* Debugging Variables
|
48 |
*
|
49 |
* Define one or more of the following compile-time variables to 1 to obtain
|
50 |
* elaborate information about certain aspects of the decoding process.
|
51 |
*
|
52 |
* KEYFRAMES_ONLY: set this to 1 to only see keyframes (VP3 slideshow mode)
|
53 |
* DEBUG_VP3: high-level decoding flow
|
54 |
* DEBUG_INIT: initialization parameters
|
55 |
* DEBUG_DEQUANTIZERS: display how the dequanization tables are built
|
56 |
* DEBUG_BLOCK_CODING: unpacking the superblock/macroblock/fragment coding
|
57 |
* DEBUG_MODES: unpacking the coding modes for individual fragments
|
58 |
* DEBUG_VECTORS: display the motion vectors
|
59 |
* DEBUG_TOKEN: display exhaustive information about each DCT token
|
60 |
* DEBUG_VLC: display the VLCs as they are extracted from the stream
|
61 |
* DEBUG_DC_PRED: display the process of reversing DC prediction
|
62 |
* DEBUG_IDCT: show every detail of the IDCT process
|
63 |
*/
|
64 |
|
65 |
#define KEYFRAMES_ONLY 0 |
66 |
|
67 |
#define DEBUG_VP3 0 |
68 |
#define DEBUG_INIT 0 |
69 |
#define DEBUG_DEQUANTIZERS 0 |
70 |
#define DEBUG_BLOCK_CODING 0 |
71 |
#define DEBUG_MODES 0 |
72 |
#define DEBUG_VECTORS 0 |
73 |
#define DEBUG_TOKEN 0 |
74 |
#define DEBUG_VLC 0 |
75 |
#define DEBUG_DC_PRED 0 |
76 |
#define DEBUG_IDCT 0 |
77 |
|
78 |
#if DEBUG_VP3
|
79 |
#define debug_vp3(args...) av_log(NULL, AV_LOG_DEBUG, ## args) |
80 |
#else
|
81 |
static inline void debug_vp3(const char *format, ...) { } |
82 |
#endif
|
83 |
|
84 |
#if DEBUG_INIT
|
85 |
#define debug_init(args...) av_log(NULL, AV_LOG_DEBUG, ## args) |
86 |
#else
|
87 |
static inline void debug_init(const char *format, ...) { } |
88 |
#endif
|
89 |
|
90 |
#if DEBUG_DEQUANTIZERS
|
91 |
#define debug_dequantizers(args...) av_log(NULL, AV_LOG_DEBUG, ## args) |
92 |
#else
|
93 |
static inline void debug_dequantizers(const char *format, ...) { } |
94 |
#endif
|
95 |
|
96 |
#if DEBUG_BLOCK_CODING
|
97 |
#define debug_block_coding(args...) av_log(NULL, AV_LOG_DEBUG, ## args) |
98 |
#else
|
99 |
static inline void debug_block_coding(const char *format, ...) { } |
100 |
#endif
|
101 |
|
102 |
#if DEBUG_MODES
|
103 |
#define debug_modes(args...) av_log(NULL, AV_LOG_DEBUG, ## args) |
104 |
#else
|
105 |
static inline void debug_modes(const char *format, ...) { } |
106 |
#endif
|
107 |
|
108 |
#if DEBUG_VECTORS
|
109 |
#define debug_vectors(args...) av_log(NULL, AV_LOG_DEBUG, ## args) |
110 |
#else
|
111 |
static inline void debug_vectors(const char *format, ...) { } |
112 |
#endif
|
113 |
|
114 |
#if DEBUG_TOKEN
|
115 |
#define debug_token(args...) av_log(NULL, AV_LOG_DEBUG, ## args) |
116 |
#else
|
117 |
static inline void debug_token(const char *format, ...) { } |
118 |
#endif
|
119 |
|
120 |
#if DEBUG_VLC
|
121 |
#define debug_vlc(args...) av_log(NULL, AV_LOG_DEBUG, ## args) |
122 |
#else
|
123 |
static inline void debug_vlc(const char *format, ...) { } |
124 |
#endif
|
125 |
|
126 |
#if DEBUG_DC_PRED
|
127 |
#define debug_dc_pred(args...) av_log(NULL, AV_LOG_DEBUG, ## args) |
128 |
#else
|
129 |
static inline void debug_dc_pred(const char *format, ...) { } |
130 |
#endif
|
131 |
|
132 |
#if DEBUG_IDCT
|
133 |
#define debug_idct(args...) av_log(NULL, AV_LOG_DEBUG, ## args) |
134 |
#else
|
135 |
static inline void debug_idct(const char *format, ...) { } |
136 |
#endif
|
137 |
|
138 |
typedef struct Coeff { |
139 |
struct Coeff *next;
|
140 |
DCTELEM coeff; |
141 |
uint8_t index; |
142 |
} Coeff; |
143 |
|
144 |
//FIXME split things out into their own arrays
|
145 |
typedef struct Vp3Fragment { |
146 |
Coeff *next_coeff; |
147 |
/* address of first pixel taking into account which plane the fragment
|
148 |
* lives on as well as the plane stride */
|
149 |
int first_pixel;
|
150 |
/* this is the macroblock that the fragment belongs to */
|
151 |
uint16_t macroblock; |
152 |
uint8_t coding_method; |
153 |
uint8_t coeff_count; |
154 |
int8_t motion_x; |
155 |
int8_t motion_y; |
156 |
} Vp3Fragment; |
157 |
|
158 |
#define SB_NOT_CODED 0 |
159 |
#define SB_PARTIALLY_CODED 1 |
160 |
#define SB_FULLY_CODED 2 |
161 |
|
162 |
#define MODE_INTER_NO_MV 0 |
163 |
#define MODE_INTRA 1 |
164 |
#define MODE_INTER_PLUS_MV 2 |
165 |
#define MODE_INTER_LAST_MV 3 |
166 |
#define MODE_INTER_PRIOR_LAST 4 |
167 |
#define MODE_USING_GOLDEN 5 |
168 |
#define MODE_GOLDEN_MV 6 |
169 |
#define MODE_INTER_FOURMV 7 |
170 |
#define CODING_MODE_COUNT 8 |
171 |
|
172 |
/* special internal mode */
|
173 |
#define MODE_COPY 8 |
174 |
|
175 |
/* There are 6 preset schemes, plus a free-form scheme */
|
176 |
static int ModeAlphabet[7][CODING_MODE_COUNT] = |
177 |
{ |
178 |
/* this is the custom scheme */
|
179 |
{ 0, 0, 0, 0, 0, 0, 0, 0 }, |
180 |
|
181 |
/* scheme 1: Last motion vector dominates */
|
182 |
{ MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, |
183 |
MODE_INTER_PLUS_MV, MODE_INTER_NO_MV, |
184 |
MODE_INTRA, MODE_USING_GOLDEN, |
185 |
MODE_GOLDEN_MV, MODE_INTER_FOURMV }, |
186 |
|
187 |
/* scheme 2 */
|
188 |
{ MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, |
189 |
MODE_INTER_NO_MV, MODE_INTER_PLUS_MV, |
190 |
MODE_INTRA, MODE_USING_GOLDEN, |
191 |
MODE_GOLDEN_MV, MODE_INTER_FOURMV }, |
192 |
|
193 |
/* scheme 3 */
|
194 |
{ MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV, |
195 |
MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV, |
196 |
MODE_INTRA, MODE_USING_GOLDEN, |
197 |
MODE_GOLDEN_MV, MODE_INTER_FOURMV }, |
198 |
|
199 |
/* scheme 4 */
|
200 |
{ MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV, |
201 |
MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST, |
202 |
MODE_INTRA, MODE_USING_GOLDEN, |
203 |
MODE_GOLDEN_MV, MODE_INTER_FOURMV }, |
204 |
|
205 |
/* scheme 5: No motion vector dominates */
|
206 |
{ MODE_INTER_NO_MV, MODE_INTER_LAST_MV, |
207 |
MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV, |
208 |
MODE_INTRA, MODE_USING_GOLDEN, |
209 |
MODE_GOLDEN_MV, MODE_INTER_FOURMV }, |
210 |
|
211 |
/* scheme 6 */
|
212 |
{ MODE_INTER_NO_MV, MODE_USING_GOLDEN, |
213 |
MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, |
214 |
MODE_INTER_PLUS_MV, MODE_INTRA, |
215 |
MODE_GOLDEN_MV, MODE_INTER_FOURMV }, |
216 |
|
217 |
}; |
218 |
|
219 |
#define MIN_DEQUANT_VAL 2 |
220 |
|
221 |
typedef struct Vp3DecodeContext { |
222 |
AVCodecContext *avctx; |
223 |
int theora, theora_tables;
|
224 |
int version;
|
225 |
int width, height;
|
226 |
AVFrame golden_frame; |
227 |
AVFrame last_frame; |
228 |
AVFrame current_frame; |
229 |
int keyframe;
|
230 |
DSPContext dsp; |
231 |
int flipped_image;
|
232 |
|
233 |
int qis[3]; |
234 |
int nqis;
|
235 |
int quality_index;
|
236 |
int last_quality_index;
|
237 |
|
238 |
int superblock_count;
|
239 |
int superblock_width;
|
240 |
int superblock_height;
|
241 |
int y_superblock_width;
|
242 |
int y_superblock_height;
|
243 |
int c_superblock_width;
|
244 |
int c_superblock_height;
|
245 |
int u_superblock_start;
|
246 |
int v_superblock_start;
|
247 |
unsigned char *superblock_coding; |
248 |
|
249 |
int macroblock_count;
|
250 |
int macroblock_width;
|
251 |
int macroblock_height;
|
252 |
|
253 |
int fragment_count;
|
254 |
int fragment_width;
|
255 |
int fragment_height;
|
256 |
|
257 |
Vp3Fragment *all_fragments; |
258 |
Coeff *coeffs; |
259 |
Coeff *next_coeff; |
260 |
int fragment_start[3]; |
261 |
|
262 |
ScanTable scantable; |
263 |
|
264 |
/* tables */
|
265 |
uint16_t coded_dc_scale_factor[64];
|
266 |
uint32_t coded_ac_scale_factor[64];
|
267 |
uint8_t base_matrix[384][64]; |
268 |
uint8_t qr_count[2][3]; |
269 |
uint8_t qr_size [2][3][64]; |
270 |
uint16_t qr_base[2][3][64]; |
271 |
|
272 |
/* this is a list of indices into the all_fragments array indicating
|
273 |
* which of the fragments are coded */
|
274 |
int *coded_fragment_list;
|
275 |
int coded_fragment_list_index;
|
276 |
int pixel_addresses_initialized;
|
277 |
|
278 |
VLC dc_vlc[16];
|
279 |
VLC ac_vlc_1[16];
|
280 |
VLC ac_vlc_2[16];
|
281 |
VLC ac_vlc_3[16];
|
282 |
VLC ac_vlc_4[16];
|
283 |
|
284 |
VLC superblock_run_length_vlc; |
285 |
VLC fragment_run_length_vlc; |
286 |
VLC mode_code_vlc; |
287 |
VLC motion_vector_vlc; |
288 |
|
289 |
/* these arrays need to be on 16-byte boundaries since SSE2 operations
|
290 |
* index into them */
|
291 |
DECLARE_ALIGNED_16(int16_t, qmat[2][4][64]); //<qmat[is_inter][plane] |
292 |
|
293 |
/* This table contains superblock_count * 16 entries. Each set of 16
|
294 |
* numbers corresponds to the fragment indices 0..15 of the superblock.
|
295 |
* An entry will be -1 to indicate that no entry corresponds to that
|
296 |
* index. */
|
297 |
int *superblock_fragments;
|
298 |
|
299 |
/* This table contains superblock_count * 4 entries. Each set of 4
|
300 |
* numbers corresponds to the macroblock indices 0..3 of the superblock.
|
301 |
* An entry will be -1 to indicate that no entry corresponds to that
|
302 |
* index. */
|
303 |
int *superblock_macroblocks;
|
304 |
|
305 |
/* This table contains macroblock_count * 6 entries. Each set of 6
|
306 |
* numbers corresponds to the fragment indices 0..5 which comprise
|
307 |
* the macroblock (4 Y fragments and 2 C fragments). */
|
308 |
int *macroblock_fragments;
|
309 |
/* This is an array that indicates how a particular macroblock
|
310 |
* is coded. */
|
311 |
unsigned char *macroblock_coding; |
312 |
|
313 |
int first_coded_y_fragment;
|
314 |
int first_coded_c_fragment;
|
315 |
int last_coded_y_fragment;
|
316 |
int last_coded_c_fragment;
|
317 |
|
318 |
uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc |
319 |
int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16 |
320 |
|
321 |
/* Huffman decode */
|
322 |
int hti;
|
323 |
unsigned int hbits; |
324 |
int entries;
|
325 |
int huff_code_size;
|
326 |
uint16_t huffman_table[80][32][2]; |
327 |
|
328 |
uint32_t filter_limit_values[64];
|
329 |
int bounding_values_array[256]; |
330 |
} Vp3DecodeContext; |
331 |
|
332 |
/************************************************************************
|
333 |
* VP3 specific functions
|
334 |
************************************************************************/
|
335 |
|
336 |
/*
|
337 |
* This function sets up all of the various blocks mappings:
|
338 |
* superblocks <-> fragments, macroblocks <-> fragments,
|
339 |
* superblocks <-> macroblocks
|
340 |
*
|
341 |
* Returns 0 is successful; returns 1 if *anything* went wrong.
|
342 |
*/
|
343 |
static int init_block_mapping(Vp3DecodeContext *s) |
344 |
{ |
345 |
int i, j;
|
346 |
signed int hilbert_walk_mb[4]; |
347 |
|
348 |
int current_fragment = 0; |
349 |
int current_width = 0; |
350 |
int current_height = 0; |
351 |
int right_edge = 0; |
352 |
int bottom_edge = 0; |
353 |
int superblock_row_inc = 0; |
354 |
int *hilbert = NULL; |
355 |
int mapping_index = 0; |
356 |
|
357 |
int current_macroblock;
|
358 |
int c_fragment;
|
359 |
|
360 |
signed char travel_width[16] = { |
361 |
1, 1, 0, -1, |
362 |
0, 0, 1, 0, |
363 |
1, 0, 1, 0, |
364 |
0, -1, 0, 1 |
365 |
}; |
366 |
|
367 |
signed char travel_height[16] = { |
368 |
0, 0, 1, 0, |
369 |
1, 1, 0, -1, |
370 |
0, 1, 0, -1, |
371 |
-1, 0, -1, 0 |
372 |
}; |
373 |
|
374 |
signed char travel_width_mb[4] = { |
375 |
1, 0, 1, 0 |
376 |
}; |
377 |
|
378 |
signed char travel_height_mb[4] = { |
379 |
0, 1, 0, -1 |
380 |
}; |
381 |
|
382 |
debug_vp3(" vp3: initialize block mapping tables\n");
|
383 |
|
384 |
hilbert_walk_mb[0] = 1; |
385 |
hilbert_walk_mb[1] = s->macroblock_width;
|
386 |
hilbert_walk_mb[2] = 1; |
387 |
hilbert_walk_mb[3] = -s->macroblock_width;
|
388 |
|
389 |
/* iterate through each superblock (all planes) and map the fragments */
|
390 |
for (i = 0; i < s->superblock_count; i++) { |
391 |
debug_init(" superblock %d (u starts @ %d, v starts @ %d)\n",
|
392 |
i, s->u_superblock_start, s->v_superblock_start); |
393 |
|
394 |
/* time to re-assign the limits? */
|
395 |
if (i == 0) { |
396 |
|
397 |
/* start of Y superblocks */
|
398 |
right_edge = s->fragment_width; |
399 |
bottom_edge = s->fragment_height; |
400 |
current_width = -1;
|
401 |
current_height = 0;
|
402 |
superblock_row_inc = 3 * s->fragment_width -
|
403 |
(s->y_superblock_width * 4 - s->fragment_width);
|
404 |
|
405 |
/* the first operation for this variable is to advance by 1 */
|
406 |
current_fragment = -1;
|
407 |
|
408 |
} else if (i == s->u_superblock_start) { |
409 |
|
410 |
/* start of U superblocks */
|
411 |
right_edge = s->fragment_width / 2;
|
412 |
bottom_edge = s->fragment_height / 2;
|
413 |
current_width = -1;
|
414 |
current_height = 0;
|
415 |
superblock_row_inc = 3 * (s->fragment_width / 2) - |
416 |
(s->c_superblock_width * 4 - s->fragment_width / 2); |
417 |
|
418 |
/* the first operation for this variable is to advance by 1 */
|
419 |
current_fragment = s->fragment_start[1] - 1; |
420 |
|
421 |
} else if (i == s->v_superblock_start) { |
422 |
|
423 |
/* start of V superblocks */
|
424 |
right_edge = s->fragment_width / 2;
|
425 |
bottom_edge = s->fragment_height / 2;
|
426 |
current_width = -1;
|
427 |
current_height = 0;
|
428 |
superblock_row_inc = 3 * (s->fragment_width / 2) - |
429 |
(s->c_superblock_width * 4 - s->fragment_width / 2); |
430 |
|
431 |
/* the first operation for this variable is to advance by 1 */
|
432 |
current_fragment = s->fragment_start[2] - 1; |
433 |
|
434 |
} |
435 |
|
436 |
if (current_width >= right_edge - 1) { |
437 |
/* reset width and move to next superblock row */
|
438 |
current_width = -1;
|
439 |
current_height += 4;
|
440 |
|
441 |
/* fragment is now at the start of a new superblock row */
|
442 |
current_fragment += superblock_row_inc; |
443 |
} |
444 |
|
445 |
/* iterate through all 16 fragments in a superblock */
|
446 |
for (j = 0; j < 16; j++) { |
447 |
current_fragment += travel_width[j] + right_edge * travel_height[j]; |
448 |
current_width += travel_width[j]; |
449 |
current_height += travel_height[j]; |
450 |
|
451 |
/* check if the fragment is in bounds */
|
452 |
if ((current_width < right_edge) &&
|
453 |
(current_height < bottom_edge)) { |
454 |
s->superblock_fragments[mapping_index] = current_fragment; |
455 |
debug_init(" mapping fragment %d to superblock %d, position %d (%d/%d x %d/%d)\n",
|
456 |
s->superblock_fragments[mapping_index], i, j, |
457 |
current_width, right_edge, current_height, bottom_edge); |
458 |
} else {
|
459 |
s->superblock_fragments[mapping_index] = -1;
|
460 |
debug_init(" superblock %d, position %d has no fragment (%d/%d x %d/%d)\n",
|
461 |
i, j, |
462 |
current_width, right_edge, current_height, bottom_edge); |
463 |
} |
464 |
|
465 |
mapping_index++; |
466 |
} |
467 |
} |
468 |
|
469 |
/* initialize the superblock <-> macroblock mapping; iterate through
|
470 |
* all of the Y plane superblocks to build this mapping */
|
471 |
right_edge = s->macroblock_width; |
472 |
bottom_edge = s->macroblock_height; |
473 |
current_width = -1;
|
474 |
current_height = 0;
|
475 |
superblock_row_inc = s->macroblock_width - |
476 |
(s->y_superblock_width * 2 - s->macroblock_width);
|
477 |
hilbert = hilbert_walk_mb; |
478 |
mapping_index = 0;
|
479 |
current_macroblock = -1;
|
480 |
for (i = 0; i < s->u_superblock_start; i++) { |
481 |
|
482 |
if (current_width >= right_edge - 1) { |
483 |
/* reset width and move to next superblock row */
|
484 |
current_width = -1;
|
485 |
current_height += 2;
|
486 |
|
487 |
/* macroblock is now at the start of a new superblock row */
|
488 |
current_macroblock += superblock_row_inc; |
489 |
} |
490 |
|
491 |
/* iterate through each potential macroblock in the superblock */
|
492 |
for (j = 0; j < 4; j++) { |
493 |
current_macroblock += hilbert_walk_mb[j]; |
494 |
current_width += travel_width_mb[j]; |
495 |
current_height += travel_height_mb[j]; |
496 |
|
497 |
/* check if the macroblock is in bounds */
|
498 |
if ((current_width < right_edge) &&
|
499 |
(current_height < bottom_edge)) { |
500 |
s->superblock_macroblocks[mapping_index] = current_macroblock; |
501 |
debug_init(" mapping macroblock %d to superblock %d, position %d (%d/%d x %d/%d)\n",
|
502 |
s->superblock_macroblocks[mapping_index], i, j, |
503 |
current_width, right_edge, current_height, bottom_edge); |
504 |
} else {
|
505 |
s->superblock_macroblocks[mapping_index] = -1;
|
506 |
debug_init(" superblock %d, position %d has no macroblock (%d/%d x %d/%d)\n",
|
507 |
i, j, |
508 |
current_width, right_edge, current_height, bottom_edge); |
509 |
} |
510 |
|
511 |
mapping_index++; |
512 |
} |
513 |
} |
514 |
|
515 |
/* initialize the macroblock <-> fragment mapping */
|
516 |
current_fragment = 0;
|
517 |
current_macroblock = 0;
|
518 |
mapping_index = 0;
|
519 |
for (i = 0; i < s->fragment_height; i += 2) { |
520 |
|
521 |
for (j = 0; j < s->fragment_width; j += 2) { |
522 |
|
523 |
debug_init(" macroblock %d contains fragments: ", current_macroblock);
|
524 |
s->all_fragments[current_fragment].macroblock = current_macroblock; |
525 |
s->macroblock_fragments[mapping_index++] = current_fragment; |
526 |
debug_init("%d ", current_fragment);
|
527 |
|
528 |
if (j + 1 < s->fragment_width) { |
529 |
s->all_fragments[current_fragment + 1].macroblock = current_macroblock;
|
530 |
s->macroblock_fragments[mapping_index++] = current_fragment + 1;
|
531 |
debug_init("%d ", current_fragment + 1); |
532 |
} else
|
533 |
s->macroblock_fragments[mapping_index++] = -1;
|
534 |
|
535 |
if (i + 1 < s->fragment_height) { |
536 |
s->all_fragments[current_fragment + s->fragment_width].macroblock = |
537 |
current_macroblock; |
538 |
s->macroblock_fragments[mapping_index++] = |
539 |
current_fragment + s->fragment_width; |
540 |
debug_init("%d ", current_fragment + s->fragment_width);
|
541 |
} else
|
542 |
s->macroblock_fragments[mapping_index++] = -1;
|
543 |
|
544 |
if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) { |
545 |
s->all_fragments[current_fragment + s->fragment_width + 1].macroblock =
|
546 |
current_macroblock; |
547 |
s->macroblock_fragments[mapping_index++] = |
548 |
current_fragment + s->fragment_width + 1;
|
549 |
debug_init("%d ", current_fragment + s->fragment_width + 1); |
550 |
} else
|
551 |
s->macroblock_fragments[mapping_index++] = -1;
|
552 |
|
553 |
/* C planes */
|
554 |
c_fragment = s->fragment_start[1] +
|
555 |
(i * s->fragment_width / 4) + (j / 2); |
556 |
s->all_fragments[c_fragment].macroblock = s->macroblock_count; |
557 |
s->macroblock_fragments[mapping_index++] = c_fragment; |
558 |
debug_init("%d ", c_fragment);
|
559 |
|
560 |
c_fragment = s->fragment_start[2] +
|
561 |
(i * s->fragment_width / 4) + (j / 2); |
562 |
s->all_fragments[c_fragment].macroblock = s->macroblock_count; |
563 |
s->macroblock_fragments[mapping_index++] = c_fragment; |
564 |
debug_init("%d ", c_fragment);
|
565 |
|
566 |
debug_init("\n");
|
567 |
|
568 |
if (j + 2 <= s->fragment_width) |
569 |
current_fragment += 2;
|
570 |
else
|
571 |
current_fragment++; |
572 |
current_macroblock++; |
573 |
} |
574 |
|
575 |
current_fragment += s->fragment_width; |
576 |
} |
577 |
|
578 |
return 0; /* successful path out */ |
579 |
} |
580 |
|
581 |
/*
|
582 |
* This function wipes out all of the fragment data.
|
583 |
*/
|
584 |
static void init_frame(Vp3DecodeContext *s, GetBitContext *gb) |
585 |
{ |
586 |
int i;
|
587 |
|
588 |
/* zero out all of the fragment information */
|
589 |
s->coded_fragment_list_index = 0;
|
590 |
for (i = 0; i < s->fragment_count; i++) { |
591 |
s->all_fragments[i].coeff_count = 0;
|
592 |
s->all_fragments[i].motion_x = 127;
|
593 |
s->all_fragments[i].motion_y = 127;
|
594 |
s->all_fragments[i].next_coeff= NULL;
|
595 |
s->coeffs[i].index= |
596 |
s->coeffs[i].coeff=0;
|
597 |
s->coeffs[i].next= NULL;
|
598 |
} |
599 |
} |
600 |
|
601 |
/*
|
602 |
* This function sets up the dequantization tables used for a particular
|
603 |
* frame.
|
604 |
*/
|
605 |
static void init_dequantizer(Vp3DecodeContext *s) |
606 |
{ |
607 |
int ac_scale_factor = s->coded_ac_scale_factor[s->quality_index];
|
608 |
int dc_scale_factor = s->coded_dc_scale_factor[s->quality_index];
|
609 |
int i, plane, inter, qri, bmi, bmj, qistart;
|
610 |
|
611 |
debug_vp3(" vp3: initializing dequantization tables\n");
|
612 |
|
613 |
for(inter=0; inter<2; inter++){ |
614 |
for(plane=0; plane<3; plane++){ |
615 |
int sum=0; |
616 |
for(qri=0; qri<s->qr_count[inter][plane]; qri++){ |
617 |
sum+= s->qr_size[inter][plane][qri]; |
618 |
if(s->quality_index <= sum)
|
619 |
break;
|
620 |
} |
621 |
qistart= sum - s->qr_size[inter][plane][qri]; |
622 |
bmi= s->qr_base[inter][plane][qri ]; |
623 |
bmj= s->qr_base[inter][plane][qri+1];
|
624 |
for(i=0; i<64; i++){ |
625 |
int coeff= ( 2*(sum -s->quality_index)*s->base_matrix[bmi][i] |
626 |
- 2*(qistart-s->quality_index)*s->base_matrix[bmj][i]
|
627 |
+ s->qr_size[inter][plane][qri]) |
628 |
/ (2*s->qr_size[inter][plane][qri]);
|
629 |
|
630 |
int qmin= 8<<(inter + !i); |
631 |
int qscale= i ? ac_scale_factor : dc_scale_factor;
|
632 |
|
633 |
s->qmat[inter][plane][i]= av_clip((qscale * coeff)/100 * 4, qmin, 4096); |
634 |
} |
635 |
} |
636 |
} |
637 |
|
638 |
memset(s->qscale_table, (FFMAX(s->qmat[0][0][1], s->qmat[0][1][1])+8)/16, 512); //FIXME finetune |
639 |
} |
640 |
|
641 |
/*
|
642 |
* This function initializes the loop filter boundary limits if the frame's
|
643 |
* quality index is different from the previous frame's.
|
644 |
*/
|
645 |
static void init_loop_filter(Vp3DecodeContext *s) |
646 |
{ |
647 |
int *bounding_values= s->bounding_values_array+127; |
648 |
int filter_limit;
|
649 |
int x;
|
650 |
|
651 |
filter_limit = s->filter_limit_values[s->quality_index]; |
652 |
|
653 |
/* set up the bounding values */
|
654 |
memset(s->bounding_values_array, 0, 256 * sizeof(int)); |
655 |
for (x = 0; x < filter_limit; x++) { |
656 |
bounding_values[-x - filter_limit] = -filter_limit + x; |
657 |
bounding_values[-x] = -x; |
658 |
bounding_values[x] = x; |
659 |
bounding_values[x + filter_limit] = filter_limit - x; |
660 |
} |
661 |
} |
662 |
|
663 |
/*
|
664 |
* This function unpacks all of the superblock/macroblock/fragment coding
|
665 |
* information from the bitstream.
|
666 |
*/
|
667 |
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb) |
668 |
{ |
669 |
int bit = 0; |
670 |
int current_superblock = 0; |
671 |
int current_run = 0; |
672 |
int decode_fully_flags = 0; |
673 |
int decode_partial_blocks = 0; |
674 |
int first_c_fragment_seen;
|
675 |
|
676 |
int i, j;
|
677 |
int current_fragment;
|
678 |
|
679 |
debug_vp3(" vp3: unpacking superblock coding\n");
|
680 |
|
681 |
if (s->keyframe) {
|
682 |
|
683 |
debug_vp3(" keyframe-- all superblocks are fully coded\n");
|
684 |
memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count); |
685 |
|
686 |
} else {
|
687 |
|
688 |
/* unpack the list of partially-coded superblocks */
|
689 |
bit = get_bits1(gb); |
690 |
/* toggle the bit because as soon as the first run length is
|
691 |
* fetched the bit will be toggled again */
|
692 |
bit ^= 1;
|
693 |
while (current_superblock < s->superblock_count) {
|
694 |
if (current_run-- == 0) { |
695 |
bit ^= 1;
|
696 |
current_run = get_vlc2(gb, |
697 |
s->superblock_run_length_vlc.table, 6, 2); |
698 |
if (current_run == 33) |
699 |
current_run += get_bits(gb, 12);
|
700 |
debug_block_coding(" setting superblocks %d..%d to %s\n",
|
701 |
current_superblock, |
702 |
current_superblock + current_run - 1,
|
703 |
(bit) ? "partially coded" : "not coded"); |
704 |
|
705 |
/* if any of the superblocks are not partially coded, flag
|
706 |
* a boolean to decode the list of fully-coded superblocks */
|
707 |
if (bit == 0) { |
708 |
decode_fully_flags = 1;
|
709 |
} else {
|
710 |
|
711 |
/* make a note of the fact that there are partially coded
|
712 |
* superblocks */
|
713 |
decode_partial_blocks = 1;
|
714 |
} |
715 |
} |
716 |
s->superblock_coding[current_superblock++] = bit; |
717 |
} |
718 |
|
719 |
/* unpack the list of fully coded superblocks if any of the blocks were
|
720 |
* not marked as partially coded in the previous step */
|
721 |
if (decode_fully_flags) {
|
722 |
|
723 |
current_superblock = 0;
|
724 |
current_run = 0;
|
725 |
bit = get_bits1(gb); |
726 |
/* toggle the bit because as soon as the first run length is
|
727 |
* fetched the bit will be toggled again */
|
728 |
bit ^= 1;
|
729 |
while (current_superblock < s->superblock_count) {
|
730 |
|
731 |
/* skip any superblocks already marked as partially coded */
|
732 |
if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
|
733 |
|
734 |
if (current_run-- == 0) { |
735 |
bit ^= 1;
|
736 |
current_run = get_vlc2(gb, |
737 |
s->superblock_run_length_vlc.table, 6, 2); |
738 |
if (current_run == 33) |
739 |
current_run += get_bits(gb, 12);
|
740 |
} |
741 |
|
742 |
debug_block_coding(" setting superblock %d to %s\n",
|
743 |
current_superblock, |
744 |
(bit) ? "fully coded" : "not coded"); |
745 |
s->superblock_coding[current_superblock] = 2*bit;
|
746 |
} |
747 |
current_superblock++; |
748 |
} |
749 |
} |
750 |
|
751 |
/* if there were partial blocks, initialize bitstream for
|
752 |
* unpacking fragment codings */
|
753 |
if (decode_partial_blocks) {
|
754 |
|
755 |
current_run = 0;
|
756 |
bit = get_bits1(gb); |
757 |
/* toggle the bit because as soon as the first run length is
|
758 |
* fetched the bit will be toggled again */
|
759 |
bit ^= 1;
|
760 |
} |
761 |
} |
762 |
|
763 |
/* figure out which fragments are coded; iterate through each
|
764 |
* superblock (all planes) */
|
765 |
s->coded_fragment_list_index = 0;
|
766 |
s->next_coeff= s->coeffs + s->fragment_count; |
767 |
s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
|
768 |
s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
|
769 |
first_c_fragment_seen = 0;
|
770 |
memset(s->macroblock_coding, MODE_COPY, s->macroblock_count); |
771 |
for (i = 0; i < s->superblock_count; i++) { |
772 |
|
773 |
/* iterate through all 16 fragments in a superblock */
|
774 |
for (j = 0; j < 16; j++) { |
775 |
|
776 |
/* if the fragment is in bounds, check its coding status */
|
777 |
current_fragment = s->superblock_fragments[i * 16 + j];
|
778 |
if (current_fragment >= s->fragment_count) {
|
779 |
av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
|
780 |
current_fragment, s->fragment_count); |
781 |
return 1; |
782 |
} |
783 |
if (current_fragment != -1) { |
784 |
if (s->superblock_coding[i] == SB_NOT_CODED) {
|
785 |
|
786 |
/* copy all the fragments from the prior frame */
|
787 |
s->all_fragments[current_fragment].coding_method = |
788 |
MODE_COPY; |
789 |
|
790 |
} else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) { |
791 |
|
792 |
/* fragment may or may not be coded; this is the case
|
793 |
* that cares about the fragment coding runs */
|
794 |
if (current_run-- == 0) { |
795 |
bit ^= 1;
|
796 |
current_run = get_vlc2(gb, |
797 |
s->fragment_run_length_vlc.table, 5, 2); |
798 |
} |
799 |
|
800 |
if (bit) {
|
801 |
/* default mode; actual mode will be decoded in
|
802 |
* the next phase */
|
803 |
s->all_fragments[current_fragment].coding_method = |
804 |
MODE_INTER_NO_MV; |
805 |
s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment; |
806 |
s->coded_fragment_list[s->coded_fragment_list_index] = |
807 |
current_fragment; |
808 |
if ((current_fragment >= s->fragment_start[1]) && |
809 |
(s->last_coded_y_fragment == -1) &&
|
810 |
(!first_c_fragment_seen)) { |
811 |
s->first_coded_c_fragment = s->coded_fragment_list_index; |
812 |
s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
|
813 |
first_c_fragment_seen = 1;
|
814 |
} |
815 |
s->coded_fragment_list_index++; |
816 |
s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV; |
817 |
debug_block_coding(" superblock %d is partially coded, fragment %d is coded\n",
|
818 |
i, current_fragment); |
819 |
} else {
|
820 |
/* not coded; copy this fragment from the prior frame */
|
821 |
s->all_fragments[current_fragment].coding_method = |
822 |
MODE_COPY; |
823 |
debug_block_coding(" superblock %d is partially coded, fragment %d is not coded\n",
|
824 |
i, current_fragment); |
825 |
} |
826 |
|
827 |
} else {
|
828 |
|
829 |
/* fragments are fully coded in this superblock; actual
|
830 |
* coding will be determined in next step */
|
831 |
s->all_fragments[current_fragment].coding_method = |
832 |
MODE_INTER_NO_MV; |
833 |
s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment; |
834 |
s->coded_fragment_list[s->coded_fragment_list_index] = |
835 |
current_fragment; |
836 |
if ((current_fragment >= s->fragment_start[1]) && |
837 |
(s->last_coded_y_fragment == -1) &&
|
838 |
(!first_c_fragment_seen)) { |
839 |
s->first_coded_c_fragment = s->coded_fragment_list_index; |
840 |
s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
|
841 |
first_c_fragment_seen = 1;
|
842 |
} |
843 |
s->coded_fragment_list_index++; |
844 |
s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV; |
845 |
debug_block_coding(" superblock %d is fully coded, fragment %d is coded\n",
|
846 |
i, current_fragment); |
847 |
} |
848 |
} |
849 |
} |
850 |
} |
851 |
|
852 |
if (!first_c_fragment_seen)
|
853 |
/* only Y fragments coded in this frame */
|
854 |
s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
|
855 |
else
|
856 |
/* end the list of coded C fragments */
|
857 |
s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
|
858 |
|
859 |
debug_block_coding(" %d total coded fragments, y: %d -> %d, c: %d -> %d\n",
|
860 |
s->coded_fragment_list_index, |
861 |
s->first_coded_y_fragment, |
862 |
s->last_coded_y_fragment, |
863 |
s->first_coded_c_fragment, |
864 |
s->last_coded_c_fragment); |
865 |
|
866 |
return 0; |
867 |
} |
868 |
|
869 |
/*
|
870 |
* This function unpacks all the coding mode data for individual macroblocks
|
871 |
* from the bitstream.
|
872 |
*/
|
873 |
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb) |
874 |
{ |
875 |
int i, j, k;
|
876 |
int scheme;
|
877 |
int current_macroblock;
|
878 |
int current_fragment;
|
879 |
int coding_mode;
|
880 |
|
881 |
debug_vp3(" vp3: unpacking encoding modes\n");
|
882 |
|
883 |
if (s->keyframe) {
|
884 |
debug_vp3(" keyframe-- all blocks are coded as INTRA\n");
|
885 |
|
886 |
for (i = 0; i < s->fragment_count; i++) |
887 |
s->all_fragments[i].coding_method = MODE_INTRA; |
888 |
|
889 |
} else {
|
890 |
|
891 |
/* fetch the mode coding scheme for this frame */
|
892 |
scheme = get_bits(gb, 3);
|
893 |
debug_modes(" using mode alphabet %d\n", scheme);
|
894 |
|
895 |
/* is it a custom coding scheme? */
|
896 |
if (scheme == 0) { |
897 |
debug_modes(" custom mode alphabet ahead:\n");
|
898 |
for (i = 0; i < 8; i++) |
899 |
ModeAlphabet[scheme][get_bits(gb, 3)] = i;
|
900 |
} |
901 |
|
902 |
for (i = 0; i < 8; i++) |
903 |
debug_modes(" mode[%d][%d] = %d\n", scheme, i,
|
904 |
ModeAlphabet[scheme][i]); |
905 |
|
906 |
/* iterate through all of the macroblocks that contain 1 or more
|
907 |
* coded fragments */
|
908 |
for (i = 0; i < s->u_superblock_start; i++) { |
909 |
|
910 |
for (j = 0; j < 4; j++) { |
911 |
current_macroblock = s->superblock_macroblocks[i * 4 + j];
|
912 |
if ((current_macroblock == -1) || |
913 |
(s->macroblock_coding[current_macroblock] == MODE_COPY)) |
914 |
continue;
|
915 |
if (current_macroblock >= s->macroblock_count) {
|
916 |
av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_modes(): bad macroblock number (%d >= %d)\n",
|
917 |
current_macroblock, s->macroblock_count); |
918 |
return 1; |
919 |
} |
920 |
|
921 |
/* mode 7 means get 3 bits for each coding mode */
|
922 |
if (scheme == 7) |
923 |
coding_mode = get_bits(gb, 3);
|
924 |
else
|
925 |
coding_mode = ModeAlphabet[scheme] |
926 |
[get_vlc2(gb, s->mode_code_vlc.table, 3, 3)]; |
927 |
|
928 |
s->macroblock_coding[current_macroblock] = coding_mode; |
929 |
for (k = 0; k < 6; k++) { |
930 |
current_fragment = |
931 |
s->macroblock_fragments[current_macroblock * 6 + k];
|
932 |
if (current_fragment == -1) |
933 |
continue;
|
934 |
if (current_fragment >= s->fragment_count) {
|
935 |
av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_modes(): bad fragment number (%d >= %d)\n",
|
936 |
current_fragment, s->fragment_count); |
937 |
return 1; |
938 |
} |
939 |
if (s->all_fragments[current_fragment].coding_method !=
|
940 |
MODE_COPY) |
941 |
s->all_fragments[current_fragment].coding_method = |
942 |
coding_mode; |
943 |
} |
944 |
|
945 |
debug_modes(" coding method for macroblock starting @ fragment %d = %d\n",
|
946 |
s->macroblock_fragments[current_macroblock * 6], coding_mode);
|
947 |
} |
948 |
} |
949 |
} |
950 |
|
951 |
return 0; |
952 |
} |
953 |
|
954 |
/*
|
955 |
* This function unpacks all the motion vectors for the individual
|
956 |
* macroblocks from the bitstream.
|
957 |
*/
|
958 |
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb) |
959 |
{ |
960 |
int i, j, k;
|
961 |
int coding_mode;
|
962 |
int motion_x[6]; |
963 |
int motion_y[6]; |
964 |
int last_motion_x = 0; |
965 |
int last_motion_y = 0; |
966 |
int prior_last_motion_x = 0; |
967 |
int prior_last_motion_y = 0; |
968 |
int current_macroblock;
|
969 |
int current_fragment;
|
970 |
|
971 |
debug_vp3(" vp3: unpacking motion vectors\n");
|
972 |
if (s->keyframe) {
|
973 |
|
974 |
debug_vp3(" keyframe-- there are no motion vectors\n");
|
975 |
|
976 |
} else {
|
977 |
|
978 |
memset(motion_x, 0, 6 * sizeof(int)); |
979 |
memset(motion_y, 0, 6 * sizeof(int)); |
980 |
|
981 |
/* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
|
982 |
coding_mode = get_bits1(gb); |
983 |
debug_vectors(" using %s scheme for unpacking motion vectors\n",
|
984 |
(coding_mode == 0) ? "VLC" : "fixed-length"); |
985 |
|
986 |
/* iterate through all of the macroblocks that contain 1 or more
|
987 |
* coded fragments */
|
988 |
for (i = 0; i < s->u_superblock_start; i++) { |
989 |
|
990 |
for (j = 0; j < 4; j++) { |
991 |
current_macroblock = s->superblock_macroblocks[i * 4 + j];
|
992 |
if ((current_macroblock == -1) || |
993 |
(s->macroblock_coding[current_macroblock] == MODE_COPY)) |
994 |
continue;
|
995 |
if (current_macroblock >= s->macroblock_count) {
|
996 |
av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n",
|
997 |
current_macroblock, s->macroblock_count); |
998 |
return 1; |
999 |
} |
1000 |
|
1001 |
current_fragment = s->macroblock_fragments[current_macroblock * 6];
|
1002 |
if (current_fragment >= s->fragment_count) {
|
1003 |
av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad fragment number (%d >= %d\n",
|
1004 |
current_fragment, s->fragment_count); |
1005 |
return 1; |
1006 |
} |
1007 |
switch (s->macroblock_coding[current_macroblock]) {
|
1008 |
|
1009 |
case MODE_INTER_PLUS_MV:
|
1010 |
case MODE_GOLDEN_MV:
|
1011 |
/* all 6 fragments use the same motion vector */
|
1012 |
if (coding_mode == 0) { |
1013 |
motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; |
1014 |
motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; |
1015 |
} else {
|
1016 |
motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)]; |
1017 |
motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)]; |
1018 |
} |
1019 |
|
1020 |
for (k = 1; k < 6; k++) { |
1021 |
motion_x[k] = motion_x[0];
|
1022 |
motion_y[k] = motion_y[0];
|
1023 |
} |
1024 |
|
1025 |
/* vector maintenance, only on MODE_INTER_PLUS_MV */
|
1026 |
if (s->macroblock_coding[current_macroblock] ==
|
1027 |
MODE_INTER_PLUS_MV) { |
1028 |
prior_last_motion_x = last_motion_x; |
1029 |
prior_last_motion_y = last_motion_y; |
1030 |
last_motion_x = motion_x[0];
|
1031 |
last_motion_y = motion_y[0];
|
1032 |
} |
1033 |
break;
|
1034 |
|
1035 |
case MODE_INTER_FOURMV:
|
1036 |
/* fetch 4 vectors from the bitstream, one for each
|
1037 |
* Y fragment, then average for the C fragment vectors */
|
1038 |
motion_x[4] = motion_y[4] = 0; |
1039 |
for (k = 0; k < 4; k++) { |
1040 |
if (coding_mode == 0) { |
1041 |
motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; |
1042 |
motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)]; |
1043 |
} else {
|
1044 |
motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
|
1045 |
motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
|
1046 |
} |
1047 |
motion_x[4] += motion_x[k];
|
1048 |
motion_y[4] += motion_y[k];
|
1049 |
} |
1050 |
|
1051 |
motion_x[5]=
|
1052 |
motion_x[4]= RSHIFT(motion_x[4], 2); |
1053 |
motion_y[5]=
|
1054 |
motion_y[4]= RSHIFT(motion_y[4], 2); |
1055 |
|
1056 |
/* vector maintenance; vector[3] is treated as the
|
1057 |
* last vector in this case */
|
1058 |
prior_last_motion_x = last_motion_x; |
1059 |
prior_last_motion_y = last_motion_y; |
1060 |
last_motion_x = motion_x[3];
|
1061 |
last_motion_y = motion_y[3];
|
1062 |
break;
|
1063 |
|
1064 |
case MODE_INTER_LAST_MV:
|
1065 |
/* all 6 fragments use the last motion vector */
|
1066 |
motion_x[0] = last_motion_x;
|
1067 |
motion_y[0] = last_motion_y;
|
1068 |
for (k = 1; k < 6; k++) { |
1069 |
motion_x[k] = motion_x[0];
|
1070 |
motion_y[k] = motion_y[0];
|
1071 |
} |
1072 |
|
1073 |
/* no vector maintenance (last vector remains the
|
1074 |
* last vector) */
|
1075 |
break;
|
1076 |
|
1077 |
case MODE_INTER_PRIOR_LAST:
|
1078 |
/* all 6 fragments use the motion vector prior to the
|
1079 |
* last motion vector */
|
1080 |
motion_x[0] = prior_last_motion_x;
|
1081 |
motion_y[0] = prior_last_motion_y;
|
1082 |
for (k = 1; k < 6; k++) { |
1083 |
motion_x[k] = motion_x[0];
|
1084 |
motion_y[k] = motion_y[0];
|
1085 |
} |
1086 |
|
1087 |
/* vector maintenance */
|
1088 |
prior_last_motion_x = last_motion_x; |
1089 |
prior_last_motion_y = last_motion_y; |
1090 |
last_motion_x = motion_x[0];
|
1091 |
last_motion_y = motion_y[0];
|
1092 |
break;
|
1093 |
|
1094 |
default:
|
1095 |
/* covers intra, inter without MV, golden without MV */
|
1096 |
memset(motion_x, 0, 6 * sizeof(int)); |
1097 |
memset(motion_y, 0, 6 * sizeof(int)); |
1098 |
|
1099 |
/* no vector maintenance */
|
1100 |
break;
|
1101 |
} |
1102 |
|
1103 |
/* assign the motion vectors to the correct fragments */
|
1104 |
debug_vectors(" vectors for macroblock starting @ fragment %d (coding method %d):\n",
|
1105 |
current_fragment, |
1106 |
s->macroblock_coding[current_macroblock]); |
1107 |
for (k = 0; k < 6; k++) { |
1108 |
current_fragment = |
1109 |
s->macroblock_fragments[current_macroblock * 6 + k];
|
1110 |
if (current_fragment == -1) |
1111 |
continue;
|
1112 |
if (current_fragment >= s->fragment_count) {
|
1113 |
av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vectors(): bad fragment number (%d >= %d)\n",
|
1114 |
current_fragment, s->fragment_count); |
1115 |
return 1; |
1116 |
} |
1117 |
s->all_fragments[current_fragment].motion_x = motion_x[k]; |
1118 |
s->all_fragments[current_fragment].motion_y = motion_y[k]; |
1119 |
debug_vectors(" vector %d: fragment %d = (%d, %d)\n",
|
1120 |
k, current_fragment, motion_x[k], motion_y[k]); |
1121 |
} |
1122 |
} |
1123 |
} |
1124 |
} |
1125 |
|
1126 |
return 0; |
1127 |
} |
1128 |
|
1129 |
/*
|
1130 |
* This function is called by unpack_dct_coeffs() to extract the VLCs from
|
1131 |
* the bitstream. The VLCs encode tokens which are used to unpack DCT
|
1132 |
* data. This function unpacks all the VLCs for either the Y plane or both
|
1133 |
* C planes, and is called for DC coefficients or different AC coefficient
|
1134 |
* levels (since different coefficient types require different VLC tables.
|
1135 |
*
|
1136 |
* This function returns a residual eob run. E.g, if a particular token gave
|
1137 |
* instructions to EOB the next 5 fragments and there were only 2 fragments
|
1138 |
* left in the current fragment range, 3 would be returned so that it could
|
1139 |
* be passed into the next call to this same function.
|
1140 |
*/
|
1141 |
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb, |
1142 |
VLC *table, int coeff_index,
|
1143 |
int first_fragment, int last_fragment, |
1144 |
int eob_run)
|
1145 |
{ |
1146 |
int i;
|
1147 |
int token;
|
1148 |
int zero_run = 0; |
1149 |
DCTELEM coeff = 0;
|
1150 |
Vp3Fragment *fragment; |
1151 |
uint8_t *perm= s->scantable.permutated; |
1152 |
int bits_to_get;
|
1153 |
|
1154 |
if ((first_fragment >= s->fragment_count) ||
|
1155 |
(last_fragment >= s->fragment_count)) { |
1156 |
|
1157 |
av_log(s->avctx, AV_LOG_ERROR, " vp3:unpack_vlcs(): bad fragment number (%d -> %d ?)\n",
|
1158 |
first_fragment, last_fragment); |
1159 |
return 0; |
1160 |
} |
1161 |
|
1162 |
for (i = first_fragment; i <= last_fragment; i++) {
|
1163 |
|
1164 |
fragment = &s->all_fragments[s->coded_fragment_list[i]]; |
1165 |
if (fragment->coeff_count > coeff_index)
|
1166 |
continue;
|
1167 |
|
1168 |
if (!eob_run) {
|
1169 |
/* decode a VLC into a token */
|
1170 |
token = get_vlc2(gb, table->table, 5, 3); |
1171 |
debug_vlc(" token = %2d, ", token);
|
1172 |
/* use the token to get a zero run, a coefficient, and an eob run */
|
1173 |
if (token <= 6) { |
1174 |
eob_run = eob_run_base[token]; |
1175 |
if (eob_run_get_bits[token])
|
1176 |
eob_run += get_bits(gb, eob_run_get_bits[token]); |
1177 |
coeff = zero_run = 0;
|
1178 |
} else {
|
1179 |
bits_to_get = coeff_get_bits[token]; |
1180 |
if (!bits_to_get)
|
1181 |
coeff = coeff_tables[token][0];
|
1182 |
else
|
1183 |
coeff = coeff_tables[token][get_bits(gb, bits_to_get)]; |
1184 |
|
1185 |
zero_run = zero_run_base[token]; |
1186 |
if (zero_run_get_bits[token])
|
1187 |
zero_run += get_bits(gb, zero_run_get_bits[token]); |
1188 |
} |
1189 |
} |
1190 |
|
1191 |
if (!eob_run) {
|
1192 |
fragment->coeff_count += zero_run; |
1193 |
if (fragment->coeff_count < 64){ |
1194 |
fragment->next_coeff->coeff= coeff; |
1195 |
fragment->next_coeff->index= perm[fragment->coeff_count++]; //FIXME perm here already?
|
1196 |
fragment->next_coeff->next= s->next_coeff; |
1197 |
s->next_coeff->next=NULL;
|
1198 |
fragment->next_coeff= s->next_coeff++; |
1199 |
} |
1200 |
debug_vlc(" fragment %d coeff = %d\n",
|
1201 |
s->coded_fragment_list[i], fragment->next_coeff[coeff_index]); |
1202 |
} else {
|
1203 |
fragment->coeff_count |= 128;
|
1204 |
debug_vlc(" fragment %d eob with %d coefficients\n",
|
1205 |
s->coded_fragment_list[i], fragment->coeff_count&127);
|
1206 |
eob_run--; |
1207 |
} |
1208 |
} |
1209 |
|
1210 |
return eob_run;
|
1211 |
} |
1212 |
|
1213 |
/*
|
1214 |
* This function unpacks all of the DCT coefficient data from the
|
1215 |
* bitstream.
|
1216 |
*/
|
1217 |
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb) |
1218 |
{ |
1219 |
int i;
|
1220 |
int dc_y_table;
|
1221 |
int dc_c_table;
|
1222 |
int ac_y_table;
|
1223 |
int ac_c_table;
|
1224 |
int residual_eob_run = 0; |
1225 |
|
1226 |
/* fetch the DC table indices */
|
1227 |
dc_y_table = get_bits(gb, 4);
|
1228 |
dc_c_table = get_bits(gb, 4);
|
1229 |
|
1230 |
/* unpack the Y plane DC coefficients */
|
1231 |
debug_vp3(" vp3: unpacking Y plane DC coefficients using table %d\n",
|
1232 |
dc_y_table); |
1233 |
residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
|
1234 |
s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run); |
1235 |
|
1236 |
/* unpack the C plane DC coefficients */
|
1237 |
debug_vp3(" vp3: unpacking C plane DC coefficients using table %d\n",
|
1238 |
dc_c_table); |
1239 |
residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
|
1240 |
s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run); |
1241 |
|
1242 |
/* fetch the AC table indices */
|
1243 |
ac_y_table = get_bits(gb, 4);
|
1244 |
ac_c_table = get_bits(gb, 4);
|
1245 |
|
1246 |
/* unpack the group 1 AC coefficients (coeffs 1-5) */
|
1247 |
for (i = 1; i <= 5; i++) { |
1248 |
|
1249 |
debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n",
|
1250 |
i, ac_y_table); |
1251 |
residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i, |
1252 |
s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run); |
1253 |
|
1254 |
debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n",
|
1255 |
i, ac_c_table); |
1256 |
residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i, |
1257 |
s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run); |
1258 |
} |
1259 |
|
1260 |
/* unpack the group 2 AC coefficients (coeffs 6-14) */
|
1261 |
for (i = 6; i <= 14; i++) { |
1262 |
|
1263 |
debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n",
|
1264 |
i, ac_y_table); |
1265 |
residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i, |
1266 |
s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run); |
1267 |
|
1268 |
debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n",
|
1269 |
i, ac_c_table); |
1270 |
residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i, |
1271 |
s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run); |
1272 |
} |
1273 |
|
1274 |
/* unpack the group 3 AC coefficients (coeffs 15-27) */
|
1275 |
for (i = 15; i <= 27; i++) { |
1276 |
|
1277 |
debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n",
|
1278 |
i, ac_y_table); |
1279 |
residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i, |
1280 |
s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run); |
1281 |
|
1282 |
debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n",
|
1283 |
i, ac_c_table); |
1284 |
residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i, |
1285 |
s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run); |
1286 |
} |
1287 |
|
1288 |
/* unpack the group 4 AC coefficients (coeffs 28-63) */
|
1289 |
for (i = 28; i <= 63; i++) { |
1290 |
|
1291 |
debug_vp3(" vp3: unpacking level %d Y plane AC coefficients using table %d\n",
|
1292 |
i, ac_y_table); |
1293 |
residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i, |
1294 |
s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run); |
1295 |
|
1296 |
debug_vp3(" vp3: unpacking level %d C plane AC coefficients using table %d\n",
|
1297 |
i, ac_c_table); |
1298 |
residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i, |
1299 |
s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run); |
1300 |
} |
1301 |
|
1302 |
return 0; |
1303 |
} |
1304 |
|
1305 |
/*
|
1306 |
* This function reverses the DC prediction for each coded fragment in
|
1307 |
* the frame. Much of this function is adapted directly from the original
|
1308 |
* VP3 source code.
|
1309 |
*/
|
1310 |
#define COMPATIBLE_FRAME(x) \
|
1311 |
(compatible_frame[s->all_fragments[x].coding_method] == current_frame_type) |
1312 |
#define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY)
|
1313 |
#define DC_COEFF(u) (s->coeffs[u].index ? 0 : s->coeffs[u].coeff) //FIXME do somethin to simplify this |
1314 |
|
1315 |
static void reverse_dc_prediction(Vp3DecodeContext *s, |
1316 |
int first_fragment,
|
1317 |
int fragment_width,
|
1318 |
int fragment_height)
|
1319 |
{ |
1320 |
|
1321 |
#define PUL 8 |
1322 |
#define PU 4 |
1323 |
#define PUR 2 |
1324 |
#define PL 1 |
1325 |
|
1326 |
int x, y;
|
1327 |
int i = first_fragment;
|
1328 |
|
1329 |
int predicted_dc;
|
1330 |
|
1331 |
/* DC values for the left, up-left, up, and up-right fragments */
|
1332 |
int vl, vul, vu, vur;
|
1333 |
|
1334 |
/* indices for the left, up-left, up, and up-right fragments */
|
1335 |
int l, ul, u, ur;
|
1336 |
|
1337 |
/*
|
1338 |
* The 6 fields mean:
|
1339 |
* 0: up-left multiplier
|
1340 |
* 1: up multiplier
|
1341 |
* 2: up-right multiplier
|
1342 |
* 3: left multiplier
|
1343 |
*/
|
1344 |
int predictor_transform[16][4] = { |
1345 |
{ 0, 0, 0, 0}, |
1346 |
{ 0, 0, 0,128}, // PL |
1347 |
{ 0, 0,128, 0}, // PUR |
1348 |
{ 0, 0, 53, 75}, // PUR|PL |
1349 |
{ 0,128, 0, 0}, // PU |
1350 |
{ 0, 64, 0, 64}, // PU|PL |
1351 |
{ 0,128, 0, 0}, // PU|PUR |
1352 |
{ 0, 0, 53, 75}, // PU|PUR|PL |
1353 |
{128, 0, 0, 0}, // PUL |
1354 |
{ 0, 0, 0,128}, // PUL|PL |
1355 |
{ 64, 0, 64, 0}, // PUL|PUR |
1356 |
{ 0, 0, 53, 75}, // PUL|PUR|PL |
1357 |
{ 0,128, 0, 0}, // PUL|PU |
1358 |
{-104,116, 0,116}, // PUL|PU|PL |
1359 |
{ 24, 80, 24, 0}, // PUL|PU|PUR |
1360 |
{-104,116, 0,116} // PUL|PU|PUR|PL |
1361 |
}; |
1362 |
|
1363 |
/* This table shows which types of blocks can use other blocks for
|
1364 |
* prediction. For example, INTRA is the only mode in this table to
|
1365 |
* have a frame number of 0. That means INTRA blocks can only predict
|
1366 |
* from other INTRA blocks. There are 2 golden frame coding types;
|
1367 |
* blocks encoding in these modes can only predict from other blocks
|
1368 |
* that were encoded with these 1 of these 2 modes. */
|
1369 |
unsigned char compatible_frame[8] = { |
1370 |
1, /* MODE_INTER_NO_MV */ |
1371 |
0, /* MODE_INTRA */ |
1372 |
1, /* MODE_INTER_PLUS_MV */ |
1373 |
1, /* MODE_INTER_LAST_MV */ |
1374 |
1, /* MODE_INTER_PRIOR_MV */ |
1375 |
2, /* MODE_USING_GOLDEN */ |
1376 |
2, /* MODE_GOLDEN_MV */ |
1377 |
1 /* MODE_INTER_FOUR_MV */ |
1378 |
}; |
1379 |
int current_frame_type;
|
1380 |
|
1381 |
/* there is a last DC predictor for each of the 3 frame types */
|
1382 |
short last_dc[3]; |
1383 |
|
1384 |
int transform = 0; |
1385 |
|
1386 |
debug_vp3(" vp3: reversing DC prediction\n");
|
1387 |
|
1388 |
vul = vu = vur = vl = 0;
|
1389 |
last_dc[0] = last_dc[1] = last_dc[2] = 0; |
1390 |
|
1391 |
/* for each fragment row... */
|
1392 |
for (y = 0; y < fragment_height; y++) { |
1393 |
|
1394 |
/* for each fragment in a row... */
|
1395 |
for (x = 0; x < fragment_width; x++, i++) { |
1396 |
|
1397 |
/* reverse prediction if this block was coded */
|
1398 |
if (s->all_fragments[i].coding_method != MODE_COPY) {
|
1399 |
|
1400 |
current_frame_type = |
1401 |
compatible_frame[s->all_fragments[i].coding_method]; |
1402 |
debug_dc_pred(" frag %d: orig DC = %d, ",
|
1403 |
i, DC_COEFF(i)); |
1404 |
|
1405 |
transform= 0;
|
1406 |
if(x){
|
1407 |
l= i-1;
|
1408 |
vl = DC_COEFF(l); |
1409 |
if(FRAME_CODED(l) && COMPATIBLE_FRAME(l))
|
1410 |
transform |= PL; |
1411 |
} |
1412 |
if(y){
|
1413 |
u= i-fragment_width; |
1414 |
vu = DC_COEFF(u); |
1415 |
if(FRAME_CODED(u) && COMPATIBLE_FRAME(u))
|
1416 |
transform |= PU; |
1417 |
if(x){
|
1418 |
ul= i-fragment_width-1;
|
1419 |
vul = DC_COEFF(ul); |
1420 |
if(FRAME_CODED(ul) && COMPATIBLE_FRAME(ul))
|
1421 |
transform |= PUL; |
1422 |
} |
1423 |
if(x + 1 < fragment_width){ |
1424 |
ur= i-fragment_width+1;
|
1425 |
vur = DC_COEFF(ur); |
1426 |
if(FRAME_CODED(ur) && COMPATIBLE_FRAME(ur))
|
1427 |
transform |= PUR; |
1428 |
} |
1429 |
} |
1430 |
|
1431 |
debug_dc_pred("transform = %d, ", transform);
|
1432 |
|
1433 |
if (transform == 0) { |
1434 |
|
1435 |
/* if there were no fragments to predict from, use last
|
1436 |
* DC saved */
|
1437 |
predicted_dc = last_dc[current_frame_type]; |
1438 |
debug_dc_pred("from last DC (%d) = %d\n",
|
1439 |
current_frame_type, DC_COEFF(i)); |
1440 |
|
1441 |
} else {
|
1442 |
|
1443 |
/* apply the appropriate predictor transform */
|
1444 |
predicted_dc = |
1445 |
(predictor_transform[transform][0] * vul) +
|
1446 |
(predictor_transform[transform][1] * vu) +
|
1447 |
(predictor_transform[transform][2] * vur) +
|
1448 |
(predictor_transform[transform][3] * vl);
|
1449 |
|
1450 |
predicted_dc /= 128;
|
1451 |
|
1452 |
/* check for outranging on the [ul u l] and
|
1453 |
* [ul u ur l] predictors */
|
1454 |
if ((transform == 13) || (transform == 15)) { |
1455 |
if (FFABS(predicted_dc - vu) > 128) |
1456 |
predicted_dc = vu; |
1457 |
else if (FFABS(predicted_dc - vl) > 128) |
1458 |
predicted_dc = vl; |
1459 |
else if (FFABS(predicted_dc - vul) > 128) |
1460 |
predicted_dc = vul; |
1461 |
} |
1462 |
|
1463 |
debug_dc_pred("from pred DC = %d\n",
|
1464 |
DC_COEFF(i)); |
1465 |
} |
1466 |
|
1467 |
/* at long last, apply the predictor */
|
1468 |
if(s->coeffs[i].index){
|
1469 |
*s->next_coeff= s->coeffs[i]; |
1470 |
s->coeffs[i].index=0;
|
1471 |
s->coeffs[i].coeff=0;
|
1472 |
s->coeffs[i].next= s->next_coeff++; |
1473 |
} |
1474 |
s->coeffs[i].coeff += predicted_dc; |
1475 |
/* save the DC */
|
1476 |
last_dc[current_frame_type] = DC_COEFF(i); |
1477 |
if(DC_COEFF(i) && !(s->all_fragments[i].coeff_count&127)){ |
1478 |
s->all_fragments[i].coeff_count= 129;
|
1479 |
// s->all_fragments[i].next_coeff= s->next_coeff;
|
1480 |
s->coeffs[i].next= s->next_coeff; |
1481 |
(s->next_coeff++)->next=NULL;
|
1482 |
} |
1483 |
} |
1484 |
} |
1485 |
} |
1486 |
} |
1487 |
|
1488 |
|
1489 |
static void horizontal_filter(unsigned char *first_pixel, int stride, |
1490 |
int *bounding_values);
|
1491 |
static void vertical_filter(unsigned char *first_pixel, int stride, |
1492 |
int *bounding_values);
|
1493 |
|
1494 |
/*
|
1495 |
* Perform the final rendering for a particular slice of data.
|
1496 |
* The slice number ranges from 0..(macroblock_height - 1).
|
1497 |
*/
|
1498 |
static void render_slice(Vp3DecodeContext *s, int slice) |
1499 |
{ |
1500 |
int x;
|
1501 |
int m, n;
|
1502 |
int16_t *dequantizer; |
1503 |
DECLARE_ALIGNED_16(DCTELEM, block[64]);
|
1504 |
int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef; |
1505 |
int motion_halfpel_index;
|
1506 |
uint8_t *motion_source; |
1507 |
int plane;
|
1508 |
int current_macroblock_entry = slice * s->macroblock_width * 6; |
1509 |
|
1510 |
if (slice >= s->macroblock_height)
|
1511 |
return;
|
1512 |
|
1513 |
for (plane = 0; plane < 3; plane++) { |
1514 |
uint8_t *output_plane = s->current_frame.data [plane]; |
1515 |
uint8_t * last_plane = s-> last_frame.data [plane]; |
1516 |
uint8_t *golden_plane = s-> golden_frame.data [plane]; |
1517 |
int stride = s->current_frame.linesize[plane];
|
1518 |
int plane_width = s->width >> !!plane;
|
1519 |
int plane_height = s->height >> !!plane;
|
1520 |
int y = slice * FRAGMENT_PIXELS << !plane ;
|
1521 |
int slice_height = y + (FRAGMENT_PIXELS << !plane);
|
1522 |
int i = s->macroblock_fragments[current_macroblock_entry + plane + 3*!!plane]; |
1523 |
|
1524 |
if (!s->flipped_image) stride = -stride;
|
1525 |
|
1526 |
|
1527 |
if(FFABS(stride) > 2048) |
1528 |
return; //various tables are fixed size |
1529 |
|
1530 |
/* for each fragment row in the slice (both of them)... */
|
1531 |
for (; y < slice_height; y += 8) { |
1532 |
|
1533 |
/* for each fragment in a row... */
|
1534 |
for (x = 0; x < plane_width; x += 8, i++) { |
1535 |
|
1536 |
if ((i < 0) || (i >= s->fragment_count)) { |
1537 |
av_log(s->avctx, AV_LOG_ERROR, " vp3:render_slice(): bad fragment number (%d)\n", i);
|
1538 |
return;
|
1539 |
} |
1540 |
|
1541 |
/* transform if this block was coded */
|
1542 |
if ((s->all_fragments[i].coding_method != MODE_COPY) &&
|
1543 |
!((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) { |
1544 |
|
1545 |
if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
|
1546 |
(s->all_fragments[i].coding_method == MODE_GOLDEN_MV)) |
1547 |
motion_source= golden_plane; |
1548 |
else
|
1549 |
motion_source= last_plane; |
1550 |
|
1551 |
motion_source += s->all_fragments[i].first_pixel; |
1552 |
motion_halfpel_index = 0;
|
1553 |
|
1554 |
/* sort out the motion vector if this fragment is coded
|
1555 |
* using a motion vector method */
|
1556 |
if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
|
1557 |
(s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) { |
1558 |
int src_x, src_y;
|
1559 |
motion_x = s->all_fragments[i].motion_x; |
1560 |
motion_y = s->all_fragments[i].motion_y; |
1561 |
if(plane){
|
1562 |
motion_x= (motion_x>>1) | (motion_x&1); |
1563 |
motion_y= (motion_y>>1) | (motion_y&1); |
1564 |
} |
1565 |
|
1566 |
src_x= (motion_x>>1) + x;
|
1567 |
src_y= (motion_y>>1) + y;
|
1568 |
if ((motion_x == 127) || (motion_y == 127)) |
1569 |
av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y);
|
1570 |
|
1571 |
motion_halfpel_index = motion_x & 0x01;
|
1572 |
motion_source += (motion_x >> 1);
|
1573 |
|
1574 |
motion_halfpel_index |= (motion_y & 0x01) << 1; |
1575 |
motion_source += ((motion_y >> 1) * stride);
|
1576 |
|
1577 |
if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){ |
1578 |
uint8_t *temp= s->edge_emu_buffer; |
1579 |
if(stride<0) temp -= 9*stride; |
1580 |
else temp += 9*stride; |
1581 |
|
1582 |
ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height); |
1583 |
motion_source= temp; |
1584 |
} |
1585 |
} |
1586 |
|
1587 |
|
1588 |
/* first, take care of copying a block from either the
|
1589 |
* previous or the golden frame */
|
1590 |
if (s->all_fragments[i].coding_method != MODE_INTRA) {
|
1591 |
/* Note, it is possible to implement all MC cases with
|
1592 |
put_no_rnd_pixels_l2 which would look more like the
|
1593 |
VP3 source but this would be slower as
|
1594 |
put_no_rnd_pixels_tab is better optimzed */
|
1595 |
if(motion_halfpel_index != 3){ |
1596 |
s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
|
1597 |
output_plane + s->all_fragments[i].first_pixel, |
1598 |
motion_source, stride, 8);
|
1599 |
}else{
|
1600 |
int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1 |
1601 |
s->dsp.put_no_rnd_pixels_l2[1](
|
1602 |
output_plane + s->all_fragments[i].first_pixel, |
1603 |
motion_source - d, |
1604 |
motion_source + stride + 1 + d,
|
1605 |
stride, 8);
|
1606 |
} |
1607 |
dequantizer = s->qmat[1][plane];
|
1608 |
}else{
|
1609 |
dequantizer = s->qmat[0][plane];
|
1610 |
} |
1611 |
|
1612 |
/* dequantize the DCT coefficients */
|
1613 |
debug_idct("fragment %d, coding mode %d, DC = %d, dequant = %d:\n",
|
1614 |
i, s->all_fragments[i].coding_method, |
1615 |
DC_COEFF(i), dequantizer[0]);
|
1616 |
|
1617 |
if(s->avctx->idct_algo==FF_IDCT_VP3){
|
1618 |
Coeff *coeff= s->coeffs + i; |
1619 |
memset(block, 0, sizeof(block)); |
1620 |
while(coeff->next){
|
1621 |
block[coeff->index]= coeff->coeff * dequantizer[coeff->index]; |
1622 |
coeff= coeff->next; |
1623 |
} |
1624 |
}else{
|
1625 |
Coeff *coeff= s->coeffs + i; |
1626 |
memset(block, 0, sizeof(block)); |
1627 |
while(coeff->next){
|
1628 |
block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2; |
1629 |
coeff= coeff->next; |
1630 |
} |
1631 |
} |
1632 |
|
1633 |
/* invert DCT and place (or add) in final output */
|
1634 |
|
1635 |
if (s->all_fragments[i].coding_method == MODE_INTRA) {
|
1636 |
if(s->avctx->idct_algo!=FF_IDCT_VP3)
|
1637 |
block[0] += 128<<3; |
1638 |
s->dsp.idct_put( |
1639 |
output_plane + s->all_fragments[i].first_pixel, |
1640 |
stride, |
1641 |
block); |
1642 |
} else {
|
1643 |
s->dsp.idct_add( |
1644 |
output_plane + s->all_fragments[i].first_pixel, |
1645 |
stride, |
1646 |
block); |
1647 |
} |
1648 |
|
1649 |
debug_idct("block after idct_%s():\n",
|
1650 |
(s->all_fragments[i].coding_method == MODE_INTRA)? |
1651 |
"put" : "add"); |
1652 |
for (m = 0; m < 8; m++) { |
1653 |
for (n = 0; n < 8; n++) { |
1654 |
debug_idct(" %3d", *(output_plane +
|
1655 |
s->all_fragments[i].first_pixel + (m * stride + n))); |
1656 |
} |
1657 |
debug_idct("\n");
|
1658 |
} |
1659 |
debug_idct("\n");
|
1660 |
|
1661 |
} else {
|
1662 |
|
1663 |
/* copy directly from the previous frame */
|
1664 |
s->dsp.put_pixels_tab[1][0]( |
1665 |
output_plane + s->all_fragments[i].first_pixel, |
1666 |
last_plane + s->all_fragments[i].first_pixel, |
1667 |
stride, 8);
|
1668 |
|
1669 |
} |
1670 |
#if 0
|
1671 |
/* perform the left edge filter if:
|
1672 |
* - the fragment is not on the left column
|
1673 |
* - the fragment is coded in this frame
|
1674 |
* - the fragment is not coded in this frame but the left
|
1675 |
* fragment is coded in this frame (this is done instead
|
1676 |
* of a right edge filter when rendering the left fragment
|
1677 |
* since this fragment is not available yet) */
|
1678 |
if ((x > 0) &&
|
1679 |
((s->all_fragments[i].coding_method != MODE_COPY) ||
|
1680 |
((s->all_fragments[i].coding_method == MODE_COPY) &&
|
1681 |
(s->all_fragments[i - 1].coding_method != MODE_COPY)) )) {
|
1682 |
horizontal_filter(
|
1683 |
output_plane + s->all_fragments[i].first_pixel + 7*stride,
|
1684 |
-stride, s->bounding_values_array + 127);
|
1685 |
}
|
1686 |
|
1687 |
/* perform the top edge filter if:
|
1688 |
* - the fragment is not on the top row
|
1689 |
* - the fragment is coded in this frame
|
1690 |
* - the fragment is not coded in this frame but the above
|
1691 |
* fragment is coded in this frame (this is done instead
|
1692 |
* of a bottom edge filter when rendering the above
|
1693 |
* fragment since this fragment is not available yet) */
|
1694 |
if ((y > 0) &&
|
1695 |
((s->all_fragments[i].coding_method != MODE_COPY) ||
|
1696 |
((s->all_fragments[i].coding_method == MODE_COPY) &&
|
1697 |
(s->all_fragments[i - fragment_width].coding_method != MODE_COPY)) )) {
|
1698 |
vertical_filter(
|
1699 |
output_plane + s->all_fragments[i].first_pixel - stride,
|
1700 |
-stride, s->bounding_values_array + 127);
|
1701 |
}
|
1702 |
#endif
|
1703 |
} |
1704 |
} |
1705 |
} |
1706 |
|
1707 |
/* this looks like a good place for slice dispatch... */
|
1708 |
/* algorithm:
|
1709 |
* if (slice == s->macroblock_height - 1)
|
1710 |
* dispatch (both last slice & 2nd-to-last slice);
|
1711 |
* else if (slice > 0)
|
1712 |
* dispatch (slice - 1);
|
1713 |
*/
|
1714 |
|
1715 |
emms_c(); |
1716 |
} |
1717 |
|
1718 |
static void horizontal_filter(unsigned char *first_pixel, int stride, |
1719 |
int *bounding_values)
|
1720 |
{ |
1721 |
unsigned char *end; |
1722 |
int filter_value;
|
1723 |
|
1724 |
for (end= first_pixel + 8*stride; first_pixel != end; first_pixel += stride) { |
1725 |
filter_value = |
1726 |
(first_pixel[-2] - first_pixel[ 1]) |
1727 |
+3*(first_pixel[ 0] - first_pixel[-1]); |
1728 |
filter_value = bounding_values[(filter_value + 4) >> 3]; |
1729 |
first_pixel[-1] = av_clip_uint8(first_pixel[-1] + filter_value); |
1730 |
first_pixel[ 0] = av_clip_uint8(first_pixel[ 0] - filter_value); |
1731 |
} |
1732 |
} |
1733 |
|
1734 |
static void vertical_filter(unsigned char *first_pixel, int stride, |
1735 |
int *bounding_values)
|
1736 |
{ |
1737 |
unsigned char *end; |
1738 |
int filter_value;
|
1739 |
const int nstride= -stride; |
1740 |
|
1741 |
for (end= first_pixel + 8; first_pixel < end; first_pixel++) { |
1742 |
filter_value = |
1743 |
(first_pixel[2 * nstride] - first_pixel[ stride])
|
1744 |
+3*(first_pixel[0 ] - first_pixel[nstride]); |
1745 |
filter_value = bounding_values[(filter_value + 4) >> 3]; |
1746 |
first_pixel[nstride] = av_clip_uint8(first_pixel[nstride] + filter_value); |
1747 |
first_pixel[0] = av_clip_uint8(first_pixel[0] - filter_value); |
1748 |
} |
1749 |
} |
1750 |
|
1751 |
static void apply_loop_filter(Vp3DecodeContext *s) |
1752 |
{ |
1753 |
int plane;
|
1754 |
int x, y;
|
1755 |
int *bounding_values= s->bounding_values_array+127; |
1756 |
|
1757 |
#if 0
|
1758 |
int bounding_values_array[256];
|
1759 |
int filter_limit;
|
1760 |
|
1761 |
/* find the right loop limit value */
|
1762 |
for (x = 63; x >= 0; x--) {
|
1763 |
if (vp31_ac_scale_factor[x] >= s->quality_index)
|
1764 |
break;
|
1765 |
}
|
1766 |
filter_limit = vp31_filter_limit_values[s->quality_index];
|
1767 |
|
1768 |
/* set up the bounding values */
|
1769 |
memset(bounding_values_array, 0, 256 * sizeof(int));
|
1770 |
for (x = 0; x < filter_limit; x++) {
|
1771 |
bounding_values[-x - filter_limit] = -filter_limit + x;
|
1772 |
bounding_values[-x] = -x;
|
1773 |
bounding_values[x] = x;
|
1774 |
bounding_values[x + filter_limit] = filter_limit - x;
|
1775 |
}
|
1776 |
#endif
|
1777 |
|
1778 |
for (plane = 0; plane < 3; plane++) { |
1779 |
int width = s->fragment_width >> !!plane;
|
1780 |
int height = s->fragment_height >> !!plane;
|
1781 |
int fragment = s->fragment_start [plane];
|
1782 |
int stride = s->current_frame.linesize[plane];
|
1783 |
uint8_t *plane_data = s->current_frame.data [plane]; |
1784 |
if (!s->flipped_image) stride = -stride;
|
1785 |
|
1786 |
for (y = 0; y < height; y++) { |
1787 |
|
1788 |
for (x = 0; x < width; x++) { |
1789 |
START_TIMER |
1790 |
/* do not perform left edge filter for left columns frags */
|
1791 |
if ((x > 0) && |
1792 |
(s->all_fragments[fragment].coding_method != MODE_COPY)) { |
1793 |
horizontal_filter( |
1794 |
plane_data + s->all_fragments[fragment].first_pixel, |
1795 |
stride, bounding_values); |
1796 |
} |
1797 |
|
1798 |
/* do not perform top edge filter for top row fragments */
|
1799 |
if ((y > 0) && |
1800 |
(s->all_fragments[fragment].coding_method != MODE_COPY)) { |
1801 |
vertical_filter( |
1802 |
plane_data + s->all_fragments[fragment].first_pixel, |
1803 |
stride, bounding_values); |
1804 |
} |
1805 |
|
1806 |
/* do not perform right edge filter for right column
|
1807 |
* fragments or if right fragment neighbor is also coded
|
1808 |
* in this frame (it will be filtered in next iteration) */
|
1809 |
if ((x < width - 1) && |
1810 |
(s->all_fragments[fragment].coding_method != MODE_COPY) && |
1811 |
(s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
|
1812 |
horizontal_filter( |
1813 |
plane_data + s->all_fragments[fragment + 1].first_pixel,
|
1814 |
stride, bounding_values); |
1815 |
} |
1816 |
|
1817 |
/* do not perform bottom edge filter for bottom row
|
1818 |
* fragments or if bottom fragment neighbor is also coded
|
1819 |
* in this frame (it will be filtered in the next row) */
|
1820 |
if ((y < height - 1) && |
1821 |
(s->all_fragments[fragment].coding_method != MODE_COPY) && |
1822 |
(s->all_fragments[fragment + width].coding_method == MODE_COPY)) { |
1823 |
vertical_filter( |
1824 |
plane_data + s->all_fragments[fragment + width].first_pixel, |
1825 |
stride, bounding_values); |
1826 |
} |
1827 |
|
1828 |
fragment++; |
1829 |
STOP_TIMER("loop filter")
|
1830 |
} |
1831 |
} |
1832 |
} |
1833 |
} |
1834 |
|
1835 |
/*
|
1836 |
* This function computes the first pixel addresses for each fragment.
|
1837 |
* This function needs to be invoked after the first frame is allocated
|
1838 |
* so that it has access to the plane strides.
|
1839 |
*/
|
1840 |
static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s) |
1841 |
{ |
1842 |
|
1843 |
int i, x, y;
|
1844 |
|
1845 |
/* figure out the first pixel addresses for each of the fragments */
|
1846 |
/* Y plane */
|
1847 |
i = 0;
|
1848 |
for (y = s->fragment_height; y > 0; y--) { |
1849 |
for (x = 0; x < s->fragment_width; x++) { |
1850 |
s->all_fragments[i++].first_pixel = |
1851 |
s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
|
1852 |
s->golden_frame.linesize[0] +
|
1853 |
x * FRAGMENT_PIXELS; |
1854 |
debug_init(" fragment %d, first pixel @ %d\n",
|
1855 |
i-1, s->all_fragments[i-1].first_pixel); |
1856 |
} |
1857 |
} |
1858 |
|
1859 |
/* U plane */
|
1860 |
i = s->fragment_start[1];
|
1861 |
for (y = s->fragment_height / 2; y > 0; y--) { |
1862 |
for (x = 0; x < s->fragment_width / 2; x++) { |
1863 |
s->all_fragments[i++].first_pixel = |
1864 |
s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
|
1865 |
s->golden_frame.linesize[1] +
|
1866 |
x * FRAGMENT_PIXELS; |
1867 |
debug_init(" fragment %d, first pixel @ %d\n",
|
1868 |
i-1, s->all_fragments[i-1].first_pixel); |
1869 |
} |
1870 |
} |
1871 |
|
1872 |
/* V plane */
|
1873 |
i = s->fragment_start[2];
|
1874 |
for (y = s->fragment_height / 2; y > 0; y--) { |
1875 |
for (x = 0; x < s->fragment_width / 2; x++) { |
1876 |
s->all_fragments[i++].first_pixel = |
1877 |
s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
|
1878 |
s->golden_frame.linesize[2] +
|
1879 |
x * FRAGMENT_PIXELS; |
1880 |
debug_init(" fragment %d, first pixel @ %d\n",
|
1881 |
i-1, s->all_fragments[i-1].first_pixel); |
1882 |
} |
1883 |
} |
1884 |
} |
1885 |
|
1886 |
/* FIXME: this should be merged with the above! */
|
1887 |
static void theora_calculate_pixel_addresses(Vp3DecodeContext *s) |
1888 |
{ |
1889 |
|
1890 |
int i, x, y;
|
1891 |
|
1892 |
/* figure out the first pixel addresses for each of the fragments */
|
1893 |
/* Y plane */
|
1894 |
i = 0;
|
1895 |
for (y = 1; y <= s->fragment_height; y++) { |
1896 |
for (x = 0; x < s->fragment_width; x++) { |
1897 |
s->all_fragments[i++].first_pixel = |
1898 |
s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
|
1899 |
s->golden_frame.linesize[0] +
|
1900 |
x * FRAGMENT_PIXELS; |
1901 |
debug_init(" fragment %d, first pixel @ %d\n",
|
1902 |
i-1, s->all_fragments[i-1].first_pixel); |
1903 |
} |
1904 |
} |
1905 |
|
1906 |
/* U plane */
|
1907 |
i = s->fragment_start[1];
|
1908 |
for (y = 1; y <= s->fragment_height / 2; y++) { |
1909 |
for (x = 0; x < s->fragment_width / 2; x++) { |
1910 |
s->all_fragments[i++].first_pixel = |
1911 |
s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
|
1912 |
s->golden_frame.linesize[1] +
|
1913 |
x * FRAGMENT_PIXELS; |
1914 |
debug_init(" fragment %d, first pixel @ %d\n",
|
1915 |
i-1, s->all_fragments[i-1].first_pixel); |
1916 |
} |
1917 |
} |
1918 |
|
1919 |
/* V plane */
|
1920 |
i = s->fragment_start[2];
|
1921 |
for (y = 1; y <= s->fragment_height / 2; y++) { |
1922 |
for (x = 0; x < s->fragment_width / 2; x++) { |
1923 |
s->all_fragments[i++].first_pixel = |
1924 |
s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
|
1925 |
s->golden_frame.linesize[2] +
|
1926 |
x * FRAGMENT_PIXELS; |
1927 |
debug_init(" fragment %d, first pixel @ %d\n",
|
1928 |
i-1, s->all_fragments[i-1].first_pixel); |
1929 |
} |
1930 |
} |
1931 |
} |
1932 |
|
1933 |
/*
|
1934 |
* This is the ffmpeg/libavcodec API init function.
|
1935 |
*/
|
1936 |
static int vp3_decode_init(AVCodecContext *avctx) |
1937 |
{ |
1938 |
Vp3DecodeContext *s = avctx->priv_data; |
1939 |
int i, inter, plane;
|
1940 |
int c_width;
|
1941 |
int c_height;
|
1942 |
int y_superblock_count;
|
1943 |
int c_superblock_count;
|
1944 |
|
1945 |
if (avctx->codec_tag == MKTAG('V','P','3','0')) |
1946 |
s->version = 0;
|
1947 |
else
|
1948 |
s->version = 1;
|
1949 |
|
1950 |
s->avctx = avctx; |
1951 |
s->width = (avctx->width + 15) & 0xFFFFFFF0; |
1952 |
s->height = (avctx->height + 15) & 0xFFFFFFF0; |
1953 |
avctx->pix_fmt = PIX_FMT_YUV420P; |
1954 |
if(avctx->idct_algo==FF_IDCT_AUTO)
|
1955 |
avctx->idct_algo=FF_IDCT_VP3; |
1956 |
dsputil_init(&s->dsp, avctx); |
1957 |
|
1958 |
ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct); |
1959 |
|
1960 |
/* initialize to an impossible value which will force a recalculation
|
1961 |
* in the first frame decode */
|
1962 |
s->quality_index = -1;
|
1963 |
|
1964 |
s->y_superblock_width = (s->width + 31) / 32; |
1965 |
s->y_superblock_height = (s->height + 31) / 32; |
1966 |
y_superblock_count = s->y_superblock_width * s->y_superblock_height; |
1967 |
|
1968 |
/* work out the dimensions for the C planes */
|
1969 |
c_width = s->width / 2;
|
1970 |
c_height = s->height / 2;
|
1971 |
s->c_superblock_width = (c_width + 31) / 32; |
1972 |
s->c_superblock_height = (c_height + 31) / 32; |
1973 |
c_superblock_count = s->c_superblock_width * s->c_superblock_height; |
1974 |
|
1975 |
s->superblock_count = y_superblock_count + (c_superblock_count * 2);
|
1976 |
s->u_superblock_start = y_superblock_count; |
1977 |
s->v_superblock_start = s->u_superblock_start + c_superblock_count; |
1978 |
s->superblock_coding = av_malloc(s->superblock_count); |
1979 |
|
1980 |
s->macroblock_width = (s->width + 15) / 16; |
1981 |
s->macroblock_height = (s->height + 15) / 16; |
1982 |
s->macroblock_count = s->macroblock_width * s->macroblock_height; |
1983 |
|
1984 |
s->fragment_width = s->width / FRAGMENT_PIXELS; |
1985 |
s->fragment_height = s->height / FRAGMENT_PIXELS; |
1986 |
|
1987 |
/* fragment count covers all 8x8 blocks for all 3 planes */
|
1988 |
s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2; |
1989 |
s->fragment_start[1] = s->fragment_width * s->fragment_height;
|
1990 |
s->fragment_start[2] = s->fragment_width * s->fragment_height * 5 / 4; |
1991 |
|
1992 |
debug_init(" Y plane: %d x %d\n", s->width, s->height);
|
1993 |
debug_init(" C plane: %d x %d\n", c_width, c_height);
|
1994 |
debug_init(" Y superblocks: %d x %d, %d total\n",
|
1995 |
s->y_superblock_width, s->y_superblock_height, y_superblock_count); |
1996 |
debug_init(" C superblocks: %d x %d, %d total\n",
|
1997 |
s->c_superblock_width, s->c_superblock_height, c_superblock_count); |
1998 |
debug_init(" total superblocks = %d, U starts @ %d, V starts @ %d\n",
|
1999 |
s->superblock_count, s->u_superblock_start, s->v_superblock_start); |
2000 |
debug_init(" macroblocks: %d x %d, %d total\n",
|
2001 |
s->macroblock_width, s->macroblock_height, s->macroblock_count); |
2002 |
debug_init(" %d fragments, %d x %d, u starts @ %d, v starts @ %d\n",
|
2003 |
s->fragment_count, |
2004 |
s->fragment_width, |
2005 |
s->fragment_height, |
2006 |
s->fragment_start[1],
|
2007 |
s->fragment_start[2]);
|
2008 |
|
2009 |
s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
|
2010 |
s->coeffs = av_malloc(s->fragment_count * sizeof(Coeff) * 65); |
2011 |
s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int)); |
2012 |
s->pixel_addresses_initialized = 0;
|
2013 |
|
2014 |
if (!s->theora_tables)
|
2015 |
{ |
2016 |
for (i = 0; i < 64; i++) { |
2017 |
s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i]; |
2018 |
s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i]; |
2019 |
s->base_matrix[0][i] = vp31_intra_y_dequant[i];
|
2020 |
s->base_matrix[1][i] = vp31_intra_c_dequant[i];
|
2021 |
s->base_matrix[2][i] = vp31_inter_dequant[i];
|
2022 |
s->filter_limit_values[i] = vp31_filter_limit_values[i]; |
2023 |
} |
2024 |
|
2025 |
for(inter=0; inter<2; inter++){ |
2026 |
for(plane=0; plane<3; plane++){ |
2027 |
s->qr_count[inter][plane]= 1;
|
2028 |
s->qr_size [inter][plane][0]= 63; |
2029 |
s->qr_base [inter][plane][0]=
|
2030 |
s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter; |
2031 |
} |
2032 |
} |
2033 |
|
2034 |
/* init VLC tables */
|
2035 |
for (i = 0; i < 16; i++) { |
2036 |
|
2037 |
/* DC histograms */
|
2038 |
init_vlc(&s->dc_vlc[i], 5, 32, |
2039 |
&dc_bias[i][0][1], 4, 2, |
2040 |
&dc_bias[i][0][0], 4, 2, 0); |
2041 |
|
2042 |
/* group 1 AC histograms */
|
2043 |
init_vlc(&s->ac_vlc_1[i], 5, 32, |
2044 |
&ac_bias_0[i][0][1], 4, 2, |
2045 |
&ac_bias_0[i][0][0], 4, 2, 0); |
2046 |
|
2047 |
/* group 2 AC histograms */
|
2048 |
init_vlc(&s->ac_vlc_2[i], 5, 32, |
2049 |
&ac_bias_1[i][0][1], 4, 2, |
2050 |
&ac_bias_1[i][0][0], 4, 2, 0); |
2051 |
|
2052 |
/* group 3 AC histograms */
|
2053 |
init_vlc(&s->ac_vlc_3[i], 5, 32, |
2054 |
&ac_bias_2[i][0][1], 4, 2, |
2055 |
&ac_bias_2[i][0][0], 4, 2, 0); |
2056 |
|
2057 |
/* group 4 AC histograms */
|
2058 |
init_vlc(&s->ac_vlc_4[i], 5, 32, |
2059 |
&ac_bias_3[i][0][1], 4, 2, |
2060 |
&ac_bias_3[i][0][0], 4, 2, 0); |
2061 |
} |
2062 |
} else {
|
2063 |
for (i = 0; i < 16; i++) { |
2064 |
|
2065 |
/* DC histograms */
|
2066 |
init_vlc(&s->dc_vlc[i], 5, 32, |
2067 |
&s->huffman_table[i][0][1], 4, 2, |
2068 |
&s->huffman_table[i][0][0], 4, 2, 0); |
2069 |
|
2070 |
/* group 1 AC histograms */
|
2071 |
init_vlc(&s->ac_vlc_1[i], 5, 32, |
2072 |
&s->huffman_table[i+16][0][1], 4, 2, |
2073 |
&s->huffman_table[i+16][0][0], 4, 2, 0); |
2074 |
|
2075 |
/* group 2 AC histograms */
|
2076 |
init_vlc(&s->ac_vlc_2[i], 5, 32, |
2077 |
&s->huffman_table[i+16*2][0][1], 4, 2, |
2078 |
&s->huffman_table[i+16*2][0][0], 4, 2, 0); |
2079 |
|
2080 |
/* group 3 AC histograms */
|
2081 |
init_vlc(&s->ac_vlc_3[i], 5, 32, |
2082 |
&s->huffman_table[i+16*3][0][1], 4, 2, |
2083 |
&s->huffman_table[i+16*3][0][0], 4, 2, 0); |
2084 |
|
2085 |
/* group 4 AC histograms */
|
2086 |
init_vlc(&s->ac_vlc_4[i], 5, 32, |
2087 |
&s->huffman_table[i+16*4][0][1], 4, 2, |
2088 |
&s->huffman_table[i+16*4][0][0], 4, 2, 0); |
2089 |
} |
2090 |
} |
2091 |
|
2092 |
init_vlc(&s->superblock_run_length_vlc, 6, 34, |
2093 |
&superblock_run_length_vlc_table[0][1], 4, 2, |
2094 |
&superblock_run_length_vlc_table[0][0], 4, 2, 0); |
2095 |
|
2096 |
init_vlc(&s->fragment_run_length_vlc, 5, 30, |
2097 |
&fragment_run_length_vlc_table[0][1], 4, 2, |
2098 |
&fragment_run_length_vlc_table[0][0], 4, 2, 0); |
2099 |
|
2100 |
init_vlc(&s->mode_code_vlc, 3, 8, |
2101 |
&mode_code_vlc_table[0][1], 2, 1, |
2102 |
&mode_code_vlc_table[0][0], 2, 1, 0); |
2103 |
|
2104 |
init_vlc(&s->motion_vector_vlc, 6, 63, |
2105 |
&motion_vector_vlc_table[0][1], 2, 1, |
2106 |
&motion_vector_vlc_table[0][0], 2, 1, 0); |
2107 |
|
2108 |
/* work out the block mapping tables */
|
2109 |
s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int)); |
2110 |
s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int)); |
2111 |
s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int)); |
2112 |
s->macroblock_coding = av_malloc(s->macroblock_count + 1);
|
2113 |
init_block_mapping(s); |
2114 |
|
2115 |
for (i = 0; i < 3; i++) { |
2116 |
s->current_frame.data[i] = NULL;
|
2117 |
s->last_frame.data[i] = NULL;
|
2118 |
s->golden_frame.data[i] = NULL;
|
2119 |
} |
2120 |
|
2121 |
return 0; |
2122 |
} |
2123 |
|
2124 |
/*
|
2125 |
* This is the ffmpeg/libavcodec API frame decode function.
|
2126 |
*/
|
2127 |
static int vp3_decode_frame(AVCodecContext *avctx, |
2128 |
void *data, int *data_size, |
2129 |
const uint8_t *buf, int buf_size) |
2130 |
{ |
2131 |
Vp3DecodeContext *s = avctx->priv_data; |
2132 |
GetBitContext gb; |
2133 |
static int counter = 0; |
2134 |
int i;
|
2135 |
|
2136 |
init_get_bits(&gb, buf, buf_size * 8);
|
2137 |
|
2138 |
if (s->theora && get_bits1(&gb))
|
2139 |
{ |
2140 |
av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
|
2141 |
return -1; |
2142 |
} |
2143 |
|
2144 |
s->keyframe = !get_bits1(&gb); |
2145 |
if (!s->theora)
|
2146 |
skip_bits(&gb, 1);
|
2147 |
s->last_quality_index = s->quality_index; |
2148 |
|
2149 |
s->nqis=0;
|
2150 |
do{
|
2151 |
s->qis[s->nqis++]= get_bits(&gb, 6);
|
2152 |
} while(s->theora >= 0x030200 && s->nqis<3 && get_bits1(&gb)); |
2153 |
|
2154 |
s->quality_index= s->qis[0];
|
2155 |
|
2156 |
if (s->avctx->debug & FF_DEBUG_PICT_INFO)
|
2157 |
av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
|
2158 |
s->keyframe?"key":"", counter, s->quality_index); |
2159 |
counter++; |
2160 |
|
2161 |
if (s->quality_index != s->last_quality_index) {
|
2162 |
init_dequantizer(s); |
2163 |
init_loop_filter(s); |
2164 |
} |
2165 |
|
2166 |
if (s->keyframe) {
|
2167 |
if (!s->theora)
|
2168 |
{ |
2169 |
skip_bits(&gb, 4); /* width code */ |
2170 |
skip_bits(&gb, 4); /* height code */ |
2171 |
if (s->version)
|
2172 |
{ |
2173 |
s->version = get_bits(&gb, 5);
|
2174 |
if (counter == 1) |
2175 |
av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
|
2176 |
} |
2177 |
} |
2178 |
if (s->version || s->theora)
|
2179 |
{ |
2180 |
if (get_bits1(&gb))
|
2181 |
av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
|
2182 |
skip_bits(&gb, 2); /* reserved? */ |
2183 |
} |
2184 |
|
2185 |
if (s->last_frame.data[0] == s->golden_frame.data[0]) { |
2186 |
if (s->golden_frame.data[0]) |
2187 |
avctx->release_buffer(avctx, &s->golden_frame); |
2188 |
s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
|
2189 |
} else {
|
2190 |
if (s->golden_frame.data[0]) |
2191 |
avctx->release_buffer(avctx, &s->golden_frame); |
2192 |
if (s->last_frame.data[0]) |
2193 |
avctx->release_buffer(avctx, &s->last_frame); |
2194 |
} |
2195 |
|
2196 |
s->golden_frame.reference = 3;
|
2197 |
if(avctx->get_buffer(avctx, &s->golden_frame) < 0) { |
2198 |
av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
|
2199 |
return -1; |
2200 |
} |
2201 |
|
2202 |
/* golden frame is also the current frame */
|
2203 |
s->current_frame= s->golden_frame; |
2204 |
|
2205 |
/* time to figure out pixel addresses? */
|
2206 |
if (!s->pixel_addresses_initialized)
|
2207 |
{ |
2208 |
if (!s->flipped_image)
|
2209 |
vp3_calculate_pixel_addresses(s); |
2210 |
else
|
2211 |
theora_calculate_pixel_addresses(s); |
2212 |
s->pixel_addresses_initialized = 1;
|
2213 |
} |
2214 |
} else {
|
2215 |
/* allocate a new current frame */
|
2216 |
s->current_frame.reference = 3;
|
2217 |
if (!s->pixel_addresses_initialized) {
|
2218 |
av_log(s->avctx, AV_LOG_ERROR, "vp3: first frame not a keyframe\n");
|
2219 |
return -1; |
2220 |
} |
2221 |
if(avctx->get_buffer(avctx, &s->current_frame) < 0) { |
2222 |
av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
|
2223 |
return -1; |
2224 |
} |
2225 |
} |
2226 |
|
2227 |
s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
|
2228 |
s->current_frame.qstride= 0;
|
2229 |
|
2230 |
{START_TIMER |
2231 |
init_frame(s, &gb); |
2232 |
STOP_TIMER("init_frame")}
|
2233 |
|
2234 |
#if KEYFRAMES_ONLY
|
2235 |
if (!s->keyframe) {
|
2236 |
|
2237 |
memcpy(s->current_frame.data[0], s->golden_frame.data[0], |
2238 |
s->current_frame.linesize[0] * s->height);
|
2239 |
memcpy(s->current_frame.data[1], s->golden_frame.data[1], |
2240 |
s->current_frame.linesize[1] * s->height / 2); |
2241 |
memcpy(s->current_frame.data[2], s->golden_frame.data[2], |
2242 |
s->current_frame.linesize[2] * s->height / 2); |
2243 |
|
2244 |
} else {
|
2245 |
#endif
|
2246 |
|
2247 |
{START_TIMER |
2248 |
if (unpack_superblocks(s, &gb)){
|
2249 |
av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
|
2250 |
return -1; |
2251 |
} |
2252 |
STOP_TIMER("unpack_superblocks")}
|
2253 |
{START_TIMER |
2254 |
if (unpack_modes(s, &gb)){
|
2255 |
av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
|
2256 |
return -1; |
2257 |
} |
2258 |
STOP_TIMER("unpack_modes")}
|
2259 |
{START_TIMER |
2260 |
if (unpack_vectors(s, &gb)){
|
2261 |
av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
|
2262 |
return -1; |
2263 |
} |
2264 |
STOP_TIMER("unpack_vectors")}
|
2265 |
{START_TIMER |
2266 |
if (unpack_dct_coeffs(s, &gb)){
|
2267 |
av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
|
2268 |
return -1; |
2269 |
} |
2270 |
STOP_TIMER("unpack_dct_coeffs")}
|
2271 |
{START_TIMER |
2272 |
|
2273 |
reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
|
2274 |
if ((avctx->flags & CODEC_FLAG_GRAY) == 0) { |
2275 |
reverse_dc_prediction(s, s->fragment_start[1],
|
2276 |
s->fragment_width / 2, s->fragment_height / 2); |
2277 |
reverse_dc_prediction(s, s->fragment_start[2],
|
2278 |
s->fragment_width / 2, s->fragment_height / 2); |
2279 |
} |
2280 |
STOP_TIMER("reverse_dc_prediction")}
|
2281 |
{START_TIMER |
2282 |
|
2283 |
for (i = 0; i < s->macroblock_height; i++) |
2284 |
render_slice(s, i); |
2285 |
STOP_TIMER("render_fragments")}
|
2286 |
|
2287 |
{START_TIMER |
2288 |
apply_loop_filter(s); |
2289 |
STOP_TIMER("apply_loop_filter")}
|
2290 |
#if KEYFRAMES_ONLY
|
2291 |
} |
2292 |
#endif
|
2293 |
|
2294 |
*data_size=sizeof(AVFrame);
|
2295 |
*(AVFrame*)data= s->current_frame; |
2296 |
|
2297 |
/* release the last frame, if it is allocated and if it is not the
|
2298 |
* golden frame */
|
2299 |
if ((s->last_frame.data[0]) && |
2300 |
(s->last_frame.data[0] != s->golden_frame.data[0])) |
2301 |
avctx->release_buffer(avctx, &s->last_frame); |
2302 |
|
2303 |
/* shuffle frames (last = current) */
|
2304 |
s->last_frame= s->current_frame; |
2305 |
s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */ |
2306 |
|
2307 |
return buf_size;
|
2308 |
} |
2309 |
|
2310 |
/*
|
2311 |
* This is the ffmpeg/libavcodec API module cleanup function.
|
2312 |
*/
|
2313 |
static int vp3_decode_end(AVCodecContext *avctx) |
2314 |
{ |
2315 |
Vp3DecodeContext *s = avctx->priv_data; |
2316 |
int i;
|
2317 |
|
2318 |
av_free(s->superblock_coding); |
2319 |
av_free(s->all_fragments); |
2320 |
av_free(s->coeffs); |
2321 |
av_free(s->coded_fragment_list); |
2322 |
av_free(s->superblock_fragments); |
2323 |
av_free(s->superblock_macroblocks); |
2324 |
av_free(s->macroblock_fragments); |
2325 |
av_free(s->macroblock_coding); |
2326 |
|
2327 |
for (i = 0; i < 16; i++) { |
2328 |
free_vlc(&s->dc_vlc[i]); |
2329 |
free_vlc(&s->ac_vlc_1[i]); |
2330 |
free_vlc(&s->ac_vlc_2[i]); |
2331 |
free_vlc(&s->ac_vlc_3[i]); |
2332 |
free_vlc(&s->ac_vlc_4[i]); |
2333 |
} |
2334 |
|
2335 |
free_vlc(&s->superblock_run_length_vlc); |
2336 |
free_vlc(&s->fragment_run_length_vlc); |
2337 |
free_vlc(&s->mode_code_vlc); |
2338 |
free_vlc(&s->motion_vector_vlc); |
2339 |
|
2340 |
/* release all frames */
|
2341 |
if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0]) |
2342 |
avctx->release_buffer(avctx, &s->golden_frame); |
2343 |
if (s->last_frame.data[0]) |
2344 |
avctx->release_buffer(avctx, &s->last_frame); |
2345 |
/* no need to release the current_frame since it will always be pointing
|
2346 |
* to the same frame as either the golden or last frame */
|
2347 |
|
2348 |
return 0; |
2349 |
} |
2350 |
|
2351 |
static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb) |
2352 |
{ |
2353 |
Vp3DecodeContext *s = avctx->priv_data; |
2354 |
|
2355 |
if (get_bits1(gb)) {
|
2356 |
int token;
|
2357 |
if (s->entries >= 32) { /* overflow */ |
2358 |
av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
|
2359 |
return -1; |
2360 |
} |
2361 |
token = get_bits(gb, 5);
|
2362 |
//av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
|
2363 |
s->huffman_table[s->hti][token][0] = s->hbits;
|
2364 |
s->huffman_table[s->hti][token][1] = s->huff_code_size;
|
2365 |
s->entries++; |
2366 |
} |
2367 |
else {
|
2368 |
if (s->huff_code_size >= 32) {/* overflow */ |
2369 |
av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
|
2370 |
return -1; |
2371 |
} |
2372 |
s->huff_code_size++; |
2373 |
s->hbits <<= 1;
|
2374 |
read_huffman_tree(avctx, gb); |
2375 |
s->hbits |= 1;
|
2376 |
read_huffman_tree(avctx, gb); |
2377 |
s->hbits >>= 1;
|
2378 |
s->huff_code_size--; |
2379 |
} |
2380 |
return 0; |
2381 |
} |
2382 |
|
2383 |
#ifdef CONFIG_THEORA_DECODER
|
2384 |
static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb) |
2385 |
{ |
2386 |
Vp3DecodeContext *s = avctx->priv_data; |
2387 |
int visible_width, visible_height;
|
2388 |
|
2389 |
s->theora = get_bits_long(gb, 24);
|
2390 |
av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
|
2391 |
|
2392 |
/* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
|
2393 |
/* but previous versions have the image flipped relative to vp3 */
|
2394 |
if (s->theora < 0x030200) |
2395 |
{ |
2396 |
s->flipped_image = 1;
|
2397 |
av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
|
2398 |
} |
2399 |
|
2400 |
s->width = get_bits(gb, 16) << 4; |
2401 |
s->height = get_bits(gb, 16) << 4; |
2402 |
|
2403 |
if(avcodec_check_dimensions(avctx, s->width, s->height)){
|
2404 |
av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
|
2405 |
s->width= s->height= 0;
|
2406 |
return -1; |
2407 |
} |
2408 |
|
2409 |
if (s->theora >= 0x030400) |
2410 |
{ |
2411 |
skip_bits(gb, 32); /* total number of superblocks in a frame */ |
2412 |
// fixme, the next field is 36bits long
|
2413 |
skip_bits(gb, 32); /* total number of blocks in a frame */ |
2414 |
skip_bits(gb, 4); /* total number of blocks in a frame */ |
2415 |
skip_bits(gb, 32); /* total number of macroblocks in a frame */ |
2416 |
} |
2417 |
|
2418 |
visible_width = get_bits_long(gb, 24);
|
2419 |
visible_height = get_bits_long(gb, 24);
|
2420 |
|
2421 |
if (s->theora >= 0x030200) { |
2422 |
skip_bits(gb, 8); /* offset x */ |
2423 |
skip_bits(gb, 8); /* offset y */ |
2424 |
} |
2425 |
|
2426 |
skip_bits(gb, 32); /* fps numerator */ |
2427 |
skip_bits(gb, 32); /* fps denumerator */ |
2428 |
skip_bits(gb, 24); /* aspect numerator */ |
2429 |
skip_bits(gb, 24); /* aspect denumerator */ |
2430 |
|
2431 |
if (s->theora < 0x030200) |
2432 |
skip_bits(gb, 5); /* keyframe frequency force */ |
2433 |
skip_bits(gb, 8); /* colorspace */ |
2434 |
if (s->theora >= 0x030400) |
2435 |
skip_bits(gb, 2); /* pixel format: 420,res,422,444 */ |
2436 |
skip_bits(gb, 24); /* bitrate */ |
2437 |
|
2438 |
skip_bits(gb, 6); /* quality hint */ |
2439 |
|
2440 |
if (s->theora >= 0x030200) |
2441 |
{ |
2442 |
skip_bits(gb, 5); /* keyframe frequency force */ |
2443 |
|
2444 |
if (s->theora < 0x030400) |
2445 |
skip_bits(gb, 5); /* spare bits */ |
2446 |
} |
2447 |
|
2448 |
// align_get_bits(gb);
|
2449 |
|
2450 |
if ( visible_width <= s->width && visible_width > s->width-16 |
2451 |
&& visible_height <= s->height && visible_height > s->height-16)
|
2452 |
avcodec_set_dimensions(avctx, visible_width, visible_height); |
2453 |
else
|
2454 |
avcodec_set_dimensions(avctx, s->width, s->height); |
2455 |
|
2456 |
return 0; |
2457 |
} |
2458 |
|
2459 |
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb) |
2460 |
{ |
2461 |
Vp3DecodeContext *s = avctx->priv_data; |
2462 |
int i, n, matrices, inter, plane;
|
2463 |
|
2464 |
if (s->theora >= 0x030200) { |
2465 |
n = get_bits(gb, 3);
|
2466 |
/* loop filter limit values table */
|
2467 |
for (i = 0; i < 64; i++) |
2468 |
s->filter_limit_values[i] = get_bits(gb, n); |
2469 |
} |
2470 |
|
2471 |
if (s->theora >= 0x030200) |
2472 |
n = get_bits(gb, 4) + 1; |
2473 |
else
|
2474 |
n = 16;
|
2475 |
/* quality threshold table */
|
2476 |
for (i = 0; i < 64; i++) |
2477 |
s->coded_ac_scale_factor[i] = get_bits(gb, n); |
2478 |
|
2479 |
if (s->theora >= 0x030200) |
2480 |
n = get_bits(gb, 4) + 1; |
2481 |
else
|
2482 |
n = 16;
|
2483 |
/* dc scale factor table */
|
2484 |
for (i = 0; i < 64; i++) |
2485 |
s->coded_dc_scale_factor[i] = get_bits(gb, n); |
2486 |
|
2487 |
if (s->theora >= 0x030200) |
2488 |
matrices = get_bits(gb, 9) + 1; |
2489 |
else
|
2490 |
matrices = 3;
|
2491 |
|
2492 |
if(matrices > 384){ |
2493 |
av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
|
2494 |
return -1; |
2495 |
} |
2496 |
|
2497 |
for(n=0; n<matrices; n++){ |
2498 |
for (i = 0; i < 64; i++) |
2499 |
s->base_matrix[n][i]= get_bits(gb, 8);
|
2500 |
} |
2501 |
|
2502 |
for (inter = 0; inter <= 1; inter++) { |
2503 |
for (plane = 0; plane <= 2; plane++) { |
2504 |
int newqr= 1; |
2505 |
if (inter || plane > 0) |
2506 |
newqr = get_bits1(gb); |
2507 |
if (!newqr) {
|
2508 |
int qtj, plj;
|
2509 |
if(inter && get_bits1(gb)){
|
2510 |
qtj = 0;
|
2511 |
plj = plane; |
2512 |
}else{
|
2513 |
qtj= (3*inter + plane - 1) / 3; |
2514 |
plj= (plane + 2) % 3; |
2515 |
} |
2516 |
s->qr_count[inter][plane]= s->qr_count[qtj][plj]; |
2517 |
memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0])); |
2518 |
memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0])); |
2519 |
} else {
|
2520 |
int qri= 0; |
2521 |
int qi = 0; |
2522 |
|
2523 |
for(;;){
|
2524 |
i= get_bits(gb, av_log2(matrices-1)+1); |
2525 |
if(i>= matrices){
|
2526 |
av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
|
2527 |
return -1; |
2528 |
} |
2529 |
s->qr_base[inter][plane][qri]= i; |
2530 |
if(qi >= 63) |
2531 |
break;
|
2532 |
i = get_bits(gb, av_log2(63-qi)+1) + 1; |
2533 |
s->qr_size[inter][plane][qri++]= i; |
2534 |
qi += i; |
2535 |
} |
2536 |
|
2537 |
if (qi > 63) { |
2538 |
av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
|
2539 |
return -1; |
2540 |
} |
2541 |
s->qr_count[inter][plane]= qri; |
2542 |
} |
2543 |
} |
2544 |
} |
2545 |
|
2546 |
/* Huffman tables */
|
2547 |
for (s->hti = 0; s->hti < 80; s->hti++) { |
2548 |
s->entries = 0;
|
2549 |
s->huff_code_size = 1;
|
2550 |
if (!get_bits1(gb)) {
|
2551 |
s->hbits = 0;
|
2552 |
read_huffman_tree(avctx, gb); |
2553 |
s->hbits = 1;
|
2554 |
read_huffman_tree(avctx, gb); |
2555 |
} |
2556 |
} |
2557 |
|
2558 |
s->theora_tables = 1;
|
2559 |
|
2560 |
return 0; |
2561 |
} |
2562 |
|
2563 |
static int theora_decode_init(AVCodecContext *avctx) |
2564 |
{ |
2565 |
Vp3DecodeContext *s = avctx->priv_data; |
2566 |
GetBitContext gb; |
2567 |
int ptype;
|
2568 |
uint8_t *header_start[3];
|
2569 |
int header_len[3]; |
2570 |
int i;
|
2571 |
|
2572 |
s->theora = 1;
|
2573 |
|
2574 |
if (!avctx->extradata_size)
|
2575 |
{ |
2576 |
av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
|
2577 |
return -1; |
2578 |
} |
2579 |
|
2580 |
if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size,
|
2581 |
42, header_start, header_len) < 0) { |
2582 |
av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
|
2583 |
return -1; |
2584 |
} |
2585 |
|
2586 |
for(i=0;i<3;i++) { |
2587 |
init_get_bits(&gb, header_start[i], header_len[i]); |
2588 |
|
2589 |
ptype = get_bits(&gb, 8);
|
2590 |
debug_vp3("Theora headerpacket type: %x\n", ptype);
|
2591 |
|
2592 |
if (!(ptype & 0x80)) |
2593 |
{ |
2594 |
av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
|
2595 |
// return -1;
|
2596 |
} |
2597 |
|
2598 |
// FIXME: Check for this as well.
|
2599 |
skip_bits(&gb, 6*8); /* "theora" */ |
2600 |
|
2601 |
switch(ptype)
|
2602 |
{ |
2603 |
case 0x80: |
2604 |
theora_decode_header(avctx, &gb); |
2605 |
break;
|
2606 |
case 0x81: |
2607 |
// FIXME: is this needed? it breaks sometimes
|
2608 |
// theora_decode_comments(avctx, gb);
|
2609 |
break;
|
2610 |
case 0x82: |
2611 |
theora_decode_tables(avctx, &gb); |
2612 |
break;
|
2613 |
default:
|
2614 |
av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80); |
2615 |
break;
|
2616 |
} |
2617 |
if(8*header_len[i] != get_bits_count(&gb)) |
2618 |
av_log(avctx, AV_LOG_ERROR, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype); |
2619 |
if (s->theora < 0x030200) |
2620 |
break;
|
2621 |
} |
2622 |
|
2623 |
vp3_decode_init(avctx); |
2624 |
return 0; |
2625 |
} |
2626 |
|
2627 |
AVCodec theora_decoder = { |
2628 |
"theora",
|
2629 |
CODEC_TYPE_VIDEO, |
2630 |
CODEC_ID_THEORA, |
2631 |
sizeof(Vp3DecodeContext),
|
2632 |
theora_decode_init, |
2633 |
NULL,
|
2634 |
vp3_decode_end, |
2635 |
vp3_decode_frame, |
2636 |
0,
|
2637 |
NULL
|
2638 |
}; |
2639 |
#endif
|
2640 |
|
2641 |
AVCodec vp3_decoder = { |
2642 |
"vp3",
|
2643 |
CODEC_TYPE_VIDEO, |
2644 |
CODEC_ID_VP3, |
2645 |
sizeof(Vp3DecodeContext),
|
2646 |
vp3_decode_init, |
2647 |
NULL,
|
2648 |
vp3_decode_end, |
2649 |
vp3_decode_frame, |
2650 |
0,
|
2651 |
NULL
|
2652 |
}; |