ffmpeg / libavcodec / ppc / mpegvideo_altivec.c @ d6267d02
History  View  Annotate  Download (24.9 KB)
1 
/*


2 
* Copyright (c) 2002 Dieter Shirley

3 
*

4 
* dct_unquantize_h263_altivec:

5 
* Copyright (c) 2003 Romain Dolbeau <romain@dolbeau.org>

6 
*

7 
* This file is part of FFmpeg.

8 
*

9 
* FFmpeg is free software; you can redistribute it and/or

10 
* modify it under the terms of the GNU Lesser General Public

11 
* License as published by the Free Software Foundation; either

12 
* version 2.1 of the License, or (at your option) any later version.

13 
*

14 
* FFmpeg is distributed in the hope that it will be useful,

15 
* but WITHOUT ANY WARRANTY; without even the implied warranty of

16 
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

17 
* Lesser General Public License for more details.

18 
*

19 
* You should have received a copy of the GNU Lesser General Public

20 
* License along with FFmpeg; if not, write to the Free Software

21 
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 021101301 USA

22 
*/

23  
24 
#include <stdlib.h> 
25 
#include <stdio.h> 
26 
#include "dsputil.h" 
27 
#include "mpegvideo.h" 
28  
29 
#include "gcc_fixes.h" 
30  
31 
#include "dsputil_ppc.h" 
32 
#include "util_altivec.h" 
33 
// Swaps two variables (used for altivec registers)

34 
#define SWAP(a,b) \

35 
do { \

36 
__typeof__(a) swap_temp=a; \ 
37 
a=b; \ 
38 
b=swap_temp; \ 
39 
} while (0) 
40  
41 
// transposes a matrix consisting of four vectors with four elements each

42 
#define TRANSPOSE4(a,b,c,d) \

43 
do { \

44 
__typeof__(a) _trans_ach = vec_mergeh(a, c); \ 
45 
__typeof__(a) _trans_acl = vec_mergel(a, c); \ 
46 
__typeof__(a) _trans_bdh = vec_mergeh(b, d); \ 
47 
__typeof__(a) _trans_bdl = vec_mergel(b, d); \ 
48 
\ 
49 
a = vec_mergeh(_trans_ach, _trans_bdh); \ 
50 
b = vec_mergel(_trans_ach, _trans_bdh); \ 
51 
c = vec_mergeh(_trans_acl, _trans_bdl); \ 
52 
d = vec_mergel(_trans_acl, _trans_bdl); \ 
53 
} while (0) 
54  
55  
56 
// Loads a fourbyte value (int or float) from the target address

57 
// into every element in the target vector. Only works if the

58 
// target address is fourbyte aligned (which should be always).

59 
#define LOAD4(vec, address) \

60 
{ \ 
61 
__typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \ 
62 
vector unsigned char _perm_vec = vec_lvsl(0,(address)); \ 
63 
vec = vec_ld(0, _load_addr); \

64 
vec = vec_perm(vec, vec, _perm_vec); \ 
65 
vec = vec_splat(vec, 0); \

66 
} 
67  
68  
69 
#define FOUROF(a) AVV(a,a,a,a)

70  
71 
int dct_quantize_altivec(MpegEncContext* s,

72 
DCTELEM* data, int n,

73 
int qscale, int* overflow) 
74 
{ 
75 
int lastNonZero;

76 
vector float row0, row1, row2, row3, row4, row5, row6, row7;

77 
vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7;

78 
const vector float zero = (const vector float)FOUROF(0.); 
79 
// used after quantize step

80 
int oldBaseValue = 0; 
81  
82 
// Load the data into the row/alt vectors

83 
{ 
84 
vector signed short data0, data1, data2, data3, data4, data5, data6, data7; 
85  
86 
data0 = vec_ld(0, data);

87 
data1 = vec_ld(16, data);

88 
data2 = vec_ld(32, data);

89 
data3 = vec_ld(48, data);

90 
data4 = vec_ld(64, data);

91 
data5 = vec_ld(80, data);

92 
data6 = vec_ld(96, data);

93 
data7 = vec_ld(112, data);

94  
95 
// Transpose the data before we start

96 
TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7); 
97  
98 
// load the data into floating point vectors. We load

99 
// the high half of each row into the main row vectors

100 
// and the low half into the alt vectors.

101 
row0 = vec_ctf(vec_unpackh(data0), 0);

102 
alt0 = vec_ctf(vec_unpackl(data0), 0);

103 
row1 = vec_ctf(vec_unpackh(data1), 0);

104 
alt1 = vec_ctf(vec_unpackl(data1), 0);

105 
row2 = vec_ctf(vec_unpackh(data2), 0);

106 
alt2 = vec_ctf(vec_unpackl(data2), 0);

107 
row3 = vec_ctf(vec_unpackh(data3), 0);

108 
alt3 = vec_ctf(vec_unpackl(data3), 0);

109 
row4 = vec_ctf(vec_unpackh(data4), 0);

110 
alt4 = vec_ctf(vec_unpackl(data4), 0);

111 
row5 = vec_ctf(vec_unpackh(data5), 0);

112 
alt5 = vec_ctf(vec_unpackl(data5), 0);

113 
row6 = vec_ctf(vec_unpackh(data6), 0);

114 
alt6 = vec_ctf(vec_unpackl(data6), 0);

115 
row7 = vec_ctf(vec_unpackh(data7), 0);

116 
alt7 = vec_ctf(vec_unpackl(data7), 0);

117 
} 
118  
119 
// The following block could exist as a separate an altivec dct

120 
// function. However, if we put it inline, the DCT data can remain

121 
// in the vector local variables, as floats, which we'll use during the

122 
// quantize step...

123 
{ 
124 
const vector float vec_0_298631336 = (vector float)FOUROF(0.298631336f); 
125 
const vector float vec_0_390180644 = (vector float)FOUROF(0.390180644f); 
126 
const vector float vec_0_541196100 = (vector float)FOUROF(0.541196100f); 
127 
const vector float vec_0_765366865 = (vector float)FOUROF(0.765366865f); 
128 
const vector float vec_0_899976223 = (vector float)FOUROF(0.899976223f); 
129 
const vector float vec_1_175875602 = (vector float)FOUROF(1.175875602f); 
130 
const vector float vec_1_501321110 = (vector float)FOUROF(1.501321110f); 
131 
const vector float vec_1_847759065 = (vector float)FOUROF(1.847759065f); 
132 
const vector float vec_1_961570560 = (vector float)FOUROF(1.961570560f); 
133 
const vector float vec_2_053119869 = (vector float)FOUROF(2.053119869f); 
134 
const vector float vec_2_562915447 = (vector float)FOUROF(2.562915447f); 
135 
const vector float vec_3_072711026 = (vector float)FOUROF(3.072711026f); 
136  
137  
138 
int whichPass, whichHalf;

139  
140 
for(whichPass = 1; whichPass<=2; whichPass++) 
141 
{ 
142 
for(whichHalf = 1; whichHalf<=2; whichHalf++) 
143 
{ 
144 
vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;

145 
vector float tmp10, tmp11, tmp12, tmp13;

146 
vector float z1, z2, z3, z4, z5;

147  
148 
tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7];

149 
tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0]  dataptr[7];

150 
tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4];

151 
tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3]  dataptr[4];

152 
tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6];

153 
tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1]  dataptr[6];

154 
tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5];

155 
tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2]  dataptr[5];

156  
157 
tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3;

158 
tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0  tmp3;

159 
tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2;

160 
tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1  tmp2;

161  
162  
163 
// dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);

164 
row0 = vec_add(tmp10, tmp11); 
165  
166 
// dataptr[4] = (DCTELEM) ((tmp10  tmp11) << PASS1_BITS);

167 
row4 = vec_sub(tmp10, tmp11); 
168  
169  
170 
// z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);

171 
z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero);

172  
173 
// dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),

174 
// CONST_BITSPASS1_BITS);

175 
row2 = vec_madd(tmp13, vec_0_765366865, z1); 
176  
177 
// dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12,  FIX_1_847759065),

178 
// CONST_BITSPASS1_BITS);

179 
row6 = vec_madd(tmp12, vec_1_847759065, z1); 
180  
181 
z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7;

182 
z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6;

183 
z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6;

184 
z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7;

185  
186 
// z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */

187 
z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero);

188  
189 
// z3 = MULTIPLY(z3,  FIX_1_961570560); /* sqrt(2) * (c3c5) */

190 
z3 = vec_madd(z3, vec_1_961570560, z5); 
191  
192 
// z4 = MULTIPLY(z4,  FIX_0_390180644); /* sqrt(2) * (c5c3) */

193 
z4 = vec_madd(z4, vec_0_390180644, z5); 
194  
195 
// The following adds are rolled into the multiplies above

196 
// z3 = vec_add(z3, z5); // z3 += z5;

197 
// z4 = vec_add(z4, z5); // z4 += z5;

198  
199 
// z2 = MULTIPLY(z2,  FIX_2_562915447); /* sqrt(2) * (c1c3) */

200 
// Wow! It's actually more effecient to roll this multiply

201 
// into the adds below, even thought the multiply gets done twice!

202 
// z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);

203  
204 
// z1 = MULTIPLY(z1,  FIX_0_899976223); /* sqrt(2) * (c7c3) */

205 
// Same with this one...

206 
// z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);

207  
208 
// tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (c1+c3+c5c7) */

209 
// dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITSPASS1_BITS);

210 
row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3)); 
211  
212 
// tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3c5+c7) */

213 
// dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITSPASS1_BITS);

214 
row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4)); 
215  
216 
// tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5c7) */

217 
// dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITSPASS1_BITS);

218 
row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3)); 
219  
220 
// tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3c5c7) */

221 
// dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITSPASS1_BITS);

222 
row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4)); 
223  
224 
// Swap the row values with the alts. If this is the first half,

225 
// this sets up the low values to be acted on in the second half.

226 
// If this is the second half, it puts the high values back in

227 
// the row values where they are expected to be when we're done.

228 
SWAP(row0, alt0); 
229 
SWAP(row1, alt1); 
230 
SWAP(row2, alt2); 
231 
SWAP(row3, alt3); 
232 
SWAP(row4, alt4); 
233 
SWAP(row5, alt5); 
234 
SWAP(row6, alt6); 
235 
SWAP(row7, alt7); 
236 
} 
237  
238 
if (whichPass == 1) 
239 
{ 
240 
// transpose the data for the second pass

241  
242 
// First, block transpose the upper right with lower left.

243 
SWAP(row4, alt0); 
244 
SWAP(row5, alt1); 
245 
SWAP(row6, alt2); 
246 
SWAP(row7, alt3); 
247  
248 
// Now, transpose each block of four

249 
TRANSPOSE4(row0, row1, row2, row3); 
250 
TRANSPOSE4(row4, row5, row6, row7); 
251 
TRANSPOSE4(alt0, alt1, alt2, alt3); 
252 
TRANSPOSE4(alt4, alt5, alt6, alt7); 
253 
} 
254 
} 
255 
} 
256  
257 
// perform the quantize step, using the floating point data

258 
// still in the row/alt registers

259 
{ 
260 
const int* biasAddr; 
261 
const vector signed int* qmat; 
262 
vector float bias, negBias;

263  
264 
if (s>mb_intra)

265 
{ 
266 
vector signed int baseVector; 
267  
268 
// We must cache element 0 in the intra case

269 
// (it needs special handling).

270 
baseVector = vec_cts(vec_splat(row0, 0), 0); 
271 
vec_ste(baseVector, 0, &oldBaseValue);

272  
273 
qmat = (vector signed int*)s>q_intra_matrix[qscale]; 
274 
biasAddr = &(s>intra_quant_bias); 
275 
} 
276 
else

277 
{ 
278 
qmat = (vector signed int*)s>q_inter_matrix[qscale]; 
279 
biasAddr = &(s>inter_quant_bias); 
280 
} 
281  
282 
// Load the bias vector (We add 0.5 to the bias so that we're

283 
// rounding when we convert to int, instead of flooring.)

284 
{ 
285 
vector signed int biasInt; 
286 
const vector float negOneFloat = (vector float)FOUROF(1.0f); 
287 
LOAD4(biasInt, biasAddr); 
288 
bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT); 
289 
negBias = vec_madd(bias, negOneFloat, zero); 
290 
} 
291  
292 
{ 
293 
vector float q0, q1, q2, q3, q4, q5, q6, q7;

294  
295 
q0 = vec_ctf(qmat[0], QMAT_SHIFT);

296 
q1 = vec_ctf(qmat[2], QMAT_SHIFT);

297 
q2 = vec_ctf(qmat[4], QMAT_SHIFT);

298 
q3 = vec_ctf(qmat[6], QMAT_SHIFT);

299 
q4 = vec_ctf(qmat[8], QMAT_SHIFT);

300 
q5 = vec_ctf(qmat[10], QMAT_SHIFT);

301 
q6 = vec_ctf(qmat[12], QMAT_SHIFT);

302 
q7 = vec_ctf(qmat[14], QMAT_SHIFT);

303  
304 
row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias), 
305 
vec_cmpgt(row0, zero)); 
306 
row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias), 
307 
vec_cmpgt(row1, zero)); 
308 
row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias), 
309 
vec_cmpgt(row2, zero)); 
310 
row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias), 
311 
vec_cmpgt(row3, zero)); 
312 
row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias), 
313 
vec_cmpgt(row4, zero)); 
314 
row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias), 
315 
vec_cmpgt(row5, zero)); 
316 
row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias), 
317 
vec_cmpgt(row6, zero)); 
318 
row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias), 
319 
vec_cmpgt(row7, zero)); 
320  
321 
q0 = vec_ctf(qmat[1], QMAT_SHIFT);

322 
q1 = vec_ctf(qmat[3], QMAT_SHIFT);

323 
q2 = vec_ctf(qmat[5], QMAT_SHIFT);

324 
q3 = vec_ctf(qmat[7], QMAT_SHIFT);

325 
q4 = vec_ctf(qmat[9], QMAT_SHIFT);

326 
q5 = vec_ctf(qmat[11], QMAT_SHIFT);

327 
q6 = vec_ctf(qmat[13], QMAT_SHIFT);

328 
q7 = vec_ctf(qmat[15], QMAT_SHIFT);

329  
330 
alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias), 
331 
vec_cmpgt(alt0, zero)); 
332 
alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias), 
333 
vec_cmpgt(alt1, zero)); 
334 
alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias), 
335 
vec_cmpgt(alt2, zero)); 
336 
alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias), 
337 
vec_cmpgt(alt3, zero)); 
338 
alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias), 
339 
vec_cmpgt(alt4, zero)); 
340 
alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias), 
341 
vec_cmpgt(alt5, zero)); 
342 
alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias), 
343 
vec_cmpgt(alt6, zero)); 
344 
alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias), 
345 
vec_cmpgt(alt7, zero)); 
346 
} 
347  
348  
349 
} 
350  
351 
// Store the data back into the original block

352 
{ 
353 
vector signed short data0, data1, data2, data3, data4, data5, data6, data7; 
354  
355 
data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0)); 
356 
data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0)); 
357 
data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0)); 
358 
data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0)); 
359 
data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0)); 
360 
data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0)); 
361 
data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0)); 
362 
data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0)); 
363  
364 
{ 
365 
// Clamp for overflow

366 
vector signed int max_q_int, min_q_int; 
367 
vector signed short max_q, min_q; 
368  
369 
LOAD4(max_q_int, &(s>max_qcoeff)); 
370 
LOAD4(min_q_int, &(s>min_qcoeff)); 
371  
372 
max_q = vec_pack(max_q_int, max_q_int); 
373 
min_q = vec_pack(min_q_int, min_q_int); 
374  
375 
data0 = vec_max(vec_min(data0, max_q), min_q); 
376 
data1 = vec_max(vec_min(data1, max_q), min_q); 
377 
data2 = vec_max(vec_min(data2, max_q), min_q); 
378 
data4 = vec_max(vec_min(data4, max_q), min_q); 
379 
data5 = vec_max(vec_min(data5, max_q), min_q); 
380 
data6 = vec_max(vec_min(data6, max_q), min_q); 
381 
data7 = vec_max(vec_min(data7, max_q), min_q); 
382 
} 
383  
384 
{ 
385 
vector bool char zero_01, zero_23, zero_45, zero_67; 
386 
vector signed char scanIndices_01, scanIndices_23, scanIndices_45, scanIndices_67; 
387 
vector signed char negOne = vec_splat_s8(1); 
388 
vector signed char* scanPtr = 
389 
(vector signed char*)(s>intra_scantable.inverse); 
390 
signed char lastNonZeroChar; 
391  
392 
// Determine the largest nonzero index.

393 
zero_01 = vec_pack(vec_cmpeq(data0, (vector signed short)zero), 
394 
vec_cmpeq(data1, (vector signed short)zero)); 
395 
zero_23 = vec_pack(vec_cmpeq(data2, (vector signed short)zero), 
396 
vec_cmpeq(data3, (vector signed short)zero)); 
397 
zero_45 = vec_pack(vec_cmpeq(data4, (vector signed short)zero), 
398 
vec_cmpeq(data5, (vector signed short)zero)); 
399 
zero_67 = vec_pack(vec_cmpeq(data6, (vector signed short)zero), 
400 
vec_cmpeq(data7, (vector signed short)zero)); 
401  
402 
// 64 biggest values

403 
scanIndices_01 = vec_sel(scanPtr[0], negOne, zero_01);

404 
scanIndices_23 = vec_sel(scanPtr[1], negOne, zero_23);

405 
scanIndices_45 = vec_sel(scanPtr[2], negOne, zero_45);

406 
scanIndices_67 = vec_sel(scanPtr[3], negOne, zero_67);

407  
408 
// 32 largest values

409 
scanIndices_01 = vec_max(scanIndices_01, scanIndices_23); 
410 
scanIndices_45 = vec_max(scanIndices_45, scanIndices_67); 
411  
412 
// 16 largest values

413 
scanIndices_01 = vec_max(scanIndices_01, scanIndices_45); 
414  
415 
// 8 largest values

416 
scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne), 
417 
vec_mergel(scanIndices_01, negOne)); 
418  
419 
// 4 largest values

420 
scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne), 
421 
vec_mergel(scanIndices_01, negOne)); 
422  
423 
// 2 largest values

424 
scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne), 
425 
vec_mergel(scanIndices_01, negOne)); 
426  
427 
// largest value

428 
scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne), 
429 
vec_mergel(scanIndices_01, negOne)); 
430  
431 
scanIndices_01 = vec_splat(scanIndices_01, 0);

432  
433  
434 
vec_ste(scanIndices_01, 0, &lastNonZeroChar);

435  
436 
lastNonZero = lastNonZeroChar; 
437  
438 
// While the data is still in vectors we check for the transpose IDCT permute

439 
// and handle it using the vector unit if we can. This is the permute used

440 
// by the altivec idct, so it is common when using the altivec dct.

441  
442 
if ((lastNonZero > 0) && (s>dsp.idct_permutation_type == FF_TRANSPOSE_IDCT_PERM)) 
443 
{ 
444 
TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7); 
445 
} 
446  
447 
vec_st(data0, 0, data);

448 
vec_st(data1, 16, data);

449 
vec_st(data2, 32, data);

450 
vec_st(data3, 48, data);

451 
vec_st(data4, 64, data);

452 
vec_st(data5, 80, data);

453 
vec_st(data6, 96, data);

454 
vec_st(data7, 112, data);

455 
} 
456 
} 
457  
458 
// special handling of block[0]

459 
if (s>mb_intra)

460 
{ 
461 
if (!s>h263_aic)

462 
{ 
463 
if (n < 4) 
464 
oldBaseValue /= s>y_dc_scale; 
465 
else

466 
oldBaseValue /= s>c_dc_scale; 
467 
} 
468  
469 
// Divide by 8, rounding the result

470 
data[0] = (oldBaseValue + 4) >> 3; 
471 
} 
472  
473 
// We handled the transpose permutation above and we don't

474 
// need to permute the "no" permutation case.

475 
if ((lastNonZero > 0) && 
476 
(s>dsp.idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) && 
477 
(s>dsp.idct_permutation_type != FF_NO_IDCT_PERM)) 
478 
{ 
479 
ff_block_permute(data, s>dsp.idct_permutation, 
480 
s>intra_scantable.scantable, lastNonZero); 
481 
} 
482  
483 
return lastNonZero;

484 
} 
485  
486 
/*

487 
AltiVec version of dct_unquantize_h263

488 
this code assumes `block' is 16 bytesaligned

489 
*/

490 
void dct_unquantize_h263_altivec(MpegEncContext *s,

491 
DCTELEM *block, int n, int qscale) 
492 
{ 
493 
POWERPC_PERF_DECLARE(altivec_dct_unquantize_h263_num, 1);

494 
int i, level, qmul, qadd;

495 
int nCoeffs;

496  
497 
assert(s>block_last_index[n]>=0);

498  
499 
POWERPC_PERF_START_COUNT(altivec_dct_unquantize_h263_num, 1);

500  
501 
qadd = (qscale  1)  1; 
502 
qmul = qscale << 1;

503  
504 
if (s>mb_intra) {

505 
if (!s>h263_aic) {

506 
if (n < 4) 
507 
block[0] = block[0] * s>y_dc_scale; 
508 
else

509 
block[0] = block[0] * s>c_dc_scale; 
510 
}else

511 
qadd = 0;

512 
i = 1;

513 
nCoeffs= 63; //does not always use zigzag table 
514 
} else {

515 
i = 0;

516 
nCoeffs= s>intra_scantable.raster_end[ s>block_last_index[n] ]; 
517 
} 
518  
519 
{ 
520 
register const vector signed short vczero = (const vector signed short)vec_splat_s16(0); 
521 
DECLARE_ALIGNED_16(short, qmul8[]) =

522 
{ 
523 
qmul, qmul, qmul, qmul, 
524 
qmul, qmul, qmul, qmul 
525 
}; 
526 
DECLARE_ALIGNED_16(short, qadd8[]) =

527 
{ 
528 
qadd, qadd, qadd, qadd, 
529 
qadd, qadd, qadd, qadd 
530 
}; 
531 
DECLARE_ALIGNED_16(short, nqadd8[]) =

532 
{ 
533 
qadd, qadd, qadd, qadd, 
534 
qadd, qadd, qadd, qadd 
535 
}; 
536 
register vector signed short blockv, qmulv, qaddv, nqaddv, temp1; 
537 
register vector bool short blockv_null, blockv_neg; 
538 
register short backup_0 = block[0]; 
539 
register int j = 0; 
540  
541 
qmulv = vec_ld(0, qmul8);

542 
qaddv = vec_ld(0, qadd8);

543 
nqaddv = vec_ld(0, nqadd8);

544  
545 
#if 0 // block *is* 16 bytesaligned, it seems.

546 
// first make sure block[j] is 16 bytesaligned

547 
for(j = 0; (j <= nCoeffs) && ((((unsigned long)block) + (j << 1)) & 0x0000000F) ; j++) {

548 
level = block[j];

549 
if (level) {

550 
if (level < 0) {

551 
level = level * qmul  qadd;

552 
} else {

553 
level = level * qmul + qadd;

554 
}

555 
block[j] = level;

556 
}

557 
}

558 
#endif

559  
560 
// vectorize all the 16 bytesaligned blocks

561 
// of 8 elements

562 
for(; (j + 7) <= nCoeffs ; j+=8) 
563 
{ 
564 
blockv = vec_ld(j << 1, block);

565 
blockv_neg = vec_cmplt(blockv, vczero); 
566 
blockv_null = vec_cmpeq(blockv, vczero); 
567 
// choose between +qadd or qadd as the third operand

568 
temp1 = vec_sel(qaddv, nqaddv, blockv_neg); 
569 
// multiply & add (block{i,i+7} * qmul [+] qadd)

570 
temp1 = vec_mladd(blockv, qmulv, temp1); 
571 
// put 0 where block[{i,i+7} used to have 0

572 
blockv = vec_sel(temp1, blockv, blockv_null); 
573 
vec_st(blockv, j << 1, block);

574 
} 
575  
576 
// if nCoeffs isn't a multiple of 8, finish the job

577 
// using good old scalar units.

578 
// (we could do it using a truncated vector,

579 
// but I'm not sure it's worth the hassle)

580 
for(; j <= nCoeffs ; j++) {

581 
level = block[j]; 
582 
if (level) {

583 
if (level < 0) { 
584 
level = level * qmul  qadd; 
585 
} else {

586 
level = level * qmul + qadd; 
587 
} 
588 
block[j] = level; 
589 
} 
590 
} 
591  
592 
if (i == 1) 
593 
{ // cheat. this avoid specialcasing the first iteration

594 
block[0] = backup_0;

595 
} 
596 
} 
597 
POWERPC_PERF_STOP_COUNT(altivec_dct_unquantize_h263_num, nCoeffs == 63);

598 
} 
599  
600  
601 
extern void idct_put_altivec(uint8_t *dest, int line_size, int16_t *block); 
602 
extern void idct_add_altivec(uint8_t *dest, int line_size, int16_t *block); 
603  
604 
void MPV_common_init_altivec(MpegEncContext *s)

605 
{ 
606 
if (mm_flags & (MM_ALTIVEC == 0)) return; 
607  
608 
if (s>avctx>lowres==0) 
609 
{ 
610 
if ((s>avctx>idct_algo == FF_IDCT_AUTO) 

611 
(s>avctx>idct_algo == FF_IDCT_ALTIVEC)) 
612 
{ 
613 
s>dsp.idct_put = idct_put_altivec; 
614 
s>dsp.idct_add = idct_add_altivec; 
615 
s>dsp.idct_permutation_type = FF_TRANSPOSE_IDCT_PERM; 
616 
} 
617 
} 
618  
619 
// Test to make sure that the dct required alignments are met.

620 
if ((((long)(s>q_intra_matrix) & 0x0f) != 0)  
621 
(((long)(s>q_inter_matrix) & 0x0f) != 0)) 
622 
{ 
623 
av_log(s>avctx, AV_LOG_INFO, "Internal Error: qmatrix blocks must be 16byte aligned "

624 
"to use AltiVec DCT. Reverting to nonAltiVec version.\n");

625 
return;

626 
} 
627  
628 
if (((long)(s>intra_scantable.inverse) & 0x0f) != 0) 
629 
{ 
630 
av_log(s>avctx, AV_LOG_INFO, "Internal Error: scan table blocks must be 16byte aligned "

631 
"to use AltiVec DCT. Reverting to nonAltiVec version.\n");

632 
return;

633 
} 
634  
635  
636 
if ((s>avctx>dct_algo == FF_DCT_AUTO) 

637 
(s>avctx>dct_algo == FF_DCT_ALTIVEC)) 
638 
{ 
639 
#if 0 /* seems to cause trouble under some circumstances */

640 
s>dct_quantize = dct_quantize_altivec;

641 
#endif

642 
s>dct_unquantize_h263_intra = dct_unquantize_h263_altivec; 
643 
s>dct_unquantize_h263_inter = dct_unquantize_h263_altivec; 
644 
} 
645 
} 