Statistics
| Branch: | Revision:

ffmpeg / libavcodec / fdctref.c @ d771bcae

History | View | Annotate | Download (3.22 KB)

1 de6d9b64 Fabrice Bellard
/* fdctref.c, forward discrete cosine transform, double precision           */
2
3
/* Copyright (C) 1996, MPEG Software Simulation Group. All Rights Reserved. */
4
5
/*
6
 * Disclaimer of Warranty
7
 *
8
 * These software programs are available to the user without any license fee or
9
 * royalty on an "as is" basis.  The MPEG Software Simulation Group disclaims
10
 * any and all warranties, whether express, implied, or statuary, including any
11
 * implied warranties or merchantability or of fitness for a particular
12
 * purpose.  In no event shall the copyright-holder be liable for any
13
 * incidental, punitive, or consequential damages of any kind whatsoever
14
 * arising from the use of these programs.
15
 *
16
 * This disclaimer of warranty extends to the user of these programs and user's
17
 * customers, employees, agents, transferees, successors, and assigns.
18
 *
19
 * The MPEG Software Simulation Group does not represent or warrant that the
20
 * programs furnished hereunder are free of infringement of any third-party
21
 * patents.
22
 *
23
 * Commercial implementations of MPEG-1 and MPEG-2 video, including shareware,
24
 * are subject to royalty fees to patent holders.  Many of these patents are
25
 * general enough such that they are unavoidable regardless of implementation
26
 * design.
27
 *
28
 */
29
30
#include <math.h>
31
32
// #include "config.h"
33
34
#ifndef PI
35
# ifdef M_PI
36
#  define PI M_PI
37
# else
38
#  define PI 3.14159265358979323846
39
# endif
40
#endif
41
42
/* global declarations */
43
void init_fdct (void);
44
void fdct (short *block);
45
46
/* private data */
47
static double c[8][8]; /* transform coefficients */
48
49
void init_fdct()
50
{
51
  int i, j;
52
  double s;
53
54
  for (i=0; i<8; i++)
55
  {
56
    s = (i==0) ? sqrt(0.125) : 0.5;
57
58
    for (j=0; j<8; j++)
59
      c[i][j] = s * cos((PI/8.0)*i*(j+0.5));
60
  }
61
}
62
63
void fdct(block)
64
short *block;
65
{
66
        register int i, j;
67
        double s;
68
        double tmp[64];
69
70
        for(i = 0; i < 8; i++)
71
            for(j = 0; j < 8; j++)
72
            {
73
                    s = 0.0;
74
75
/*
76
 *                     for(k = 0; k < 8; k++)
77
 *                         s += c[j][k] * block[8 * i + k];
78
 */
79
                s += c[j][0] * block[8 * i + 0];
80
                s += c[j][1] * block[8 * i + 1];
81
                s += c[j][2] * block[8 * i + 2];
82
                s += c[j][3] * block[8 * i + 3];
83
                s += c[j][4] * block[8 * i + 4];
84
                s += c[j][5] * block[8 * i + 5];
85
                s += c[j][6] * block[8 * i + 6];
86
                s += c[j][7] * block[8 * i + 7];
87
88
                    tmp[8 * i + j] = s;
89
            }
90
91
        for(j = 0; j < 8; j++)
92
            for(i = 0; i < 8; i++)
93
            {
94
                    s = 0.0;
95
96
/*
97
 *                       for(k = 0; k < 8; k++)
98
 *                    s += c[i][k] * tmp[8 * k + j];
99
 */
100
                s += c[i][0] * tmp[8 * 0 + j];
101
                s += c[i][1] * tmp[8 * 1 + j];
102
                s += c[i][2] * tmp[8 * 2 + j];
103
                s += c[i][3] * tmp[8 * 3 + j];
104
                s += c[i][4] * tmp[8 * 4 + j];
105
                s += c[i][5] * tmp[8 * 5 + j];
106
                s += c[i][6] * tmp[8 * 6 + j];
107
                s += c[i][7] * tmp[8 * 7 + j];
108
109
                    block[8 * i + j] = (short)floor(s + 0.499999);
110
/*
111
 * reason for adding 0.499999 instead of 0.5:
112
 * s is quite often x.5 (at least for i and/or j = 0 or 4)
113
 * and setting the rounding threshold exactly to 0.5 leads to an
114
 * extremely high arithmetic implementation dependency of the result;
115
 * s being between x.5 and x.500001 (which is now incorrectly rounded
116
 * downwards instead of upwards) is assumed to occur less often
117
 * (if at all)
118
 */
119
      }
120
}