Statistics
| Branch: | Revision:

ffmpeg / libavcodec / sipr.c @ d79c06b2

History | View | Annotate | Download (17.9 KB)

1
/*
2
 * SIPR / ACELP.NET decoder
3
 *
4
 * Copyright (c) 2008 Vladimir Voroshilov
5
 * Copyright (c) 2009 Vitor Sessak
6
 *
7
 * This file is part of FFmpeg.
8
 *
9
 * FFmpeg is free software; you can redistribute it and/or
10
 * modify it under the terms of the GNU Lesser General Public
11
 * License as published by the Free Software Foundation; either
12
 * version 2.1 of the License, or (at your option) any later version.
13
 *
14
 * FFmpeg is distributed in the hope that it will be useful,
15
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17
 * Lesser General Public License for more details.
18
 *
19
 * You should have received a copy of the GNU Lesser General Public
20
 * License along with FFmpeg; if not, write to the Free Software
21
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22
 */
23

    
24
#include <math.h>
25
#include <stdint.h>
26

    
27
#include "libavutil/mathematics.h"
28
#include "avcodec.h"
29
#define ALT_BITSTREAM_READER_LE
30
#include "get_bits.h"
31
#include "dsputil.h"
32

    
33
#include "lsp.h"
34
#include "celp_math.h"
35
#include "acelp_vectors.h"
36
#include "acelp_pitch_delay.h"
37
#include "acelp_filters.h"
38
#include "celp_filters.h"
39

    
40
#define MAX_SUBFRAME_COUNT   5
41

    
42
#include "sipr.h"
43
#include "siprdata.h"
44

    
45
typedef struct {
46
    const char *mode_name;
47
    uint16_t bits_per_frame;
48
    uint8_t subframe_count;
49
    uint8_t frames_per_packet;
50
    float pitch_sharp_factor;
51

    
52
    /* bitstream parameters */
53
    uint8_t number_of_fc_indexes;
54

    
55
    /** size in bits of the i-th stage vector of quantizer */
56
    uint8_t vq_indexes_bits[5];
57

    
58
    /** size in bits of the adaptive-codebook index for every subframe */
59
    uint8_t pitch_delay_bits[5];
60

    
61
    uint8_t gp_index_bits;
62
    uint8_t fc_index_bits[10]; ///< size in bits of the fixed codebook indexes
63
    uint8_t gc_index_bits;     ///< size in bits of the gain  codebook indexes
64
} SiprModeParam;
65

    
66
static const SiprModeParam modes[MODE_COUNT] = {
67
    [MODE_8k5] = {
68
        .mode_name          = "8k5",
69
        .bits_per_frame     = 152,
70
        .subframe_count     = 3,
71
        .frames_per_packet  = 1,
72
        .pitch_sharp_factor = 0.8,
73

    
74
        .number_of_fc_indexes = 3,
75
        .vq_indexes_bits      = {6, 7, 7, 7, 5},
76
        .pitch_delay_bits     = {8, 5, 5},
77
        .gp_index_bits        = 0,
78
        .fc_index_bits        = {9, 9, 9},
79
        .gc_index_bits        = 7
80
    },
81

    
82
    [MODE_6k5] = {
83
        .mode_name          = "6k5",
84
        .bits_per_frame     = 232,
85
        .subframe_count     = 3,
86
        .frames_per_packet  = 2,
87
        .pitch_sharp_factor = 0.8,
88

    
89
        .number_of_fc_indexes = 3,
90
        .vq_indexes_bits      = {6, 7, 7, 7, 5},
91
        .pitch_delay_bits     = {8, 5, 5},
92
        .gp_index_bits        = 0,
93
        .fc_index_bits        = {5, 5, 5},
94
        .gc_index_bits        = 7
95
    },
96

    
97
    [MODE_5k0] = {
98
        .mode_name          = "5k0",
99
        .bits_per_frame     = 296,
100
        .subframe_count     = 5,
101
        .frames_per_packet  = 2,
102
        .pitch_sharp_factor = 0.85,
103

    
104
        .number_of_fc_indexes = 1,
105
        .vq_indexes_bits      = {6, 7, 7, 7, 5},
106
        .pitch_delay_bits     = {8, 5, 8, 5, 5},
107
        .gp_index_bits        = 0,
108
        .fc_index_bits        = {10},
109
        .gc_index_bits        = 7
110
    }
111
};
112

    
113
const float ff_pow_0_5[] = {
114
    1.0/(1 <<  1), 1.0/(1 <<  2), 1.0/(1 <<  3), 1.0/(1 <<  4),
115
    1.0/(1 <<  5), 1.0/(1 <<  6), 1.0/(1 <<  7), 1.0/(1 <<  8),
116
    1.0/(1 <<  9), 1.0/(1 << 10), 1.0/(1 << 11), 1.0/(1 << 12),
117
    1.0/(1 << 13), 1.0/(1 << 14), 1.0/(1 << 15), 1.0/(1 << 16)
118
};
119

    
120
static void dequant(float *out, const int *idx, const float *cbs[])
121
{
122
    int i;
123
    int stride  = 2;
124
    int num_vec = 5;
125

    
126
    for (i = 0; i < num_vec; i++)
127
        memcpy(out + stride*i, cbs[i] + stride*idx[i], stride*sizeof(float));
128

    
129
}
130

    
131
static void lsf_decode_fp(float *lsfnew, float *lsf_history,
132
                          const SiprParameters *parm)
133
{
134
    int i;
135
    float lsf_tmp[LP_FILTER_ORDER];
136

    
137
    dequant(lsf_tmp, parm->vq_indexes, lsf_codebooks);
138

    
139
    for (i = 0; i < LP_FILTER_ORDER; i++)
140
        lsfnew[i] = lsf_history[i] * 0.33 + lsf_tmp[i] + mean_lsf[i];
141

    
142
    ff_sort_nearly_sorted_floats(lsfnew, LP_FILTER_ORDER - 1);
143

    
144
    /* Note that a minimum distance is not enforced between the last value and
145
       the previous one, contrary to what is done in ff_acelp_reorder_lsf() */
146
    ff_set_min_dist_lsf(lsfnew, LSFQ_DIFF_MIN, LP_FILTER_ORDER - 1);
147
    lsfnew[9] = FFMIN(lsfnew[LP_FILTER_ORDER - 1], 1.3 * M_PI);
148

    
149
    memcpy(lsf_history, lsf_tmp, LP_FILTER_ORDER * sizeof(*lsf_history));
150

    
151
    for (i = 0; i < LP_FILTER_ORDER - 1; i++)
152
        lsfnew[i] = cos(lsfnew[i]);
153
    lsfnew[LP_FILTER_ORDER - 1] *= 6.153848 / M_PI;
154
}
155

    
156
/** Apply pitch lag to the fixed vector (AMR section 6.1.2). */
157
static void pitch_sharpening(int pitch_lag_int, float beta,
158
                             float *fixed_vector)
159
{
160
    int i;
161

    
162
    for (i = pitch_lag_int; i < SUBFR_SIZE; i++)
163
        fixed_vector[i] += beta * fixed_vector[i - pitch_lag_int];
164
}
165

    
166
/**
167
 * Extracts decoding parameters from the input bitstream.
168
 * @param parms          parameters structure
169
 * @param pgb            pointer to initialized GetBitContext structure
170
 */
171
static void decode_parameters(SiprParameters* parms, GetBitContext *pgb,
172
                              const SiprModeParam *p)
173
{
174
    int i, j;
175

    
176
    for (i = 0; i < 5; i++)
177
        parms->vq_indexes[i]        = get_bits(pgb, p->vq_indexes_bits[i]);
178

    
179
    for (i = 0; i < p->subframe_count; i++) {
180
        parms->pitch_delay[i]       = get_bits(pgb, p->pitch_delay_bits[i]);
181
        parms->gp_index[i]          = get_bits(pgb, p->gp_index_bits);
182

    
183
        for (j = 0; j < p->number_of_fc_indexes; j++)
184
            parms->fc_indexes[i][j] = get_bits(pgb, p->fc_index_bits[j]);
185

    
186
        parms->gc_index[i]          = get_bits(pgb, p->gc_index_bits);
187
    }
188
}
189

    
190
static void lsp2lpc_sipr(const double *lsp, float *Az)
191
{
192
    int lp_half_order = LP_FILTER_ORDER >> 1;
193
    double buf[(LP_FILTER_ORDER >> 1) + 1];
194
    double pa[(LP_FILTER_ORDER >> 1) + 1];
195
    double *qa = buf + 1;
196
    int i,j;
197

    
198
    qa[-1] = 0.0;
199

    
200
    ff_lsp2polyf(lsp    , pa, lp_half_order    );
201
    ff_lsp2polyf(lsp + 1, qa, lp_half_order - 1);
202

    
203
    for (i = 1, j = LP_FILTER_ORDER - 1; i < lp_half_order; i++, j--) {
204
        double paf =  pa[i]            * (1 + lsp[LP_FILTER_ORDER - 1]);
205
        double qaf = (qa[i] - qa[i-2]) * (1 - lsp[LP_FILTER_ORDER - 1]);
206
        Az[i-1]  = (paf + qaf) * 0.5;
207
        Az[j-1]  = (paf - qaf) * 0.5;
208
    }
209

    
210
    Az[lp_half_order - 1] = (1.0 + lsp[LP_FILTER_ORDER - 1]) *
211
        pa[lp_half_order] * 0.5;
212

    
213
    Az[LP_FILTER_ORDER - 1] = lsp[LP_FILTER_ORDER - 1];
214
}
215

    
216
static void sipr_decode_lp(float *lsfnew, const float *lsfold, float *Az,
217
                           int num_subfr)
218
{
219
    double lsfint[LP_FILTER_ORDER];
220
    int i,j;
221
    float t, t0 = 1.0 / num_subfr;
222

    
223
    t = t0 * 0.5;
224
    for (i = 0; i < num_subfr; i++) {
225
        for (j = 0; j < LP_FILTER_ORDER; j++)
226
            lsfint[j] = lsfold[j] * (1 - t) + t * lsfnew[j];
227

    
228
        lsp2lpc_sipr(lsfint, Az);
229
        Az += LP_FILTER_ORDER;
230
        t += t0;
231
    }
232
}
233

    
234
/**
235
 * Evaluates the adaptative impulse response.
236
 */
237
static void eval_ir(const float *Az, int pitch_lag, float *freq,
238
                    float pitch_sharp_factor)
239
{
240
    float tmp1[SUBFR_SIZE+1], tmp2[LP_FILTER_ORDER+1];
241
    int i;
242

    
243
    tmp1[0] = 1.;
244
    for (i = 0; i < LP_FILTER_ORDER; i++) {
245
        tmp1[i+1] = Az[i] * ff_pow_0_55[i];
246
        tmp2[i  ] = Az[i] * ff_pow_0_7 [i];
247
    }
248
    memset(tmp1 + 11, 0, 37 * sizeof(float));
249

    
250
    ff_celp_lp_synthesis_filterf(freq, tmp2, tmp1, SUBFR_SIZE,
251
                                 LP_FILTER_ORDER);
252

    
253
    pitch_sharpening(pitch_lag, pitch_sharp_factor, freq);
254
}
255

    
256
/**
257
 * Evaluates the convolution of a vector with a sparse vector.
258
 */
259
static void convolute_with_sparse(float *out, const AMRFixed *pulses,
260
                                  const float *shape, int length)
261
{
262
    int i, j;
263

    
264
    memset(out, 0, length*sizeof(float));
265
    for (i = 0; i < pulses->n; i++)
266
        for (j = pulses->x[i]; j < length; j++)
267
            out[j] += pulses->y[i] * shape[j - pulses->x[i]];
268
}
269

    
270
/**
271
 * Apply postfilter, very similar to AMR one.
272
 */
273
static void postfilter_5k0(SiprContext *ctx, const float *lpc, float *samples)
274
{
275
    float buf[SUBFR_SIZE + LP_FILTER_ORDER];
276
    float *pole_out = buf + LP_FILTER_ORDER;
277
    float lpc_n[LP_FILTER_ORDER];
278
    float lpc_d[LP_FILTER_ORDER];
279
    int i;
280

    
281
    for (i = 0; i < LP_FILTER_ORDER; i++) {
282
        lpc_d[i] = lpc[i] * ff_pow_0_75[i];
283
        lpc_n[i] = lpc[i] * ff_pow_0_5 [i];
284
    };
285

    
286
    memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem,
287
           LP_FILTER_ORDER*sizeof(float));
288

    
289
    ff_celp_lp_synthesis_filterf(pole_out, lpc_d, samples, SUBFR_SIZE,
290
                                 LP_FILTER_ORDER);
291

    
292
    memcpy(ctx->postfilter_mem, pole_out + SUBFR_SIZE - LP_FILTER_ORDER,
293
           LP_FILTER_ORDER*sizeof(float));
294

    
295
    ff_tilt_compensation(&ctx->tilt_mem, 0.4, pole_out, SUBFR_SIZE);
296

    
297
    memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem5k0,
298
           LP_FILTER_ORDER*sizeof(*pole_out));
299

    
300
    memcpy(ctx->postfilter_mem5k0, pole_out + SUBFR_SIZE - LP_FILTER_ORDER,
301
           LP_FILTER_ORDER*sizeof(*pole_out));
302

    
303
    ff_celp_lp_zero_synthesis_filterf(samples, lpc_n, pole_out, SUBFR_SIZE,
304
                                      LP_FILTER_ORDER);
305

    
306
}
307

    
308
static void decode_fixed_sparse(AMRFixed *fixed_sparse, const int16_t *pulses,
309
                                SiprMode mode, int low_gain)
310
{
311
    int i;
312

    
313
    switch (mode) {
314
    case MODE_6k5:
315
        for (i = 0; i < 3; i++) {
316
            fixed_sparse->x[i] = 3 * (pulses[i] & 0xf) + i;
317
            fixed_sparse->y[i] = pulses[i] & 0x10 ? -1 : 1;
318
        }
319
        fixed_sparse->n = 3;
320
        break;
321
    case MODE_8k5:
322
        for (i = 0; i < 3; i++) {
323
            fixed_sparse->x[2*i    ] = 3 * ((pulses[i] >> 4) & 0xf) + i;
324
            fixed_sparse->x[2*i + 1] = 3 * ( pulses[i]       & 0xf) + i;
325

    
326
            fixed_sparse->y[2*i    ] = (pulses[i] & 0x100) ? -1.0: 1.0;
327

    
328
            fixed_sparse->y[2*i + 1] =
329
                (fixed_sparse->x[2*i + 1] < fixed_sparse->x[2*i]) ?
330
                -fixed_sparse->y[2*i    ] : fixed_sparse->y[2*i];
331
        }
332

    
333
        fixed_sparse->n = 6;
334
        break;
335
    case MODE_5k0:
336
    default:
337
        if (low_gain) {
338
            int offset = (pulses[0] & 0x200) ? 2 : 0;
339
            int val = pulses[0];
340

    
341
            for (i = 0; i < 3; i++) {
342
                int index = (val & 0x7) * 6 + 4 - i*2;
343

    
344
                fixed_sparse->y[i] = (offset + index) & 0x3 ? -1 : 1;
345
                fixed_sparse->x[i] = index;
346

    
347
                val >>= 3;
348
            }
349
            fixed_sparse->n = 3;
350
        } else {
351
            int pulse_subset = (pulses[0] >> 8) & 1;
352

    
353
            fixed_sparse->x[0] = ((pulses[0] >> 4) & 15) * 3 + pulse_subset;
354
            fixed_sparse->x[1] = ( pulses[0]       & 15) * 3 + pulse_subset + 1;
355

    
356
            fixed_sparse->y[0] = pulses[0] & 0x200 ? -1 : 1;
357
            fixed_sparse->y[1] = -fixed_sparse->y[0];
358
            fixed_sparse->n = 2;
359
        }
360
        break;
361
    }
362
}
363

    
364
static void decode_frame(SiprContext *ctx, SiprParameters *params,
365
                         float *out_data)
366
{
367
    int i, j;
368
    int subframe_count = modes[ctx->mode].subframe_count;
369
    int frame_size = subframe_count * SUBFR_SIZE;
370
    float Az[LP_FILTER_ORDER * MAX_SUBFRAME_COUNT];
371
    float *excitation;
372
    float ir_buf[SUBFR_SIZE + LP_FILTER_ORDER];
373
    float lsf_new[LP_FILTER_ORDER];
374
    float *impulse_response = ir_buf + LP_FILTER_ORDER;
375
    float *synth = ctx->synth_buf + 16; // 16 instead of LP_FILTER_ORDER for
376
                                        // memory alignment
377
    int t0_first = 0;
378
    AMRFixed fixed_cb;
379

    
380
    memset(ir_buf, 0, LP_FILTER_ORDER * sizeof(float));
381
    lsf_decode_fp(lsf_new, ctx->lsf_history, params);
382

    
383
    sipr_decode_lp(lsf_new, ctx->lsp_history, Az, subframe_count);
384

    
385
    memcpy(ctx->lsp_history, lsf_new, LP_FILTER_ORDER * sizeof(float));
386

    
387
    excitation = ctx->excitation + PITCH_DELAY_MAX + L_INTERPOL;
388

    
389
    for (i = 0; i < subframe_count; i++) {
390
        float *pAz = Az + i*LP_FILTER_ORDER;
391
        float fixed_vector[SUBFR_SIZE];
392
        int T0,T0_frac;
393
        float pitch_gain, gain_code, avg_energy;
394

    
395
        ff_decode_pitch_lag(&T0, &T0_frac, params->pitch_delay[i], t0_first, i,
396
                            ctx->mode == MODE_5k0, 6);
397

    
398
        if (i == 0 || (i == 2 && ctx->mode == MODE_5k0))
399
            t0_first = T0;
400

    
401
        ff_acelp_interpolatef(excitation, excitation - T0 + (T0_frac <= 0),
402
                              ff_b60_sinc, 6,
403
                              2 * ((2 + T0_frac)%3 + 1), LP_FILTER_ORDER,
404
                              SUBFR_SIZE);
405

    
406
        decode_fixed_sparse(&fixed_cb, params->fc_indexes[i], ctx->mode,
407
                            ctx->past_pitch_gain < 0.8);
408

    
409
        eval_ir(pAz, T0, impulse_response, modes[ctx->mode].pitch_sharp_factor);
410

    
411
        convolute_with_sparse(fixed_vector, &fixed_cb, impulse_response,
412
                              SUBFR_SIZE);
413

    
414
        avg_energy =
415
            (0.01 + ff_dot_productf(fixed_vector, fixed_vector, SUBFR_SIZE))/
416
                SUBFR_SIZE;
417

    
418
        ctx->past_pitch_gain = pitch_gain = gain_cb[params->gc_index[i]][0];
419

    
420
        gain_code = ff_amr_set_fixed_gain(gain_cb[params->gc_index[i]][1],
421
                                          avg_energy, ctx->energy_history,
422
                                          34 - 15.0/(0.05*M_LN10/M_LN2),
423
                                          pred);
424

    
425
        ff_weighted_vector_sumf(excitation, excitation, fixed_vector,
426
                                pitch_gain, gain_code, SUBFR_SIZE);
427

    
428
        pitch_gain *= 0.5 * pitch_gain;
429
        pitch_gain = FFMIN(pitch_gain, 0.4);
430

    
431
        ctx->gain_mem = 0.7 * ctx->gain_mem + 0.3 * pitch_gain;
432
        ctx->gain_mem = FFMIN(ctx->gain_mem, pitch_gain);
433
        gain_code *= ctx->gain_mem;
434

    
435
        for (j = 0; j < SUBFR_SIZE; j++)
436
            fixed_vector[j] = excitation[j] - gain_code * fixed_vector[j];
437

    
438
        if (ctx->mode == MODE_5k0) {
439
            postfilter_5k0(ctx, pAz, fixed_vector);
440

    
441
            ff_celp_lp_synthesis_filterf(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i*SUBFR_SIZE,
442
                                         pAz, excitation, SUBFR_SIZE,
443
                                         LP_FILTER_ORDER);
444
        }
445

    
446
        ff_celp_lp_synthesis_filterf(synth + i*SUBFR_SIZE, pAz, fixed_vector,
447
                                     SUBFR_SIZE, LP_FILTER_ORDER);
448

    
449
        excitation += SUBFR_SIZE;
450
    }
451

    
452
    memcpy(synth - LP_FILTER_ORDER, synth + frame_size - LP_FILTER_ORDER,
453
           LP_FILTER_ORDER * sizeof(float));
454

    
455
    if (ctx->mode == MODE_5k0) {
456
        for (i = 0; i < subframe_count; i++) {
457
            float energy = ff_dot_productf(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i*SUBFR_SIZE,
458
                                           ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i*SUBFR_SIZE,
459
                                           SUBFR_SIZE);
460
            ff_adaptative_gain_control(&synth[i * SUBFR_SIZE], energy,
461
                                       SUBFR_SIZE, 0.9, &ctx->postfilter_agc);
462
        }
463

    
464
        memcpy(ctx->postfilter_syn5k0, ctx->postfilter_syn5k0 + frame_size,
465
               LP_FILTER_ORDER*sizeof(float));
466
    }
467
    memcpy(ctx->excitation, excitation - PITCH_DELAY_MAX - L_INTERPOL,
468
           (PITCH_DELAY_MAX + L_INTERPOL) * sizeof(float));
469

    
470
    ff_acelp_apply_order_2_transfer_function(synth,
471
                                             (const float[2]) {-1.99997   , 1.000000000},
472
                                             (const float[2]) {-1.93307352, 0.935891986},
473
                                             0.939805806,
474
                                             ctx->highpass_filt_mem,
475
                                             frame_size);
476

    
477
    ctx->dsp.vector_clipf(out_data, synth, -1, 32767./(1<<15), frame_size);
478

    
479
}
480

    
481
static av_cold int sipr_decoder_init(AVCodecContext * avctx)
482
{
483
    SiprContext *ctx = avctx->priv_data;
484
    int i;
485

    
486
    if      (avctx->bit_rate > 12200) ctx->mode = MODE_16k;
487
    else if (avctx->bit_rate > 7500 ) ctx->mode = MODE_8k5;
488
    else if (avctx->bit_rate > 5750 ) ctx->mode = MODE_6k5;
489
    else                              ctx->mode = MODE_5k0;
490

    
491
    av_log(avctx, AV_LOG_DEBUG, "Mode: %s\n", modes[ctx->mode].mode_name);
492

    
493
    for (i = 0; i < LP_FILTER_ORDER; i++)
494
        ctx->lsp_history[i] = cos((i+1) * M_PI / (LP_FILTER_ORDER + 1));
495

    
496
    for (i = 0; i < 4; i++)
497
        ctx->energy_history[i] = -14;
498

    
499
    avctx->sample_fmt = SAMPLE_FMT_FLT;
500

    
501
    if (ctx->mode == MODE_16k) {
502
        av_log(avctx, AV_LOG_ERROR, "decoding 16kbps SIPR files is not "
503
                                    "supported yet.\n");
504
        return -1;
505
    }
506

    
507
    dsputil_init(&ctx->dsp, avctx);
508

    
509
    return 0;
510
}
511

    
512
static int sipr_decode_frame(AVCodecContext *avctx, void *datap,
513
                             int *data_size, AVPacket *avpkt)
514
{
515
    SiprContext *ctx = avctx->priv_data;
516
    const uint8_t *buf=avpkt->data;
517
    SiprParameters parm;
518
    const SiprModeParam *mode_par = &modes[ctx->mode];
519
    GetBitContext gb;
520
    float *data = datap;
521
    int i;
522

    
523
    ctx->avctx = avctx;
524
    if (avpkt->size < (mode_par->bits_per_frame >> 3)) {
525
        av_log(avctx, AV_LOG_ERROR,
526
               "Error processing packet: packet size (%d) too small\n",
527
               avpkt->size);
528

    
529
        *data_size = 0;
530
        return -1;
531
    }
532
    if (*data_size < SUBFR_SIZE * mode_par->subframe_count * sizeof(float)) {
533
        av_log(avctx, AV_LOG_ERROR,
534
               "Error processing packet: output buffer (%d) too small\n",
535
               *data_size);
536

    
537
        *data_size = 0;
538
        return -1;
539
    }
540

    
541
    init_get_bits(&gb, buf, mode_par->bits_per_frame);
542

    
543
    for (i = 0; i < mode_par->frames_per_packet; i++) {
544
        decode_parameters(&parm, &gb, mode_par);
545
        decode_frame(ctx, &parm, data);
546

    
547
        data += SUBFR_SIZE * mode_par->subframe_count;
548
    }
549

    
550
    *data_size = mode_par->frames_per_packet * SUBFR_SIZE *
551
        mode_par->subframe_count * sizeof(float);
552

    
553
    return mode_par->bits_per_frame >> 3;
554
};
555

    
556
AVCodec sipr_decoder = {
557
    "sipr",
558
    CODEC_TYPE_AUDIO,
559
    CODEC_ID_SIPR,
560
    sizeof(SiprContext),
561
    sipr_decoder_init,
562
    NULL,
563
    NULL,
564
    sipr_decode_frame,
565
    .long_name = NULL_IF_CONFIG_SMALL("RealAudio SIPR / ACELP.NET"),
566
};