Statistics
| Branch: | Revision:

ffmpeg / libavcodec / adpcm.c @ d8b2d834

History | View | Annotate | Download (61.5 KB)

1
/*
2
 * ADPCM codecs
3
 * Copyright (c) 2001-2003 The ffmpeg Project
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
#include "avcodec.h"
22
#include "get_bits.h"
23
#include "put_bits.h"
24
#include "bytestream.h"
25

    
26
/**
27
 * @file libavcodec/adpcm.c
28
 * ADPCM codecs.
29
 * First version by Francois Revol (revol@free.fr)
30
 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
31
 *   by Mike Melanson (melanson@pcisys.net)
32
 * CD-ROM XA ADPCM codec by BERO
33
 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
34
 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
35
 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
36
 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
37
 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
38
 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
39
 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
40
 *
41
 * Features and limitations:
42
 *
43
 * Reference documents:
44
 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
45
 * http://www.geocities.com/SiliconValley/8682/aud3.txt
46
 * http://openquicktime.sourceforge.net/plugins.htm
47
 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
48
 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
49
 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
50
 *
51
 * CD-ROM XA:
52
 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
53
 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
54
 * readstr http://www.geocities.co.jp/Playtown/2004/
55
 */
56

    
57
#define BLKSIZE 1024
58

    
59
/* step_table[] and index_table[] are from the ADPCM reference source */
60
/* This is the index table: */
61
static const int index_table[16] = {
62
    -1, -1, -1, -1, 2, 4, 6, 8,
63
    -1, -1, -1, -1, 2, 4, 6, 8,
64
};
65

    
66
/**
67
 * This is the step table. Note that many programs use slight deviations from
68
 * this table, but such deviations are negligible:
69
 */
70
static const int step_table[89] = {
71
    7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
72
    19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
73
    50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
74
    130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
75
    337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
76
    876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
77
    2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
78
    5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
79
    15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
80
};
81

    
82
/* These are for MS-ADPCM */
83
/* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
84
static const int AdaptationTable[] = {
85
        230, 230, 230, 230, 307, 409, 512, 614,
86
        768, 614, 512, 409, 307, 230, 230, 230
87
};
88

    
89
static const uint8_t AdaptCoeff1[] = {
90
        64, 128, 0, 48, 60, 115, 98
91
};
92

    
93
static const int8_t AdaptCoeff2[] = {
94
        0, -64, 0, 16, 0, -52, -58
95
};
96

    
97
/* These are for CD-ROM XA ADPCM */
98
static const int xa_adpcm_table[5][2] = {
99
   {   0,   0 },
100
   {  60,   0 },
101
   { 115, -52 },
102
   {  98, -55 },
103
   { 122, -60 }
104
};
105

    
106
static const int ea_adpcm_table[] = {
107
    0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
108
    3, 4, 7, 8, 10, 11, 0, -1, -3, -4
109
};
110

    
111
// padded to zero where table size is less then 16
112
static const int swf_index_tables[4][16] = {
113
    /*2*/ { -1, 2 },
114
    /*3*/ { -1, -1, 2, 4 },
115
    /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
116
    /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
117
};
118

    
119
static const int yamaha_indexscale[] = {
120
    230, 230, 230, 230, 307, 409, 512, 614,
121
    230, 230, 230, 230, 307, 409, 512, 614
122
};
123

    
124
static const int yamaha_difflookup[] = {
125
    1, 3, 5, 7, 9, 11, 13, 15,
126
    -1, -3, -5, -7, -9, -11, -13, -15
127
};
128

    
129
/* end of tables */
130

    
131
typedef struct ADPCMChannelStatus {
132
    int predictor;
133
    short int step_index;
134
    int step;
135
    /* for encoding */
136
    int prev_sample;
137

    
138
    /* MS version */
139
    short sample1;
140
    short sample2;
141
    int coeff1;
142
    int coeff2;
143
    int idelta;
144
} ADPCMChannelStatus;
145

    
146
typedef struct ADPCMContext {
147
    ADPCMChannelStatus status[6];
148
} ADPCMContext;
149

    
150
/* XXX: implement encoding */
151

    
152
#if CONFIG_ENCODERS
153
static av_cold int adpcm_encode_init(AVCodecContext *avctx)
154
{
155
    if (avctx->channels > 2)
156
        return -1; /* only stereo or mono =) */
157

    
158
    if(avctx->trellis && (unsigned)avctx->trellis > 16U){
159
        av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
160
        return -1;
161
    }
162

    
163
    switch(avctx->codec->id) {
164
    case CODEC_ID_ADPCM_IMA_WAV:
165
        avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
166
                                                             /* and we have 4 bytes per channel overhead */
167
        avctx->block_align = BLKSIZE;
168
        /* seems frame_size isn't taken into account... have to buffer the samples :-( */
169
        break;
170
    case CODEC_ID_ADPCM_IMA_QT:
171
        avctx->frame_size = 64;
172
        avctx->block_align = 34 * avctx->channels;
173
        break;
174
    case CODEC_ID_ADPCM_MS:
175
        avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
176
                                                             /* and we have 7 bytes per channel overhead */
177
        avctx->block_align = BLKSIZE;
178
        break;
179
    case CODEC_ID_ADPCM_YAMAHA:
180
        avctx->frame_size = BLKSIZE * avctx->channels;
181
        avctx->block_align = BLKSIZE;
182
        break;
183
    case CODEC_ID_ADPCM_SWF:
184
        if (avctx->sample_rate != 11025 &&
185
            avctx->sample_rate != 22050 &&
186
            avctx->sample_rate != 44100) {
187
            av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
188
            return -1;
189
        }
190
        avctx->frame_size = 512 * (avctx->sample_rate / 11025);
191
        break;
192
    default:
193
        return -1;
194
        break;
195
    }
196

    
197
    avctx->coded_frame= avcodec_alloc_frame();
198
    avctx->coded_frame->key_frame= 1;
199

    
200
    return 0;
201
}
202

    
203
static av_cold int adpcm_encode_close(AVCodecContext *avctx)
204
{
205
    av_freep(&avctx->coded_frame);
206

    
207
    return 0;
208
}
209

    
210

    
211
static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
212
{
213
    int delta = sample - c->prev_sample;
214
    int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
215
    c->prev_sample += ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
216
    c->prev_sample = av_clip_int16(c->prev_sample);
217
    c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
218
    return nibble;
219
}
220

    
221
static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
222
{
223
    int predictor, nibble, bias;
224

    
225
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
226

    
227
    nibble= sample - predictor;
228
    if(nibble>=0) bias= c->idelta/2;
229
    else          bias=-c->idelta/2;
230

    
231
    nibble= (nibble + bias) / c->idelta;
232
    nibble= av_clip(nibble, -8, 7)&0x0F;
233

    
234
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
235

    
236
    c->sample2 = c->sample1;
237
    c->sample1 = av_clip_int16(predictor);
238

    
239
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
240
    if (c->idelta < 16) c->idelta = 16;
241

    
242
    return nibble;
243
}
244

    
245
static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
246
{
247
    int nibble, delta;
248

    
249
    if(!c->step) {
250
        c->predictor = 0;
251
        c->step = 127;
252
    }
253

    
254
    delta = sample - c->predictor;
255

    
256
    nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
257

    
258
    c->predictor += ((c->step * yamaha_difflookup[nibble]) / 8);
259
    c->predictor = av_clip_int16(c->predictor);
260
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
261
    c->step = av_clip(c->step, 127, 24567);
262

    
263
    return nibble;
264
}
265

    
266
typedef struct TrellisPath {
267
    int nibble;
268
    int prev;
269
} TrellisPath;
270

    
271
typedef struct TrellisNode {
272
    uint32_t ssd;
273
    int path;
274
    int sample1;
275
    int sample2;
276
    int step;
277
} TrellisNode;
278

    
279
static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
280
                                   uint8_t *dst, ADPCMChannelStatus *c, int n)
281
{
282
#define FREEZE_INTERVAL 128
283
    //FIXME 6% faster if frontier is a compile-time constant
284
    const int frontier = 1 << avctx->trellis;
285
    const int stride = avctx->channels;
286
    const int version = avctx->codec->id;
287
    const int max_paths = frontier*FREEZE_INTERVAL;
288
    TrellisPath paths[max_paths], *p;
289
    TrellisNode node_buf[2][frontier];
290
    TrellisNode *nodep_buf[2][frontier];
291
    TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd
292
    TrellisNode **nodes_next = nodep_buf[1];
293
    int pathn = 0, froze = -1, i, j, k;
294

    
295
    assert(!(max_paths&(max_paths-1)));
296

    
297
    memset(nodep_buf, 0, sizeof(nodep_buf));
298
    nodes[0] = &node_buf[1][0];
299
    nodes[0]->ssd = 0;
300
    nodes[0]->path = 0;
301
    nodes[0]->step = c->step_index;
302
    nodes[0]->sample1 = c->sample1;
303
    nodes[0]->sample2 = c->sample2;
304
    if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_IMA_QT) || (version == CODEC_ID_ADPCM_SWF))
305
        nodes[0]->sample1 = c->prev_sample;
306
    if(version == CODEC_ID_ADPCM_MS)
307
        nodes[0]->step = c->idelta;
308
    if(version == CODEC_ID_ADPCM_YAMAHA) {
309
        if(c->step == 0) {
310
            nodes[0]->step = 127;
311
            nodes[0]->sample1 = 0;
312
        } else {
313
            nodes[0]->step = c->step;
314
            nodes[0]->sample1 = c->predictor;
315
        }
316
    }
317

    
318
    for(i=0; i<n; i++) {
319
        TrellisNode *t = node_buf[i&1];
320
        TrellisNode **u;
321
        int sample = samples[i*stride];
322
        memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
323
        for(j=0; j<frontier && nodes[j]; j++) {
324
            // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
325
            const int range = (j < frontier/2) ? 1 : 0;
326
            const int step = nodes[j]->step;
327
            int nidx;
328
            if(version == CODEC_ID_ADPCM_MS) {
329
                const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 64;
330
                const int div = (sample - predictor) / step;
331
                const int nmin = av_clip(div-range, -8, 6);
332
                const int nmax = av_clip(div+range, -7, 7);
333
                for(nidx=nmin; nidx<=nmax; nidx++) {
334
                    const int nibble = nidx & 0xf;
335
                    int dec_sample = predictor + nidx * step;
336
#define STORE_NODE(NAME, STEP_INDEX)\
337
                    int d;\
338
                    uint32_t ssd;\
339
                    dec_sample = av_clip_int16(dec_sample);\
340
                    d = sample - dec_sample;\
341
                    ssd = nodes[j]->ssd + d*d;\
342
                    if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
343
                        continue;\
344
                    /* Collapse any two states with the same previous sample value. \
345
                     * One could also distinguish states by step and by 2nd to last
346
                     * sample, but the effects of that are negligible. */\
347
                    for(k=0; k<frontier && nodes_next[k]; k++) {\
348
                        if(dec_sample == nodes_next[k]->sample1) {\
349
                            assert(ssd >= nodes_next[k]->ssd);\
350
                            goto next_##NAME;\
351
                        }\
352
                    }\
353
                    for(k=0; k<frontier; k++) {\
354
                        if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
355
                            TrellisNode *u = nodes_next[frontier-1];\
356
                            if(!u) {\
357
                                assert(pathn < max_paths);\
358
                                u = t++;\
359
                                u->path = pathn++;\
360
                            }\
361
                            u->ssd = ssd;\
362
                            u->step = STEP_INDEX;\
363
                            u->sample2 = nodes[j]->sample1;\
364
                            u->sample1 = dec_sample;\
365
                            paths[u->path].nibble = nibble;\
366
                            paths[u->path].prev = nodes[j]->path;\
367
                            memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
368
                            nodes_next[k] = u;\
369
                            break;\
370
                        }\
371
                    }\
372
                    next_##NAME:;
373
                    STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
374
                }
375
            } else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_IMA_QT)|| (version == CODEC_ID_ADPCM_SWF)) {
376
#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
377
                const int predictor = nodes[j]->sample1;\
378
                const int div = (sample - predictor) * 4 / STEP_TABLE;\
379
                int nmin = av_clip(div-range, -7, 6);\
380
                int nmax = av_clip(div+range, -6, 7);\
381
                if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
382
                if(nmax<0) nmax--;\
383
                for(nidx=nmin; nidx<=nmax; nidx++) {\
384
                    const int nibble = nidx<0 ? 7-nidx : nidx;\
385
                    int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
386
                    STORE_NODE(NAME, STEP_INDEX);\
387
                }
388
                LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88));
389
            } else { //CODEC_ID_ADPCM_YAMAHA
390
                LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
391
#undef LOOP_NODES
392
#undef STORE_NODE
393
            }
394
        }
395

    
396
        u = nodes;
397
        nodes = nodes_next;
398
        nodes_next = u;
399

    
400
        // prevent overflow
401
        if(nodes[0]->ssd > (1<<28)) {
402
            for(j=1; j<frontier && nodes[j]; j++)
403
                nodes[j]->ssd -= nodes[0]->ssd;
404
            nodes[0]->ssd = 0;
405
        }
406

    
407
        // merge old paths to save memory
408
        if(i == froze + FREEZE_INTERVAL) {
409
            p = &paths[nodes[0]->path];
410
            for(k=i; k>froze; k--) {
411
                dst[k] = p->nibble;
412
                p = &paths[p->prev];
413
            }
414
            froze = i;
415
            pathn = 0;
416
            // other nodes might use paths that don't coincide with the frozen one.
417
            // checking which nodes do so is too slow, so just kill them all.
418
            // this also slightly improves quality, but I don't know why.
419
            memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
420
        }
421
    }
422

    
423
    p = &paths[nodes[0]->path];
424
    for(i=n-1; i>froze; i--) {
425
        dst[i] = p->nibble;
426
        p = &paths[p->prev];
427
    }
428

    
429
    c->predictor = nodes[0]->sample1;
430
    c->sample1 = nodes[0]->sample1;
431
    c->sample2 = nodes[0]->sample2;
432
    c->step_index = nodes[0]->step;
433
    c->step = nodes[0]->step;
434
    c->idelta = nodes[0]->step;
435
}
436

    
437
static int adpcm_encode_frame(AVCodecContext *avctx,
438
                            unsigned char *frame, int buf_size, void *data)
439
{
440
    int n, i, st;
441
    short *samples;
442
    unsigned char *dst;
443
    ADPCMContext *c = avctx->priv_data;
444

    
445
    dst = frame;
446
    samples = (short *)data;
447
    st= avctx->channels == 2;
448
/*    n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
449

    
450
    switch(avctx->codec->id) {
451
    case CODEC_ID_ADPCM_IMA_WAV:
452
        n = avctx->frame_size / 8;
453
            c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
454
/*            c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
455
            bytestream_put_le16(&dst, c->status[0].prev_sample);
456
            *dst++ = (unsigned char)c->status[0].step_index;
457
            *dst++ = 0; /* unknown */
458
            samples++;
459
            if (avctx->channels == 2) {
460
                c->status[1].prev_sample = (signed short)samples[0];
461
/*                c->status[1].step_index = 0; */
462
                bytestream_put_le16(&dst, c->status[1].prev_sample);
463
                *dst++ = (unsigned char)c->status[1].step_index;
464
                *dst++ = 0;
465
                samples++;
466
            }
467

    
468
            /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
469
            if(avctx->trellis > 0) {
470
                uint8_t buf[2][n*8];
471
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8);
472
                if(avctx->channels == 2)
473
                    adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8);
474
                for(i=0; i<n; i++) {
475
                    *dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4);
476
                    *dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4);
477
                    *dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4);
478
                    *dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4);
479
                    if (avctx->channels == 2) {
480
                        *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4);
481
                        *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4);
482
                        *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4);
483
                        *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4);
484
                    }
485
                }
486
            } else
487
            for (; n>0; n--) {
488
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]);
489
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4;
490
                dst++;
491
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]);
492
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4;
493
                dst++;
494
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]);
495
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4;
496
                dst++;
497
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]);
498
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4;
499
                dst++;
500
                /* right channel */
501
                if (avctx->channels == 2) {
502
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
503
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
504
                    dst++;
505
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
506
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
507
                    dst++;
508
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
509
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
510
                    dst++;
511
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
512
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
513
                    dst++;
514
                }
515
                samples += 8 * avctx->channels;
516
            }
517
        break;
518
    case CODEC_ID_ADPCM_IMA_QT:
519
    {
520
        int ch, i;
521
        PutBitContext pb;
522
        init_put_bits(&pb, dst, buf_size*8);
523

    
524
        for(ch=0; ch<avctx->channels; ch++){
525
            put_bits(&pb, 9, (c->status[ch].prev_sample + 0x10000) >> 7);
526
            put_bits(&pb, 7, c->status[ch].step_index);
527
            if(avctx->trellis > 0) {
528
                uint8_t buf[64];
529
                adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64);
530
                for(i=0; i<64; i++)
531
                    put_bits(&pb, 4, buf[i^1]);
532
                c->status[ch].prev_sample = c->status[ch].predictor & ~0x7F;
533
            } else {
534
                for (i=0; i<64; i+=2){
535
                    int t1, t2;
536
                    t1 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+0)+ch]);
537
                    t2 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+1)+ch]);
538
                    put_bits(&pb, 4, t2);
539
                    put_bits(&pb, 4, t1);
540
                }
541
                c->status[ch].prev_sample &= ~0x7F;
542
            }
543
        }
544

    
545
        dst += put_bits_count(&pb)>>3;
546
        break;
547
    }
548
    case CODEC_ID_ADPCM_SWF:
549
    {
550
        int i;
551
        PutBitContext pb;
552
        init_put_bits(&pb, dst, buf_size*8);
553

    
554
        n = avctx->frame_size-1;
555

    
556
        //Store AdpcmCodeSize
557
        put_bits(&pb, 2, 2);                //Set 4bits flash adpcm format
558

    
559
        //Init the encoder state
560
        for(i=0; i<avctx->channels; i++){
561
            c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits
562
            put_sbits(&pb, 16, samples[i]);
563
            put_bits(&pb, 6, c->status[i].step_index);
564
            c->status[i].prev_sample = (signed short)samples[i];
565
        }
566

    
567
        if(avctx->trellis > 0) {
568
            uint8_t buf[2][n];
569
            adpcm_compress_trellis(avctx, samples+2, buf[0], &c->status[0], n);
570
            if (avctx->channels == 2)
571
                adpcm_compress_trellis(avctx, samples+3, buf[1], &c->status[1], n);
572
            for(i=0; i<n; i++) {
573
                put_bits(&pb, 4, buf[0][i]);
574
                if (avctx->channels == 2)
575
                    put_bits(&pb, 4, buf[1][i]);
576
            }
577
        } else {
578
            for (i=1; i<avctx->frame_size; i++) {
579
                put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i]));
580
                if (avctx->channels == 2)
581
                    put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1]));
582
            }
583
        }
584
        flush_put_bits(&pb);
585
        dst += put_bits_count(&pb)>>3;
586
        break;
587
    }
588
    case CODEC_ID_ADPCM_MS:
589
        for(i=0; i<avctx->channels; i++){
590
            int predictor=0;
591

    
592
            *dst++ = predictor;
593
            c->status[i].coeff1 = AdaptCoeff1[predictor];
594
            c->status[i].coeff2 = AdaptCoeff2[predictor];
595
        }
596
        for(i=0; i<avctx->channels; i++){
597
            if (c->status[i].idelta < 16)
598
                c->status[i].idelta = 16;
599

    
600
            bytestream_put_le16(&dst, c->status[i].idelta);
601
        }
602
        for(i=0; i<avctx->channels; i++){
603
            c->status[i].sample2= *samples++;
604
        }
605
        for(i=0; i<avctx->channels; i++){
606
            c->status[i].sample1= *samples++;
607

    
608
            bytestream_put_le16(&dst, c->status[i].sample1);
609
        }
610
        for(i=0; i<avctx->channels; i++)
611
            bytestream_put_le16(&dst, c->status[i].sample2);
612

    
613
        if(avctx->trellis > 0) {
614
            int n = avctx->block_align - 7*avctx->channels;
615
            uint8_t buf[2][n];
616
            if(avctx->channels == 1) {
617
                n *= 2;
618
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
619
                for(i=0; i<n; i+=2)
620
                    *dst++ = (buf[0][i] << 4) | buf[0][i+1];
621
            } else {
622
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
623
                adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
624
                for(i=0; i<n; i++)
625
                    *dst++ = (buf[0][i] << 4) | buf[1][i];
626
            }
627
        } else
628
        for(i=7*avctx->channels; i<avctx->block_align; i++) {
629
            int nibble;
630
            nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
631
            nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
632
            *dst++ = nibble;
633
        }
634
        break;
635
    case CODEC_ID_ADPCM_YAMAHA:
636
        n = avctx->frame_size / 2;
637
        if(avctx->trellis > 0) {
638
            uint8_t buf[2][n*2];
639
            n *= 2;
640
            if(avctx->channels == 1) {
641
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
642
                for(i=0; i<n; i+=2)
643
                    *dst++ = buf[0][i] | (buf[0][i+1] << 4);
644
            } else {
645
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
646
                adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
647
                for(i=0; i<n; i++)
648
                    *dst++ = buf[0][i] | (buf[1][i] << 4);
649
            }
650
        } else
651
        for (n *= avctx->channels; n>0; n--) {
652
            int nibble;
653
            nibble  = adpcm_yamaha_compress_sample(&c->status[ 0], *samples++);
654
            nibble |= adpcm_yamaha_compress_sample(&c->status[st], *samples++) << 4;
655
            *dst++ = nibble;
656
        }
657
        break;
658
    default:
659
        return -1;
660
    }
661
    return dst - frame;
662
}
663
#endif //CONFIG_ENCODERS
664

    
665
static av_cold int adpcm_decode_init(AVCodecContext * avctx)
666
{
667
    ADPCMContext *c = avctx->priv_data;
668
    unsigned int max_channels = 2;
669

    
670
    switch(avctx->codec->id) {
671
    case CODEC_ID_ADPCM_EA_R1:
672
    case CODEC_ID_ADPCM_EA_R2:
673
    case CODEC_ID_ADPCM_EA_R3:
674
        max_channels = 6;
675
        break;
676
    }
677
    if(avctx->channels > max_channels){
678
        return -1;
679
    }
680

    
681
    switch(avctx->codec->id) {
682
    case CODEC_ID_ADPCM_CT:
683
        c->status[0].step = c->status[1].step = 511;
684
        break;
685
    case CODEC_ID_ADPCM_IMA_WS:
686
        if (avctx->extradata && avctx->extradata_size == 2 * 4) {
687
            c->status[0].predictor = AV_RL32(avctx->extradata);
688
            c->status[1].predictor = AV_RL32(avctx->extradata + 4);
689
        }
690
        break;
691
    default:
692
        break;
693
    }
694
    avctx->sample_fmt = SAMPLE_FMT_S16;
695
    return 0;
696
}
697

    
698
static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
699
{
700
    int step_index;
701
    int predictor;
702
    int sign, delta, diff, step;
703

    
704
    step = step_table[c->step_index];
705
    step_index = c->step_index + index_table[(unsigned)nibble];
706
    if (step_index < 0) step_index = 0;
707
    else if (step_index > 88) step_index = 88;
708

    
709
    sign = nibble & 8;
710
    delta = nibble & 7;
711
    /* perform direct multiplication instead of series of jumps proposed by
712
     * the reference ADPCM implementation since modern CPUs can do the mults
713
     * quickly enough */
714
    diff = ((2 * delta + 1) * step) >> shift;
715
    predictor = c->predictor;
716
    if (sign) predictor -= diff;
717
    else predictor += diff;
718

    
719
    c->predictor = av_clip_int16(predictor);
720
    c->step_index = step_index;
721

    
722
    return (short)c->predictor;
723
}
724

    
725
static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
726
{
727
    int predictor;
728

    
729
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
730
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
731

    
732
    c->sample2 = c->sample1;
733
    c->sample1 = av_clip_int16(predictor);
734
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
735
    if (c->idelta < 16) c->idelta = 16;
736

    
737
    return c->sample1;
738
}
739

    
740
static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
741
{
742
    int sign, delta, diff;
743
    int new_step;
744

    
745
    sign = nibble & 8;
746
    delta = nibble & 7;
747
    /* perform direct multiplication instead of series of jumps proposed by
748
     * the reference ADPCM implementation since modern CPUs can do the mults
749
     * quickly enough */
750
    diff = ((2 * delta + 1) * c->step) >> 3;
751
    /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
752
    c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
753
    c->predictor = av_clip_int16(c->predictor);
754
    /* calculate new step and clamp it to range 511..32767 */
755
    new_step = (AdaptationTable[nibble & 7] * c->step) >> 8;
756
    c->step = av_clip(new_step, 511, 32767);
757

    
758
    return (short)c->predictor;
759
}
760

    
761
static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
762
{
763
    int sign, delta, diff;
764

    
765
    sign = nibble & (1<<(size-1));
766
    delta = nibble & ((1<<(size-1))-1);
767
    diff = delta << (7 + c->step + shift);
768

    
769
    /* clamp result */
770
    c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
771

    
772
    /* calculate new step */
773
    if (delta >= (2*size - 3) && c->step < 3)
774
        c->step++;
775
    else if (delta == 0 && c->step > 0)
776
        c->step--;
777

    
778
    return (short) c->predictor;
779
}
780

    
781
static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
782
{
783
    if(!c->step) {
784
        c->predictor = 0;
785
        c->step = 127;
786
    }
787

    
788
    c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
789
    c->predictor = av_clip_int16(c->predictor);
790
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
791
    c->step = av_clip(c->step, 127, 24567);
792
    return c->predictor;
793
}
794

    
795
static void xa_decode(short *out, const unsigned char *in,
796
    ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
797
{
798
    int i, j;
799
    int shift,filter,f0,f1;
800
    int s_1,s_2;
801
    int d,s,t;
802

    
803
    for(i=0;i<4;i++) {
804

    
805
        shift  = 12 - (in[4+i*2] & 15);
806
        filter = in[4+i*2] >> 4;
807
        f0 = xa_adpcm_table[filter][0];
808
        f1 = xa_adpcm_table[filter][1];
809

    
810
        s_1 = left->sample1;
811
        s_2 = left->sample2;
812

    
813
        for(j=0;j<28;j++) {
814
            d = in[16+i+j*4];
815

    
816
            t = (signed char)(d<<4)>>4;
817
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
818
            s_2 = s_1;
819
            s_1 = av_clip_int16(s);
820
            *out = s_1;
821
            out += inc;
822
        }
823

    
824
        if (inc==2) { /* stereo */
825
            left->sample1 = s_1;
826
            left->sample2 = s_2;
827
            s_1 = right->sample1;
828
            s_2 = right->sample2;
829
            out = out + 1 - 28*2;
830
        }
831

    
832
        shift  = 12 - (in[5+i*2] & 15);
833
        filter = in[5+i*2] >> 4;
834

    
835
        f0 = xa_adpcm_table[filter][0];
836
        f1 = xa_adpcm_table[filter][1];
837

    
838
        for(j=0;j<28;j++) {
839
            d = in[16+i+j*4];
840

    
841
            t = (signed char)d >> 4;
842
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
843
            s_2 = s_1;
844
            s_1 = av_clip_int16(s);
845
            *out = s_1;
846
            out += inc;
847
        }
848

    
849
        if (inc==2) { /* stereo */
850
            right->sample1 = s_1;
851
            right->sample2 = s_2;
852
            out -= 1;
853
        } else {
854
            left->sample1 = s_1;
855
            left->sample2 = s_2;
856
        }
857
    }
858
}
859

    
860

    
861
/* DK3 ADPCM support macro */
862
#define DK3_GET_NEXT_NIBBLE() \
863
    if (decode_top_nibble_next) \
864
    { \
865
        nibble = last_byte >> 4; \
866
        decode_top_nibble_next = 0; \
867
    } \
868
    else \
869
    { \
870
        last_byte = *src++; \
871
        if (src >= buf + buf_size) break; \
872
        nibble = last_byte & 0x0F; \
873
        decode_top_nibble_next = 1; \
874
    }
875

    
876
static int adpcm_decode_frame(AVCodecContext *avctx,
877
                            void *data, int *data_size,
878
                            AVPacket *avpkt)
879
{
880
    const uint8_t *buf = avpkt->data;
881
    int buf_size = avpkt->size;
882
    ADPCMContext *c = avctx->priv_data;
883
    ADPCMChannelStatus *cs;
884
    int n, m, channel, i;
885
    int block_predictor[2];
886
    short *samples;
887
    short *samples_end;
888
    const uint8_t *src;
889
    int st; /* stereo */
890

    
891
    /* DK3 ADPCM accounting variables */
892
    unsigned char last_byte = 0;
893
    unsigned char nibble;
894
    int decode_top_nibble_next = 0;
895
    int diff_channel;
896

    
897
    /* EA ADPCM state variables */
898
    uint32_t samples_in_chunk;
899
    int32_t previous_left_sample, previous_right_sample;
900
    int32_t current_left_sample, current_right_sample;
901
    int32_t next_left_sample, next_right_sample;
902
    int32_t coeff1l, coeff2l, coeff1r, coeff2r;
903
    uint8_t shift_left, shift_right;
904
    int count1, count2;
905
    int coeff[2][2], shift[2];//used in EA MAXIS ADPCM
906

    
907
    if (!buf_size)
908
        return 0;
909

    
910
    //should protect all 4bit ADPCM variants
911
    //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
912
    //
913
    if(*data_size/4 < buf_size + 8)
914
        return -1;
915

    
916
    samples = data;
917
    samples_end= samples + *data_size/2;
918
    *data_size= 0;
919
    src = buf;
920

    
921
    st = avctx->channels == 2 ? 1 : 0;
922

    
923
    switch(avctx->codec->id) {
924
    case CODEC_ID_ADPCM_IMA_QT:
925
        n = buf_size - 2*avctx->channels;
926
        for (channel = 0; channel < avctx->channels; channel++) {
927
            cs = &(c->status[channel]);
928
            /* (pppppp) (piiiiiii) */
929

    
930
            /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
931
            cs->predictor = (*src++) << 8;
932
            cs->predictor |= (*src & 0x80);
933
            cs->predictor &= 0xFF80;
934

    
935
            /* sign extension */
936
            if(cs->predictor & 0x8000)
937
                cs->predictor -= 0x10000;
938

    
939
            cs->predictor = av_clip_int16(cs->predictor);
940

    
941
            cs->step_index = (*src++) & 0x7F;
942

    
943
            if (cs->step_index > 88){
944
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
945
                cs->step_index = 88;
946
            }
947

    
948
            cs->step = step_table[cs->step_index];
949

    
950
            samples = (short*)data + channel;
951

    
952
            for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
953
                *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
954
                samples += avctx->channels;
955
                *samples = adpcm_ima_expand_nibble(cs, src[0] >> 4  , 3);
956
                samples += avctx->channels;
957
                src ++;
958
            }
959
        }
960
        if (st)
961
            samples--;
962
        break;
963
    case CODEC_ID_ADPCM_IMA_WAV:
964
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
965
            buf_size = avctx->block_align;
966

    
967
//        samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
968

    
969
        for(i=0; i<avctx->channels; i++){
970
            cs = &(c->status[i]);
971
            cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src);
972

    
973
            cs->step_index = *src++;
974
            if (cs->step_index > 88){
975
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
976
                cs->step_index = 88;
977
            }
978
            if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
979
        }
980

    
981
        while(src < buf + buf_size){
982
            for(m=0; m<4; m++){
983
                for(i=0; i<=st; i++)
984
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
985
                for(i=0; i<=st; i++)
986
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4  , 3);
987
                src++;
988
            }
989
            src += 4*st;
990
        }
991
        break;
992
    case CODEC_ID_ADPCM_4XM:
993
        cs = &(c->status[0]);
994
        c->status[0].predictor= (int16_t)bytestream_get_le16(&src);
995
        if(st){
996
            c->status[1].predictor= (int16_t)bytestream_get_le16(&src);
997
        }
998
        c->status[0].step_index= (int16_t)bytestream_get_le16(&src);
999
        if(st){
1000
            c->status[1].step_index= (int16_t)bytestream_get_le16(&src);
1001
        }
1002
        if (cs->step_index < 0) cs->step_index = 0;
1003
        if (cs->step_index > 88) cs->step_index = 88;
1004

    
1005
        m= (buf_size - (src - buf))>>st;
1006
        for(i=0; i<m; i++) {
1007
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
1008
            if (st)
1009
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
1010
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
1011
            if (st)
1012
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
1013
        }
1014

    
1015
        src += m<<st;
1016

    
1017
        break;
1018
    case CODEC_ID_ADPCM_MS:
1019
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1020
            buf_size = avctx->block_align;
1021
        n = buf_size - 7 * avctx->channels;
1022
        if (n < 0)
1023
            return -1;
1024
        block_predictor[0] = av_clip(*src++, 0, 6);
1025
        block_predictor[1] = 0;
1026
        if (st)
1027
            block_predictor[1] = av_clip(*src++, 0, 6);
1028
        c->status[0].idelta = (int16_t)bytestream_get_le16(&src);
1029
        if (st){
1030
            c->status[1].idelta = (int16_t)bytestream_get_le16(&src);
1031
        }
1032
        c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
1033
        c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
1034
        c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
1035
        c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
1036

    
1037
        c->status[0].sample1 = bytestream_get_le16(&src);
1038
        if (st) c->status[1].sample1 = bytestream_get_le16(&src);
1039
        c->status[0].sample2 = bytestream_get_le16(&src);
1040
        if (st) c->status[1].sample2 = bytestream_get_le16(&src);
1041

    
1042
        *samples++ = c->status[0].sample2;
1043
        if (st) *samples++ = c->status[1].sample2;
1044
        *samples++ = c->status[0].sample1;
1045
        if (st) *samples++ = c->status[1].sample1;
1046
        for(;n>0;n--) {
1047
            *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4  );
1048
            *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
1049
            src ++;
1050
        }
1051
        break;
1052
    case CODEC_ID_ADPCM_IMA_DK4:
1053
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1054
            buf_size = avctx->block_align;
1055

    
1056
        c->status[0].predictor  = (int16_t)bytestream_get_le16(&src);
1057
        c->status[0].step_index = *src++;
1058
        src++;
1059
        *samples++ = c->status[0].predictor;
1060
        if (st) {
1061
            c->status[1].predictor  = (int16_t)bytestream_get_le16(&src);
1062
            c->status[1].step_index = *src++;
1063
            src++;
1064
            *samples++ = c->status[1].predictor;
1065
        }
1066
        while (src < buf + buf_size) {
1067

    
1068
            /* take care of the top nibble (always left or mono channel) */
1069
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1070
                src[0] >> 4, 3);
1071

    
1072
            /* take care of the bottom nibble, which is right sample for
1073
             * stereo, or another mono sample */
1074
            if (st)
1075
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1076
                    src[0] & 0x0F, 3);
1077
            else
1078
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1079
                    src[0] & 0x0F, 3);
1080

    
1081
            src++;
1082
        }
1083
        break;
1084
    case CODEC_ID_ADPCM_IMA_DK3:
1085
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1086
            buf_size = avctx->block_align;
1087

    
1088
        if(buf_size + 16 > (samples_end - samples)*3/8)
1089
            return -1;
1090

    
1091
        c->status[0].predictor  = (int16_t)AV_RL16(src + 10);
1092
        c->status[1].predictor  = (int16_t)AV_RL16(src + 12);
1093
        c->status[0].step_index = src[14];
1094
        c->status[1].step_index = src[15];
1095
        /* sign extend the predictors */
1096
        src += 16;
1097
        diff_channel = c->status[1].predictor;
1098

    
1099
        /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1100
         * the buffer is consumed */
1101
        while (1) {
1102

    
1103
            /* for this algorithm, c->status[0] is the sum channel and
1104
             * c->status[1] is the diff channel */
1105

    
1106
            /* process the first predictor of the sum channel */
1107
            DK3_GET_NEXT_NIBBLE();
1108
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1109

    
1110
            /* process the diff channel predictor */
1111
            DK3_GET_NEXT_NIBBLE();
1112
            adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1113

    
1114
            /* process the first pair of stereo PCM samples */
1115
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1116
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1117
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1118

    
1119
            /* process the second predictor of the sum channel */
1120
            DK3_GET_NEXT_NIBBLE();
1121
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1122

    
1123
            /* process the second pair of stereo PCM samples */
1124
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1125
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1126
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1127
        }
1128
        break;
1129
    case CODEC_ID_ADPCM_IMA_ISS:
1130
        c->status[0].predictor  = (int16_t)AV_RL16(src + 0);
1131
        c->status[0].step_index = src[2];
1132
        src += 4;
1133
        if(st) {
1134
            c->status[1].predictor  = (int16_t)AV_RL16(src + 0);
1135
            c->status[1].step_index = src[2];
1136
            src += 4;
1137
        }
1138

    
1139
        while (src < buf + buf_size) {
1140

    
1141
            if (st) {
1142
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1143
                    src[0] >> 4  , 3);
1144
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1145
                    src[0] & 0x0F, 3);
1146
            } else {
1147
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1148
                    src[0] & 0x0F, 3);
1149
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1150
                    src[0] >> 4  , 3);
1151
            }
1152

    
1153
            src++;
1154
        }
1155
        break;
1156
    case CODEC_ID_ADPCM_IMA_WS:
1157
        /* no per-block initialization; just start decoding the data */
1158
        while (src < buf + buf_size) {
1159

    
1160
            if (st) {
1161
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1162
                    src[0] >> 4  , 3);
1163
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1164
                    src[0] & 0x0F, 3);
1165
            } else {
1166
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1167
                    src[0] >> 4  , 3);
1168
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1169
                    src[0] & 0x0F, 3);
1170
            }
1171

    
1172
            src++;
1173
        }
1174
        break;
1175
    case CODEC_ID_ADPCM_XA:
1176
        while (buf_size >= 128) {
1177
            xa_decode(samples, src, &c->status[0], &c->status[1],
1178
                avctx->channels);
1179
            src += 128;
1180
            samples += 28 * 8;
1181
            buf_size -= 128;
1182
        }
1183
        break;
1184
    case CODEC_ID_ADPCM_IMA_EA_EACS:
1185
        samples_in_chunk = bytestream_get_le32(&src) >> (1-st);
1186

    
1187
        if (samples_in_chunk > buf_size-4-(8<<st)) {
1188
            src += buf_size - 4;
1189
            break;
1190
        }
1191

    
1192
        for (i=0; i<=st; i++)
1193
            c->status[i].step_index = bytestream_get_le32(&src);
1194
        for (i=0; i<=st; i++)
1195
            c->status[i].predictor  = bytestream_get_le32(&src);
1196

    
1197
        for (; samples_in_chunk; samples_in_chunk--, src++) {
1198
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],  *src>>4,   3);
1199
            *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
1200
        }
1201
        break;
1202
    case CODEC_ID_ADPCM_IMA_EA_SEAD:
1203
        for (; src < buf+buf_size; src++) {
1204
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
1205
            *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
1206
        }
1207
        break;
1208
    case CODEC_ID_ADPCM_EA:
1209
        if (buf_size < 4 || AV_RL32(src) >= ((buf_size - 12) * 2)) {
1210
            src += buf_size;
1211
            break;
1212
        }
1213
        samples_in_chunk = AV_RL32(src);
1214
        src += 4;
1215
        current_left_sample   = (int16_t)bytestream_get_le16(&src);
1216
        previous_left_sample  = (int16_t)bytestream_get_le16(&src);
1217
        current_right_sample  = (int16_t)bytestream_get_le16(&src);
1218
        previous_right_sample = (int16_t)bytestream_get_le16(&src);
1219

    
1220
        for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
1221
            coeff1l = ea_adpcm_table[ *src >> 4       ];
1222
            coeff2l = ea_adpcm_table[(*src >> 4  ) + 4];
1223
            coeff1r = ea_adpcm_table[*src & 0x0F];
1224
            coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
1225
            src++;
1226

    
1227
            shift_left  = (*src >> 4  ) + 8;
1228
            shift_right = (*src & 0x0F) + 8;
1229
            src++;
1230

    
1231
            for (count2 = 0; count2 < 28; count2++) {
1232
                next_left_sample  = (int32_t)((*src & 0xF0) << 24) >> shift_left;
1233
                next_right_sample = (int32_t)((*src & 0x0F) << 28) >> shift_right;
1234
                src++;
1235

    
1236
                next_left_sample = (next_left_sample +
1237
                    (current_left_sample * coeff1l) +
1238
                    (previous_left_sample * coeff2l) + 0x80) >> 8;
1239
                next_right_sample = (next_right_sample +
1240
                    (current_right_sample * coeff1r) +
1241
                    (previous_right_sample * coeff2r) + 0x80) >> 8;
1242

    
1243
                previous_left_sample = current_left_sample;
1244
                current_left_sample = av_clip_int16(next_left_sample);
1245
                previous_right_sample = current_right_sample;
1246
                current_right_sample = av_clip_int16(next_right_sample);
1247
                *samples++ = (unsigned short)current_left_sample;
1248
                *samples++ = (unsigned short)current_right_sample;
1249
            }
1250
        }
1251

    
1252
        if (src - buf == buf_size - 2)
1253
            src += 2; // Skip terminating 0x0000
1254

    
1255
        break;
1256
    case CODEC_ID_ADPCM_EA_MAXIS_XA:
1257
        for(channel = 0; channel < avctx->channels; channel++) {
1258
            for (i=0; i<2; i++)
1259
                coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
1260
            shift[channel] = (*src & 0x0F) + 8;
1261
            src++;
1262
        }
1263
        for (count1 = 0; count1 < (buf_size - avctx->channels) / avctx->channels; count1++) {
1264
            for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1265
                for(channel = 0; channel < avctx->channels; channel++) {
1266
                    int32_t sample = (int32_t)(((*(src+channel) >> i) & 0x0F) << 0x1C) >> shift[channel];
1267
                    sample = (sample +
1268
                             c->status[channel].sample1 * coeff[channel][0] +
1269
                             c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1270
                    c->status[channel].sample2 = c->status[channel].sample1;
1271
                    c->status[channel].sample1 = av_clip_int16(sample);
1272
                    *samples++ = c->status[channel].sample1;
1273
                }
1274
            }
1275
            src+=avctx->channels;
1276
        }
1277
        break;
1278
    case CODEC_ID_ADPCM_EA_R1:
1279
    case CODEC_ID_ADPCM_EA_R2:
1280
    case CODEC_ID_ADPCM_EA_R3: {
1281
        /* channel numbering
1282
           2chan: 0=fl, 1=fr
1283
           4chan: 0=fl, 1=rl, 2=fr, 3=rr
1284
           6chan: 0=fl, 1=c,  2=fr, 3=rl,  4=rr, 5=sub */
1285
        const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
1286
        int32_t previous_sample, current_sample, next_sample;
1287
        int32_t coeff1, coeff2;
1288
        uint8_t shift;
1289
        unsigned int channel;
1290
        uint16_t *samplesC;
1291
        const uint8_t *srcC;
1292
        const uint8_t *src_end = buf + buf_size;
1293

    
1294
        samples_in_chunk = (big_endian ? bytestream_get_be32(&src)
1295
                                       : bytestream_get_le32(&src)) / 28;
1296
        if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) ||
1297
            28*samples_in_chunk*avctx->channels > samples_end-samples) {
1298
            src += buf_size - 4;
1299
            break;
1300
        }
1301

    
1302
        for (channel=0; channel<avctx->channels; channel++) {
1303
            int32_t offset = (big_endian ? bytestream_get_be32(&src)
1304
                                         : bytestream_get_le32(&src))
1305
                           + (avctx->channels-channel-1) * 4;
1306

    
1307
            if ((offset < 0) || (offset >= src_end - src - 4)) break;
1308
            srcC  = src + offset;
1309
            samplesC = samples + channel;
1310

    
1311
            if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
1312
                current_sample  = (int16_t)bytestream_get_le16(&srcC);
1313
                previous_sample = (int16_t)bytestream_get_le16(&srcC);
1314
            } else {
1315
                current_sample  = c->status[channel].predictor;
1316
                previous_sample = c->status[channel].prev_sample;
1317
            }
1318

    
1319
            for (count1=0; count1<samples_in_chunk; count1++) {
1320
                if (*srcC == 0xEE) {  /* only seen in R2 and R3 */
1321
                    srcC++;
1322
                    if (srcC > src_end - 30*2) break;
1323
                    current_sample  = (int16_t)bytestream_get_be16(&srcC);
1324
                    previous_sample = (int16_t)bytestream_get_be16(&srcC);
1325

    
1326
                    for (count2=0; count2<28; count2++) {
1327
                        *samplesC = (int16_t)bytestream_get_be16(&srcC);
1328
                        samplesC += avctx->channels;
1329
                    }
1330
                } else {
1331
                    coeff1 = ea_adpcm_table[ *srcC>>4     ];
1332
                    coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
1333
                    shift = (*srcC++ & 0x0F) + 8;
1334

    
1335
                    if (srcC > src_end - 14) break;
1336
                    for (count2=0; count2<28; count2++) {
1337
                        if (count2 & 1)
1338
                            next_sample = (int32_t)((*srcC++ & 0x0F) << 28) >> shift;
1339
                        else
1340
                            next_sample = (int32_t)((*srcC   & 0xF0) << 24) >> shift;
1341

    
1342
                        next_sample += (current_sample  * coeff1) +
1343
                                       (previous_sample * coeff2);
1344
                        next_sample = av_clip_int16(next_sample >> 8);
1345

    
1346
                        previous_sample = current_sample;
1347
                        current_sample  = next_sample;
1348
                        *samplesC = current_sample;
1349
                        samplesC += avctx->channels;
1350
                    }
1351
                }
1352
            }
1353

    
1354
            if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
1355
                c->status[channel].predictor   = current_sample;
1356
                c->status[channel].prev_sample = previous_sample;
1357
            }
1358
        }
1359

    
1360
        src = src + buf_size - (4 + 4*avctx->channels);
1361
        samples += 28 * samples_in_chunk * avctx->channels;
1362
        break;
1363
    }
1364
    case CODEC_ID_ADPCM_EA_XAS:
1365
        if (samples_end-samples < 32*4*avctx->channels
1366
            || buf_size < (4+15)*4*avctx->channels) {
1367
            src += buf_size;
1368
            break;
1369
        }
1370
        for (channel=0; channel<avctx->channels; channel++) {
1371
            int coeff[2][4], shift[4];
1372
            short *s2, *s = &samples[channel];
1373
            for (n=0; n<4; n++, s+=32*avctx->channels) {
1374
                for (i=0; i<2; i++)
1375
                    coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
1376
                shift[n] = (src[2]&0x0F) + 8;
1377
                for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
1378
                    s2[0] = (src[0]&0xF0) + (src[1]<<8);
1379
            }
1380

    
1381
            for (m=2; m<32; m+=2) {
1382
                s = &samples[m*avctx->channels + channel];
1383
                for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
1384
                    for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
1385
                        int level = (int32_t)((*src & (0xF0>>i)) << (24+i)) >> shift[n];
1386
                        int pred  = s2[-1*avctx->channels] * coeff[0][n]
1387
                                  + s2[-2*avctx->channels] * coeff[1][n];
1388
                        s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
1389
                    }
1390
                }
1391
            }
1392
        }
1393
        samples += 32*4*avctx->channels;
1394
        break;
1395
    case CODEC_ID_ADPCM_IMA_AMV:
1396
    case CODEC_ID_ADPCM_IMA_SMJPEG:
1397
        c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1398
        c->status[0].step_index = bytestream_get_le16(&src);
1399

    
1400
        if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1401
            src+=4;
1402

    
1403
        while (src < buf + buf_size) {
1404
            char hi, lo;
1405
            lo = *src & 0x0F;
1406
            hi = *src >> 4;
1407

    
1408
            if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1409
                FFSWAP(char, hi, lo);
1410

    
1411
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1412
                lo, 3);
1413
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1414
                hi, 3);
1415
            src++;
1416
        }
1417
        break;
1418
    case CODEC_ID_ADPCM_CT:
1419
        while (src < buf + buf_size) {
1420
            if (st) {
1421
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1422
                    src[0] >> 4);
1423
                *samples++ = adpcm_ct_expand_nibble(&c->status[1],
1424
                    src[0] & 0x0F);
1425
            } else {
1426
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1427
                    src[0] >> 4);
1428
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1429
                    src[0] & 0x0F);
1430
            }
1431
            src++;
1432
        }
1433
        break;
1434
    case CODEC_ID_ADPCM_SBPRO_4:
1435
    case CODEC_ID_ADPCM_SBPRO_3:
1436
    case CODEC_ID_ADPCM_SBPRO_2:
1437
        if (!c->status[0].step_index) {
1438
            /* the first byte is a raw sample */
1439
            *samples++ = 128 * (*src++ - 0x80);
1440
            if (st)
1441
              *samples++ = 128 * (*src++ - 0x80);
1442
            c->status[0].step_index = 1;
1443
        }
1444
        if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1445
            while (src < buf + buf_size) {
1446
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1447
                    src[0] >> 4, 4, 0);
1448
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1449
                    src[0] & 0x0F, 4, 0);
1450
                src++;
1451
            }
1452
        } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1453
            while (src < buf + buf_size && samples + 2 < samples_end) {
1454
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1455
                     src[0] >> 5        , 3, 0);
1456
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1457
                    (src[0] >> 2) & 0x07, 3, 0);
1458
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1459
                    src[0] & 0x03, 2, 0);
1460
                src++;
1461
            }
1462
        } else {
1463
            while (src < buf + buf_size && samples + 3 < samples_end) {
1464
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1465
                     src[0] >> 6        , 2, 2);
1466
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1467
                    (src[0] >> 4) & 0x03, 2, 2);
1468
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1469
                    (src[0] >> 2) & 0x03, 2, 2);
1470
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1471
                    src[0] & 0x03, 2, 2);
1472
                src++;
1473
            }
1474
        }
1475
        break;
1476
    case CODEC_ID_ADPCM_SWF:
1477
    {
1478
        GetBitContext gb;
1479
        const int *table;
1480
        int k0, signmask, nb_bits, count;
1481
        int size = buf_size*8;
1482

    
1483
        init_get_bits(&gb, buf, size);
1484

    
1485
        //read bits & initial values
1486
        nb_bits = get_bits(&gb, 2)+2;
1487
        //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1488
        table = swf_index_tables[nb_bits-2];
1489
        k0 = 1 << (nb_bits-2);
1490
        signmask = 1 << (nb_bits-1);
1491

    
1492
        while (get_bits_count(&gb) <= size - 22*avctx->channels) {
1493
            for (i = 0; i < avctx->channels; i++) {
1494
                *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1495
                c->status[i].step_index = get_bits(&gb, 6);
1496
            }
1497

    
1498
            for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
1499
                int i;
1500

    
1501
                for (i = 0; i < avctx->channels; i++) {
1502
                    // similar to IMA adpcm
1503
                    int delta = get_bits(&gb, nb_bits);
1504
                    int step = step_table[c->status[i].step_index];
1505
                    long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1506
                    int k = k0;
1507

    
1508
                    do {
1509
                        if (delta & k)
1510
                            vpdiff += step;
1511
                        step >>= 1;
1512
                        k >>= 1;
1513
                    } while(k);
1514
                    vpdiff += step;
1515

    
1516
                    if (delta & signmask)
1517
                        c->status[i].predictor -= vpdiff;
1518
                    else
1519
                        c->status[i].predictor += vpdiff;
1520

    
1521
                    c->status[i].step_index += table[delta & (~signmask)];
1522

    
1523
                    c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
1524
                    c->status[i].predictor = av_clip_int16(c->status[i].predictor);
1525

    
1526
                    *samples++ = c->status[i].predictor;
1527
                    if (samples >= samples_end) {
1528
                        av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1529
                        return -1;
1530
                    }
1531
                }
1532
            }
1533
        }
1534
        src += buf_size;
1535
        break;
1536
    }
1537
    case CODEC_ID_ADPCM_YAMAHA:
1538
        while (src < buf + buf_size) {
1539
            if (st) {
1540
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1541
                        src[0] & 0x0F);
1542
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1543
                        src[0] >> 4  );
1544
            } else {
1545
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1546
                        src[0] & 0x0F);
1547
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1548
                        src[0] >> 4  );
1549
            }
1550
            src++;
1551
        }
1552
        break;
1553
    case CODEC_ID_ADPCM_THP:
1554
    {
1555
        int table[2][16];
1556
        unsigned int samplecnt;
1557
        int prev[2][2];
1558
        int ch;
1559

    
1560
        if (buf_size < 80) {
1561
            av_log(avctx, AV_LOG_ERROR, "frame too small\n");
1562
            return -1;
1563
        }
1564

    
1565
        src+=4;
1566
        samplecnt = bytestream_get_be32(&src);
1567

    
1568
        for (i = 0; i < 32; i++)
1569
            table[0][i] = (int16_t)bytestream_get_be16(&src);
1570

    
1571
        /* Initialize the previous sample.  */
1572
        for (i = 0; i < 4; i++)
1573
            prev[0][i] = (int16_t)bytestream_get_be16(&src);
1574

    
1575
        if (samplecnt >= (samples_end - samples) /  (st + 1)) {
1576
            av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1577
            return -1;
1578
        }
1579

    
1580
        for (ch = 0; ch <= st; ch++) {
1581
            samples = (unsigned short *) data + ch;
1582

    
1583
            /* Read in every sample for this channel.  */
1584
            for (i = 0; i < samplecnt / 14; i++) {
1585
                int index = (*src >> 4) & 7;
1586
                unsigned int exp = 28 - (*src++ & 15);
1587
                int factor1 = table[ch][index * 2];
1588
                int factor2 = table[ch][index * 2 + 1];
1589

    
1590
                /* Decode 14 samples.  */
1591
                for (n = 0; n < 14; n++) {
1592
                    int32_t sampledat;
1593
                    if(n&1) sampledat=  *src++    <<28;
1594
                    else    sampledat= (*src&0xF0)<<24;
1595

    
1596
                    sampledat = ((prev[ch][0]*factor1
1597
                                + prev[ch][1]*factor2) >> 11) + (sampledat>>exp);
1598
                    *samples = av_clip_int16(sampledat);
1599
                    prev[ch][1] = prev[ch][0];
1600
                    prev[ch][0] = *samples++;
1601

    
1602
                    /* In case of stereo, skip one sample, this sample
1603
                       is for the other channel.  */
1604
                    samples += st;
1605
                }
1606
            }
1607
        }
1608

    
1609
        /* In the previous loop, in case stereo is used, samples is
1610
           increased exactly one time too often.  */
1611
        samples -= st;
1612
        break;
1613
    }
1614

    
1615
    default:
1616
        return -1;
1617
    }
1618
    *data_size = (uint8_t *)samples - (uint8_t *)data;
1619
    return src - buf;
1620
}
1621

    
1622

    
1623

    
1624
#if CONFIG_ENCODERS
1625
#define ADPCM_ENCODER(id,name,long_name_)       \
1626
AVCodec name ## _encoder = {                    \
1627
    #name,                                      \
1628
    CODEC_TYPE_AUDIO,                           \
1629
    id,                                         \
1630
    sizeof(ADPCMContext),                       \
1631
    adpcm_encode_init,                          \
1632
    adpcm_encode_frame,                         \
1633
    adpcm_encode_close,                         \
1634
    NULL,                                       \
1635
    .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE}, \
1636
    .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1637
};
1638
#else
1639
#define ADPCM_ENCODER(id,name,long_name_)
1640
#endif
1641

    
1642
#if CONFIG_DECODERS
1643
#define ADPCM_DECODER(id,name,long_name_)       \
1644
AVCodec name ## _decoder = {                    \
1645
    #name,                                      \
1646
    CODEC_TYPE_AUDIO,                           \
1647
    id,                                         \
1648
    sizeof(ADPCMContext),                       \
1649
    adpcm_decode_init,                          \
1650
    NULL,                                       \
1651
    NULL,                                       \
1652
    adpcm_decode_frame,                         \
1653
    .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1654
};
1655
#else
1656
#define ADPCM_DECODER(id,name,long_name_)
1657
#endif
1658

    
1659
#define ADPCM_CODEC(id,name,long_name_)         \
1660
    ADPCM_ENCODER(id,name,long_name_) ADPCM_DECODER(id,name,long_name_)
1661

    
1662
/* Note: Do not forget to add new entries to the Makefile as well. */
1663
ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie");
1664
ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology");
1665
ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts");
1666
ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
1667
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1");
1668
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2");
1669
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3");
1670
ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
1671
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV");
1672
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
1673
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
1674
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
1675
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
1676
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
1677
ADPCM_CODEC  (CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
1678
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
1679
ADPCM_CODEC  (CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
1680
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood");
1681
ADPCM_CODEC  (CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
1682
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
1683
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
1684
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
1685
ADPCM_CODEC  (CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
1686
ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP");
1687
ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA");
1688
ADPCM_CODEC  (CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");