Statistics
| Branch: | Revision:

ffmpeg / libavcodec / cook.c @ d9dee728

History | View | Annotate | Download (43.3 KB)

1
/*
2
 * COOK compatible decoder
3
 * Copyright (c) 2003 Sascha Sommer
4
 * Copyright (c) 2005 Benjamin Larsson
5
 *
6
 * This file is part of Libav.
7
 *
8
 * Libav is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * Libav is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with Libav; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22

    
23
/**
24
 * @file
25
 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26
 * This decoder handles RealNetworks, RealAudio G2 data.
27
 * Cook is identified by the codec name cook in RM files.
28
 *
29
 * To use this decoder, a calling application must supply the extradata
30
 * bytes provided from the RM container; 8+ bytes for mono streams and
31
 * 16+ for stereo streams (maybe more).
32
 *
33
 * Codec technicalities (all this assume a buffer length of 1024):
34
 * Cook works with several different techniques to achieve its compression.
35
 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36
 * two neighboring pieces have different quantization index a smooth
37
 * quantization curve is used to get a smooth overlap between the different
38
 * pieces.
39
 * To get to the transformdomain Cook uses a modulated lapped transform.
40
 * The transform domain has 50 subbands with 20 elements each. This
41
 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
42
 * available.
43
 */
44

    
45
#include <math.h>
46
#include <stddef.h>
47
#include <stdio.h>
48

    
49
#include "libavutil/lfg.h"
50
#include "libavutil/random_seed.h"
51
#include "avcodec.h"
52
#include "get_bits.h"
53
#include "dsputil.h"
54
#include "bytestream.h"
55
#include "fft.h"
56
#include "libavutil/audioconvert.h"
57
#include "sinewin.h"
58

    
59
#include "cookdata.h"
60

    
61
/* the different Cook versions */
62
#define MONO            0x1000001
63
#define STEREO          0x1000002
64
#define JOINT_STEREO    0x1000003
65
#define MC_COOK         0x2000000   //multichannel Cook, not supported
66

    
67
#define SUBBAND_SIZE    20
68
#define MAX_SUBPACKETS   5
69
//#define COOKDEBUG
70

    
71
typedef struct {
72
    int *now;
73
    int *previous;
74
} cook_gains;
75

    
76
typedef struct {
77
    int                 ch_idx;
78
    int                 size;
79
    int                 num_channels;
80
    int                 cookversion;
81
    int                 samples_per_frame;
82
    int                 subbands;
83
    int                 js_subband_start;
84
    int                 js_vlc_bits;
85
    int                 samples_per_channel;
86
    int                 log2_numvector_size;
87
    unsigned int        channel_mask;
88
    VLC                 ccpl;                 ///< channel coupling
89
    int                 joint_stereo;
90
    int                 bits_per_subpacket;
91
    int                 bits_per_subpdiv;
92
    int                 total_subbands;
93
    int                 numvector_size;       ///< 1 << log2_numvector_size;
94

    
95
    float               mono_previous_buffer1[1024];
96
    float               mono_previous_buffer2[1024];
97
    /** gain buffers */
98
    cook_gains          gains1;
99
    cook_gains          gains2;
100
    int                 gain_1[9];
101
    int                 gain_2[9];
102
    int                 gain_3[9];
103
    int                 gain_4[9];
104
} COOKSubpacket;
105

    
106
typedef struct cook {
107
    /*
108
     * The following 5 functions provide the lowlevel arithmetic on
109
     * the internal audio buffers.
110
     */
111
    void (* scalar_dequant)(struct cook *q, int index, int quant_index,
112
                            int* subband_coef_index, int* subband_coef_sign,
113
                            float* mlt_p);
114

    
115
    void (* decouple) (struct cook *q,
116
                       COOKSubpacket *p,
117
                       int subband,
118
                       float f1, float f2,
119
                       float *decode_buffer,
120
                       float *mlt_buffer1, float *mlt_buffer2);
121

    
122
    void (* imlt_window) (struct cook *q, float *buffer1,
123
                          cook_gains *gains_ptr, float *previous_buffer);
124

    
125
    void (* interpolate) (struct cook *q, float* buffer,
126
                          int gain_index, int gain_index_next);
127

    
128
    void (* saturate_output) (struct cook *q, int chan, int16_t *out);
129

    
130
    AVCodecContext*     avctx;
131
    GetBitContext       gb;
132
    /* stream data */
133
    int                 nb_channels;
134
    int                 bit_rate;
135
    int                 sample_rate;
136
    int                 num_vectors;
137
    int                 samples_per_channel;
138
    /* states */
139
    AVLFG               random_state;
140

    
141
    /* transform data */
142
    FFTContext          mdct_ctx;
143
    float*              mlt_window;
144

    
145
    /* VLC data */
146
    VLC                 envelope_quant_index[13];
147
    VLC                 sqvh[7];          //scalar quantization
148

    
149
    /* generatable tables and related variables */
150
    int                 gain_size_factor;
151
    float               gain_table[23];
152

    
153
    /* data buffers */
154

    
155
    uint8_t*            decoded_bytes_buffer;
156
    DECLARE_ALIGNED(16, float,mono_mdct_output)[2048];
157
    float               decode_buffer_1[1024];
158
    float               decode_buffer_2[1024];
159
    float               decode_buffer_0[1060]; /* static allocation for joint decode */
160

    
161
    const float         *cplscales[5];
162
    int                 num_subpackets;
163
    COOKSubpacket       subpacket[MAX_SUBPACKETS];
164
} COOKContext;
165

    
166
static float     pow2tab[127];
167
static float rootpow2tab[127];
168

    
169
/* debug functions */
170

    
171
#ifdef COOKDEBUG
172
static void dump_float_table(float* table, int size, int delimiter) {
173
    int i=0;
174
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
175
    for (i=0 ; i<size ; i++) {
176
        av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
177
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
178
    }
179
}
180

    
181
static void dump_int_table(int* table, int size, int delimiter) {
182
    int i=0;
183
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
184
    for (i=0 ; i<size ; i++) {
185
        av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
186
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
187
    }
188
}
189

    
190
static void dump_short_table(short* table, int size, int delimiter) {
191
    int i=0;
192
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
193
    for (i=0 ; i<size ; i++) {
194
        av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
195
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
196
    }
197
}
198

    
199
#endif
200

    
201
/*************** init functions ***************/
202

    
203
/* table generator */
204
static av_cold void init_pow2table(void){
205
    int i;
206
    for (i=-63 ; i<64 ; i++){
207
            pow2tab[63+i]=     pow(2, i);
208
        rootpow2tab[63+i]=sqrt(pow(2, i));
209
    }
210
}
211

    
212
/* table generator */
213
static av_cold void init_gain_table(COOKContext *q) {
214
    int i;
215
    q->gain_size_factor = q->samples_per_channel/8;
216
    for (i=0 ; i<23 ; i++) {
217
        q->gain_table[i] = pow(pow2tab[i+52] ,
218
                               (1.0/(double)q->gain_size_factor));
219
    }
220
}
221

    
222

    
223
static av_cold int init_cook_vlc_tables(COOKContext *q) {
224
    int i, result;
225

    
226
    result = 0;
227
    for (i=0 ; i<13 ; i++) {
228
        result |= init_vlc (&q->envelope_quant_index[i], 9, 24,
229
            envelope_quant_index_huffbits[i], 1, 1,
230
            envelope_quant_index_huffcodes[i], 2, 2, 0);
231
    }
232
    av_log(q->avctx,AV_LOG_DEBUG,"sqvh VLC init\n");
233
    for (i=0 ; i<7 ; i++) {
234
        result |= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
235
            cvh_huffbits[i], 1, 1,
236
            cvh_huffcodes[i], 2, 2, 0);
237
    }
238

    
239
    for(i=0;i<q->num_subpackets;i++){
240
        if (q->subpacket[i].joint_stereo==1){
241
            result |= init_vlc (&q->subpacket[i].ccpl, 6, (1<<q->subpacket[i].js_vlc_bits)-1,
242
                ccpl_huffbits[q->subpacket[i].js_vlc_bits-2], 1, 1,
243
                ccpl_huffcodes[q->subpacket[i].js_vlc_bits-2], 2, 2, 0);
244
            av_log(q->avctx,AV_LOG_DEBUG,"subpacket %i Joint-stereo VLC used.\n",i);
245
        }
246
    }
247

    
248
    av_log(q->avctx,AV_LOG_DEBUG,"VLC tables initialized.\n");
249
    return result;
250
}
251

    
252
static av_cold int init_cook_mlt(COOKContext *q) {
253
    int j;
254
    int mlt_size = q->samples_per_channel;
255

    
256
    if ((q->mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0)
257
      return -1;
258

    
259
    /* Initialize the MLT window: simple sine window. */
260
    ff_sine_window_init(q->mlt_window, mlt_size);
261
    for(j=0 ; j<mlt_size ; j++)
262
        q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
263

    
264
    /* Initialize the MDCT. */
265
    if (ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1, 1.0)) {
266
      av_free(q->mlt_window);
267
      return -1;
268
    }
269
    av_log(q->avctx,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",
270
           av_log2(mlt_size)+1);
271

    
272
    return 0;
273
}
274

    
275
static const float *maybe_reformat_buffer32 (COOKContext *q, const float *ptr, int n)
276
{
277
    if (1)
278
        return ptr;
279
}
280

    
281
static av_cold void init_cplscales_table (COOKContext *q) {
282
    int i;
283
    for (i=0;i<5;i++)
284
        q->cplscales[i] = maybe_reformat_buffer32 (q, cplscales[i], (1<<(i+2))-1);
285
}
286

    
287
/*************** init functions end ***********/
288

    
289
#define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
290
#define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
291

    
292
/**
293
 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
294
 * Why? No idea, some checksum/error detection method maybe.
295
 *
296
 * Out buffer size: extra bytes are needed to cope with
297
 * padding/misalignment.
298
 * Subpackets passed to the decoder can contain two, consecutive
299
 * half-subpackets, of identical but arbitrary size.
300
 *          1234 1234 1234 1234  extraA extraB
301
 * Case 1:  AAAA BBBB              0      0
302
 * Case 2:  AAAA ABBB BB--         3      3
303
 * Case 3:  AAAA AABB BBBB         2      2
304
 * Case 4:  AAAA AAAB BBBB BB--    1      5
305
 *
306
 * Nice way to waste CPU cycles.
307
 *
308
 * @param inbuffer  pointer to byte array of indata
309
 * @param out       pointer to byte array of outdata
310
 * @param bytes     number of bytes
311
 */
312

    
313
static inline int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
314
    int i, off;
315
    uint32_t c;
316
    const uint32_t* buf;
317
    uint32_t* obuf = (uint32_t*) out;
318
    /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
319
     * I'm too lazy though, should be something like
320
     * for(i=0 ; i<bitamount/64 ; i++)
321
     *     (int64_t)out[i] = 0x37c511f237c511f2^av_be2ne64(int64_t)in[i]);
322
     * Buffer alignment needs to be checked. */
323

    
324
    off = (intptr_t)inbuffer & 3;
325
    buf = (const uint32_t*) (inbuffer - off);
326
    c = av_be2ne32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8))));
327
    bytes += 3 + off;
328
    for (i = 0; i < bytes/4; i++)
329
        obuf[i] = c ^ buf[i];
330

    
331
    return off;
332
}
333

    
334
/**
335
 * Cook uninit
336
 */
337

    
338
static av_cold int cook_decode_close(AVCodecContext *avctx)
339
{
340
    int i;
341
    COOKContext *q = avctx->priv_data;
342
    av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");
343

    
344
    /* Free allocated memory buffers. */
345
    av_free(q->mlt_window);
346
    av_free(q->decoded_bytes_buffer);
347

    
348
    /* Free the transform. */
349
    ff_mdct_end(&q->mdct_ctx);
350

    
351
    /* Free the VLC tables. */
352
    for (i=0 ; i<13 ; i++) {
353
        free_vlc(&q->envelope_quant_index[i]);
354
    }
355
    for (i=0 ; i<7 ; i++) {
356
        free_vlc(&q->sqvh[i]);
357
    }
358
    for (i=0 ; i<q->num_subpackets ; i++) {
359
        free_vlc(&q->subpacket[i].ccpl);
360
    }
361

    
362
    av_log(avctx,AV_LOG_DEBUG,"Memory deallocated.\n");
363

    
364
    return 0;
365
}
366

    
367
/**
368
 * Fill the gain array for the timedomain quantization.
369
 *
370
 * @param gb          pointer to the GetBitContext
371
 * @param gaininfo[9] array of gain indexes
372
 */
373

    
374
static void decode_gain_info(GetBitContext *gb, int *gaininfo)
375
{
376
    int i, n;
377

    
378
    while (get_bits1(gb)) {}
379
    n = get_bits_count(gb) - 1;     //amount of elements*2 to update
380

    
381
    i = 0;
382
    while (n--) {
383
        int index = get_bits(gb, 3);
384
        int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
385

    
386
        while (i <= index) gaininfo[i++] = gain;
387
    }
388
    while (i <= 8) gaininfo[i++] = 0;
389
}
390

    
391
/**
392
 * Create the quant index table needed for the envelope.
393
 *
394
 * @param q                 pointer to the COOKContext
395
 * @param quant_index_table pointer to the array
396
 */
397

    
398
static void decode_envelope(COOKContext *q, COOKSubpacket *p, int* quant_index_table) {
399
    int i,j, vlc_index;
400

    
401
    quant_index_table[0]= get_bits(&q->gb,6) - 6;       //This is used later in categorize
402

    
403
    for (i=1 ; i < p->total_subbands ; i++){
404
        vlc_index=i;
405
        if (i >= p->js_subband_start * 2) {
406
            vlc_index-=p->js_subband_start;
407
        } else {
408
            vlc_index/=2;
409
            if(vlc_index < 1) vlc_index = 1;
410
        }
411
        if (vlc_index>13) vlc_index = 13;           //the VLC tables >13 are identical to No. 13
412

    
413
        j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
414
                     q->envelope_quant_index[vlc_index-1].bits,2);
415
        quant_index_table[i] = quant_index_table[i-1] + j - 12;    //differential encoding
416
    }
417
}
418

    
419
/**
420
 * Calculate the category and category_index vector.
421
 *
422
 * @param q                     pointer to the COOKContext
423
 * @param quant_index_table     pointer to the array
424
 * @param category              pointer to the category array
425
 * @param category_index        pointer to the category_index array
426
 */
427

    
428
static void categorize(COOKContext *q, COOKSubpacket *p, int* quant_index_table,
429
                       int* category, int* category_index){
430
    int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
431
    int exp_index2[102];
432
    int exp_index1[102];
433

    
434
    int tmp_categorize_array[128*2];
435
    int tmp_categorize_array1_idx=p->numvector_size;
436
    int tmp_categorize_array2_idx=p->numvector_size;
437

    
438
    bits_left =  p->bits_per_subpacket - get_bits_count(&q->gb);
439

    
440
    if(bits_left > q->samples_per_channel) {
441
        bits_left = q->samples_per_channel +
442
                    ((bits_left - q->samples_per_channel)*5)/8;
443
        //av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
444
    }
445

    
446
    memset(&exp_index1,0,102*sizeof(int));
447
    memset(&exp_index2,0,102*sizeof(int));
448
    memset(&tmp_categorize_array,0,128*2*sizeof(int));
449

    
450
    bias=-32;
451

    
452
    /* Estimate bias. */
453
    for (i=32 ; i>0 ; i=i/2){
454
        num_bits = 0;
455
        index = 0;
456
        for (j=p->total_subbands ; j>0 ; j--){
457
            exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
458
            index++;
459
            num_bits+=expbits_tab[exp_idx];
460
        }
461
        if(num_bits >= bits_left - 32){
462
            bias+=i;
463
        }
464
    }
465

    
466
    /* Calculate total number of bits. */
467
    num_bits=0;
468
    for (i=0 ; i<p->total_subbands ; i++) {
469
        exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
470
        num_bits += expbits_tab[exp_idx];
471
        exp_index1[i] = exp_idx;
472
        exp_index2[i] = exp_idx;
473
    }
474
    tmpbias1 = tmpbias2 = num_bits;
475

    
476
    for (j = 1 ; j < p->numvector_size ; j++) {
477
        if (tmpbias1 + tmpbias2 > 2*bits_left) {  /* ---> */
478
            int max = -999999;
479
            index=-1;
480
            for (i=0 ; i<p->total_subbands ; i++){
481
                if (exp_index1[i] < 7) {
482
                    v = (-2*exp_index1[i]) - quant_index_table[i] + bias;
483
                    if ( v >= max) {
484
                        max = v;
485
                        index = i;
486
                    }
487
                }
488
            }
489
            if(index==-1)break;
490
            tmp_categorize_array[tmp_categorize_array1_idx++] = index;
491
            tmpbias1 -= expbits_tab[exp_index1[index]] -
492
                        expbits_tab[exp_index1[index]+1];
493
            ++exp_index1[index];
494
        } else {  /* <--- */
495
            int min = 999999;
496
            index=-1;
497
            for (i=0 ; i<p->total_subbands ; i++){
498
                if(exp_index2[i] > 0){
499
                    v = (-2*exp_index2[i])-quant_index_table[i]+bias;
500
                    if ( v < min) {
501
                        min = v;
502
                        index = i;
503
                    }
504
                }
505
            }
506
            if(index == -1)break;
507
            tmp_categorize_array[--tmp_categorize_array2_idx] = index;
508
            tmpbias2 -= expbits_tab[exp_index2[index]] -
509
                        expbits_tab[exp_index2[index]-1];
510
            --exp_index2[index];
511
        }
512
    }
513

    
514
    for(i=0 ; i<p->total_subbands ; i++)
515
        category[i] = exp_index2[i];
516

    
517
    for(i=0 ; i<p->numvector_size-1 ; i++)
518
        category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
519

    
520
}
521

    
522

    
523
/**
524
 * Expand the category vector.
525
 *
526
 * @param q                     pointer to the COOKContext
527
 * @param category              pointer to the category array
528
 * @param category_index        pointer to the category_index array
529
 */
530

    
531
static inline void expand_category(COOKContext *q, int* category,
532
                                   int* category_index){
533
    int i;
534
    for(i=0 ; i<q->num_vectors ; i++){
535
        ++category[category_index[i]];
536
    }
537
}
538

    
539
/**
540
 * The real requantization of the mltcoefs
541
 *
542
 * @param q                     pointer to the COOKContext
543
 * @param index                 index
544
 * @param quant_index           quantisation index
545
 * @param subband_coef_index    array of indexes to quant_centroid_tab
546
 * @param subband_coef_sign     signs of coefficients
547
 * @param mlt_p                 pointer into the mlt buffer
548
 */
549

    
550
static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
551
                           int* subband_coef_index, int* subband_coef_sign,
552
                           float* mlt_p){
553
    int i;
554
    float f1;
555

    
556
    for(i=0 ; i<SUBBAND_SIZE ; i++) {
557
        if (subband_coef_index[i]) {
558
            f1 = quant_centroid_tab[index][subband_coef_index[i]];
559
            if (subband_coef_sign[i]) f1 = -f1;
560
        } else {
561
            /* noise coding if subband_coef_index[i] == 0 */
562
            f1 = dither_tab[index];
563
            if (av_lfg_get(&q->random_state) < 0x80000000) f1 = -f1;
564
        }
565
        mlt_p[i] = f1 * rootpow2tab[quant_index+63];
566
    }
567
}
568
/**
569
 * Unpack the subband_coef_index and subband_coef_sign vectors.
570
 *
571
 * @param q                     pointer to the COOKContext
572
 * @param category              pointer to the category array
573
 * @param subband_coef_index    array of indexes to quant_centroid_tab
574
 * @param subband_coef_sign     signs of coefficients
575
 */
576

    
577
static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category, int* subband_coef_index,
578
                       int* subband_coef_sign) {
579
    int i,j;
580
    int vlc, vd ,tmp, result;
581

    
582
    vd = vd_tab[category];
583
    result = 0;
584
    for(i=0 ; i<vpr_tab[category] ; i++){
585
        vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
586
        if (p->bits_per_subpacket < get_bits_count(&q->gb)){
587
            vlc = 0;
588
            result = 1;
589
        }
590
        for(j=vd-1 ; j>=0 ; j--){
591
            tmp = (vlc * invradix_tab[category])/0x100000;
592
            subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
593
            vlc = tmp;
594
        }
595
        for(j=0 ; j<vd ; j++){
596
            if (subband_coef_index[i*vd + j]) {
597
                if(get_bits_count(&q->gb) < p->bits_per_subpacket){
598
                    subband_coef_sign[i*vd+j] = get_bits1(&q->gb);
599
                } else {
600
                    result=1;
601
                    subband_coef_sign[i*vd+j]=0;
602
                }
603
            } else {
604
                subband_coef_sign[i*vd+j]=0;
605
            }
606
        }
607
    }
608
    return result;
609
}
610

    
611

    
612
/**
613
 * Fill the mlt_buffer with mlt coefficients.
614
 *
615
 * @param q                 pointer to the COOKContext
616
 * @param category          pointer to the category array
617
 * @param quant_index_table pointer to the array
618
 * @param mlt_buffer        pointer to mlt coefficients
619
 */
620

    
621

    
622
static void decode_vectors(COOKContext* q, COOKSubpacket* p, int* category,
623
                           int *quant_index_table, float* mlt_buffer){
624
    /* A zero in this table means that the subband coefficient is
625
       random noise coded. */
626
    int subband_coef_index[SUBBAND_SIZE];
627
    /* A zero in this table means that the subband coefficient is a
628
       positive multiplicator. */
629
    int subband_coef_sign[SUBBAND_SIZE];
630
    int band, j;
631
    int index=0;
632

    
633
    for(band=0 ; band<p->total_subbands ; band++){
634
        index = category[band];
635
        if(category[band] < 7){
636
            if(unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)){
637
                index=7;
638
                for(j=0 ; j<p->total_subbands ; j++) category[band+j]=7;
639
            }
640
        }
641
        if(index>=7) {
642
            memset(subband_coef_index, 0, sizeof(subband_coef_index));
643
            memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
644
        }
645
        q->scalar_dequant(q, index, quant_index_table[band],
646
                          subband_coef_index, subband_coef_sign,
647
                          &mlt_buffer[band * SUBBAND_SIZE]);
648
    }
649

    
650
    if(p->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
651
        return;
652
    } /* FIXME: should this be removed, or moved into loop above? */
653
}
654

    
655

    
656
/**
657
 * function for decoding mono data
658
 *
659
 * @param q                 pointer to the COOKContext
660
 * @param mlt_buffer        pointer to mlt coefficients
661
 */
662

    
663
static void mono_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer) {
664

    
665
    int category_index[128];
666
    int quant_index_table[102];
667
    int category[128];
668

    
669
    memset(&category, 0, 128*sizeof(int));
670
    memset(&category_index, 0, 128*sizeof(int));
671

    
672
    decode_envelope(q, p, quant_index_table);
673
    q->num_vectors = get_bits(&q->gb,p->log2_numvector_size);
674
    categorize(q, p, quant_index_table, category, category_index);
675
    expand_category(q, category, category_index);
676
    decode_vectors(q, p, category, quant_index_table, mlt_buffer);
677
}
678

    
679

    
680
/**
681
 * the actual requantization of the timedomain samples
682
 *
683
 * @param q                 pointer to the COOKContext
684
 * @param buffer            pointer to the timedomain buffer
685
 * @param gain_index        index for the block multiplier
686
 * @param gain_index_next   index for the next block multiplier
687
 */
688

    
689
static void interpolate_float(COOKContext *q, float* buffer,
690
                        int gain_index, int gain_index_next){
691
    int i;
692
    float fc1, fc2;
693
    fc1 = pow2tab[gain_index+63];
694

    
695
    if(gain_index == gain_index_next){              //static gain
696
        for(i=0 ; i<q->gain_size_factor ; i++){
697
            buffer[i]*=fc1;
698
        }
699
        return;
700
    } else {                                        //smooth gain
701
        fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
702
        for(i=0 ; i<q->gain_size_factor ; i++){
703
            buffer[i]*=fc1;
704
            fc1*=fc2;
705
        }
706
        return;
707
    }
708
}
709

    
710
/**
711
 * Apply transform window, overlap buffers.
712
 *
713
 * @param q                 pointer to the COOKContext
714
 * @param inbuffer          pointer to the mltcoefficients
715
 * @param gains_ptr         current and previous gains
716
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
717
 */
718

    
719
static void imlt_window_float (COOKContext *q, float *inbuffer,
720
                               cook_gains *gains_ptr, float *previous_buffer)
721
{
722
    const float fc = pow2tab[gains_ptr->previous[0] + 63];
723
    int i;
724
    /* The weird thing here, is that the two halves of the time domain
725
     * buffer are swapped. Also, the newest data, that we save away for
726
     * next frame, has the wrong sign. Hence the subtraction below.
727
     * Almost sounds like a complex conjugate/reverse data/FFT effect.
728
     */
729

    
730
    /* Apply window and overlap */
731
    for(i = 0; i < q->samples_per_channel; i++){
732
        inbuffer[i] = inbuffer[i] * fc * q->mlt_window[i] -
733
          previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
734
    }
735
}
736

    
737
/**
738
 * The modulated lapped transform, this takes transform coefficients
739
 * and transforms them into timedomain samples.
740
 * Apply transform window, overlap buffers, apply gain profile
741
 * and buffer management.
742
 *
743
 * @param q                 pointer to the COOKContext
744
 * @param inbuffer          pointer to the mltcoefficients
745
 * @param gains_ptr         current and previous gains
746
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
747
 */
748

    
749
static void imlt_gain(COOKContext *q, float *inbuffer,
750
                      cook_gains *gains_ptr, float* previous_buffer)
751
{
752
    float *buffer0 = q->mono_mdct_output;
753
    float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
754
    int i;
755

    
756
    /* Inverse modified discrete cosine transform */
757
    q->mdct_ctx.imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
758

    
759
    q->imlt_window (q, buffer1, gains_ptr, previous_buffer);
760

    
761
    /* Apply gain profile */
762
    for (i = 0; i < 8; i++) {
763
        if (gains_ptr->now[i] || gains_ptr->now[i + 1])
764
            q->interpolate(q, &buffer1[q->gain_size_factor * i],
765
                           gains_ptr->now[i], gains_ptr->now[i + 1]);
766
    }
767

    
768
    /* Save away the current to be previous block. */
769
    memcpy(previous_buffer, buffer0, sizeof(float)*q->samples_per_channel);
770
}
771

    
772

    
773
/**
774
 * function for getting the jointstereo coupling information
775
 *
776
 * @param q                 pointer to the COOKContext
777
 * @param decouple_tab      decoupling array
778
 *
779
 */
780

    
781
static void decouple_info(COOKContext *q, COOKSubpacket *p, int* decouple_tab){
782
    int length, i;
783

    
784
    if(get_bits1(&q->gb)) {
785
        if(cplband[p->js_subband_start] > cplband[p->subbands-1]) return;
786

    
787
        length = cplband[p->subbands-1] - cplband[p->js_subband_start] + 1;
788
        for (i=0 ; i<length ; i++) {
789
            decouple_tab[cplband[p->js_subband_start] + i] = get_vlc2(&q->gb, p->ccpl.table, p->ccpl.bits, 2);
790
        }
791
        return;
792
    }
793

    
794
    if(cplband[p->js_subband_start] > cplband[p->subbands-1]) return;
795

    
796
    length = cplband[p->subbands-1] - cplband[p->js_subband_start] + 1;
797
    for (i=0 ; i<length ; i++) {
798
       decouple_tab[cplband[p->js_subband_start] + i] = get_bits(&q->gb, p->js_vlc_bits);
799
    }
800
    return;
801
}
802

    
803
/*
804
 * function decouples a pair of signals from a single signal via multiplication.
805
 *
806
 * @param q                 pointer to the COOKContext
807
 * @param subband           index of the current subband
808
 * @param f1                multiplier for channel 1 extraction
809
 * @param f2                multiplier for channel 2 extraction
810
 * @param decode_buffer     input buffer
811
 * @param mlt_buffer1       pointer to left channel mlt coefficients
812
 * @param mlt_buffer2       pointer to right channel mlt coefficients
813
 */
814
static void decouple_float (COOKContext *q,
815
                            COOKSubpacket *p,
816
                            int subband,
817
                            float f1, float f2,
818
                            float *decode_buffer,
819
                            float *mlt_buffer1, float *mlt_buffer2)
820
{
821
    int j, tmp_idx;
822
    for (j=0 ; j<SUBBAND_SIZE ; j++) {
823
        tmp_idx = ((p->js_subband_start + subband)*SUBBAND_SIZE)+j;
824
        mlt_buffer1[SUBBAND_SIZE*subband + j] = f1 * decode_buffer[tmp_idx];
825
        mlt_buffer2[SUBBAND_SIZE*subband + j] = f2 * decode_buffer[tmp_idx];
826
    }
827
}
828

    
829
/**
830
 * function for decoding joint stereo data
831
 *
832
 * @param q                 pointer to the COOKContext
833
 * @param mlt_buffer1       pointer to left channel mlt coefficients
834
 * @param mlt_buffer2       pointer to right channel mlt coefficients
835
 */
836

    
837
static void joint_decode(COOKContext *q, COOKSubpacket *p, float* mlt_buffer1,
838
                         float* mlt_buffer2) {
839
    int i,j;
840
    int decouple_tab[SUBBAND_SIZE];
841
    float *decode_buffer = q->decode_buffer_0;
842
    int idx, cpl_tmp;
843
    float f1,f2;
844
    const float* cplscale;
845

    
846
    memset(decouple_tab, 0, sizeof(decouple_tab));
847
    memset(decode_buffer, 0, sizeof(decode_buffer));
848

    
849
    /* Make sure the buffers are zeroed out. */
850
    memset(mlt_buffer1,0, 1024*sizeof(float));
851
    memset(mlt_buffer2,0, 1024*sizeof(float));
852
    decouple_info(q, p, decouple_tab);
853
    mono_decode(q, p, decode_buffer);
854

    
855
    /* The two channels are stored interleaved in decode_buffer. */
856
    for (i=0 ; i<p->js_subband_start ; i++) {
857
        for (j=0 ; j<SUBBAND_SIZE ; j++) {
858
            mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
859
            mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
860
        }
861
    }
862

    
863
    /* When we reach js_subband_start (the higher frequencies)
864
       the coefficients are stored in a coupling scheme. */
865
    idx = (1 << p->js_vlc_bits) - 1;
866
    for (i=p->js_subband_start ; i<p->subbands ; i++) {
867
        cpl_tmp = cplband[i];
868
        idx -=decouple_tab[cpl_tmp];
869
        cplscale = q->cplscales[p->js_vlc_bits-2];  //choose decoupler table
870
        f1 = cplscale[decouple_tab[cpl_tmp]];
871
        f2 = cplscale[idx-1];
872
        q->decouple (q, p, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
873
        idx = (1 << p->js_vlc_bits) - 1;
874
    }
875
}
876

    
877
/**
878
 * First part of subpacket decoding:
879
 *  decode raw stream bytes and read gain info.
880
 *
881
 * @param q                 pointer to the COOKContext
882
 * @param inbuffer          pointer to raw stream data
883
 * @param gains_ptr         array of current/prev gain pointers
884
 */
885

    
886
static inline void
887
decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p, const uint8_t *inbuffer,
888
                      cook_gains *gains_ptr)
889
{
890
    int offset;
891

    
892
    offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
893
                          p->bits_per_subpacket/8);
894
    init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
895
                  p->bits_per_subpacket);
896
    decode_gain_info(&q->gb, gains_ptr->now);
897

    
898
    /* Swap current and previous gains */
899
    FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
900
}
901

    
902
 /**
903
 * Saturate the output signal to signed 16bit integers.
904
 *
905
 * @param q                 pointer to the COOKContext
906
 * @param chan              channel to saturate
907
 * @param out               pointer to the output vector
908
 */
909
static void
910
saturate_output_float (COOKContext *q, int chan, int16_t *out)
911
{
912
    int j;
913
    float *output = q->mono_mdct_output + q->samples_per_channel;
914
    /* Clip and convert floats to 16 bits.
915
     */
916
    for (j = 0; j < q->samples_per_channel; j++) {
917
        out[chan + q->nb_channels * j] =
918
          av_clip_int16(lrintf(output[j]));
919
    }
920
}
921

    
922
/**
923
 * Final part of subpacket decoding:
924
 *  Apply modulated lapped transform, gain compensation,
925
 *  clip and convert to integer.
926
 *
927
 * @param q                 pointer to the COOKContext
928
 * @param decode_buffer     pointer to the mlt coefficients
929
 * @param gains_ptr         array of current/prev gain pointers
930
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
931
 * @param out               pointer to the output buffer
932
 * @param chan              0: left or single channel, 1: right channel
933
 */
934

    
935
static inline void
936
mlt_compensate_output(COOKContext *q, float *decode_buffer,
937
                      cook_gains *gains_ptr, float *previous_buffer,
938
                      int16_t *out, int chan)
939
{
940
    imlt_gain(q, decode_buffer, gains_ptr, previous_buffer);
941
    q->saturate_output (q, chan, out);
942
}
943

    
944

    
945
/**
946
 * Cook subpacket decoding. This function returns one decoded subpacket,
947
 * usually 1024 samples per channel.
948
 *
949
 * @param q                 pointer to the COOKContext
950
 * @param inbuffer          pointer to the inbuffer
951
 * @param outbuffer         pointer to the outbuffer
952
 */
953
static void decode_subpacket(COOKContext *q, COOKSubpacket* p, const uint8_t *inbuffer, int16_t *outbuffer) {
954
    int sub_packet_size = p->size;
955
    /* packet dump */
956
//    for (i=0 ; i<sub_packet_size ; i++) {
957
//        av_log(q->avctx, AV_LOG_ERROR, "%02x", inbuffer[i]);
958
//    }
959
//    av_log(q->avctx, AV_LOG_ERROR, "\n");
960
    memset(q->decode_buffer_1,0,sizeof(q->decode_buffer_1));
961
    decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
962

    
963
    if (p->joint_stereo) {
964
        joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2);
965
    } else {
966
        mono_decode(q, p, q->decode_buffer_1);
967

    
968
        if (p->num_channels == 2) {
969
            decode_bytes_and_gain(q, p, inbuffer + sub_packet_size/2, &p->gains2);
970
            mono_decode(q, p, q->decode_buffer_2);
971
        }
972
    }
973

    
974
    mlt_compensate_output(q, q->decode_buffer_1, &p->gains1,
975
                          p->mono_previous_buffer1, outbuffer, p->ch_idx);
976

    
977
    if (p->num_channels == 2) {
978
        if (p->joint_stereo) {
979
            mlt_compensate_output(q, q->decode_buffer_2, &p->gains1,
980
                                  p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
981
         } else {
982
            mlt_compensate_output(q, q->decode_buffer_2, &p->gains2,
983
                                  p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
984
         }
985
     }
986

    
987
}
988

    
989

    
990
/**
991
 * Cook frame decoding
992
 *
993
 * @param avctx     pointer to the AVCodecContext
994
 */
995

    
996
static int cook_decode_frame(AVCodecContext *avctx,
997
            void *data, int *data_size,
998
            AVPacket *avpkt) {
999
    const uint8_t *buf = avpkt->data;
1000
    int buf_size = avpkt->size;
1001
    COOKContext *q = avctx->priv_data;
1002
    int i;
1003
    int offset = 0;
1004
    int chidx = 0;
1005

    
1006
    if (buf_size < avctx->block_align)
1007
        return buf_size;
1008

    
1009
    /* estimate subpacket sizes */
1010
    q->subpacket[0].size = avctx->block_align;
1011

    
1012
    for(i=1;i<q->num_subpackets;i++){
1013
        q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
1014
        q->subpacket[0].size -= q->subpacket[i].size + 1;
1015
        if (q->subpacket[0].size < 0) {
1016
            av_log(avctx,AV_LOG_DEBUG,"frame subpacket size total > avctx->block_align!\n");
1017
            return -1;
1018
        }
1019
    }
1020

    
1021
    /* decode supbackets */
1022
    *data_size = 0;
1023
    for(i=0;i<q->num_subpackets;i++){
1024
        q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size*8)>>q->subpacket[i].bits_per_subpdiv;
1025
        q->subpacket[i].ch_idx = chidx;
1026
        av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] size %i js %i %i block_align %i\n",i,q->subpacket[i].size,q->subpacket[i].joint_stereo,offset,avctx->block_align);
1027
        decode_subpacket(q, &q->subpacket[i], buf + offset, (int16_t*)data);
1028
        offset += q->subpacket[i].size;
1029
        chidx += q->subpacket[i].num_channels;
1030
        av_log(avctx,AV_LOG_DEBUG,"subpacket[%i] %i %i\n",i,q->subpacket[i].size * 8,get_bits_count(&q->gb));
1031
    }
1032
    *data_size = sizeof(int16_t) * q->nb_channels * q->samples_per_channel;
1033

    
1034
    /* Discard the first two frames: no valid audio. */
1035
    if (avctx->frame_number < 2) *data_size = 0;
1036

    
1037
    return avctx->block_align;
1038
}
1039

    
1040
#ifdef COOKDEBUG
1041
static void dump_cook_context(COOKContext *q)
1042
{
1043
    //int i=0;
1044
#define PRINT(a,b) av_log(q->avctx,AV_LOG_ERROR," %s = %d\n", a, b);
1045
    av_log(q->avctx,AV_LOG_ERROR,"COOKextradata\n");
1046
    av_log(q->avctx,AV_LOG_ERROR,"cookversion=%x\n",q->subpacket[0].cookversion);
1047
    if (q->subpacket[0].cookversion > STEREO) {
1048
        PRINT("js_subband_start",q->subpacket[0].js_subband_start);
1049
        PRINT("js_vlc_bits",q->subpacket[0].js_vlc_bits);
1050
    }
1051
    av_log(q->avctx,AV_LOG_ERROR,"COOKContext\n");
1052
    PRINT("nb_channels",q->nb_channels);
1053
    PRINT("bit_rate",q->bit_rate);
1054
    PRINT("sample_rate",q->sample_rate);
1055
    PRINT("samples_per_channel",q->subpacket[0].samples_per_channel);
1056
    PRINT("samples_per_frame",q->subpacket[0].samples_per_frame);
1057
    PRINT("subbands",q->subpacket[0].subbands);
1058
    PRINT("random_state",q->random_state);
1059
    PRINT("js_subband_start",q->subpacket[0].js_subband_start);
1060
    PRINT("log2_numvector_size",q->subpacket[0].log2_numvector_size);
1061
    PRINT("numvector_size",q->subpacket[0].numvector_size);
1062
    PRINT("total_subbands",q->subpacket[0].total_subbands);
1063
}
1064
#endif
1065

    
1066
static av_cold int cook_count_channels(unsigned int mask){
1067
    int i;
1068
    int channels = 0;
1069
    for(i = 0;i<32;i++){
1070
        if(mask & (1<<i))
1071
            ++channels;
1072
    }
1073
    return channels;
1074
}
1075

    
1076
/**
1077
 * Cook initialization
1078
 *
1079
 * @param avctx     pointer to the AVCodecContext
1080
 */
1081

    
1082
static av_cold int cook_decode_init(AVCodecContext *avctx)
1083
{
1084
    COOKContext *q = avctx->priv_data;
1085
    const uint8_t *edata_ptr = avctx->extradata;
1086
    const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size;
1087
    int extradata_size = avctx->extradata_size;
1088
    int s = 0;
1089
    unsigned int channel_mask = 0;
1090
    q->avctx = avctx;
1091

    
1092
    /* Take care of the codec specific extradata. */
1093
    if (extradata_size <= 0) {
1094
        av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");
1095
        return -1;
1096
    }
1097
    av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
1098

    
1099
    /* Take data from the AVCodecContext (RM container). */
1100
    q->sample_rate = avctx->sample_rate;
1101
    q->nb_channels = avctx->channels;
1102
    q->bit_rate = avctx->bit_rate;
1103

    
1104
    /* Initialize RNG. */
1105
    av_lfg_init(&q->random_state, 0);
1106

    
1107
    while(edata_ptr < edata_ptr_end){
1108
        /* 8 for mono, 16 for stereo, ? for multichannel
1109
           Swap to right endianness so we don't need to care later on. */
1110
        if (extradata_size >= 8){
1111
            q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr);
1112
            q->subpacket[s].samples_per_frame =  bytestream_get_be16(&edata_ptr);
1113
            q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr);
1114
            extradata_size -= 8;
1115
        }
1116
        if (avctx->extradata_size >= 8){
1117
            bytestream_get_be32(&edata_ptr);    //Unknown unused
1118
            q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr);
1119
            q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr);
1120
            extradata_size -= 8;
1121
        }
1122

    
1123
        /* Initialize extradata related variables. */
1124
        q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame / q->nb_channels;
1125
        q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
1126

    
1127
        /* Initialize default data states. */
1128
        q->subpacket[s].log2_numvector_size = 5;
1129
        q->subpacket[s].total_subbands = q->subpacket[s].subbands;
1130
        q->subpacket[s].num_channels = 1;
1131

    
1132
        /* Initialize version-dependent variables */
1133

    
1134
        av_log(avctx,AV_LOG_DEBUG,"subpacket[%i].cookversion=%x\n",s,q->subpacket[s].cookversion);
1135
        q->subpacket[s].joint_stereo = 0;
1136
        switch (q->subpacket[s].cookversion) {
1137
            case MONO:
1138
                if (q->nb_channels != 1) {
1139
                    av_log_ask_for_sample(avctx, "Container channels != 1.!\n");
1140
                    return -1;
1141
                }
1142
                av_log(avctx,AV_LOG_DEBUG,"MONO\n");
1143
                break;
1144
            case STEREO:
1145
                if (q->nb_channels != 1) {
1146
                    q->subpacket[s].bits_per_subpdiv = 1;
1147
                    q->subpacket[s].num_channels = 2;
1148
                }
1149
                av_log(avctx,AV_LOG_DEBUG,"STEREO\n");
1150
                break;
1151
            case JOINT_STEREO:
1152
                if (q->nb_channels != 2) {
1153
                    av_log_ask_for_sample(avctx, "Container channels != 2.\n");
1154
                    return -1;
1155
                }
1156
                av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");
1157
                if (avctx->extradata_size >= 16){
1158
                    q->subpacket[s].total_subbands = q->subpacket[s].subbands + q->subpacket[s].js_subband_start;
1159
                    q->subpacket[s].joint_stereo = 1;
1160
                    q->subpacket[s].num_channels = 2;
1161
                }
1162
                if (q->subpacket[s].samples_per_channel > 256) {
1163
                    q->subpacket[s].log2_numvector_size  = 6;
1164
                }
1165
                if (q->subpacket[s].samples_per_channel > 512) {
1166
                    q->subpacket[s].log2_numvector_size  = 7;
1167
                }
1168
                break;
1169
            case MC_COOK:
1170
                av_log(avctx,AV_LOG_DEBUG,"MULTI_CHANNEL\n");
1171
                if(extradata_size >= 4)
1172
                    channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr);
1173

    
1174
                if(cook_count_channels(q->subpacket[s].channel_mask) > 1){
1175
                    q->subpacket[s].total_subbands = q->subpacket[s].subbands + q->subpacket[s].js_subband_start;
1176
                    q->subpacket[s].joint_stereo = 1;
1177
                    q->subpacket[s].num_channels = 2;
1178
                    q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame >> 1;
1179

    
1180
                    if (q->subpacket[s].samples_per_channel > 256) {
1181
                        q->subpacket[s].log2_numvector_size  = 6;
1182
                    }
1183
                    if (q->subpacket[s].samples_per_channel > 512) {
1184
                        q->subpacket[s].log2_numvector_size  = 7;
1185
                    }
1186
                }else
1187
                    q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame;
1188

    
1189
                break;
1190
            default:
1191
                av_log_ask_for_sample(avctx, "Unknown Cook version.\n");
1192
                return -1;
1193
                break;
1194
        }
1195

    
1196
        if(s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
1197
            av_log(avctx,AV_LOG_ERROR,"different number of samples per channel!\n");
1198
            return -1;
1199
        } else
1200
            q->samples_per_channel = q->subpacket[0].samples_per_channel;
1201

    
1202

    
1203
        /* Initialize variable relations */
1204
        q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);
1205

    
1206
        /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1207
        if (q->subpacket[s].total_subbands > 53) {
1208
            av_log_ask_for_sample(avctx, "total_subbands > 53\n");
1209
            return -1;
1210
        }
1211

    
1212
        if ((q->subpacket[s].js_vlc_bits > 6) || (q->subpacket[s].js_vlc_bits < 0)) {
1213
            av_log(avctx,AV_LOG_ERROR,"js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->subpacket[s].js_vlc_bits);
1214
            return -1;
1215
        }
1216

    
1217
        if (q->subpacket[s].subbands > 50) {
1218
            av_log_ask_for_sample(avctx, "subbands > 50\n");
1219
            return -1;
1220
        }
1221
        q->subpacket[s].gains1.now      = q->subpacket[s].gain_1;
1222
        q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
1223
        q->subpacket[s].gains2.now      = q->subpacket[s].gain_3;
1224
        q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
1225

    
1226
        q->num_subpackets++;
1227
        s++;
1228
        if (s > MAX_SUBPACKETS) {
1229
            av_log_ask_for_sample(avctx, "Too many subpackets > 5\n");
1230
            return -1;
1231
        }
1232
    }
1233
    /* Generate tables */
1234
    init_pow2table();
1235
    init_gain_table(q);
1236
    init_cplscales_table(q);
1237

    
1238
    if (init_cook_vlc_tables(q) != 0)
1239
        return -1;
1240

    
1241

    
1242
    if(avctx->block_align >= UINT_MAX/2)
1243
        return -1;
1244

    
1245
    /* Pad the databuffer with:
1246
       DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1247
       FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1248
        q->decoded_bytes_buffer =
1249
          av_mallocz(avctx->block_align
1250
                     + DECODE_BYTES_PAD1(avctx->block_align)
1251
                     + FF_INPUT_BUFFER_PADDING_SIZE);
1252
    if (q->decoded_bytes_buffer == NULL)
1253
        return -1;
1254

    
1255
    /* Initialize transform. */
1256
    if ( init_cook_mlt(q) != 0 )
1257
        return -1;
1258

    
1259
    /* Initialize COOK signal arithmetic handling */
1260
    if (1) {
1261
        q->scalar_dequant  = scalar_dequant_float;
1262
        q->decouple        = decouple_float;
1263
        q->imlt_window     = imlt_window_float;
1264
        q->interpolate     = interpolate_float;
1265
        q->saturate_output = saturate_output_float;
1266
    }
1267

    
1268
    /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1269
    if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
1270
    } else {
1271
        av_log_ask_for_sample(avctx,
1272
                              "unknown amount of samples_per_channel = %d\n",
1273
                              q->samples_per_channel);
1274
        return -1;
1275
    }
1276

    
1277
    avctx->sample_fmt = AV_SAMPLE_FMT_S16;
1278
    if (channel_mask)
1279
        avctx->channel_layout = channel_mask;
1280
    else
1281
        avctx->channel_layout = (avctx->channels==2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
1282

    
1283
#ifdef COOKDEBUG
1284
    dump_cook_context(q);
1285
#endif
1286
    return 0;
1287
}
1288

    
1289

    
1290
AVCodec ff_cook_decoder =
1291
{
1292
    .name = "cook",
1293
    .type = AVMEDIA_TYPE_AUDIO,
1294
    .id = CODEC_ID_COOK,
1295
    .priv_data_size = sizeof(COOKContext),
1296
    .init = cook_decode_init,
1297
    .close = cook_decode_close,
1298
    .decode = cook_decode_frame,
1299
    .long_name = NULL_IF_CONFIG_SMALL("COOK"),
1300
};