Statistics
| Branch: | Revision:

ffmpeg / libavcodec / cook.c @ d9fd5461

History | View | Annotate | Download (36.1 KB)

1
/*
2
 * COOK compatible decoder
3
 * Copyright (c) 2003 Sascha Sommer
4
 * Copyright (c) 2005 Benjamin Larsson
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 *
22
 */
23

    
24
/**
25
 * @file cook.c
26
 * Cook compatible decoder. Bastardization of the G.722.1 standard.
27
 * This decoder handles RealNetworks, RealAudio G2 data.
28
 * Cook is identified by the codec name cook in RM files.
29
 *
30
 * To use this decoder, a calling application must supply the extradata
31
 * bytes provided from the RM container; 8+ bytes for mono streams and
32
 * 16+ for stereo streams (maybe more).
33
 *
34
 * Codec technicalities (all this assume a buffer length of 1024):
35
 * Cook works with several different techniques to achieve its compression.
36
 * In the timedomain the buffer is divided into 8 pieces and quantized. If
37
 * two neighboring pieces have different quantization index a smooth
38
 * quantization curve is used to get a smooth overlap between the different
39
 * pieces.
40
 * To get to the transformdomain Cook uses a modulated lapped transform.
41
 * The transform domain has 50 subbands with 20 elements each. This
42
 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
43
 * available.
44
 */
45

    
46
#include <math.h>
47
#include <stddef.h>
48
#include <stdio.h>
49

    
50
#include "avcodec.h"
51
#include "bitstream.h"
52
#include "dsputil.h"
53
#include "common.h"
54
#include "bytestream.h"
55
#include "random.h"
56

    
57
#include "cookdata.h"
58

    
59
/* the different Cook versions */
60
#define MONO            0x1000001
61
#define STEREO          0x1000002
62
#define JOINT_STEREO    0x1000003
63
#define MC_COOK         0x2000000   //multichannel Cook, not supported
64

    
65
#define SUBBAND_SIZE    20
66
//#define COOKDEBUG
67

    
68
typedef struct {
69
    int *now;
70
    int *previous;
71
} cook_gains;
72

    
73
typedef struct {
74
    GetBitContext       gb;
75
    /* stream data */
76
    int                 nb_channels;
77
    int                 joint_stereo;
78
    int                 bit_rate;
79
    int                 sample_rate;
80
    int                 samples_per_channel;
81
    int                 samples_per_frame;
82
    int                 subbands;
83
    int                 log2_numvector_size;
84
    int                 numvector_size;                //1 << log2_numvector_size;
85
    int                 js_subband_start;
86
    int                 total_subbands;
87
    int                 num_vectors;
88
    int                 bits_per_subpacket;
89
    int                 cookversion;
90
    /* states */
91
    AVRandomState       random_state;
92

    
93
    /* transform data */
94
    MDCTContext         mdct_ctx;
95
    DECLARE_ALIGNED_16(FFTSample, mdct_tmp[1024]);  /* temporary storage for imlt */
96
    float*              mlt_window;
97

    
98
    /* gain buffers */
99
    cook_gains          gains1;
100
    cook_gains          gains2;
101
    int                 gain_1[9];
102
    int                 gain_2[9];
103
    int                 gain_3[9];
104
    int                 gain_4[9];
105

    
106
    /* VLC data */
107
    int                 js_vlc_bits;
108
    VLC                 envelope_quant_index[13];
109
    VLC                 sqvh[7];          //scalar quantization
110
    VLC                 ccpl;             //channel coupling
111

    
112
    /* generatable tables and related variables */
113
    int                 gain_size_factor;
114
    float               gain_table[23];
115
    float               pow2tab[127];
116
    float               rootpow2tab[127];
117

    
118
    /* data buffers */
119

    
120
    uint8_t*            decoded_bytes_buffer;
121
    DECLARE_ALIGNED_16(float,mono_mdct_output[2048]);
122
    float               mono_previous_buffer1[1024];
123
    float               mono_previous_buffer2[1024];
124
    float               decode_buffer_1[1024];
125
    float               decode_buffer_2[1024];
126
} COOKContext;
127

    
128
/* debug functions */
129

    
130
#ifdef COOKDEBUG
131
static void dump_float_table(float* table, int size, int delimiter) {
132
    int i=0;
133
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
134
    for (i=0 ; i<size ; i++) {
135
        av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
136
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
137
    }
138
}
139

    
140
static void dump_int_table(int* table, int size, int delimiter) {
141
    int i=0;
142
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
143
    for (i=0 ; i<size ; i++) {
144
        av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
145
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
146
    }
147
}
148

    
149
static void dump_short_table(short* table, int size, int delimiter) {
150
    int i=0;
151
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
152
    for (i=0 ; i<size ; i++) {
153
        av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
154
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
155
    }
156
}
157

    
158
#endif
159

    
160
/*************** init functions ***************/
161

    
162
/* table generator */
163
static void init_pow2table(COOKContext *q){
164
    int i;
165
    q->pow2tab[63] = 1.0;
166
    for (i=1 ; i<64 ; i++){
167
        q->pow2tab[63+i]=(float)((uint64_t)1<<i);
168
        q->pow2tab[63-i]=1.0/(float)((uint64_t)1<<i);
169
    }
170
}
171

    
172
/* table generator */
173
static void init_rootpow2table(COOKContext *q){
174
    int i;
175
    q->rootpow2tab[63] = 1.0;
176
    for (i=1 ; i<64 ; i++){
177
        q->rootpow2tab[63+i]=sqrt((float)((uint64_t)1<<i));
178
        q->rootpow2tab[63-i]=sqrt(1.0/(float)((uint64_t)1<<i));
179
    }
180
}
181

    
182
/* table generator */
183
static void init_gain_table(COOKContext *q) {
184
    int i;
185
    q->gain_size_factor = q->samples_per_channel/8;
186
    for (i=0 ; i<23 ; i++) {
187
        q->gain_table[i] = pow((double)q->pow2tab[i+52] ,
188
                               (1.0/(double)q->gain_size_factor));
189
    }
190
}
191

    
192

    
193
static int init_cook_vlc_tables(COOKContext *q) {
194
    int i, result;
195

    
196
    result = 0;
197
    for (i=0 ; i<13 ; i++) {
198
        result &= init_vlc (&q->envelope_quant_index[i], 9, 24,
199
            envelope_quant_index_huffbits[i], 1, 1,
200
            envelope_quant_index_huffcodes[i], 2, 2, 0);
201
    }
202
    av_log(NULL,AV_LOG_DEBUG,"sqvh VLC init\n");
203
    for (i=0 ; i<7 ; i++) {
204
        result &= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
205
            cvh_huffbits[i], 1, 1,
206
            cvh_huffcodes[i], 2, 2, 0);
207
    }
208

    
209
    if (q->nb_channels==2 && q->joint_stereo==1){
210
        result &= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1,
211
            ccpl_huffbits[q->js_vlc_bits-2], 1, 1,
212
            ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0);
213
        av_log(NULL,AV_LOG_DEBUG,"Joint-stereo VLC used.\n");
214
    }
215

    
216
    av_log(NULL,AV_LOG_DEBUG,"VLC tables initialized.\n");
217
    return result;
218
}
219

    
220
static int init_cook_mlt(COOKContext *q) {
221
    int j;
222
    float alpha;
223
    int mlt_size = q->samples_per_channel;
224

    
225
    if ((q->mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0)
226
      return -1;
227

    
228
    /* Initialize the MLT window: simple sine window. */
229
    alpha = M_PI / (2.0 * (float)mlt_size);
230
    for(j=0 ; j<mlt_size ; j++)
231
        q->mlt_window[j] = sin((j + 0.5) * alpha) * sqrt(2.0 / q->samples_per_channel);
232

    
233
    /* Initialize the MDCT. */
234
    if (ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1)) {
235
      av_free(q->mlt_window);
236
      return -1;
237
    }
238
    av_log(NULL,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",
239
           av_log2(mlt_size)+1);
240

    
241
    return 0;
242
}
243

    
244
/*************** init functions end ***********/
245

    
246
/**
247
 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
248
 * Why? No idea, some checksum/error detection method maybe.
249
 *
250
 * Out buffer size: extra bytes are needed to cope with
251
 * padding/missalignment.
252
 * Subpackets passed to the decoder can contain two, consecutive
253
 * half-subpackets, of identical but arbitrary size.
254
 *          1234 1234 1234 1234  extraA extraB
255
 * Case 1:  AAAA BBBB              0      0
256
 * Case 2:  AAAA ABBB BB--         3      3
257
 * Case 3:  AAAA AABB BBBB         2      2
258
 * Case 4:  AAAA AAAB BBBB BB--    1      5
259
 *
260
 * Nice way to waste CPU cycles.
261
 *
262
 * @param inbuffer  pointer to byte array of indata
263
 * @param out       pointer to byte array of outdata
264
 * @param bytes     number of bytes
265
 */
266
#define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
267
#define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
268

    
269
static inline int decode_bytes(uint8_t* inbuffer, uint8_t* out, int bytes){
270
    int i, off;
271
    uint32_t c;
272
    uint32_t* buf;
273
    uint32_t* obuf = (uint32_t*) out;
274
    /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
275
     * I'm too lazy though, should be something like
276
     * for(i=0 ; i<bitamount/64 ; i++)
277
     *     (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
278
     * Buffer alignment needs to be checked. */
279

    
280
    off = (int)((long)inbuffer & 3);
281
    buf = (uint32_t*) (inbuffer - off);
282
    c = be2me_32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8))));
283
    bytes += 3 + off;
284
    for (i = 0; i < bytes/4; i++)
285
        obuf[i] = c ^ buf[i];
286

    
287
    return off;
288
}
289

    
290
/**
291
 * Cook uninit
292
 */
293

    
294
static int cook_decode_close(AVCodecContext *avctx)
295
{
296
    int i;
297
    COOKContext *q = avctx->priv_data;
298
    av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");
299

    
300
    /* Free allocated memory buffers. */
301
    av_free(q->mlt_window);
302
    av_free(q->decoded_bytes_buffer);
303

    
304
    /* Free the transform. */
305
    ff_mdct_end(&q->mdct_ctx);
306

    
307
    /* Free the VLC tables. */
308
    for (i=0 ; i<13 ; i++) {
309
        free_vlc(&q->envelope_quant_index[i]);
310
    }
311
    for (i=0 ; i<7 ; i++) {
312
        free_vlc(&q->sqvh[i]);
313
    }
314
    if(q->nb_channels==2 && q->joint_stereo==1 ){
315
        free_vlc(&q->ccpl);
316
    }
317

    
318
    av_log(NULL,AV_LOG_DEBUG,"Memory deallocated.\n");
319

    
320
    return 0;
321
}
322

    
323
/**
324
 * Fill the gain array for the timedomain quantization.
325
 *
326
 * @param q                 pointer to the COOKContext
327
 * @param gaininfo[9]       array of gain indices
328
 */
329

    
330
static void decode_gain_info(GetBitContext *gb, int *gaininfo)
331
{
332
    int i, n;
333

    
334
    while (get_bits1(gb)) {}
335
    n = get_bits_count(gb) - 1;     //amount of elements*2 to update
336

    
337
    i = 0;
338
    while (n--) {
339
        int index = get_bits(gb, 3);
340
        int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
341

    
342
        while (i <= index) gaininfo[i++] = gain;
343
    }
344
    while (i <= 8) gaininfo[i++] = 0;
345
}
346

    
347
/**
348
 * Create the quant index table needed for the envelope.
349
 *
350
 * @param q                 pointer to the COOKContext
351
 * @param quant_index_table pointer to the array
352
 */
353

    
354
static void decode_envelope(COOKContext *q, int* quant_index_table) {
355
    int i,j, vlc_index;
356

    
357
    quant_index_table[0]= get_bits(&q->gb,6) - 6;       //This is used later in categorize
358

    
359
    for (i=1 ; i < q->total_subbands ; i++){
360
        vlc_index=i;
361
        if (i >= q->js_subband_start * 2) {
362
            vlc_index-=q->js_subband_start;
363
        } else {
364
            vlc_index/=2;
365
            if(vlc_index < 1) vlc_index = 1;
366
        }
367
        if (vlc_index>13) vlc_index = 13;           //the VLC tables >13 are identical to No. 13
368

    
369
        j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
370
                     q->envelope_quant_index[vlc_index-1].bits,2);
371
        quant_index_table[i] = quant_index_table[i-1] + j - 12;    //differential encoding
372
    }
373
}
374

    
375
/**
376
 * Calculate the category and category_index vector.
377
 *
378
 * @param q                     pointer to the COOKContext
379
 * @param quant_index_table     pointer to the array
380
 * @param category              pointer to the category array
381
 * @param category_index        pointer to the category_index array
382
 */
383

    
384
static void categorize(COOKContext *q, int* quant_index_table,
385
                       int* category, int* category_index){
386
    int exp_idx, bias, tmpbias, bits_left, num_bits, index, v, i, j;
387
    int exp_index2[102];
388
    int exp_index1[102];
389

    
390
    int tmp_categorize_array1[128];
391
    int tmp_categorize_array1_idx=0;
392
    int tmp_categorize_array2[128];
393
    int tmp_categorize_array2_idx=0;
394
    int category_index_size=0;
395

    
396
    bits_left =  q->bits_per_subpacket - get_bits_count(&q->gb);
397

    
398
    if(bits_left > q->samples_per_channel) {
399
        bits_left = q->samples_per_channel +
400
                    ((bits_left - q->samples_per_channel)*5)/8;
401
        //av_log(NULL, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
402
    }
403

    
404
    memset(&exp_index1,0,102*sizeof(int));
405
    memset(&exp_index2,0,102*sizeof(int));
406
    memset(&tmp_categorize_array1,0,128*sizeof(int));
407
    memset(&tmp_categorize_array2,0,128*sizeof(int));
408

    
409
    bias=-32;
410

    
411
    /* Estimate bias. */
412
    for (i=32 ; i>0 ; i=i/2){
413
        num_bits = 0;
414
        index = 0;
415
        for (j=q->total_subbands ; j>0 ; j--){
416
            exp_idx = (i - quant_index_table[index] + bias) / 2;
417
            if (exp_idx<0){
418
                exp_idx=0;
419
            } else if(exp_idx >7) {
420
                exp_idx=7;
421
            }
422
            index++;
423
            num_bits+=expbits_tab[exp_idx];
424
        }
425
        if(num_bits >= bits_left - 32){
426
            bias+=i;
427
        }
428
    }
429

    
430
    /* Calculate total number of bits. */
431
    num_bits=0;
432
    for (i=0 ; i<q->total_subbands ; i++) {
433
        exp_idx = (bias - quant_index_table[i]) / 2;
434
        if (exp_idx<0) {
435
            exp_idx=0;
436
        } else if(exp_idx >7) {
437
            exp_idx=7;
438
        }
439
        num_bits += expbits_tab[exp_idx];
440
        exp_index1[i] = exp_idx;
441
        exp_index2[i] = exp_idx;
442
    }
443
    tmpbias = bias = num_bits;
444

    
445
    for (j = 1 ; j < q->numvector_size ; j++) {
446
        if (tmpbias + bias > 2*bits_left) {  /* ---> */
447
            int max = -999999;
448
            index=-1;
449
            for (i=0 ; i<q->total_subbands ; i++){
450
                if (exp_index1[i] < 7) {
451
                    v = (-2*exp_index1[i]) - quant_index_table[i] - 32;
452
                    if ( v >= max) {
453
                        max = v;
454
                        index = i;
455
                    }
456
                }
457
            }
458
            if(index==-1)break;
459
            tmp_categorize_array1[tmp_categorize_array1_idx++] = index;
460
            tmpbias -= expbits_tab[exp_index1[index]] -
461
                       expbits_tab[exp_index1[index]+1];
462
            ++exp_index1[index];
463
        } else {  /* <--- */
464
            int min = 999999;
465
            index=-1;
466
            for (i=0 ; i<q->total_subbands ; i++){
467
                if(exp_index2[i] > 0){
468
                    v = (-2*exp_index2[i])-quant_index_table[i];
469
                    if ( v < min) {
470
                        min = v;
471
                        index = i;
472
                    }
473
                }
474
            }
475
            if(index == -1)break;
476
            tmp_categorize_array2[tmp_categorize_array2_idx++] = index;
477
            tmpbias -= expbits_tab[exp_index2[index]] -
478
                       expbits_tab[exp_index2[index]-1];
479
            --exp_index2[index];
480
        }
481
    }
482

    
483
    for(i=0 ; i<q->total_subbands ; i++)
484
        category[i] = exp_index2[i];
485

    
486
    /* Concatenate the two arrays. */
487
    for(i=tmp_categorize_array2_idx-1 ; i >= 0; i--)
488
        category_index[category_index_size++] =  tmp_categorize_array2[i];
489

    
490
    for(i=0;i<tmp_categorize_array1_idx;i++)
491
        category_index[category_index_size++ ] =  tmp_categorize_array1[i];
492

    
493
    /* FIXME: mc_sich_ra8_20.rm triggers this, not sure with what we
494
       should fill the remaining bytes. */
495
    for(i=category_index_size;i<q->numvector_size;i++)
496
        category_index[i]=0;
497

    
498
}
499

    
500

    
501
/**
502
 * Expand the category vector.
503
 *
504
 * @param q                     pointer to the COOKContext
505
 * @param category              pointer to the category array
506
 * @param category_index        pointer to the category_index array
507
 */
508

    
509
static void inline expand_category(COOKContext *q, int* category,
510
                                   int* category_index){
511
    int i;
512
    for(i=0 ; i<q->num_vectors ; i++){
513
        ++category[category_index[i]];
514
    }
515
}
516

    
517
/**
518
 * The real requantization of the mltcoefs
519
 *
520
 * @param q                     pointer to the COOKContext
521
 * @param index                 index
522
 * @param quant_index           quantisation index
523
 * @param subband_coef_index    array of indexes to quant_centroid_tab
524
 * @param subband_coef_sign     signs of coefficients
525
 * @param mlt_p                 pointer into the mlt buffer
526
 */
527

    
528
static void scalar_dequant(COOKContext *q, int index, int quant_index,
529
                           int* subband_coef_index, int* subband_coef_sign,
530
                           float* mlt_p){
531
    int i;
532
    float f1;
533

    
534
    for(i=0 ; i<SUBBAND_SIZE ; i++) {
535
        if (subband_coef_index[i]) {
536
            f1 = quant_centroid_tab[index][subband_coef_index[i]];
537
            if (subband_coef_sign[i]) f1 = -f1;
538
        } else {
539
            /* noise coding if subband_coef_index[i] == 0 */
540
            f1 = dither_tab[index];
541
            if (av_random(&q->random_state) < 0x80000000) f1 = -f1;
542
        }
543
        mlt_p[i] = f1 * q->rootpow2tab[quant_index+63];
544
    }
545
}
546
/**
547
 * Unpack the subband_coef_index and subband_coef_sign vectors.
548
 *
549
 * @param q                     pointer to the COOKContext
550
 * @param category              pointer to the category array
551
 * @param subband_coef_index    array of indexes to quant_centroid_tab
552
 * @param subband_coef_sign     signs of coefficients
553
 */
554

    
555
static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
556
                       int* subband_coef_sign) {
557
    int i,j;
558
    int vlc, vd ,tmp, result;
559
    int ub;
560
    int cb;
561

    
562
    vd = vd_tab[category];
563
    result = 0;
564
    for(i=0 ; i<vpr_tab[category] ; i++){
565
        ub = get_bits_count(&q->gb);
566
        vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
567
        cb = get_bits_count(&q->gb);
568
        if (q->bits_per_subpacket < get_bits_count(&q->gb)){
569
            vlc = 0;
570
            result = 1;
571
        }
572
        for(j=vd-1 ; j>=0 ; j--){
573
            tmp = (vlc * invradix_tab[category])/0x100000;
574
            subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
575
            vlc = tmp;
576
        }
577
        for(j=0 ; j<vd ; j++){
578
            if (subband_coef_index[i*vd + j]) {
579
                if(get_bits_count(&q->gb) < q->bits_per_subpacket){
580
                    subband_coef_sign[i*vd+j] = get_bits1(&q->gb);
581
                } else {
582
                    result=1;
583
                    subband_coef_sign[i*vd+j]=0;
584
                }
585
            } else {
586
                subband_coef_sign[i*vd+j]=0;
587
            }
588
        }
589
    }
590
    return result;
591
}
592

    
593

    
594
/**
595
 * Fill the mlt_buffer with mlt coefficients.
596
 *
597
 * @param q                 pointer to the COOKContext
598
 * @param category          pointer to the category array
599
 * @param quant_index_table pointer to the array
600
 * @param mlt_buffer        pointer to mlt coefficients
601
 */
602

    
603

    
604
static void decode_vectors(COOKContext* q, int* category,
605
                           int *quant_index_table, float* mlt_buffer){
606
    /* A zero in this table means that the subband coefficient is
607
       random noise coded. */
608
    int subband_coef_index[SUBBAND_SIZE];
609
    /* A zero in this table means that the subband coefficient is a
610
       positive multiplicator. */
611
    int subband_coef_sign[SUBBAND_SIZE];
612
    int band, j;
613
    int index=0;
614

    
615
    for(band=0 ; band<q->total_subbands ; band++){
616
        index = category[band];
617
        if(category[band] < 7){
618
            if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_sign)){
619
                index=7;
620
                for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7;
621
            }
622
        }
623
        if(index==7) {
624
            memset(subband_coef_index, 0, sizeof(subband_coef_index));
625
            memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
626
        }
627
        scalar_dequant(q, index, quant_index_table[band],
628
                       subband_coef_index, subband_coef_sign,
629
                       &mlt_buffer[band * 20]);
630
    }
631

    
632
    if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
633
        return;
634
    } /* FIXME: should this be removed, or moved into loop above? */
635
}
636

    
637

    
638
/**
639
 * function for decoding mono data
640
 *
641
 * @param q                 pointer to the COOKContext
642
 * @param mlt_buffer        pointer to mlt coefficients
643
 */
644

    
645
static void mono_decode(COOKContext *q, float* mlt_buffer) {
646

    
647
    int category_index[128];
648
    int quant_index_table[102];
649
    int category[128];
650

    
651
    memset(&category, 0, 128*sizeof(int));
652
    memset(&category_index, 0, 128*sizeof(int));
653

    
654
    decode_envelope(q, quant_index_table);
655
    q->num_vectors = get_bits(&q->gb,q->log2_numvector_size);
656
    categorize(q, quant_index_table, category, category_index);
657
    expand_category(q, category, category_index);
658
    decode_vectors(q, category, quant_index_table, mlt_buffer);
659
}
660

    
661

    
662
/**
663
 * the actual requantization of the timedomain samples
664
 *
665
 * @param q                 pointer to the COOKContext
666
 * @param buffer            pointer to the timedomain buffer
667
 * @param gain_index        index for the block multiplier
668
 * @param gain_index_next   index for the next block multiplier
669
 */
670

    
671
static void interpolate(COOKContext *q, float* buffer,
672
                        int gain_index, int gain_index_next){
673
    int i;
674
    float fc1, fc2;
675
    fc1 = q->pow2tab[gain_index+63];
676

    
677
    if(gain_index == gain_index_next){              //static gain
678
        for(i=0 ; i<q->gain_size_factor ; i++){
679
            buffer[i]*=fc1;
680
        }
681
        return;
682
    } else {                                        //smooth gain
683
        fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
684
        for(i=0 ; i<q->gain_size_factor ; i++){
685
            buffer[i]*=fc1;
686
            fc1*=fc2;
687
        }
688
        return;
689
    }
690
}
691

    
692

    
693
/**
694
 * The modulated lapped transform, this takes transform coefficients
695
 * and transforms them into timedomain samples.
696
 * Apply transform window, overlap buffers, apply gain profile
697
 * and buffer management.
698
 *
699
 * @param q                 pointer to the COOKContext
700
 * @param inbuffer          pointer to the mltcoefficients
701
 * @param gains_ptr         current and previous gains
702
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
703
 */
704

    
705
static void imlt_gain(COOKContext *q, float *inbuffer,
706
                      cook_gains *gains_ptr, float* previous_buffer)
707
{
708
    const float fc = q->pow2tab[gains_ptr->previous[0] + 63];
709
    float *buffer0 = q->mono_mdct_output;
710
    float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
711
    int i;
712

    
713
    /* Inverse modified discrete cosine transform */
714
    q->mdct_ctx.fft.imdct_calc(&q->mdct_ctx, q->mono_mdct_output,
715
                               inbuffer, q->mdct_tmp);
716

    
717
    /* The weird thing here, is that the two halves of the time domain
718
     * buffer are swapped. Also, the newest data, that we save away for
719
     * next frame, has the wrong sign. Hence the subtraction below.
720
     * Almost sounds like a complex conjugate/reverse data/FFT effect.
721
     */
722

    
723
    /* Apply window and overlap */
724
    for(i = 0; i < q->samples_per_channel; i++){
725
        buffer1[i] = buffer1[i] * fc * q->mlt_window[i] -
726
          previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
727
    }
728

    
729
    /* Apply gain profile */
730
    for (i = 0; i < 8; i++) {
731
        if (gains_ptr->now[i] || gains_ptr->now[i + 1])
732
            interpolate(q, &buffer1[q->gain_size_factor * i],
733
                        gains_ptr->now[i], gains_ptr->now[i + 1]);
734
    }
735

    
736
    /* Save away the current to be previous block. */
737
    memcpy(previous_buffer, buffer0, sizeof(float)*q->samples_per_channel);
738
}
739

    
740

    
741
/**
742
 * function for getting the jointstereo coupling information
743
 *
744
 * @param q                 pointer to the COOKContext
745
 * @param decouple_tab      decoupling array
746
 *
747
 */
748

    
749
static void decouple_info(COOKContext *q, int* decouple_tab){
750
    int length, i;
751

    
752
    if(get_bits1(&q->gb)) {
753
        if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
754

    
755
        length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
756
        for (i=0 ; i<length ; i++) {
757
            decouple_tab[cplband[q->js_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2);
758
        }
759
        return;
760
    }
761

    
762
    if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
763

    
764
    length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
765
    for (i=0 ; i<length ; i++) {
766
       decouple_tab[cplband[q->js_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits);
767
    }
768
    return;
769
}
770

    
771

    
772
/**
773
 * function for decoding joint stereo data
774
 *
775
 * @param q                 pointer to the COOKContext
776
 * @param mlt_buffer1       pointer to left channel mlt coefficients
777
 * @param mlt_buffer2       pointer to right channel mlt coefficients
778
 */
779

    
780
static void joint_decode(COOKContext *q, float* mlt_buffer1,
781
                         float* mlt_buffer2) {
782
    int i,j;
783
    int decouple_tab[SUBBAND_SIZE];
784
    float decode_buffer[1060];
785
    int idx, cpl_tmp,tmp_idx;
786
    float f1,f2;
787
    float* cplscale;
788

    
789
    memset(decouple_tab, 0, sizeof(decouple_tab));
790
    memset(decode_buffer, 0, sizeof(decode_buffer));
791

    
792
    /* Make sure the buffers are zeroed out. */
793
    memset(mlt_buffer1,0, 1024*sizeof(float));
794
    memset(mlt_buffer2,0, 1024*sizeof(float));
795
    decouple_info(q, decouple_tab);
796
    mono_decode(q, decode_buffer);
797

    
798
    /* The two channels are stored interleaved in decode_buffer. */
799
    for (i=0 ; i<q->js_subband_start ; i++) {
800
        for (j=0 ; j<SUBBAND_SIZE ; j++) {
801
            mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
802
            mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
803
        }
804
    }
805

    
806
    /* When we reach js_subband_start (the higher frequencies)
807
       the coefficients are stored in a coupling scheme. */
808
    idx = (1 << q->js_vlc_bits) - 1;
809
    for (i=q->js_subband_start ; i<q->subbands ; i++) {
810
        cpl_tmp = cplband[i];
811
        idx -=decouple_tab[cpl_tmp];
812
        cplscale = (float*)cplscales[q->js_vlc_bits-2];  //choose decoupler table
813
        f1 = cplscale[decouple_tab[cpl_tmp]];
814
        f2 = cplscale[idx-1];
815
        for (j=0 ; j<SUBBAND_SIZE ; j++) {
816
            tmp_idx = ((q->js_subband_start + i)*20)+j;
817
            mlt_buffer1[20*i + j] = f1 * decode_buffer[tmp_idx];
818
            mlt_buffer2[20*i + j] = f2 * decode_buffer[tmp_idx];
819
        }
820
        idx = (1 << q->js_vlc_bits) - 1;
821
    }
822
}
823

    
824
/**
825
 * First part of subpacket decoding:
826
 *  decode raw stream bytes and read gain info.
827
 *
828
 * @param q                 pointer to the COOKContext
829
 * @param inbuffer          pointer to raw stream data
830
 * @param gain_ptr          array of current/prev gain pointers
831
 */
832

    
833
static inline void
834
decode_bytes_and_gain(COOKContext *q, uint8_t *inbuffer,
835
                      cook_gains *gains_ptr)
836
{
837
    int offset;
838

    
839
    offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
840
                          q->bits_per_subpacket/8);
841
    init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
842
                  q->bits_per_subpacket);
843
    decode_gain_info(&q->gb, gains_ptr->now);
844

    
845
    /* Swap current and previous gains */
846
    FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
847
}
848

    
849
/**
850
 * Final part of subpacket decoding:
851
 *  Apply modulated lapped transform, gain compensation,
852
 *  clip and convert to integer.
853
 *
854
 * @param q                 pointer to the COOKContext
855
 * @param decode_buffer     pointer to the mlt coefficients
856
 * @param gain_ptr          array of current/prev gain pointers
857
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
858
 * @param out               pointer to the output buffer
859
 * @param chan              0: left or single channel, 1: right channel
860
 */
861

    
862
static inline void
863
mlt_compensate_output(COOKContext *q, float *decode_buffer,
864
                      cook_gains *gains, float *previous_buffer,
865
                      int16_t *out, int chan)
866
{
867
    float *output = q->mono_mdct_output + q->samples_per_channel;
868
    int j;
869

    
870
    imlt_gain(q, decode_buffer, gains, previous_buffer);
871

    
872
    /* Clip and convert floats to 16 bits.
873
     */
874
    for (j = 0; j < q->samples_per_channel; j++) {
875
        out[chan + q->nb_channels * j] =
876
          av_clip(lrintf(output[j]), -32768, 32767);
877
    }
878
}
879

    
880

    
881
/**
882
 * Cook subpacket decoding. This function returns one decoded subpacket,
883
 * usually 1024 samples per channel.
884
 *
885
 * @param q                 pointer to the COOKContext
886
 * @param inbuffer          pointer to the inbuffer
887
 * @param sub_packet_size   subpacket size
888
 * @param outbuffer         pointer to the outbuffer
889
 */
890

    
891

    
892
static int decode_subpacket(COOKContext *q, uint8_t *inbuffer,
893
                            int sub_packet_size, int16_t *outbuffer) {
894
    /* packet dump */
895
//    for (i=0 ; i<sub_packet_size ; i++) {
896
//        av_log(NULL, AV_LOG_ERROR, "%02x", inbuffer[i]);
897
//    }
898
//    av_log(NULL, AV_LOG_ERROR, "\n");
899

    
900
    decode_bytes_and_gain(q, inbuffer, &q->gains1);
901

    
902
    if (q->joint_stereo) {
903
        joint_decode(q, q->decode_buffer_1, q->decode_buffer_2);
904
    } else {
905
        mono_decode(q, q->decode_buffer_1);
906

    
907
        if (q->nb_channels == 2) {
908
            decode_bytes_and_gain(q, inbuffer + sub_packet_size/2, &q->gains2);
909
            mono_decode(q, q->decode_buffer_2);
910
        }
911
    }
912

    
913
    mlt_compensate_output(q, q->decode_buffer_1, &q->gains1,
914
                          q->mono_previous_buffer1, outbuffer, 0);
915

    
916
    if (q->nb_channels == 2) {
917
        if (q->joint_stereo) {
918
            mlt_compensate_output(q, q->decode_buffer_2, &q->gains1,
919
                                  q->mono_previous_buffer2, outbuffer, 1);
920
        } else {
921
            mlt_compensate_output(q, q->decode_buffer_2, &q->gains2,
922
                                  q->mono_previous_buffer2, outbuffer, 1);
923
        }
924
    }
925
    return q->samples_per_frame * sizeof(int16_t);
926
}
927

    
928

    
929
/**
930
 * Cook frame decoding
931
 *
932
 * @param avctx     pointer to the AVCodecContext
933
 */
934

    
935
static int cook_decode_frame(AVCodecContext *avctx,
936
            void *data, int *data_size,
937
            uint8_t *buf, int buf_size) {
938
    COOKContext *q = avctx->priv_data;
939

    
940
    if (buf_size < avctx->block_align)
941
        return buf_size;
942

    
943
    *data_size = decode_subpacket(q, buf, avctx->block_align, data);
944

    
945
    /* Discard the first two frames: no valid audio. */
946
    if (avctx->frame_number < 2) *data_size = 0;
947

    
948
    return avctx->block_align;
949
}
950

    
951
#ifdef COOKDEBUG
952
static void dump_cook_context(COOKContext *q)
953
{
954
    //int i=0;
955
#define PRINT(a,b) av_log(NULL,AV_LOG_ERROR," %s = %d\n", a, b);
956
    av_log(NULL,AV_LOG_ERROR,"COOKextradata\n");
957
    av_log(NULL,AV_LOG_ERROR,"cookversion=%x\n",q->cookversion);
958
    if (q->cookversion > STEREO) {
959
        PRINT("js_subband_start",q->js_subband_start);
960
        PRINT("js_vlc_bits",q->js_vlc_bits);
961
    }
962
    av_log(NULL,AV_LOG_ERROR,"COOKContext\n");
963
    PRINT("nb_channels",q->nb_channels);
964
    PRINT("bit_rate",q->bit_rate);
965
    PRINT("sample_rate",q->sample_rate);
966
    PRINT("samples_per_channel",q->samples_per_channel);
967
    PRINT("samples_per_frame",q->samples_per_frame);
968
    PRINT("subbands",q->subbands);
969
    PRINT("random_state",q->random_state);
970
    PRINT("js_subband_start",q->js_subband_start);
971
    PRINT("log2_numvector_size",q->log2_numvector_size);
972
    PRINT("numvector_size",q->numvector_size);
973
    PRINT("total_subbands",q->total_subbands);
974
}
975
#endif
976

    
977
/**
978
 * Cook initialization
979
 *
980
 * @param avctx     pointer to the AVCodecContext
981
 */
982

    
983
static int cook_decode_init(AVCodecContext *avctx)
984
{
985
    COOKContext *q = avctx->priv_data;
986
    uint8_t *edata_ptr = avctx->extradata;
987

    
988
    /* Take care of the codec specific extradata. */
989
    if (avctx->extradata_size <= 0) {
990
        av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");
991
        return -1;
992
    } else {
993
        /* 8 for mono, 16 for stereo, ? for multichannel
994
           Swap to right endianness so we don't need to care later on. */
995
        av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
996
        if (avctx->extradata_size >= 8){
997
            q->cookversion = bytestream_get_be32(&edata_ptr);
998
            q->samples_per_frame =  bytestream_get_be16(&edata_ptr);
999
            q->subbands = bytestream_get_be16(&edata_ptr);
1000
        }
1001
        if (avctx->extradata_size >= 16){
1002
            bytestream_get_be32(&edata_ptr);    //Unknown unused
1003
            q->js_subband_start = bytestream_get_be16(&edata_ptr);
1004
            q->js_vlc_bits = bytestream_get_be16(&edata_ptr);
1005
        }
1006
    }
1007

    
1008
    /* Take data from the AVCodecContext (RM container). */
1009
    q->sample_rate = avctx->sample_rate;
1010
    q->nb_channels = avctx->channels;
1011
    q->bit_rate = avctx->bit_rate;
1012

    
1013
    /* Initialize RNG. */
1014
    av_init_random(1, &q->random_state);
1015

    
1016
    /* Initialize extradata related variables. */
1017
    q->samples_per_channel = q->samples_per_frame / q->nb_channels;
1018
    q->bits_per_subpacket = avctx->block_align * 8;
1019

    
1020
    /* Initialize default data states. */
1021
    q->log2_numvector_size = 5;
1022
    q->total_subbands = q->subbands;
1023

    
1024
    /* Initialize version-dependent variables */
1025
    av_log(NULL,AV_LOG_DEBUG,"q->cookversion=%x\n",q->cookversion);
1026
    q->joint_stereo = 0;
1027
    switch (q->cookversion) {
1028
        case MONO:
1029
            if (q->nb_channels != 1) {
1030
                av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
1031
                return -1;
1032
            }
1033
            av_log(avctx,AV_LOG_DEBUG,"MONO\n");
1034
            break;
1035
        case STEREO:
1036
            if (q->nb_channels != 1) {
1037
                q->bits_per_subpacket = q->bits_per_subpacket/2;
1038
            }
1039
            av_log(avctx,AV_LOG_DEBUG,"STEREO\n");
1040
            break;
1041
        case JOINT_STEREO:
1042
            if (q->nb_channels != 2) {
1043
                av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
1044
                return -1;
1045
            }
1046
            av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");
1047
            if (avctx->extradata_size >= 16){
1048
                q->total_subbands = q->subbands + q->js_subband_start;
1049
                q->joint_stereo = 1;
1050
            }
1051
            if (q->samples_per_channel > 256) {
1052
                q->log2_numvector_size  = 6;
1053
            }
1054
            if (q->samples_per_channel > 512) {
1055
                q->log2_numvector_size  = 7;
1056
            }
1057
            break;
1058
        case MC_COOK:
1059
            av_log(avctx,AV_LOG_ERROR,"MC_COOK not supported!\n");
1060
            return -1;
1061
            break;
1062
        default:
1063
            av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
1064
            return -1;
1065
            break;
1066
    }
1067

    
1068
    /* Initialize variable relations */
1069
    q->numvector_size = (1 << q->log2_numvector_size);
1070

    
1071
    /* Generate tables */
1072
    init_rootpow2table(q);
1073
    init_pow2table(q);
1074
    init_gain_table(q);
1075

    
1076
    if (init_cook_vlc_tables(q) != 0)
1077
        return -1;
1078

    
1079

    
1080
    if(avctx->block_align >= UINT_MAX/2)
1081
        return -1;
1082

    
1083
    /* Pad the databuffer with:
1084
       DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1085
       FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1086
    if (q->nb_channels==2 && q->joint_stereo==0) {
1087
        q->decoded_bytes_buffer =
1088
          av_mallocz(avctx->block_align/2
1089
                     + DECODE_BYTES_PAD2(avctx->block_align/2)
1090
                     + FF_INPUT_BUFFER_PADDING_SIZE);
1091
    } else {
1092
        q->decoded_bytes_buffer =
1093
          av_mallocz(avctx->block_align
1094
                     + DECODE_BYTES_PAD1(avctx->block_align)
1095
                     + FF_INPUT_BUFFER_PADDING_SIZE);
1096
    }
1097
    if (q->decoded_bytes_buffer == NULL)
1098
        return -1;
1099

    
1100
    q->gains1.now      = q->gain_1;
1101
    q->gains1.previous = q->gain_2;
1102
    q->gains2.now      = q->gain_3;
1103
    q->gains2.previous = q->gain_4;
1104

    
1105
    /* Initialize transform. */
1106
    if ( init_cook_mlt(q) != 0 )
1107
        return -1;
1108

    
1109
    /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1110
    if (q->total_subbands > 53) {
1111
        av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
1112
        return -1;
1113
    }
1114
    if (q->subbands > 50) {
1115
        av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");
1116
        return -1;
1117
    }
1118
    if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
1119
    } else {
1120
        av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
1121
        return -1;
1122
    }
1123
    if ((q->js_vlc_bits > 6) || (q->js_vlc_bits < 0)) {
1124
        av_log(avctx,AV_LOG_ERROR,"q->js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->js_vlc_bits);
1125
        return -1;
1126
    }
1127

    
1128
#ifdef COOKDEBUG
1129
    dump_cook_context(q);
1130
#endif
1131
    return 0;
1132
}
1133

    
1134

    
1135
AVCodec cook_decoder =
1136
{
1137
    .name = "cook",
1138
    .type = CODEC_TYPE_AUDIO,
1139
    .id = CODEC_ID_COOK,
1140
    .priv_data_size = sizeof(COOKContext),
1141
    .init = cook_decode_init,
1142
    .close = cook_decode_close,
1143
    .decode = cook_decode_frame,
1144
};