ffmpeg / libavcodec / atrac1.c @ da0ac0ee
History | View | Annotate | Download (12.5 KB)
1 |
/*
|
---|---|
2 |
* Atrac 1 compatible decoder
|
3 |
* Copyright (c) 2009 Maxim Poliakovski
|
4 |
* Copyright (c) 2009 Benjamin Larsson
|
5 |
*
|
6 |
* This file is part of FFmpeg.
|
7 |
*
|
8 |
* FFmpeg is free software; you can redistribute it and/or
|
9 |
* modify it under the terms of the GNU Lesser General Public
|
10 |
* License as published by the Free Software Foundation; either
|
11 |
* version 2.1 of the License, or (at your option) any later version.
|
12 |
*
|
13 |
* FFmpeg is distributed in the hope that it will be useful,
|
14 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
16 |
* Lesser General Public License for more details.
|
17 |
*
|
18 |
* You should have received a copy of the GNU Lesser General Public
|
19 |
* License along with FFmpeg; if not, write to the Free Software
|
20 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
21 |
*/
|
22 |
|
23 |
/**
|
24 |
* @file libavcodec/atrac1.c
|
25 |
* Atrac 1 compatible decoder.
|
26 |
* This decoder handles raw ATRAC1 data and probably SDDS data.
|
27 |
*/
|
28 |
|
29 |
/* Many thanks to Tim Craig for all the help! */
|
30 |
|
31 |
#include <math.h> |
32 |
#include <stddef.h> |
33 |
#include <stdio.h> |
34 |
|
35 |
#include "avcodec.h" |
36 |
#include "get_bits.h" |
37 |
#include "dsputil.h" |
38 |
#include "fft.h" |
39 |
|
40 |
#include "atrac.h" |
41 |
#include "atrac1data.h" |
42 |
|
43 |
#define AT1_MAX_BFU 52 ///< max number of block floating units in a sound unit |
44 |
#define AT1_SU_SIZE 212 ///< number of bytes in a sound unit |
45 |
#define AT1_SU_SAMPLES 512 ///< number of samples in a sound unit |
46 |
#define AT1_FRAME_SIZE AT1_SU_SIZE * 2 |
47 |
#define AT1_SU_MAX_BITS AT1_SU_SIZE * 8 |
48 |
#define AT1_MAX_CHANNELS 2 |
49 |
|
50 |
#define AT1_QMF_BANDS 3 |
51 |
#define IDX_LOW_BAND 0 |
52 |
#define IDX_MID_BAND 1 |
53 |
#define IDX_HIGH_BAND 2 |
54 |
|
55 |
/**
|
56 |
* Sound unit struct, one unit is used per channel
|
57 |
*/
|
58 |
typedef struct { |
59 |
int log2_block_count[AT1_QMF_BANDS]; ///< log2 number of blocks in a band |
60 |
int num_bfus; ///< number of Block Floating Units |
61 |
float* spectrum[2]; |
62 |
DECLARE_ALIGNED(16, float, spec1)[AT1_SU_SAMPLES]; ///< mdct buffer |
63 |
DECLARE_ALIGNED(16, float, spec2)[AT1_SU_SAMPLES]; ///< mdct buffer |
64 |
DECLARE_ALIGNED(16, float, fst_qmf_delay)[46]; ///< delay line for the 1st stacked QMF filter |
65 |
DECLARE_ALIGNED(16, float, snd_qmf_delay)[46]; ///< delay line for the 2nd stacked QMF filter |
66 |
DECLARE_ALIGNED(16, float, last_qmf_delay)[256+23]; ///< delay line for the last stacked QMF filter |
67 |
} AT1SUCtx; |
68 |
|
69 |
/**
|
70 |
* The atrac1 context, holds all needed parameters for decoding
|
71 |
*/
|
72 |
typedef struct { |
73 |
AT1SUCtx SUs[AT1_MAX_CHANNELS]; ///< channel sound unit
|
74 |
DECLARE_ALIGNED(16, float, spec)[AT1_SU_SAMPLES]; ///< the mdct spectrum buffer |
75 |
|
76 |
DECLARE_ALIGNED(16, float, low)[256]; |
77 |
DECLARE_ALIGNED(16, float, mid)[256]; |
78 |
DECLARE_ALIGNED(16, float, high)[512]; |
79 |
float* bands[3]; |
80 |
DECLARE_ALIGNED(16, float, out_samples)[AT1_MAX_CHANNELS][AT1_SU_SAMPLES]; |
81 |
FFTContext mdct_ctx[3];
|
82 |
int channels;
|
83 |
DSPContext dsp; |
84 |
} AT1Ctx; |
85 |
|
86 |
/** size of the transform in samples in the long mode for each QMF band */
|
87 |
static const uint16_t samples_per_band[3] = {128, 128, 256}; |
88 |
static const uint8_t mdct_long_nbits[3] = {7, 7, 8}; |
89 |
|
90 |
|
91 |
static void at1_imdct(AT1Ctx *q, float *spec, float *out, int nbits, |
92 |
int rev_spec)
|
93 |
{ |
94 |
FFTContext* mdct_context = &q->mdct_ctx[nbits - 5 - (nbits > 6)]; |
95 |
int transf_size = 1 << nbits; |
96 |
|
97 |
if (rev_spec) {
|
98 |
int i;
|
99 |
for (i = 0; i < transf_size / 2; i++) |
100 |
FFSWAP(float, spec[i], spec[transf_size - 1 - i]); |
101 |
} |
102 |
ff_imdct_half(mdct_context, out, spec); |
103 |
} |
104 |
|
105 |
|
106 |
static int at1_imdct_block(AT1SUCtx* su, AT1Ctx *q) |
107 |
{ |
108 |
int band_num, band_samples, log2_block_count, nbits, num_blocks, block_size;
|
109 |
unsigned int start_pos, ref_pos = 0, pos = 0; |
110 |
|
111 |
for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) { |
112 |
float *prev_buf;
|
113 |
int j;
|
114 |
|
115 |
band_samples = samples_per_band[band_num]; |
116 |
log2_block_count = su->log2_block_count[band_num]; |
117 |
|
118 |
/* number of mdct blocks in the current QMF band: 1 - for long mode */
|
119 |
/* 4 for short mode(low/middle bands) and 8 for short mode(high band)*/
|
120 |
num_blocks = 1 << log2_block_count;
|
121 |
|
122 |
if (num_blocks == 1) { |
123 |
/* mdct block size in samples: 128 (long mode, low & mid bands), */
|
124 |
/* 256 (long mode, high band) and 32 (short mode, all bands) */
|
125 |
block_size = band_samples >> log2_block_count; |
126 |
|
127 |
/* calc transform size in bits according to the block_size_mode */
|
128 |
nbits = mdct_long_nbits[band_num] - log2_block_count; |
129 |
|
130 |
if (nbits != 5 && nbits != 7 && nbits != 8) |
131 |
return -1; |
132 |
} else {
|
133 |
block_size = 32;
|
134 |
nbits = 5;
|
135 |
} |
136 |
|
137 |
start_pos = 0;
|
138 |
prev_buf = &su->spectrum[1][ref_pos + band_samples - 16]; |
139 |
for (j=0; j < num_blocks; j++) { |
140 |
at1_imdct(q, &q->spec[pos], &su->spectrum[0][ref_pos + start_pos], nbits, band_num);
|
141 |
|
142 |
/* overlap and window */
|
143 |
q->dsp.vector_fmul_window(&q->bands[band_num][start_pos], prev_buf, |
144 |
&su->spectrum[0][ref_pos + start_pos], ff_sine_32, 0, 16); |
145 |
|
146 |
prev_buf = &su->spectrum[0][ref_pos+start_pos + 16]; |
147 |
start_pos += block_size; |
148 |
pos += block_size; |
149 |
} |
150 |
|
151 |
if (num_blocks == 1) |
152 |
memcpy(q->bands[band_num] + 32, &su->spectrum[0][ref_pos + 16], 240 * sizeof(float)); |
153 |
|
154 |
ref_pos += band_samples; |
155 |
} |
156 |
|
157 |
/* Swap buffers so the mdct overlap works */
|
158 |
FFSWAP(float*, su->spectrum[0], su->spectrum[1]); |
159 |
|
160 |
return 0; |
161 |
} |
162 |
|
163 |
/**
|
164 |
* Parse the block size mode byte
|
165 |
*/
|
166 |
|
167 |
static int at1_parse_bsm(GetBitContext* gb, int log2_block_cnt[AT1_QMF_BANDS]) |
168 |
{ |
169 |
int log2_block_count_tmp, i;
|
170 |
|
171 |
for (i = 0; i < 2; i++) { |
172 |
/* low and mid band */
|
173 |
log2_block_count_tmp = get_bits(gb, 2);
|
174 |
if (log2_block_count_tmp & 1) |
175 |
return -1; |
176 |
log2_block_cnt[i] = 2 - log2_block_count_tmp;
|
177 |
} |
178 |
|
179 |
/* high band */
|
180 |
log2_block_count_tmp = get_bits(gb, 2);
|
181 |
if (log2_block_count_tmp != 0 && log2_block_count_tmp != 3) |
182 |
return -1; |
183 |
log2_block_cnt[IDX_HIGH_BAND] = 3 - log2_block_count_tmp;
|
184 |
|
185 |
skip_bits(gb, 2);
|
186 |
return 0; |
187 |
} |
188 |
|
189 |
|
190 |
static int at1_unpack_dequant(GetBitContext* gb, AT1SUCtx* su, |
191 |
float spec[AT1_SU_SAMPLES])
|
192 |
{ |
193 |
int bits_used, band_num, bfu_num, i;
|
194 |
uint8_t idwls[AT1_MAX_BFU]; ///< the word length indexes for each BFU
|
195 |
uint8_t idsfs[AT1_MAX_BFU]; ///< the scalefactor indexes for each BFU
|
196 |
|
197 |
/* parse the info byte (2nd byte) telling how much BFUs were coded */
|
198 |
su->num_bfus = bfu_amount_tab1[get_bits(gb, 3)];
|
199 |
|
200 |
/* calc number of consumed bits:
|
201 |
num_BFUs * (idwl(4bits) + idsf(6bits)) + log2_block_count(8bits) + info_byte(8bits)
|
202 |
+ info_byte_copy(8bits) + log2_block_count_copy(8bits) */
|
203 |
bits_used = su->num_bfus * 10 + 32 + |
204 |
bfu_amount_tab2[get_bits(gb, 2)] +
|
205 |
(bfu_amount_tab3[get_bits(gb, 3)] << 1); |
206 |
|
207 |
/* get word length index (idwl) for each BFU */
|
208 |
for (i = 0; i < su->num_bfus; i++) |
209 |
idwls[i] = get_bits(gb, 4);
|
210 |
|
211 |
/* get scalefactor index (idsf) for each BFU */
|
212 |
for (i = 0; i < su->num_bfus; i++) |
213 |
idsfs[i] = get_bits(gb, 6);
|
214 |
|
215 |
/* zero idwl/idsf for empty BFUs */
|
216 |
for (i = su->num_bfus; i < AT1_MAX_BFU; i++)
|
217 |
idwls[i] = idsfs[i] = 0;
|
218 |
|
219 |
/* read in the spectral data and reconstruct MDCT spectrum of this channel */
|
220 |
for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) { |
221 |
for (bfu_num = bfu_bands_t[band_num]; bfu_num < bfu_bands_t[band_num+1]; bfu_num++) { |
222 |
int pos;
|
223 |
|
224 |
int num_specs = specs_per_bfu[bfu_num];
|
225 |
int word_len = !!idwls[bfu_num] + idwls[bfu_num];
|
226 |
float scale_factor = sf_table[idsfs[bfu_num]];
|
227 |
bits_used += word_len * num_specs; /* add number of bits consumed by current BFU */
|
228 |
|
229 |
/* check for bitstream overflow */
|
230 |
if (bits_used > AT1_SU_MAX_BITS)
|
231 |
return -1; |
232 |
|
233 |
/* get the position of the 1st spec according to the block size mode */
|
234 |
pos = su->log2_block_count[band_num] ? bfu_start_short[bfu_num] : bfu_start_long[bfu_num]; |
235 |
|
236 |
if (word_len) {
|
237 |
float max_quant = 1.0 / (float)((1 << (word_len - 1)) - 1); |
238 |
|
239 |
for (i = 0; i < num_specs; i++) { |
240 |
/* read in a quantized spec and convert it to
|
241 |
* signed int and then inverse quantization
|
242 |
*/
|
243 |
spec[pos+i] = get_sbits(gb, word_len) * scale_factor * max_quant; |
244 |
} |
245 |
} else { /* word_len = 0 -> empty BFU, zero all specs in the emty BFU */ |
246 |
memset(&spec[pos], 0, num_specs * sizeof(float)); |
247 |
} |
248 |
} |
249 |
} |
250 |
|
251 |
return 0; |
252 |
} |
253 |
|
254 |
|
255 |
static void at1_subband_synthesis(AT1Ctx *q, AT1SUCtx* su, float *pOut) |
256 |
{ |
257 |
float temp[256]; |
258 |
float iqmf_temp[512 + 46]; |
259 |
|
260 |
/* combine low and middle bands */
|
261 |
atrac_iqmf(q->bands[0], q->bands[1], 128, temp, su->fst_qmf_delay, iqmf_temp); |
262 |
|
263 |
/* delay the signal of the high band by 23 samples */
|
264 |
memcpy( su->last_qmf_delay, &su->last_qmf_delay[256], sizeof(float) * 23); |
265 |
memcpy(&su->last_qmf_delay[23], q->bands[2], sizeof(float) * 256); |
266 |
|
267 |
/* combine (low + middle) and high bands */
|
268 |
atrac_iqmf(temp, su->last_qmf_delay, 256, pOut, su->snd_qmf_delay, iqmf_temp);
|
269 |
} |
270 |
|
271 |
|
272 |
static int atrac1_decode_frame(AVCodecContext *avctx, void *data, |
273 |
int *data_size, AVPacket *avpkt)
|
274 |
{ |
275 |
const uint8_t *buf = avpkt->data;
|
276 |
int buf_size = avpkt->size;
|
277 |
AT1Ctx *q = avctx->priv_data; |
278 |
int ch, ret, i;
|
279 |
GetBitContext gb; |
280 |
float* samples = data;
|
281 |
|
282 |
|
283 |
if (buf_size < 212 * q->channels) { |
284 |
av_log(q,AV_LOG_ERROR,"Not enought data to decode!\n");
|
285 |
return -1; |
286 |
} |
287 |
|
288 |
for (ch = 0; ch < q->channels; ch++) { |
289 |
AT1SUCtx* su = &q->SUs[ch]; |
290 |
|
291 |
init_get_bits(&gb, &buf[212 * ch], 212 * 8); |
292 |
|
293 |
/* parse block_size_mode, 1st byte */
|
294 |
ret = at1_parse_bsm(&gb, su->log2_block_count); |
295 |
if (ret < 0) |
296 |
return ret;
|
297 |
|
298 |
ret = at1_unpack_dequant(&gb, su, q->spec); |
299 |
if (ret < 0) |
300 |
return ret;
|
301 |
|
302 |
ret = at1_imdct_block(su, q); |
303 |
if (ret < 0) |
304 |
return ret;
|
305 |
at1_subband_synthesis(q, su, q->out_samples[ch]); |
306 |
} |
307 |
|
308 |
/* round, convert to 16bit and interleave */
|
309 |
if (q->channels == 1) { |
310 |
/* mono */
|
311 |
q->dsp.vector_clipf(samples, q->out_samples[0], -32700.0 / (1 << 15), |
312 |
32700.0 / (1 << 15), AT1_SU_SAMPLES); |
313 |
} else {
|
314 |
/* stereo */
|
315 |
for (i = 0; i < AT1_SU_SAMPLES; i++) { |
316 |
samples[i * 2] = av_clipf(q->out_samples[0][i], |
317 |
-32700.0 / (1 << 15), |
318 |
32700.0 / (1 << 15)); |
319 |
samples[i * 2 + 1] = av_clipf(q->out_samples[1][i], |
320 |
-32700.0 / (1 << 15), |
321 |
32700.0 / (1 << 15)); |
322 |
} |
323 |
} |
324 |
|
325 |
*data_size = q->channels * AT1_SU_SAMPLES * sizeof(*samples);
|
326 |
return avctx->block_align;
|
327 |
} |
328 |
|
329 |
|
330 |
static av_cold int atrac1_decode_init(AVCodecContext *avctx) |
331 |
{ |
332 |
AT1Ctx *q = avctx->priv_data; |
333 |
|
334 |
avctx->sample_fmt = SAMPLE_FMT_FLT; |
335 |
|
336 |
q->channels = avctx->channels; |
337 |
|
338 |
/* Init the mdct transforms */
|
339 |
ff_mdct_init(&q->mdct_ctx[0], 6, 1, -1.0/ (1 << 15)); |
340 |
ff_mdct_init(&q->mdct_ctx[1], 8, 1, -1.0/ (1 << 15)); |
341 |
ff_mdct_init(&q->mdct_ctx[2], 9, 1, -1.0/ (1 << 15)); |
342 |
|
343 |
ff_init_ff_sine_windows(5);
|
344 |
|
345 |
atrac_generate_tables(); |
346 |
|
347 |
dsputil_init(&q->dsp, avctx); |
348 |
|
349 |
q->bands[0] = q->low;
|
350 |
q->bands[1] = q->mid;
|
351 |
q->bands[2] = q->high;
|
352 |
|
353 |
/* Prepare the mdct overlap buffers */
|
354 |
q->SUs[0].spectrum[0] = q->SUs[0].spec1; |
355 |
q->SUs[0].spectrum[1] = q->SUs[0].spec2; |
356 |
q->SUs[1].spectrum[0] = q->SUs[1].spec1; |
357 |
q->SUs[1].spectrum[1] = q->SUs[1].spec2; |
358 |
|
359 |
return 0; |
360 |
} |
361 |
|
362 |
|
363 |
static av_cold int atrac1_decode_end(AVCodecContext * avctx) { |
364 |
AT1Ctx *q = avctx->priv_data; |
365 |
|
366 |
ff_mdct_end(&q->mdct_ctx[0]);
|
367 |
ff_mdct_end(&q->mdct_ctx[1]);
|
368 |
ff_mdct_end(&q->mdct_ctx[2]);
|
369 |
return 0; |
370 |
} |
371 |
|
372 |
|
373 |
AVCodec atrac1_decoder = { |
374 |
.name = "atrac1",
|
375 |
.type = CODEC_TYPE_AUDIO, |
376 |
.id = CODEC_ID_ATRAC1, |
377 |
.priv_data_size = sizeof(AT1Ctx),
|
378 |
.init = atrac1_decode_init, |
379 |
.close = atrac1_decode_end, |
380 |
.decode = atrac1_decode_frame, |
381 |
.long_name = NULL_IF_CONFIG_SMALL("Atrac 1 (Adaptive TRansform Acoustic Coding)"),
|
382 |
}; |