Statistics
| Branch: | Revision:

ffmpeg / libavcodec / h264.c @ dc032f33

History | View | Annotate | Download (236 KB)

1
/*
2
 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3
 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4
 *
5
 * This library is free software; you can redistribute it and/or
6
 * modify it under the terms of the GNU Lesser General Public
7
 * License as published by the Free Software Foundation; either
8
 * version 2 of the License, or (at your option) any later version.
9
 *
10
 * This library is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13
 * Lesser General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU Lesser General Public
16
 * License along with this library; if not, write to the Free Software
17
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18
 *
19
 */
20
 
21
/**
22
 * @file h264.c
23
 * H.264 / AVC / MPEG4 part10 codec.
24
 * @author Michael Niedermayer <michaelni@gmx.at>
25
 */
26

    
27
#include "common.h"
28
#include "dsputil.h"
29
#include "avcodec.h"
30
#include "mpegvideo.h"
31
#include "h264data.h"
32
#include "golomb.h"
33

    
34
#include "cabac.h"
35

    
36
#undef NDEBUG
37
#include <assert.h>
38

    
39
#define interlaced_dct interlaced_dct_is_a_bad_name
40
#define mb_intra mb_intra_isnt_initalized_see_mb_type
41

    
42
#define LUMA_DC_BLOCK_INDEX   25
43
#define CHROMA_DC_BLOCK_INDEX 26
44

    
45
#define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
46
#define COEFF_TOKEN_VLC_BITS           8
47
#define TOTAL_ZEROS_VLC_BITS           9
48
#define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
49
#define RUN_VLC_BITS                   3
50
#define RUN7_VLC_BITS                  6
51

    
52
#define MAX_SPS_COUNT 32
53
#define MAX_PPS_COUNT 256
54

    
55
#define MAX_MMCO_COUNT 66
56

    
57
/**
58
 * Sequence parameter set
59
 */
60
typedef struct SPS{
61
    
62
    int profile_idc;
63
    int level_idc;
64
    int log2_max_frame_num;            ///< log2_max_frame_num_minus4 + 4
65
    int poc_type;                      ///< pic_order_cnt_type
66
    int log2_max_poc_lsb;              ///< log2_max_pic_order_cnt_lsb_minus4
67
    int delta_pic_order_always_zero_flag;
68
    int offset_for_non_ref_pic;
69
    int offset_for_top_to_bottom_field;
70
    int poc_cycle_length;              ///< num_ref_frames_in_pic_order_cnt_cycle
71
    int ref_frame_count;               ///< num_ref_frames
72
    int gaps_in_frame_num_allowed_flag;
73
    int mb_width;                      ///< frame_width_in_mbs_minus1 + 1
74
    int mb_height;                     ///< frame_height_in_mbs_minus1 + 1
75
    int frame_mbs_only_flag;
76
    int mb_aff;                        ///<mb_adaptive_frame_field_flag
77
    int direct_8x8_inference_flag;
78
    int crop;                   ///< frame_cropping_flag
79
    int crop_left;              ///< frame_cropping_rect_left_offset
80
    int crop_right;             ///< frame_cropping_rect_right_offset
81
    int crop_top;               ///< frame_cropping_rect_top_offset
82
    int crop_bottom;            ///< frame_cropping_rect_bottom_offset
83
    int vui_parameters_present_flag;
84
    AVRational sar;
85
    int timing_info_present_flag;
86
    uint32_t num_units_in_tick;
87
    uint32_t time_scale;
88
    int fixed_frame_rate_flag;
89
    short offset_for_ref_frame[256]; //FIXME dyn aloc?
90
}SPS;
91

    
92
/**
93
 * Picture parameter set
94
 */
95
typedef struct PPS{
96
    int sps_id;
97
    int cabac;                  ///< entropy_coding_mode_flag
98
    int pic_order_present;      ///< pic_order_present_flag
99
    int slice_group_count;      ///< num_slice_groups_minus1 + 1
100
    int mb_slice_group_map_type;
101
    int ref_count[2];           ///< num_ref_idx_l0/1_active_minus1 + 1
102
    int weighted_pred;          ///< weighted_pred_flag
103
    int weighted_bipred_idc;
104
    int init_qp;                ///< pic_init_qp_minus26 + 26
105
    int init_qs;                ///< pic_init_qs_minus26 + 26
106
    int chroma_qp_index_offset;
107
    int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
108
    int constrained_intra_pred; ///< constrained_intra_pred_flag
109
    int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
110
}PPS;
111

    
112
/**
113
 * Memory management control operation opcode.
114
 */
115
typedef enum MMCOOpcode{
116
    MMCO_END=0,
117
    MMCO_SHORT2UNUSED,
118
    MMCO_LONG2UNUSED,
119
    MMCO_SHORT2LONG,
120
    MMCO_SET_MAX_LONG,
121
    MMCO_RESET, 
122
    MMCO_LONG,
123
} MMCOOpcode;
124

    
125
/**
126
 * Memory management control operation.
127
 */
128
typedef struct MMCO{
129
    MMCOOpcode opcode;
130
    int short_frame_num;
131
    int long_index;
132
} MMCO;
133

    
134
/**
135
 * H264Context
136
 */
137
typedef struct H264Context{
138
    MpegEncContext s;
139
    int nal_ref_idc;        
140
    int nal_unit_type;
141
#define NAL_SLICE                1
142
#define NAL_DPA                        2
143
#define NAL_DPB                        3
144
#define NAL_DPC                        4
145
#define NAL_IDR_SLICE                5
146
#define NAL_SEI                        6
147
#define NAL_SPS                        7
148
#define NAL_PPS                        8
149
#define NAL_PICTURE_DELIMITER        9
150
#define NAL_FILTER_DATA                10
151
    uint8_t *rbsp_buffer;
152
    int rbsp_buffer_size;
153

    
154
    /**
155
      * Used to parse AVC variant of h264
156
      */
157
    int is_avc; ///< this flag is != 0 if codec is avc1
158
    int got_avcC; ///< flag used to parse avcC data only once
159
    int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
160

    
161
    int chroma_qp; //QPc
162

    
163
    int prev_mb_skiped; //FIXME remove (IMHO not used)
164

    
165
    //prediction stuff
166
    int chroma_pred_mode;
167
    int intra16x16_pred_mode;
168
    
169
    int8_t intra4x4_pred_mode_cache[5*8];
170
    int8_t (*intra4x4_pred_mode)[8];
171
    void (*pred4x4  [9+3])(uint8_t *src, uint8_t *topright, int stride);//FIXME move to dsp?
172
    void (*pred8x8  [4+3])(uint8_t *src, int stride);
173
    void (*pred16x16[4+3])(uint8_t *src, int stride);
174
    unsigned int topleft_samples_available;
175
    unsigned int top_samples_available;
176
    unsigned int topright_samples_available;
177
    unsigned int left_samples_available;
178
    uint8_t (*top_border)[16+2*8];
179
    uint8_t left_border[17+2*9];
180

    
181
    /**
182
     * non zero coeff count cache.
183
     * is 64 if not available.
184
     */
185
    uint8_t non_zero_count_cache[6*8] __align8;
186
    uint8_t (*non_zero_count)[16];
187

    
188
    /**
189
     * Motion vector cache.
190
     */
191
    int16_t mv_cache[2][5*8][2] __align8;
192
    int8_t ref_cache[2][5*8] __align8;
193
#define LIST_NOT_USED -1 //FIXME rename?
194
#define PART_NOT_AVAILABLE -2
195
    
196
    /**
197
     * is 1 if the specific list MV&references are set to 0,0,-2.
198
     */
199
    int mv_cache_clean[2];
200

    
201
    int block_offset[16+8];
202
    int chroma_subblock_offset[16]; //FIXME remove
203
    
204
    uint16_t *mb2b_xy; //FIXME are these 4 a good idea?
205
    uint16_t *mb2b8_xy;
206
    int b_stride; //FIXME use s->b4_stride
207
    int b8_stride;
208

    
209
    int halfpel_flag;
210
    int thirdpel_flag;
211

    
212
    int unknown_svq3_flag;
213
    int next_slice_index;
214

    
215
    SPS sps_buffer[MAX_SPS_COUNT];
216
    SPS sps; ///< current sps
217
    
218
    PPS pps_buffer[MAX_PPS_COUNT];
219
    /**
220
     * current pps
221
     */
222
    PPS pps; //FIXME move tp Picture perhaps? (->no) do we need that?
223

    
224
    int slice_num;
225
    uint8_t *slice_table_base;
226
    uint8_t *slice_table;      ///< slice_table_base + mb_stride + 1
227
    int slice_type;
228
    int slice_type_fixed;
229
    
230
    //interlacing specific flags
231
    int mb_field_decoding_flag;
232
    
233
    int sub_mb_type[4];
234
    
235
    //POC stuff
236
    int poc_lsb;
237
    int poc_msb;
238
    int delta_poc_bottom;
239
    int delta_poc[2];
240
    int frame_num;
241
    int prev_poc_msb;             ///< poc_msb of the last reference pic for POC type 0
242
    int prev_poc_lsb;             ///< poc_lsb of the last reference pic for POC type 0
243
    int frame_num_offset;         ///< for POC type 2
244
    int prev_frame_num_offset;    ///< for POC type 2
245
    int prev_frame_num;           ///< frame_num of the last pic for POC type 1/2
246

    
247
    /**
248
     * frame_num for frames or 2*frame_num for field pics.
249
     */
250
    int curr_pic_num;
251
    
252
    /**
253
     * max_frame_num or 2*max_frame_num for field pics.
254
     */
255
    int max_pic_num;
256

    
257
    //Weighted pred stuff
258
    int use_weight;
259
    int use_weight_chroma;
260
    int luma_log2_weight_denom;
261
    int chroma_log2_weight_denom;
262
    int luma_weight[2][16];
263
    int luma_offset[2][16];
264
    int chroma_weight[2][16][2];
265
    int chroma_offset[2][16][2];
266
    int implicit_weight[16][16];
267
   
268
    //deblock
269
    int deblocking_filter;         ///< disable_deblocking_filter_idc with 1<->0 
270
    int slice_alpha_c0_offset;
271
    int slice_beta_offset;
272
     
273
    int redundant_pic_count;
274
    
275
    int direct_spatial_mv_pred;
276
    int dist_scale_factor[16];
277

    
278
    /**
279
     * num_ref_idx_l0/1_active_minus1 + 1
280
     */
281
    int ref_count[2];// FIXME split for AFF
282
    Picture *short_ref[16];
283
    Picture *long_ref[16];
284
    Picture default_ref_list[2][32];
285
    Picture ref_list[2][32]; //FIXME size?
286
    Picture field_ref_list[2][32]; //FIXME size?
287
    Picture *delayed_pic[16]; //FIXME size?
288
    
289
    /**
290
     * memory management control operations buffer.
291
     */
292
    MMCO mmco[MAX_MMCO_COUNT];
293
    int mmco_index;
294
    
295
    int long_ref_count;  ///< number of actual long term references
296
    int short_ref_count; ///< number of actual short term references
297
    
298
    //data partitioning
299
    GetBitContext intra_gb;
300
    GetBitContext inter_gb;
301
    GetBitContext *intra_gb_ptr;
302
    GetBitContext *inter_gb_ptr;
303
    
304
    DCTELEM mb[16*24] __align8;
305

    
306
    /**
307
     * Cabac
308
     */
309
    CABACContext cabac;
310
    uint8_t      cabac_state[399];
311
    int          cabac_init_idc;
312

    
313
    /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
314
    uint16_t     *cbp_table;
315
    int top_cbp;
316
    int left_cbp;
317
    /* chroma_pred_mode for i4x4 or i16x16, else 0 */
318
    uint8_t     *chroma_pred_mode_table;
319
    int         last_qscale_diff;
320
    int16_t     (*mvd_table[2])[2];
321
    int16_t     mvd_cache[2][5*8][2] __align8;
322
    uint8_t     *direct_table;
323
    uint8_t     direct_cache[5*8];
324

    
325
}H264Context;
326

    
327
static VLC coeff_token_vlc[4];
328
static VLC chroma_dc_coeff_token_vlc;
329

    
330
static VLC total_zeros_vlc[15];
331
static VLC chroma_dc_total_zeros_vlc[3];
332

    
333
static VLC run_vlc[6];
334
static VLC run7_vlc;
335

    
336
static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
337
static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
338
static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr);
339

    
340
static inline uint32_t pack16to32(int a, int b){
341
#ifdef WORDS_BIGENDIAN
342
   return (b&0xFFFF) + (a<<16);
343
#else
344
   return (a&0xFFFF) + (b<<16);
345
#endif
346
}
347

    
348
/**
349
 * fill a rectangle.
350
 * @param h height of the rectangle, should be a constant
351
 * @param w width of the rectangle, should be a constant
352
 * @param size the size of val (1 or 4), should be a constant
353
 */
354
static inline void fill_rectangle(void *vp, int w, int h, int stride, uint32_t val, int size){ //FIXME ensure this IS inlined
355
    uint8_t *p= (uint8_t*)vp;
356
    assert(size==1 || size==4);
357
    
358
    w      *= size;
359
    stride *= size;
360
    
361
    assert((((int)vp)&(FFMIN(w, STRIDE_ALIGN)-1)) == 0);
362
//FIXME check what gcc generates for 64 bit on x86 and possible write a 32 bit ver of it
363
    if(w==2 && h==2){
364
        *(uint16_t*)(p + 0)=
365
        *(uint16_t*)(p + stride)= size==4 ? val : val*0x0101;
366
    }else if(w==2 && h==4){
367
        *(uint16_t*)(p + 0*stride)=
368
        *(uint16_t*)(p + 1*stride)=
369
        *(uint16_t*)(p + 2*stride)=
370
        *(uint16_t*)(p + 3*stride)= size==4 ? val : val*0x0101;
371
    }else if(w==4 && h==1){
372
        *(uint32_t*)(p + 0*stride)= size==4 ? val : val*0x01010101;
373
    }else if(w==4 && h==2){
374
        *(uint32_t*)(p + 0*stride)=
375
        *(uint32_t*)(p + 1*stride)= size==4 ? val : val*0x01010101;
376
    }else if(w==4 && h==4){
377
        *(uint32_t*)(p + 0*stride)=
378
        *(uint32_t*)(p + 1*stride)=
379
        *(uint32_t*)(p + 2*stride)=
380
        *(uint32_t*)(p + 3*stride)= size==4 ? val : val*0x01010101;
381
    }else if(w==8 && h==1){
382
        *(uint32_t*)(p + 0)=
383
        *(uint32_t*)(p + 4)= size==4 ? val : val*0x01010101;
384
    }else if(w==8 && h==2){
385
        *(uint32_t*)(p + 0 + 0*stride)=
386
        *(uint32_t*)(p + 4 + 0*stride)=
387
        *(uint32_t*)(p + 0 + 1*stride)=
388
        *(uint32_t*)(p + 4 + 1*stride)=  size==4 ? val : val*0x01010101;
389
    }else if(w==8 && h==4){
390
        *(uint64_t*)(p + 0*stride)=
391
        *(uint64_t*)(p + 1*stride)=
392
        *(uint64_t*)(p + 2*stride)=
393
        *(uint64_t*)(p + 3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
394
    }else if(w==16 && h==2){
395
        *(uint64_t*)(p + 0+0*stride)=
396
        *(uint64_t*)(p + 8+0*stride)=
397
        *(uint64_t*)(p + 0+1*stride)=
398
        *(uint64_t*)(p + 8+1*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
399
    }else if(w==16 && h==4){
400
        *(uint64_t*)(p + 0+0*stride)=
401
        *(uint64_t*)(p + 8+0*stride)=
402
        *(uint64_t*)(p + 0+1*stride)=
403
        *(uint64_t*)(p + 8+1*stride)=
404
        *(uint64_t*)(p + 0+2*stride)=
405
        *(uint64_t*)(p + 8+2*stride)=
406
        *(uint64_t*)(p + 0+3*stride)=
407
        *(uint64_t*)(p + 8+3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
408
    }else
409
        assert(0);
410
}
411

    
412
static inline void fill_caches(H264Context *h, int mb_type, int for_deblock){
413
    MpegEncContext * const s = &h->s;
414
    const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
415
    int topleft_xy, top_xy, topright_xy, left_xy[2];
416
    int topleft_type, top_type, topright_type, left_type[2];
417
    int left_block[4];
418
    int i;
419

    
420
    //wow what a mess, why didnt they simplify the interlacing&intra stuff, i cant imagine that these complex rules are worth it 
421
    
422
    if(h->sps.mb_aff){
423
    //FIXME
424
        topleft_xy = 0; /* avoid warning */
425
        top_xy = 0; /* avoid warning */
426
        topright_xy = 0; /* avoid warning */
427
    }else{
428
        topleft_xy = mb_xy-1 - s->mb_stride;
429
        top_xy     = mb_xy   - s->mb_stride;
430
        topright_xy= mb_xy+1 - s->mb_stride;
431
        left_xy[0]   = mb_xy-1;
432
        left_xy[1]   = mb_xy-1;
433
        left_block[0]= 0;
434
        left_block[1]= 1;
435
        left_block[2]= 2;
436
        left_block[3]= 3;
437
    }
438

    
439
    if(for_deblock){
440
        topleft_type = h->slice_table[topleft_xy ] < 255 ? s->current_picture.mb_type[topleft_xy] : 0;
441
        top_type     = h->slice_table[top_xy     ] < 255 ? s->current_picture.mb_type[top_xy]     : 0;
442
        topright_type= h->slice_table[topright_xy] < 255 ? s->current_picture.mb_type[topright_xy]: 0;
443
        left_type[0] = h->slice_table[left_xy[0] ] < 255 ? s->current_picture.mb_type[left_xy[0]] : 0;
444
        left_type[1] = h->slice_table[left_xy[1] ] < 255 ? s->current_picture.mb_type[left_xy[1]] : 0;
445
    }else{
446
        topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
447
        top_type     = h->slice_table[top_xy     ] == h->slice_num ? s->current_picture.mb_type[top_xy]     : 0;
448
        topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
449
        left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
450
        left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
451
    }
452

    
453
    if(IS_INTRA(mb_type)){
454
        h->topleft_samples_available= 
455
        h->top_samples_available= 
456
        h->left_samples_available= 0xFFFF;
457
        h->topright_samples_available= 0xEEEA;
458

    
459
        if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
460
            h->topleft_samples_available= 0xB3FF;
461
            h->top_samples_available= 0x33FF;
462
            h->topright_samples_available= 0x26EA;
463
        }
464
        for(i=0; i<2; i++){
465
            if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
466
                h->topleft_samples_available&= 0xDF5F;
467
                h->left_samples_available&= 0x5F5F;
468
            }
469
        }
470
        
471
        if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
472
            h->topleft_samples_available&= 0x7FFF;
473
        
474
        if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
475
            h->topright_samples_available&= 0xFBFF;
476
    
477
        if(IS_INTRA4x4(mb_type)){
478
            if(IS_INTRA4x4(top_type)){
479
                h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
480
                h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
481
                h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
482
                h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
483
            }else{
484
                int pred;
485
                if(IS_INTRA16x16(top_type) || (IS_INTER(top_type) && !h->pps.constrained_intra_pred))
486
                    pred= 2;
487
                else{
488
                    pred= -1;
489
                }
490
                h->intra4x4_pred_mode_cache[4+8*0]=
491
                h->intra4x4_pred_mode_cache[5+8*0]=
492
                h->intra4x4_pred_mode_cache[6+8*0]=
493
                h->intra4x4_pred_mode_cache[7+8*0]= pred;
494
            }
495
            for(i=0; i<2; i++){
496
                if(IS_INTRA4x4(left_type[i])){
497
                    h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
498
                    h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
499
                }else{
500
                    int pred;
501
                    if(IS_INTRA16x16(left_type[i]) || (IS_INTER(left_type[i]) && !h->pps.constrained_intra_pred))
502
                        pred= 2;
503
                    else{
504
                        pred= -1;
505
                    }
506
                    h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
507
                    h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
508
                }
509
            }
510
        }
511
    }
512
    
513
    
514
/*
515
0 . T T. T T T T 
516
1 L . .L . . . . 
517
2 L . .L . . . . 
518
3 . T TL . . . . 
519
4 L . .L . . . . 
520
5 L . .. . . . . 
521
*/
522
//FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
523
    if(top_type){
524
        h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][0];
525
        h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][1];
526
        h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][2];
527
        h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
528
    
529
        h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][7];
530
        h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
531
    
532
        h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][10];
533
        h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
534
        
535
        h->top_cbp= h->cbp_table[top_xy];
536
    }else{
537
        h->non_zero_count_cache[4+8*0]=      
538
        h->non_zero_count_cache[5+8*0]=
539
        h->non_zero_count_cache[6+8*0]=
540
        h->non_zero_count_cache[7+8*0]=
541
    
542
        h->non_zero_count_cache[1+8*0]=
543
        h->non_zero_count_cache[2+8*0]=
544
    
545
        h->non_zero_count_cache[1+8*3]=
546
        h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
547
        
548
        if(IS_INTRA(mb_type)) h->top_cbp= 0x1C0;
549
        else                  h->top_cbp= 0;
550
    }
551
    
552
    if(left_type[0]){
553
        h->non_zero_count_cache[3+8*1]= h->non_zero_count[left_xy[0]][6];
554
        h->non_zero_count_cache[3+8*2]= h->non_zero_count[left_xy[0]][5];
555
        h->non_zero_count_cache[0+8*1]= h->non_zero_count[left_xy[0]][9]; //FIXME left_block
556
        h->non_zero_count_cache[0+8*4]= h->non_zero_count[left_xy[0]][12];
557
        h->left_cbp= h->cbp_table[left_xy[0]]; //FIXME interlacing
558
    }else{
559
        h->non_zero_count_cache[3+8*1]= 
560
        h->non_zero_count_cache[3+8*2]= 
561
        h->non_zero_count_cache[0+8*1]= 
562
        h->non_zero_count_cache[0+8*4]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
563
        
564
        if(IS_INTRA(mb_type)) h->left_cbp= 0x1C0;//FIXME interlacing
565
        else                  h->left_cbp= 0;
566
    }
567
    
568
    if(left_type[1]){
569
        h->non_zero_count_cache[3+8*3]= h->non_zero_count[left_xy[1]][4];
570
        h->non_zero_count_cache[3+8*4]= h->non_zero_count[left_xy[1]][3];
571
        h->non_zero_count_cache[0+8*2]= h->non_zero_count[left_xy[1]][8];
572
        h->non_zero_count_cache[0+8*5]= h->non_zero_count[left_xy[1]][11];
573
    }else{
574
        h->non_zero_count_cache[3+8*3]= 
575
        h->non_zero_count_cache[3+8*4]= 
576
        h->non_zero_count_cache[0+8*2]= 
577
        h->non_zero_count_cache[0+8*5]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
578
    }
579
    
580
#if 1
581
    //FIXME direct mb can skip much of this
582
    if(IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)){
583
        int list;
584
        for(list=0; list<2; list++){
585
            if((!IS_8X8(mb_type)) && !USES_LIST(mb_type, list) && !IS_DIRECT(mb_type)){
586
                /*if(!h->mv_cache_clean[list]){
587
                    memset(h->mv_cache [list],  0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
588
                    memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
589
                    h->mv_cache_clean[list]= 1;
590
                }*/
591
                continue;
592
            }
593
            h->mv_cache_clean[list]= 0;
594
            
595
            if(IS_INTER(topleft_type)){
596
                const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
597
                const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + h->b8_stride;
598
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
599
                h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
600
            }else{
601
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
602
                h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
603
            }
604
            
605
            if(IS_INTER(top_type)){
606
                const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
607
                const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
608
                *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
609
                *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
610
                *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
611
                *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
612
                h->ref_cache[list][scan8[0] + 0 - 1*8]=
613
                h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
614
                h->ref_cache[list][scan8[0] + 2 - 1*8]=
615
                h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
616
            }else{
617
                *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]= 
618
                *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]= 
619
                *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]= 
620
                *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
621
                *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
622
            }
623

    
624
            if(IS_INTER(topright_type)){
625
                const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
626
                const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
627
                *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
628
                h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
629
            }else{
630
                *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
631
                h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
632
            }
633
            
634
            //FIXME unify cleanup or sth
635
            if(IS_INTER(left_type[0])){
636
                const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
637
                const int b8_xy= h->mb2b8_xy[left_xy[0]] + 1;
638
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]];
639
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1]];
640
                h->ref_cache[list][scan8[0] - 1 + 0*8]= 
641
                h->ref_cache[list][scan8[0] - 1 + 1*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0]>>1)];
642
            }else{
643
                *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 0*8]=
644
                *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 1*8]= 0;
645
                h->ref_cache[list][scan8[0] - 1 + 0*8]=
646
                h->ref_cache[list][scan8[0] - 1 + 1*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
647
            }
648
            
649
            if(IS_INTER(left_type[1])){
650
                const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
651
                const int b8_xy= h->mb2b8_xy[left_xy[1]] + 1;
652
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[2]];
653
                *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[3]];
654
                h->ref_cache[list][scan8[0] - 1 + 2*8]= 
655
                h->ref_cache[list][scan8[0] - 1 + 3*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[2]>>1)];
656
            }else{
657
                *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 2*8]=
658
                *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 3*8]= 0;
659
                h->ref_cache[list][scan8[0] - 1 + 2*8]=
660
                h->ref_cache[list][scan8[0] - 1 + 3*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
661
            }
662

    
663
            if(for_deblock)
664
                continue;
665

    
666
            h->ref_cache[list][scan8[5 ]+1] = 
667
            h->ref_cache[list][scan8[7 ]+1] = 
668
            h->ref_cache[list][scan8[13]+1] =  //FIXME remove past 3 (init somewher else)
669
            h->ref_cache[list][scan8[4 ]] = 
670
            h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
671
            *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
672
            *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
673
            *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewher else)
674
            *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
675
            *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
676

    
677
            if( h->pps.cabac ) {
678
                /* XXX beurk, Load mvd */
679
                if(IS_INTER(topleft_type)){
680
                    const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
681
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy];
682
                }else{
683
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 - 1*8]= 0;
684
                }
685

    
686
                if(IS_INTER(top_type)){
687
                    const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
688
                    *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
689
                    *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
690
                    *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
691
                    *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
692
                }else{
693
                    *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]= 
694
                    *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]= 
695
                    *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]= 
696
                    *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
697
                }
698
                if(IS_INTER(left_type[0])){
699
                    const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
700
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
701
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
702
                }else{
703
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
704
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
705
                }
706
                if(IS_INTER(left_type[1])){
707
                    const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
708
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
709
                    *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
710
                }else{
711
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
712
                    *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
713
                }
714
                *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
715
                *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
716
                *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewher else)
717
                *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
718
                *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
719

    
720
                if(h->slice_type == B_TYPE){
721
                    fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
722

    
723
                    if(IS_DIRECT(top_type)){
724
                        *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
725
                    }else if(IS_8X8(top_type)){
726
                        int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
727
                        h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
728
                        h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
729
                    }else{
730
                        *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
731
                    }
732
                    
733
                    //FIXME interlacing
734
                    if(IS_DIRECT(left_type[0])){
735
                        h->direct_cache[scan8[0] - 1 + 0*8]=
736
                        h->direct_cache[scan8[0] - 1 + 2*8]= 1;
737
                    }else if(IS_8X8(left_type[0])){
738
                        int b8_xy = h->mb2b8_xy[left_xy[0]] + 1;
739
                        h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[b8_xy];
740
                        h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[b8_xy + h->b8_stride];
741
                    }else{
742
                        h->direct_cache[scan8[0] - 1 + 0*8]=
743
                        h->direct_cache[scan8[0] - 1 + 2*8]= 0;
744
                    }
745
                }
746
            }
747
        }
748
    }
749
#endif
750
}
751

    
752
static inline void write_back_intra_pred_mode(H264Context *h){
753
    MpegEncContext * const s = &h->s;
754
    const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
755

    
756
    h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
757
    h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
758
    h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
759
    h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
760
    h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
761
    h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
762
    h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
763
}
764

    
765
/**
766
 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
767
 */
768
static inline int check_intra4x4_pred_mode(H264Context *h){
769
    MpegEncContext * const s = &h->s;
770
    static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
771
    static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
772
    int i;
773
    
774
    if(!(h->top_samples_available&0x8000)){
775
        for(i=0; i<4; i++){
776
            int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
777
            if(status<0){
778
                av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
779
                return -1;
780
            } else if(status){
781
                h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
782
            }
783
        }
784
    }
785
    
786
    if(!(h->left_samples_available&0x8000)){
787
        for(i=0; i<4; i++){
788
            int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
789
            if(status<0){
790
                av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
791
                return -1;
792
            } else if(status){
793
                h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
794
            }
795
        }
796
    }
797

    
798
    return 0;
799
} //FIXME cleanup like next
800

    
801
/**
802
 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
803
 */
804
static inline int check_intra_pred_mode(H264Context *h, int mode){
805
    MpegEncContext * const s = &h->s;
806
    static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
807
    static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
808
    
809
    if(mode < 0 || mode > 6) {
810
        av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
811
        return -1;
812
    }
813
    
814
    if(!(h->top_samples_available&0x8000)){
815
        mode= top[ mode ];
816
        if(mode<0){
817
            av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
818
            return -1;
819
        }
820
    }
821
    
822
    if(!(h->left_samples_available&0x8000)){
823
        mode= left[ mode ];
824
        if(mode<0){
825
            av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
826
            return -1;
827
        } 
828
    }
829

    
830
    return mode;
831
}
832

    
833
/**
834
 * gets the predicted intra4x4 prediction mode.
835
 */
836
static inline int pred_intra_mode(H264Context *h, int n){
837
    const int index8= scan8[n];
838
    const int left= h->intra4x4_pred_mode_cache[index8 - 1];
839
    const int top = h->intra4x4_pred_mode_cache[index8 - 8];
840
    const int min= FFMIN(left, top);
841

    
842
    tprintf("mode:%d %d min:%d\n", left ,top, min);
843

    
844
    if(min<0) return DC_PRED;
845
    else      return min;
846
}
847

    
848
static inline void write_back_non_zero_count(H264Context *h){
849
    MpegEncContext * const s = &h->s;
850
    const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
851

    
852
    h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[4+8*4];
853
    h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[5+8*4];
854
    h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[6+8*4];
855
    h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
856
    h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[7+8*3];
857
    h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[7+8*2];
858
    h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[7+8*1];
859
    
860
    h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[1+8*2];
861
    h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
862
    h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[2+8*1];
863

    
864
    h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[1+8*5];
865
    h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
866
    h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[2+8*4];
867
}
868

    
869
/**
870
 * gets the predicted number of non zero coefficients.
871
 * @param n block index
872
 */
873
static inline int pred_non_zero_count(H264Context *h, int n){
874
    const int index8= scan8[n];
875
    const int left= h->non_zero_count_cache[index8 - 1];
876
    const int top = h->non_zero_count_cache[index8 - 8];
877
    int i= left + top;
878
    
879
    if(i<64) i= (i+1)>>1;
880

    
881
    tprintf("pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
882

    
883
    return i&31;
884
}
885

    
886
static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
887
    const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
888

    
889
    if(topright_ref != PART_NOT_AVAILABLE){
890
        *C= h->mv_cache[list][ i - 8 + part_width ];
891
        return topright_ref;
892
    }else{
893
        tprintf("topright MV not available\n");
894

    
895
        *C= h->mv_cache[list][ i - 8 - 1 ];
896
        return h->ref_cache[list][ i - 8 - 1 ];
897
    }
898
}
899

    
900
/**
901
 * gets the predicted MV.
902
 * @param n the block index
903
 * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
904
 * @param mx the x component of the predicted motion vector
905
 * @param my the y component of the predicted motion vector
906
 */
907
static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
908
    const int index8= scan8[n];
909
    const int top_ref=      h->ref_cache[list][ index8 - 8 ];
910
    const int left_ref=     h->ref_cache[list][ index8 - 1 ];
911
    const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
912
    const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
913
    const int16_t * C;
914
    int diagonal_ref, match_count;
915

    
916
    assert(part_width==1 || part_width==2 || part_width==4);
917

    
918
/* mv_cache
919
  B . . A T T T T 
920
  U . . L . . , .
921
  U . . L . . . .
922
  U . . L . . , .
923
  . . . L . . . .
924
*/
925

    
926
    diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
927
    match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
928
    tprintf("pred_motion match_count=%d\n", match_count);
929
    if(match_count > 1){ //most common
930
        *mx= mid_pred(A[0], B[0], C[0]);
931
        *my= mid_pred(A[1], B[1], C[1]);
932
    }else if(match_count==1){
933
        if(left_ref==ref){
934
            *mx= A[0];
935
            *my= A[1];        
936
        }else if(top_ref==ref){
937
            *mx= B[0];
938
            *my= B[1];        
939
        }else{
940
            *mx= C[0];
941
            *my= C[1];        
942
        }
943
    }else{
944
        if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
945
            *mx= A[0];
946
            *my= A[1];        
947
        }else{
948
            *mx= mid_pred(A[0], B[0], C[0]);
949
            *my= mid_pred(A[1], B[1], C[1]);
950
        }
951
    }
952
        
953
    tprintf("pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1],                    diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
954
}
955

    
956
/**
957
 * gets the directionally predicted 16x8 MV.
958
 * @param n the block index
959
 * @param mx the x component of the predicted motion vector
960
 * @param my the y component of the predicted motion vector
961
 */
962
static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
963
    if(n==0){
964
        const int top_ref=      h->ref_cache[list][ scan8[0] - 8 ];
965
        const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
966

    
967
        tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
968
        
969
        if(top_ref == ref){
970
            *mx= B[0];
971
            *my= B[1];
972
            return;
973
        }
974
    }else{
975
        const int left_ref=     h->ref_cache[list][ scan8[8] - 1 ];
976
        const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
977
        
978
        tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
979

    
980
        if(left_ref == ref){
981
            *mx= A[0];
982
            *my= A[1];
983
            return;
984
        }
985
    }
986

    
987
    //RARE
988
    pred_motion(h, n, 4, list, ref, mx, my);
989
}
990

    
991
/**
992
 * gets the directionally predicted 8x16 MV.
993
 * @param n the block index
994
 * @param mx the x component of the predicted motion vector
995
 * @param my the y component of the predicted motion vector
996
 */
997
static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
998
    if(n==0){
999
        const int left_ref=      h->ref_cache[list][ scan8[0] - 1 ];
1000
        const int16_t * const A=  h->mv_cache[list][ scan8[0] - 1 ];
1001
        
1002
        tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
1003

    
1004
        if(left_ref == ref){
1005
            *mx= A[0];
1006
            *my= A[1];
1007
            return;
1008
        }
1009
    }else{
1010
        const int16_t * C;
1011
        int diagonal_ref;
1012

    
1013
        diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
1014
        
1015
        tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
1016

    
1017
        if(diagonal_ref == ref){ 
1018
            *mx= C[0];
1019
            *my= C[1];
1020
            return;
1021
        }
1022
    }
1023

    
1024
    //RARE
1025
    pred_motion(h, n, 2, list, ref, mx, my);
1026
}
1027

    
1028
static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
1029
    const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
1030
    const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
1031

    
1032
    tprintf("pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
1033

    
1034
    if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
1035
       || (top_ref == 0  && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
1036
       || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
1037
       
1038
        *mx = *my = 0;
1039
        return;
1040
    }
1041
        
1042
    pred_motion(h, 0, 4, 0, 0, mx, my);
1043

    
1044
    return;
1045
}
1046

    
1047
static inline void direct_dist_scale_factor(H264Context * const h){
1048
    const int poc = h->s.current_picture_ptr->poc;
1049
    const int poc1 = h->ref_list[1][0].poc;
1050
    int i;
1051
    for(i=0; i<h->ref_count[0]; i++){
1052
        int poc0 = h->ref_list[0][i].poc;
1053
        int td = clip(poc1 - poc0, -128, 127);
1054
        if(td == 0 /* FIXME || pic0 is a long-term ref */){
1055
            h->dist_scale_factor[i] = 256;
1056
        }else{
1057
            int tb = clip(poc - poc0, -128, 127);
1058
            int tx = (16384 + (ABS(td) >> 1)) / td;
1059
            h->dist_scale_factor[i] = clip((tb*tx + 32) >> 6, -1024, 1023);
1060
        }
1061
    }
1062
}
1063

    
1064
static inline void pred_direct_motion(H264Context * const h, int *mb_type){
1065
    MpegEncContext * const s = &h->s;
1066
    const int mb_xy =   s->mb_x +   s->mb_y*s->mb_stride;
1067
    const int b8_xy = 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1068
    const int b4_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1069
    const int mb_type_col = h->ref_list[1][0].mb_type[mb_xy];
1070
    const int16_t (*l1mv0)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[0][b4_xy];
1071
    const int8_t *l1ref0 = &h->ref_list[1][0].ref_index[0][b8_xy];
1072
    const int is_b8x8 = IS_8X8(*mb_type);
1073
    int sub_mb_type;
1074
    int i8, i4;
1075

    
1076
    if(IS_8X8(mb_type_col) && !h->sps.direct_8x8_inference_flag){
1077
        /* FIXME save sub mb types from previous frames (or derive from MVs)
1078
         * so we know exactly what block size to use */
1079
        sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
1080
        *mb_type =    MB_TYPE_8x8;
1081
    }else if(!is_b8x8 && (IS_16X16(mb_type_col) || IS_INTRA(mb_type_col))){
1082
        sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1083
        *mb_type =    MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
1084
    }else{
1085
        sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1086
        *mb_type =    MB_TYPE_8x8;
1087
    }
1088
    if(!is_b8x8)
1089
        *mb_type |= MB_TYPE_DIRECT2;
1090

    
1091
    tprintf("mb_type = %08x, sub_mb_type = %08x, is_b8x8 = %d, mb_type_col = %08x\n", *mb_type, sub_mb_type, is_b8x8, mb_type_col);
1092
    
1093
    if(h->direct_spatial_mv_pred){
1094
        int ref[2];
1095
        int mv[2][2];
1096
        int list;
1097

    
1098
        /* ref = min(neighbors) */
1099
        for(list=0; list<2; list++){
1100
            int refa = h->ref_cache[list][scan8[0] - 1];
1101
            int refb = h->ref_cache[list][scan8[0] - 8];
1102
            int refc = h->ref_cache[list][scan8[0] - 8 + 4];
1103
            if(refc == -2)
1104
                refc = h->ref_cache[list][scan8[0] - 8 - 1];
1105
            ref[list] = refa;
1106
            if(ref[list] < 0 || (refb < ref[list] && refb >= 0))
1107
                ref[list] = refb;
1108
            if(ref[list] < 0 || (refc < ref[list] && refc >= 0))
1109
                ref[list] = refc;
1110
            if(ref[list] < 0)
1111
                ref[list] = -1;
1112
        }
1113

    
1114
        if(ref[0] < 0 && ref[1] < 0){
1115
            ref[0] = ref[1] = 0;
1116
            mv[0][0] = mv[0][1] =
1117
            mv[1][0] = mv[1][1] = 0;
1118
        }else{
1119
            for(list=0; list<2; list++){
1120
                if(ref[list] >= 0)
1121
                    pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]);
1122
                else
1123
                    mv[list][0] = mv[list][1] = 0;
1124
            }
1125
        }
1126

    
1127
        if(ref[1] < 0){
1128
            *mb_type &= ~MB_TYPE_P0L1;
1129
            sub_mb_type &= ~MB_TYPE_P0L1;
1130
        }else if(ref[0] < 0){
1131
            *mb_type &= ~MB_TYPE_P0L0;
1132
            sub_mb_type &= ~MB_TYPE_P0L0;
1133
        }
1134

    
1135
        if(IS_16X16(*mb_type)){
1136
            fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref[0], 1);
1137
            fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, ref[1], 1);
1138
            if(!IS_INTRA(mb_type_col) && l1ref0[0] == 0 &&
1139
                ABS(l1mv0[0][0]) <= 1 && ABS(l1mv0[0][1]) <= 1){
1140
                if(ref[0] > 0)
1141
                    fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1142
                else
1143
                    fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
1144
                if(ref[1] > 0)
1145
                    fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1146
                else
1147
                    fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, 0, 4);
1148
            }else{
1149
                fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1150
                fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1151
            }
1152
        }else{
1153
            for(i8=0; i8<4; i8++){
1154
                const int x8 = i8&1;
1155
                const int y8 = i8>>1;
1156
    
1157
                if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1158
                    continue;
1159
                h->sub_mb_type[i8] = sub_mb_type;
1160
    
1161
                fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1162
                fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1163
                fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref[0], 1);
1164
                fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, ref[1], 1);
1165
    
1166
                /* col_zero_flag */
1167
                if(!IS_INTRA(mb_type_col) && l1ref0[x8 + y8*h->b8_stride] == 0){
1168
                    for(i4=0; i4<4; i4++){
1169
                        const int16_t *mv_col = l1mv0[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
1170
                        if(ABS(mv_col[0]) <= 1 && ABS(mv_col[1]) <= 1){
1171
                            if(ref[0] == 0)
1172
                                *(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0;
1173
                            if(ref[1] == 0)
1174
                                *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0;
1175
                        }
1176
                    }
1177
                }
1178
            }
1179
        }
1180
    }else{ /* direct temporal mv pred */
1181
        /* FIXME assumes that L1ref0 used the same ref lists as current frame */
1182
        if(IS_16X16(*mb_type)){
1183
            fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
1184
            if(IS_INTRA(mb_type_col)){
1185
                fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
1186
                fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
1187
                fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, 0, 4);
1188
            }else{
1189
                const int ref0 = l1ref0[0];
1190
                const int dist_scale_factor = h->dist_scale_factor[ref0];
1191
                const int16_t *mv_col = l1mv0[0];
1192
                int mv_l0[2];
1193
                mv_l0[0] = (dist_scale_factor * mv_col[0] + 128) >> 8;
1194
                mv_l0[1] = (dist_scale_factor * mv_col[1] + 128) >> 8;
1195
                fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref0, 1);
1196
                fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv_l0[0],mv_l0[1]), 4);
1197
                fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]), 4);
1198
            }
1199
        }else{
1200
            for(i8=0; i8<4; i8++){
1201
                const int x8 = i8&1;
1202
                const int y8 = i8>>1;
1203
                int ref0, dist_scale_factor;
1204
    
1205
                if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1206
                    continue;
1207
                h->sub_mb_type[i8] = sub_mb_type;
1208
                if(IS_INTRA(mb_type_col)){
1209
                    fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
1210
                    fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1211
                    fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1212
                    fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1213
                    continue;
1214
                }
1215
    
1216
                ref0 = l1ref0[x8 + y8*h->b8_stride];
1217
                dist_scale_factor = h->dist_scale_factor[ref0];
1218
    
1219
                fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
1220
                fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1221
                for(i4=0; i4<4; i4++){
1222
                    const int16_t *mv_col = l1mv0[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
1223
                    int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
1224
                    mv_l0[0] = (dist_scale_factor * mv_col[0] + 128) >> 8;
1225
                    mv_l0[1] = (dist_scale_factor * mv_col[1] + 128) >> 8;
1226
                    *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] =
1227
                        pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
1228
                }
1229
            }
1230
        }
1231
    }
1232
}
1233

    
1234
static inline void write_back_motion(H264Context *h, int mb_type){
1235
    MpegEncContext * const s = &h->s;
1236
    const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1237
    const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1238
    int list;
1239

    
1240
    for(list=0; list<2; list++){
1241
        int y;
1242
        if((!IS_8X8(mb_type)) && !USES_LIST(mb_type, list)){
1243
            if(1){ //FIXME skip or never read if mb_type doesnt use it
1244
                for(y=0; y<4; y++){
1245
                    *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]=
1246
                    *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= 0;
1247
                }
1248
                if( h->pps.cabac ) {
1249
                    /* FIXME needed ? */
1250
                    for(y=0; y<4; y++){
1251
                        *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]=
1252
                        *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= 0;
1253
                    }
1254
                }
1255
                for(y=0; y<2; y++){
1256
                    *(uint16_t*)&s->current_picture.ref_index[list][b8_xy + y*h->b8_stride]= (LIST_NOT_USED&0xFF)*0x0101;
1257
                }
1258
            }
1259
            continue;
1260
        }
1261
        
1262
        for(y=0; y<4; y++){
1263
            *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
1264
            *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
1265
        }
1266
        if( h->pps.cabac ) {
1267
            for(y=0; y<4; y++){
1268
                *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
1269
                *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
1270
            }
1271
        }
1272
        for(y=0; y<2; y++){
1273
            s->current_picture.ref_index[list][b8_xy + 0 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+0 + 16*y];
1274
            s->current_picture.ref_index[list][b8_xy + 1 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+2 + 16*y];
1275
        }
1276
    }
1277
    
1278
    if(h->slice_type == B_TYPE && h->pps.cabac){
1279
        if(IS_8X8(mb_type)){
1280
            h->direct_table[b8_xy+1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
1281
            h->direct_table[b8_xy+0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
1282
            h->direct_table[b8_xy+1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
1283
        }
1284
    }
1285
}
1286

    
1287
/**
1288
 * Decodes a network abstraction layer unit.
1289
 * @param consumed is the number of bytes used as input
1290
 * @param length is the length of the array
1291
 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp ttailing?
1292
 * @returns decoded bytes, might be src+1 if no escapes 
1293
 */
1294
static uint8_t *decode_nal(H264Context *h, uint8_t *src, int *dst_length, int *consumed, int length){
1295
    int i, si, di;
1296
    uint8_t *dst;
1297

    
1298
//    src[0]&0x80;                //forbidden bit
1299
    h->nal_ref_idc= src[0]>>5;
1300
    h->nal_unit_type= src[0]&0x1F;
1301

    
1302
    src++; length--;
1303
#if 0    
1304
    for(i=0; i<length; i++)
1305
        printf("%2X ", src[i]);
1306
#endif
1307
    for(i=0; i+1<length; i+=2){
1308
        if(src[i]) continue;
1309
        if(i>0 && src[i-1]==0) i--;
1310
        if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1311
            if(src[i+2]!=3){
1312
                /* startcode, so we must be past the end */
1313
                length=i;
1314
            }
1315
            break;
1316
        }
1317
    }
1318

    
1319
    if(i>=length-1){ //no escaped 0
1320
        *dst_length= length;
1321
        *consumed= length+1; //+1 for the header
1322
        return src; 
1323
    }
1324

    
1325
    h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length);
1326
    dst= h->rbsp_buffer;
1327

    
1328
//printf("deoding esc\n");
1329
    si=di=0;
1330
    while(si<length){ 
1331
        //remove escapes (very rare 1:2^22)
1332
        if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
1333
            if(src[si+2]==3){ //escape
1334
                dst[di++]= 0;
1335
                dst[di++]= 0;
1336
                si+=3;
1337
                continue;
1338
            }else //next start code
1339
                break;
1340
        }
1341

    
1342
        dst[di++]= src[si++];
1343
    }
1344

    
1345
    *dst_length= di;
1346
    *consumed= si + 1;//+1 for the header
1347
//FIXME store exact number of bits in the getbitcontext (its needed for decoding)
1348
    return dst;
1349
}
1350

    
1351
#if 0
1352
/**
1353
 * @param src the data which should be escaped
1354
 * @param dst the target buffer, dst+1 == src is allowed as a special case
1355
 * @param length the length of the src data
1356
 * @param dst_length the length of the dst array
1357
 * @returns length of escaped data in bytes or -1 if an error occured
1358
 */
1359
static int encode_nal(H264Context *h, uint8_t *dst, uint8_t *src, int length, int dst_length){
1360
    int i, escape_count, si, di;
1361
    uint8_t *temp;
1362
    
1363
    assert(length>=0);
1364
    assert(dst_length>0);
1365
    
1366
    dst[0]= (h->nal_ref_idc<<5) + h->nal_unit_type;
1367

1368
    if(length==0) return 1;
1369

1370
    escape_count= 0;
1371
    for(i=0; i<length; i+=2){
1372
        if(src[i]) continue;
1373
        if(i>0 && src[i-1]==0) 
1374
            i--;
1375
        if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1376
            escape_count++;
1377
            i+=2;
1378
        }
1379
    }
1380
    
1381
    if(escape_count==0){ 
1382
        if(dst+1 != src)
1383
            memcpy(dst+1, src, length);
1384
        return length + 1;
1385
    }
1386
    
1387
    if(length + escape_count + 1> dst_length)
1388
        return -1;
1389

1390
    //this should be damn rare (hopefully)
1391

1392
    h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length + escape_count);
1393
    temp= h->rbsp_buffer;
1394
//printf("encoding esc\n");
1395
    
1396
    si= 0;
1397
    di= 0;
1398
    while(si < length){
1399
        if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
1400
            temp[di++]= 0; si++;
1401
            temp[di++]= 0; si++;
1402
            temp[di++]= 3; 
1403
            temp[di++]= src[si++];
1404
        }
1405
        else
1406
            temp[di++]= src[si++];
1407
    }
1408
    memcpy(dst+1, temp, length+escape_count);
1409
    
1410
    assert(di == length+escape_count);
1411
    
1412
    return di + 1;
1413
}
1414

1415
/**
1416
 * write 1,10,100,1000,... for alignment, yes its exactly inverse to mpeg4
1417
 */
1418
static void encode_rbsp_trailing(PutBitContext *pb){
1419
    int length;
1420
    put_bits(pb, 1, 1);
1421
    length= (-put_bits_count(pb))&7;
1422
    if(length) put_bits(pb, length, 0);
1423
}
1424
#endif
1425

    
1426
/**
1427
 * identifies the exact end of the bitstream
1428
 * @return the length of the trailing, or 0 if damaged
1429
 */
1430
static int decode_rbsp_trailing(uint8_t *src){
1431
    int v= *src;
1432
    int r;
1433

    
1434
    tprintf("rbsp trailing %X\n", v);
1435

    
1436
    for(r=1; r<9; r++){
1437
        if(v&1) return r;
1438
        v>>=1;
1439
    }
1440
    return 0;
1441
}
1442

    
1443
/**
1444
 * idct tranforms the 16 dc values and dequantize them.
1445
 * @param qp quantization parameter
1446
 */
1447
static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp){
1448
    const int qmul= dequant_coeff[qp][0];
1449
#define stride 16
1450
    int i;
1451
    int temp[16]; //FIXME check if this is a good idea
1452
    static const int x_offset[4]={0, 1*stride, 4* stride,  5*stride};
1453
    static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1454

    
1455
//memset(block, 64, 2*256);
1456
//return;
1457
    for(i=0; i<4; i++){
1458
        const int offset= y_offset[i];
1459
        const int z0= block[offset+stride*0] + block[offset+stride*4];
1460
        const int z1= block[offset+stride*0] - block[offset+stride*4];
1461
        const int z2= block[offset+stride*1] - block[offset+stride*5];
1462
        const int z3= block[offset+stride*1] + block[offset+stride*5];
1463

    
1464
        temp[4*i+0]= z0+z3;
1465
        temp[4*i+1]= z1+z2;
1466
        temp[4*i+2]= z1-z2;
1467
        temp[4*i+3]= z0-z3;
1468
    }
1469

    
1470
    for(i=0; i<4; i++){
1471
        const int offset= x_offset[i];
1472
        const int z0= temp[4*0+i] + temp[4*2+i];
1473
        const int z1= temp[4*0+i] - temp[4*2+i];
1474
        const int z2= temp[4*1+i] - temp[4*3+i];
1475
        const int z3= temp[4*1+i] + temp[4*3+i];
1476

    
1477
        block[stride*0 +offset]= ((z0 + z3)*qmul + 2)>>2; //FIXME think about merging this into decode_resdual
1478
        block[stride*2 +offset]= ((z1 + z2)*qmul + 2)>>2;
1479
        block[stride*8 +offset]= ((z1 - z2)*qmul + 2)>>2;
1480
        block[stride*10+offset]= ((z0 - z3)*qmul + 2)>>2;
1481
    }
1482
}
1483

    
1484
#if 0
1485
/**
1486
 * dct tranforms the 16 dc values.
1487
 * @param qp quantization parameter ??? FIXME
1488
 */
1489
static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
1490
//    const int qmul= dequant_coeff[qp][0];
1491
    int i;
1492
    int temp[16]; //FIXME check if this is a good idea
1493
    static const int x_offset[4]={0, 1*stride, 4* stride,  5*stride};
1494
    static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1495

1496
    for(i=0; i<4; i++){
1497
        const int offset= y_offset[i];
1498
        const int z0= block[offset+stride*0] + block[offset+stride*4];
1499
        const int z1= block[offset+stride*0] - block[offset+stride*4];
1500
        const int z2= block[offset+stride*1] - block[offset+stride*5];
1501
        const int z3= block[offset+stride*1] + block[offset+stride*5];
1502

1503
        temp[4*i+0]= z0+z3;
1504
        temp[4*i+1]= z1+z2;
1505
        temp[4*i+2]= z1-z2;
1506
        temp[4*i+3]= z0-z3;
1507
    }
1508

1509
    for(i=0; i<4; i++){
1510
        const int offset= x_offset[i];
1511
        const int z0= temp[4*0+i] + temp[4*2+i];
1512
        const int z1= temp[4*0+i] - temp[4*2+i];
1513
        const int z2= temp[4*1+i] - temp[4*3+i];
1514
        const int z3= temp[4*1+i] + temp[4*3+i];
1515

1516
        block[stride*0 +offset]= (z0 + z3)>>1;
1517
        block[stride*2 +offset]= (z1 + z2)>>1;
1518
        block[stride*8 +offset]= (z1 - z2)>>1;
1519
        block[stride*10+offset]= (z0 - z3)>>1;
1520
    }
1521
}
1522
#endif
1523

    
1524
#undef xStride
1525
#undef stride
1526

    
1527
static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp){
1528
    const int qmul= dequant_coeff[qp][0];
1529
    const int stride= 16*2;
1530
    const int xStride= 16;
1531
    int a,b,c,d,e;
1532

    
1533
    a= block[stride*0 + xStride*0];
1534
    b= block[stride*0 + xStride*1];
1535
    c= block[stride*1 + xStride*0];
1536
    d= block[stride*1 + xStride*1];
1537

    
1538
    e= a-b;
1539
    a= a+b;
1540
    b= c-d;
1541
    c= c+d;
1542

    
1543
    block[stride*0 + xStride*0]= ((a+c)*qmul + 0)>>1;
1544
    block[stride*0 + xStride*1]= ((e+b)*qmul + 0)>>1;
1545
    block[stride*1 + xStride*0]= ((a-c)*qmul + 0)>>1;
1546
    block[stride*1 + xStride*1]= ((e-b)*qmul + 0)>>1;
1547
}
1548

    
1549
#if 0
1550
static void chroma_dc_dct_c(DCTELEM *block){
1551
    const int stride= 16*2;
1552
    const int xStride= 16;
1553
    int a,b,c,d,e;
1554

1555
    a= block[stride*0 + xStride*0];
1556
    b= block[stride*0 + xStride*1];
1557
    c= block[stride*1 + xStride*0];
1558
    d= block[stride*1 + xStride*1];
1559

1560
    e= a-b;
1561
    a= a+b;
1562
    b= c-d;
1563
    c= c+d;
1564

1565
    block[stride*0 + xStride*0]= (a+c);
1566
    block[stride*0 + xStride*1]= (e+b);
1567
    block[stride*1 + xStride*0]= (a-c);
1568
    block[stride*1 + xStride*1]= (e-b);
1569
}
1570
#endif
1571

    
1572
/**
1573
 * gets the chroma qp.
1574
 */
1575
static inline int get_chroma_qp(H264Context *h, int qscale){
1576
    
1577
    return chroma_qp[clip(qscale + h->pps.chroma_qp_index_offset, 0, 51)];
1578
}
1579

    
1580

    
1581
#if 0
1582
static void h264_diff_dct_c(DCTELEM *block, uint8_t *src1, uint8_t *src2, int stride){
1583
    int i;
1584
    //FIXME try int temp instead of block
1585
    
1586
    for(i=0; i<4; i++){
1587
        const int d0= src1[0 + i*stride] - src2[0 + i*stride];
1588
        const int d1= src1[1 + i*stride] - src2[1 + i*stride];
1589
        const int d2= src1[2 + i*stride] - src2[2 + i*stride];
1590
        const int d3= src1[3 + i*stride] - src2[3 + i*stride];
1591
        const int z0= d0 + d3;
1592
        const int z3= d0 - d3;
1593
        const int z1= d1 + d2;
1594
        const int z2= d1 - d2;
1595
        
1596
        block[0 + 4*i]=   z0 +   z1;
1597
        block[1 + 4*i]= 2*z3 +   z2;
1598
        block[2 + 4*i]=   z0 -   z1;
1599
        block[3 + 4*i]=   z3 - 2*z2;
1600
    }    
1601

1602
    for(i=0; i<4; i++){
1603
        const int z0= block[0*4 + i] + block[3*4 + i];
1604
        const int z3= block[0*4 + i] - block[3*4 + i];
1605
        const int z1= block[1*4 + i] + block[2*4 + i];
1606
        const int z2= block[1*4 + i] - block[2*4 + i];
1607
        
1608
        block[0*4 + i]=   z0 +   z1;
1609
        block[1*4 + i]= 2*z3 +   z2;
1610
        block[2*4 + i]=   z0 -   z1;
1611
        block[3*4 + i]=   z3 - 2*z2;
1612
    }
1613
}
1614
#endif
1615

    
1616
//FIXME need to check that this doesnt overflow signed 32 bit for low qp, iam not sure, its very close
1617
//FIXME check that gcc inlines this (and optimizes intra & seperate_dc stuff away)
1618
static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int seperate_dc){
1619
    int i;
1620
    const int * const quant_table= quant_coeff[qscale];
1621
    const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
1622
    const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
1623
    const unsigned int threshold2= (threshold1<<1);
1624
    int last_non_zero;
1625

    
1626
    if(seperate_dc){
1627
        if(qscale<=18){
1628
            //avoid overflows
1629
            const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
1630
            const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
1631
            const unsigned int dc_threshold2= (dc_threshold1<<1);
1632

    
1633
            int level= block[0]*quant_coeff[qscale+18][0];
1634
            if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1635
                if(level>0){
1636
                    level= (dc_bias + level)>>(QUANT_SHIFT-2);
1637
                    block[0]= level;
1638
                }else{
1639
                    level= (dc_bias - level)>>(QUANT_SHIFT-2);
1640
                    block[0]= -level;
1641
                }
1642
//                last_non_zero = i;
1643
            }else{
1644
                block[0]=0;
1645
            }
1646
        }else{
1647
            const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
1648
            const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
1649
            const unsigned int dc_threshold2= (dc_threshold1<<1);
1650

    
1651
            int level= block[0]*quant_table[0];
1652
            if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1653
                if(level>0){
1654
                    level= (dc_bias + level)>>(QUANT_SHIFT+1);
1655
                    block[0]= level;
1656
                }else{
1657
                    level= (dc_bias - level)>>(QUANT_SHIFT+1);
1658
                    block[0]= -level;
1659
                }
1660
//                last_non_zero = i;
1661
            }else{
1662
                block[0]=0;
1663
            }
1664
        }
1665
        last_non_zero= 0;
1666
        i=1;
1667
    }else{
1668
        last_non_zero= -1;
1669
        i=0;
1670
    }
1671

    
1672
    for(; i<16; i++){
1673
        const int j= scantable[i];
1674
        int level= block[j]*quant_table[j];
1675

    
1676
//        if(   bias+level >= (1<<(QMAT_SHIFT - 3))
1677
//           || bias-level >= (1<<(QMAT_SHIFT - 3))){
1678
        if(((unsigned)(level+threshold1))>threshold2){
1679
            if(level>0){
1680
                level= (bias + level)>>QUANT_SHIFT;
1681
                block[j]= level;
1682
            }else{
1683
                level= (bias - level)>>QUANT_SHIFT;
1684
                block[j]= -level;
1685
            }
1686
            last_non_zero = i;
1687
        }else{
1688
            block[j]=0;
1689
        }
1690
    }
1691

    
1692
    return last_non_zero;
1693
}
1694

    
1695
static void pred4x4_vertical_c(uint8_t *src, uint8_t *topright, int stride){
1696
    const uint32_t a= ((uint32_t*)(src-stride))[0];
1697
    ((uint32_t*)(src+0*stride))[0]= a;
1698
    ((uint32_t*)(src+1*stride))[0]= a;
1699
    ((uint32_t*)(src+2*stride))[0]= a;
1700
    ((uint32_t*)(src+3*stride))[0]= a;
1701
}
1702

    
1703
static void pred4x4_horizontal_c(uint8_t *src, uint8_t *topright, int stride){
1704
    ((uint32_t*)(src+0*stride))[0]= src[-1+0*stride]*0x01010101;
1705
    ((uint32_t*)(src+1*stride))[0]= src[-1+1*stride]*0x01010101;
1706
    ((uint32_t*)(src+2*stride))[0]= src[-1+2*stride]*0x01010101;
1707
    ((uint32_t*)(src+3*stride))[0]= src[-1+3*stride]*0x01010101;
1708
}
1709

    
1710
static void pred4x4_dc_c(uint8_t *src, uint8_t *topright, int stride){
1711
    const int dc= (  src[-stride] + src[1-stride] + src[2-stride] + src[3-stride]
1712
                   + src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 4) >>3;
1713
    
1714
    ((uint32_t*)(src+0*stride))[0]= 
1715
    ((uint32_t*)(src+1*stride))[0]= 
1716
    ((uint32_t*)(src+2*stride))[0]= 
1717
    ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101; 
1718
}
1719

    
1720
static void pred4x4_left_dc_c(uint8_t *src, uint8_t *topright, int stride){
1721
    const int dc= (  src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 2) >>2;
1722
    
1723
    ((uint32_t*)(src+0*stride))[0]= 
1724
    ((uint32_t*)(src+1*stride))[0]= 
1725
    ((uint32_t*)(src+2*stride))[0]= 
1726
    ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101; 
1727
}
1728

    
1729
static void pred4x4_top_dc_c(uint8_t *src, uint8_t *topright, int stride){
1730
    const int dc= (  src[-stride] + src[1-stride] + src[2-stride] + src[3-stride] + 2) >>2;
1731
    
1732
    ((uint32_t*)(src+0*stride))[0]= 
1733
    ((uint32_t*)(src+1*stride))[0]= 
1734
    ((uint32_t*)(src+2*stride))[0]= 
1735
    ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101; 
1736
}
1737

    
1738
static void pred4x4_128_dc_c(uint8_t *src, uint8_t *topright, int stride){
1739
    ((uint32_t*)(src+0*stride))[0]= 
1740
    ((uint32_t*)(src+1*stride))[0]= 
1741
    ((uint32_t*)(src+2*stride))[0]= 
1742
    ((uint32_t*)(src+3*stride))[0]= 128U*0x01010101U;
1743
}
1744

    
1745

    
1746
#define LOAD_TOP_RIGHT_EDGE\
1747
    const int t4= topright[0];\
1748
    const int t5= topright[1];\
1749
    const int t6= topright[2];\
1750
    const int t7= topright[3];\
1751

    
1752
#define LOAD_LEFT_EDGE\
1753
    const int l0= src[-1+0*stride];\
1754
    const int l1= src[-1+1*stride];\
1755
    const int l2= src[-1+2*stride];\
1756
    const int l3= src[-1+3*stride];\
1757

    
1758
#define LOAD_TOP_EDGE\
1759
    const int t0= src[ 0-1*stride];\
1760
    const int t1= src[ 1-1*stride];\
1761
    const int t2= src[ 2-1*stride];\
1762
    const int t3= src[ 3-1*stride];\
1763

    
1764
static void pred4x4_down_right_c(uint8_t *src, uint8_t *topright, int stride){
1765
    const int lt= src[-1-1*stride];
1766
    LOAD_TOP_EDGE
1767
    LOAD_LEFT_EDGE
1768

    
1769
    src[0+3*stride]=(l3 + 2*l2 + l1 + 2)>>2; 
1770
    src[0+2*stride]=
1771
    src[1+3*stride]=(l2 + 2*l1 + l0 + 2)>>2; 
1772
    src[0+1*stride]=
1773
    src[1+2*stride]=
1774
    src[2+3*stride]=(l1 + 2*l0 + lt + 2)>>2; 
1775
    src[0+0*stride]=
1776
    src[1+1*stride]=
1777
    src[2+2*stride]=
1778
    src[3+3*stride]=(l0 + 2*lt + t0 + 2)>>2; 
1779
    src[1+0*stride]=
1780
    src[2+1*stride]=
1781
    src[3+2*stride]=(lt + 2*t0 + t1 + 2)>>2;
1782
    src[2+0*stride]=
1783
    src[3+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1784
    src[3+0*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1785
}
1786

    
1787
static void pred4x4_down_left_c(uint8_t *src, uint8_t *topright, int stride){
1788
    LOAD_TOP_EDGE    
1789
    LOAD_TOP_RIGHT_EDGE    
1790
//    LOAD_LEFT_EDGE    
1791

    
1792
    src[0+0*stride]=(t0 + t2 + 2*t1 + 2)>>2;
1793
    src[1+0*stride]=
1794
    src[0+1*stride]=(t1 + t3 + 2*t2 + 2)>>2;
1795
    src[2+0*stride]=
1796
    src[1+1*stride]=
1797
    src[0+2*stride]=(t2 + t4 + 2*t3 + 2)>>2;
1798
    src[3+0*stride]=
1799
    src[2+1*stride]=
1800
    src[1+2*stride]=
1801
    src[0+3*stride]=(t3 + t5 + 2*t4 + 2)>>2;
1802
    src[3+1*stride]=
1803
    src[2+2*stride]=
1804
    src[1+3*stride]=(t4 + t6 + 2*t5 + 2)>>2;
1805
    src[3+2*stride]=
1806
    src[2+3*stride]=(t5 + t7 + 2*t6 + 2)>>2;
1807
    src[3+3*stride]=(t6 + 3*t7 + 2)>>2;
1808
}
1809

    
1810
static void pred4x4_vertical_right_c(uint8_t *src, uint8_t *topright, int stride){
1811
    const int lt= src[-1-1*stride];
1812
    LOAD_TOP_EDGE    
1813
    LOAD_LEFT_EDGE    
1814
    const __attribute__((unused)) int unu= l3;
1815

    
1816
    src[0+0*stride]=
1817
    src[1+2*stride]=(lt + t0 + 1)>>1;
1818
    src[1+0*stride]=
1819
    src[2+2*stride]=(t0 + t1 + 1)>>1;
1820
    src[2+0*stride]=
1821
    src[3+2*stride]=(t1 + t2 + 1)>>1;
1822
    src[3+0*stride]=(t2 + t3 + 1)>>1;
1823
    src[0+1*stride]=
1824
    src[1+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
1825
    src[1+1*stride]=
1826
    src[2+3*stride]=(lt + 2*t0 + t1 + 2)>>2;
1827
    src[2+1*stride]=
1828
    src[3+3*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1829
    src[3+1*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1830
    src[0+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
1831
    src[0+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
1832
}
1833

    
1834
static void pred4x4_vertical_left_c(uint8_t *src, uint8_t *topright, int stride){
1835
    LOAD_TOP_EDGE    
1836
    LOAD_TOP_RIGHT_EDGE    
1837
    const __attribute__((unused)) int unu= t7;
1838

    
1839
    src[0+0*stride]=(t0 + t1 + 1)>>1;
1840
    src[1+0*stride]=
1841
    src[0+2*stride]=(t1 + t2 + 1)>>1;
1842
    src[2+0*stride]=
1843
    src[1+2*stride]=(t2 + t3 + 1)>>1;
1844
    src[3+0*stride]=
1845
    src[2+2*stride]=(t3 + t4+ 1)>>1;
1846
    src[3+2*stride]=(t4 + t5+ 1)>>1;
1847
    src[0+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1848
    src[1+1*stride]=
1849
    src[0+3*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1850
    src[2+1*stride]=
1851
    src[1+3*stride]=(t2 + 2*t3 + t4 + 2)>>2;
1852
    src[3+1*stride]=
1853
    src[2+3*stride]=(t3 + 2*t4 + t5 + 2)>>2;
1854
    src[3+3*stride]=(t4 + 2*t5 + t6 + 2)>>2;
1855
}
1856

    
1857
static void pred4x4_horizontal_up_c(uint8_t *src, uint8_t *topright, int stride){
1858
    LOAD_LEFT_EDGE    
1859

    
1860
    src[0+0*stride]=(l0 + l1 + 1)>>1;
1861
    src[1+0*stride]=(l0 + 2*l1 + l2 + 2)>>2;
1862
    src[2+0*stride]=
1863
    src[0+1*stride]=(l1 + l2 + 1)>>1;
1864
    src[3+0*stride]=
1865
    src[1+1*stride]=(l1 + 2*l2 + l3 + 2)>>2;
1866
    src[2+1*stride]=
1867
    src[0+2*stride]=(l2 + l3 + 1)>>1;
1868
    src[3+1*stride]=
1869
    src[1+2*stride]=(l2 + 2*l3 + l3 + 2)>>2;
1870
    src[3+2*stride]=
1871
    src[1+3*stride]=
1872
    src[0+3*stride]=
1873
    src[2+2*stride]=
1874
    src[2+3*stride]=
1875
    src[3+3*stride]=l3;
1876
}
1877
    
1878
static void pred4x4_horizontal_down_c(uint8_t *src, uint8_t *topright, int stride){
1879
    const int lt= src[-1-1*stride];
1880
    LOAD_TOP_EDGE    
1881
    LOAD_LEFT_EDGE    
1882
    const __attribute__((unused)) int unu= t3;
1883

    
1884
    src[0+0*stride]=
1885
    src[2+1*stride]=(lt + l0 + 1)>>1;
1886
    src[1+0*stride]=
1887
    src[3+1*stride]=(l0 + 2*lt + t0 + 2)>>2;
1888
    src[2+0*stride]=(lt + 2*t0 + t1 + 2)>>2;
1889
    src[3+0*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1890
    src[0+1*stride]=
1891
    src[2+2*stride]=(l0 + l1 + 1)>>1;
1892
    src[1+1*stride]=
1893
    src[3+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
1894
    src[0+2*stride]=
1895
    src[2+3*stride]=(l1 + l2+ 1)>>1;
1896
    src[1+2*stride]=
1897
    src[3+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
1898
    src[0+3*stride]=(l2 + l3 + 1)>>1;
1899
    src[1+3*stride]=(l1 + 2*l2 + l3 + 2)>>2;
1900
}
1901

    
1902
static void pred16x16_vertical_c(uint8_t *src, int stride){
1903
    int i;
1904
    const uint32_t a= ((uint32_t*)(src-stride))[0];
1905
    const uint32_t b= ((uint32_t*)(src-stride))[1];
1906
    const uint32_t c= ((uint32_t*)(src-stride))[2];
1907
    const uint32_t d= ((uint32_t*)(src-stride))[3];
1908
    
1909
    for(i=0; i<16; i++){
1910
        ((uint32_t*)(src+i*stride))[0]= a;
1911
        ((uint32_t*)(src+i*stride))[1]= b;
1912
        ((uint32_t*)(src+i*stride))[2]= c;
1913
        ((uint32_t*)(src+i*stride))[3]= d;
1914
    }
1915
}
1916

    
1917
static void pred16x16_horizontal_c(uint8_t *src, int stride){
1918
    int i;
1919

    
1920
    for(i=0; i<16; i++){
1921
        ((uint32_t*)(src+i*stride))[0]=
1922
        ((uint32_t*)(src+i*stride))[1]=
1923
        ((uint32_t*)(src+i*stride))[2]=
1924
        ((uint32_t*)(src+i*stride))[3]= src[-1+i*stride]*0x01010101;
1925
    }
1926
}
1927

    
1928
static void pred16x16_dc_c(uint8_t *src, int stride){
1929
    int i, dc=0;
1930

    
1931
    for(i=0;i<16; i++){
1932
        dc+= src[-1+i*stride];
1933
    }
1934
    
1935
    for(i=0;i<16; i++){
1936
        dc+= src[i-stride];
1937
    }
1938

    
1939
    dc= 0x01010101*((dc + 16)>>5);
1940

    
1941
    for(i=0; i<16; i++){
1942
        ((uint32_t*)(src+i*stride))[0]=
1943
        ((uint32_t*)(src+i*stride))[1]=
1944
        ((uint32_t*)(src+i*stride))[2]=
1945
        ((uint32_t*)(src+i*stride))[3]= dc;
1946
    }
1947
}
1948

    
1949
static void pred16x16_left_dc_c(uint8_t *src, int stride){
1950
    int i, dc=0;
1951

    
1952
    for(i=0;i<16; i++){
1953
        dc+= src[-1+i*stride];
1954
    }
1955
    
1956
    dc= 0x01010101*((dc + 8)>>4);
1957

    
1958
    for(i=0; i<16; i++){
1959
        ((uint32_t*)(src+i*stride))[0]=
1960
        ((uint32_t*)(src+i*stride))[1]=
1961
        ((uint32_t*)(src+i*stride))[2]=
1962
        ((uint32_t*)(src+i*stride))[3]= dc;
1963
    }
1964
}
1965

    
1966
static void pred16x16_top_dc_c(uint8_t *src, int stride){
1967
    int i, dc=0;
1968

    
1969
    for(i=0;i<16; i++){
1970
        dc+= src[i-stride];
1971
    }
1972
    dc= 0x01010101*((dc + 8)>>4);
1973

    
1974
    for(i=0; i<16; i++){
1975
        ((uint32_t*)(src+i*stride))[0]=
1976
        ((uint32_t*)(src+i*stride))[1]=
1977
        ((uint32_t*)(src+i*stride))[2]=
1978
        ((uint32_t*)(src+i*stride))[3]= dc;
1979
    }
1980
}
1981

    
1982
static void pred16x16_128_dc_c(uint8_t *src, int stride){
1983
    int i;
1984

    
1985
    for(i=0; i<16; i++){
1986
        ((uint32_t*)(src+i*stride))[0]=
1987
        ((uint32_t*)(src+i*stride))[1]=
1988
        ((uint32_t*)(src+i*stride))[2]=
1989
        ((uint32_t*)(src+i*stride))[3]= 0x01010101U*128U;
1990
    }
1991
}
1992

    
1993
static inline void pred16x16_plane_compat_c(uint8_t *src, int stride, const int svq3){
1994
  int i, j, k;
1995
  int a;
1996
  uint8_t *cm = cropTbl + MAX_NEG_CROP;
1997
  const uint8_t * const src0 = src+7-stride;
1998
  const uint8_t *src1 = src+8*stride-1;
1999
  const uint8_t *src2 = src1-2*stride;      // == src+6*stride-1;
2000
  int H = src0[1] - src0[-1];
2001
  int V = src1[0] - src2[ 0];
2002
  for(k=2; k<=8; ++k) {
2003
    src1 += stride; src2 -= stride;
2004
    H += k*(src0[k] - src0[-k]);
2005
    V += k*(src1[0] - src2[ 0]);
2006
  }
2007
  if(svq3){
2008
    H = ( 5*(H/4) ) / 16;
2009
    V = ( 5*(V/4) ) / 16;
2010

    
2011
    /* required for 100% accuracy */
2012
    i = H; H = V; V = i;
2013
  }else{
2014
    H = ( 5*H+32 ) >> 6;
2015
    V = ( 5*V+32 ) >> 6;
2016
  }
2017

    
2018
  a = 16*(src1[0] + src2[16] + 1) - 7*(V+H);
2019
  for(j=16; j>0; --j) {
2020
    int b = a;
2021
    a += V;
2022
    for(i=-16; i<0; i+=4) {
2023
      src[16+i] = cm[ (b    ) >> 5 ];
2024
      src[17+i] = cm[ (b+  H) >> 5 ];
2025
      src[18+i] = cm[ (b+2*H) >> 5 ];
2026
      src[19+i] = cm[ (b+3*H) >> 5 ];
2027
      b += 4*H;
2028
    }
2029
    src += stride;
2030
  }
2031
}
2032

    
2033
static void pred16x16_plane_c(uint8_t *src, int stride){
2034
    pred16x16_plane_compat_c(src, stride, 0);
2035
}
2036

    
2037
static void pred8x8_vertical_c(uint8_t *src, int stride){
2038
    int i;
2039
    const uint32_t a= ((uint32_t*)(src-stride))[0];
2040
    const uint32_t b= ((uint32_t*)(src-stride))[1];
2041
    
2042
    for(i=0; i<8; i++){
2043
        ((uint32_t*)(src+i*stride))[0]= a;
2044
        ((uint32_t*)(src+i*stride))[1]= b;
2045
    }
2046
}
2047

    
2048
static void pred8x8_horizontal_c(uint8_t *src, int stride){
2049
    int i;
2050

    
2051
    for(i=0; i<8; i++){
2052
        ((uint32_t*)(src+i*stride))[0]=
2053
        ((uint32_t*)(src+i*stride))[1]= src[-1+i*stride]*0x01010101;
2054
    }
2055
}
2056

    
2057
static void pred8x8_128_dc_c(uint8_t *src, int stride){
2058
    int i;
2059

    
2060
    for(i=0; i<4; i++){
2061
        ((uint32_t*)(src+i*stride))[0]= 
2062
        ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
2063
    }
2064
    for(i=4; i<8; i++){
2065
        ((uint32_t*)(src+i*stride))[0]= 
2066
        ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
2067
    }
2068
}
2069

    
2070
static void pred8x8_left_dc_c(uint8_t *src, int stride){
2071
    int i;
2072
    int dc0, dc2;
2073

    
2074
    dc0=dc2=0;
2075
    for(i=0;i<4; i++){
2076
        dc0+= src[-1+i*stride];
2077
        dc2+= src[-1+(i+4)*stride];
2078
    }
2079
    dc0= 0x01010101*((dc0 + 2)>>2);
2080
    dc2= 0x01010101*((dc2 + 2)>>2);
2081

    
2082
    for(i=0; i<4; i++){
2083
        ((uint32_t*)(src+i*stride))[0]=
2084
        ((uint32_t*)(src+i*stride))[1]= dc0;
2085
    }
2086
    for(i=4; i<8; i++){
2087
        ((uint32_t*)(src+i*stride))[0]=
2088
        ((uint32_t*)(src+i*stride))[1]= dc2;
2089
    }
2090
}
2091

    
2092
static void pred8x8_top_dc_c(uint8_t *src, int stride){
2093
    int i;
2094
    int dc0, dc1;
2095

    
2096
    dc0=dc1=0;
2097
    for(i=0;i<4; i++){
2098
        dc0+= src[i-stride];
2099
        dc1+= src[4+i-stride];
2100
    }
2101
    dc0= 0x01010101*((dc0 + 2)>>2);
2102
    dc1= 0x01010101*((dc1 + 2)>>2);
2103

    
2104
    for(i=0; i<4; i++){
2105
        ((uint32_t*)(src+i*stride))[0]= dc0;
2106
        ((uint32_t*)(src+i*stride))[1]= dc1;
2107
    }
2108
    for(i=4; i<8; i++){
2109
        ((uint32_t*)(src+i*stride))[0]= dc0;
2110
        ((uint32_t*)(src+i*stride))[1]= dc1;
2111
    }
2112
}
2113

    
2114

    
2115
static void pred8x8_dc_c(uint8_t *src, int stride){
2116
    int i;
2117
    int dc0, dc1, dc2, dc3;
2118

    
2119
    dc0=dc1=dc2=0;
2120
    for(i=0;i<4; i++){
2121
        dc0+= src[-1+i*stride] + src[i-stride];
2122
        dc1+= src[4+i-stride];
2123
        dc2+= src[-1+(i+4)*stride];
2124
    }
2125
    dc3= 0x01010101*((dc1 + dc2 + 4)>>3);
2126
    dc0= 0x01010101*((dc0 + 4)>>3);
2127
    dc1= 0x01010101*((dc1 + 2)>>2);
2128
    dc2= 0x01010101*((dc2 + 2)>>2);
2129

    
2130
    for(i=0; i<4; i++){
2131
        ((uint32_t*)(src+i*stride))[0]= dc0;
2132
        ((uint32_t*)(src+i*stride))[1]= dc1;
2133
    }
2134
    for(i=4; i<8; i++){
2135
        ((uint32_t*)(src+i*stride))[0]= dc2;
2136
        ((uint32_t*)(src+i*stride))[1]= dc3;
2137
    }
2138
}
2139

    
2140
static void pred8x8_plane_c(uint8_t *src, int stride){
2141
  int j, k;
2142
  int a;
2143
  uint8_t *cm = cropTbl + MAX_NEG_CROP;
2144
  const uint8_t * const src0 = src+3-stride;
2145
  const uint8_t *src1 = src+4*stride-1;
2146
  const uint8_t *src2 = src1-2*stride;      // == src+2*stride-1;
2147
  int H = src0[1] - src0[-1];
2148
  int V = src1[0] - src2[ 0];
2149
  for(k=2; k<=4; ++k) {
2150
    src1 += stride; src2 -= stride;
2151
    H += k*(src0[k] - src0[-k]);
2152
    V += k*(src1[0] - src2[ 0]);
2153
  }
2154
  H = ( 17*H+16 ) >> 5;
2155
  V = ( 17*V+16 ) >> 5;
2156

    
2157
  a = 16*(src1[0] + src2[8]+1) - 3*(V+H);
2158
  for(j=8; j>0; --j) {
2159
    int b = a;
2160
    a += V;
2161
    src[0] = cm[ (b    ) >> 5 ];
2162
    src[1] = cm[ (b+  H) >> 5 ];
2163
    src[2] = cm[ (b+2*H) >> 5 ];
2164
    src[3] = cm[ (b+3*H) >> 5 ];
2165
    src[4] = cm[ (b+4*H) >> 5 ];
2166
    src[5] = cm[ (b+5*H) >> 5 ];
2167
    src[6] = cm[ (b+6*H) >> 5 ];
2168
    src[7] = cm[ (b+7*H) >> 5 ];
2169
    src += stride;
2170
  }
2171
}
2172

    
2173
static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
2174
                           uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2175
                           int src_x_offset, int src_y_offset,
2176
                           qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
2177
    MpegEncContext * const s = &h->s;
2178
    const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
2179
    const int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
2180
    const int luma_xy= (mx&3) + ((my&3)<<2);
2181
    uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*s->linesize;
2182
    uint8_t * src_cb= pic->data[1] + (mx>>3) + (my>>3)*s->uvlinesize;
2183
    uint8_t * src_cr= pic->data[2] + (mx>>3) + (my>>3)*s->uvlinesize;
2184
    int extra_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16; //FIXME increase edge?, IMHO not worth it
2185
    int extra_height= extra_width;
2186
    int emu=0;
2187
    const int full_mx= mx>>2;
2188
    const int full_my= my>>2;
2189
    
2190
    assert(pic->data[0]);
2191
    
2192
    if(mx&7) extra_width -= 3;
2193
    if(my&7) extra_height -= 3;
2194
    
2195
    if(   full_mx < 0-extra_width 
2196
       || full_my < 0-extra_height 
2197
       || full_mx + 16/*FIXME*/ > s->width + extra_width 
2198
       || full_my + 16/*FIXME*/ > s->height + extra_height){
2199
        ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*s->linesize, s->linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, s->width, s->height);
2200
            src_y= s->edge_emu_buffer + 2 + 2*s->linesize;
2201
        emu=1;
2202
    }
2203
    
2204
    qpix_op[luma_xy](dest_y, src_y, s->linesize); //FIXME try variable height perhaps?
2205
    if(!square){
2206
        qpix_op[luma_xy](dest_y + delta, src_y + delta, s->linesize);
2207
    }
2208
    
2209
    if(s->flags&CODEC_FLAG_GRAY) return;
2210
    
2211
    if(emu){
2212
        ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), s->width>>1, s->height>>1);
2213
            src_cb= s->edge_emu_buffer;
2214
    }
2215
    chroma_op(dest_cb, src_cb, s->uvlinesize, chroma_height, mx&7, my&7);
2216

    
2217
    if(emu){
2218
        ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), s->width>>1, s->height>>1);
2219
            src_cr= s->edge_emu_buffer;
2220
    }
2221
    chroma_op(dest_cr, src_cr, s->uvlinesize, chroma_height, mx&7, my&7);
2222
}
2223

    
2224
static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
2225
                           uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2226
                           int x_offset, int y_offset,
2227
                           qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
2228
                           qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
2229
                           int list0, int list1){
2230
    MpegEncContext * const s = &h->s;
2231
    qpel_mc_func *qpix_op=  qpix_put;
2232
    h264_chroma_mc_func chroma_op= chroma_put;
2233
    
2234
    dest_y  += 2*x_offset + 2*y_offset*s->  linesize;
2235
    dest_cb +=   x_offset +   y_offset*s->uvlinesize;
2236
    dest_cr +=   x_offset +   y_offset*s->uvlinesize;
2237
    x_offset += 8*s->mb_x;
2238
    y_offset += 8*s->mb_y;
2239
    
2240
    if(list0){
2241
        Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
2242
        mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
2243
                           dest_y, dest_cb, dest_cr, x_offset, y_offset,
2244
                           qpix_op, chroma_op);
2245

    
2246
        qpix_op=  qpix_avg;
2247
        chroma_op= chroma_avg;
2248
    }
2249

    
2250
    if(list1){
2251
        Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
2252
        mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
2253
                           dest_y, dest_cb, dest_cr, x_offset, y_offset,
2254
                           qpix_op, chroma_op);
2255
    }
2256
}
2257

    
2258
static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
2259
                           uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2260
                           int x_offset, int y_offset,
2261
                           qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
2262
                           h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
2263
                           h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
2264
                           int list0, int list1){
2265
    MpegEncContext * const s = &h->s;
2266

    
2267
    dest_y  += 2*x_offset + 2*y_offset*s->  linesize;
2268
    dest_cb +=   x_offset +   y_offset*s->uvlinesize;
2269
    dest_cr +=   x_offset +   y_offset*s->uvlinesize;
2270
    x_offset += 8*s->mb_x;
2271
    y_offset += 8*s->mb_y;
2272
    
2273
    if(list0 && list1){
2274
        /* don't optimize for luma-only case, since B-frames usually
2275
         * use implicit weights => chroma too. */
2276
        uint8_t *tmp_cb = s->obmc_scratchpad;
2277
        uint8_t *tmp_cr = tmp_cb + 8*s->uvlinesize;
2278
        uint8_t *tmp_y  = tmp_cr + 8*s->uvlinesize;
2279
        int refn0 = h->ref_cache[0][ scan8[n] ];
2280
        int refn1 = h->ref_cache[1][ scan8[n] ];
2281

    
2282
        mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
2283
                    dest_y, dest_cb, dest_cr,
2284
                    x_offset, y_offset, qpix_put, chroma_put);
2285
        mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
2286
                    tmp_y, tmp_cb, tmp_cr,
2287
                    x_offset, y_offset, qpix_put, chroma_put);
2288

    
2289
        if(h->use_weight == 2){
2290
            int weight0 = h->implicit_weight[refn0][refn1];
2291
            int weight1 = 64 - weight0;
2292
            luma_weight_avg(  dest_y,  tmp_y,  s->  linesize, 5, weight0, weight1, 0, 0);
2293
            chroma_weight_avg(dest_cb, tmp_cb, s->uvlinesize, 5, weight0, weight1, 0, 0);
2294
            chroma_weight_avg(dest_cr, tmp_cr, s->uvlinesize, 5, weight0, weight1, 0, 0);
2295
        }else{
2296
            luma_weight_avg(dest_y, tmp_y, s->linesize, h->luma_log2_weight_denom,
2297
                            h->luma_weight[0][refn0], h->luma_weight[1][refn1], 
2298
                            h->luma_offset[0][refn0], h->luma_offset[1][refn1]);
2299
            chroma_weight_avg(dest_cb, tmp_cb, s->uvlinesize, h->chroma_log2_weight_denom,
2300
                            h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0], 
2301
                            h->chroma_offset[0][refn0][0], h->chroma_offset[1][refn1][0]);
2302
            chroma_weight_avg(dest_cr, tmp_cr, s->uvlinesize, h->chroma_log2_weight_denom,
2303
                            h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1], 
2304
                            h->chroma_offset[0][refn0][1], h->chroma_offset[1][refn1][1]);
2305
        }
2306
    }else{
2307
        int list = list1 ? 1 : 0;
2308
        int refn = h->ref_cache[list][ scan8[n] ];
2309
        Picture *ref= &h->ref_list[list][refn];
2310
        mc_dir_part(h, ref, n, square, chroma_height, delta, list,
2311
                    dest_y, dest_cb, dest_cr, x_offset, y_offset,
2312
                    qpix_put, chroma_put);
2313

    
2314
        luma_weight_op(dest_y, s->linesize, h->luma_log2_weight_denom,
2315
                       h->luma_weight[list][refn], h->luma_offset[list][refn]);
2316
        if(h->use_weight_chroma){
2317
            chroma_weight_op(dest_cb, s->uvlinesize, h->chroma_log2_weight_denom,
2318
                             h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]);
2319
            chroma_weight_op(dest_cr, s->uvlinesize, h->chroma_log2_weight_denom,
2320
                             h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]);
2321
        }
2322
    }
2323
}
2324

    
2325
static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
2326
                           uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2327
                           int x_offset, int y_offset,
2328
                           qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
2329
                           qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
2330
                           h264_weight_func *weight_op, h264_biweight_func *weight_avg, 
2331
                           int list0, int list1){
2332
    if((h->use_weight==2 && list0 && list1
2333
        && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32))
2334
       || h->use_weight==1)
2335
        mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
2336
                         x_offset, y_offset, qpix_put, chroma_put,
2337
                         weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
2338
    else
2339
        mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
2340
                    x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
2341
}
2342

    
2343
static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2344
                      qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
2345
                      qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
2346
                      h264_weight_func *weight_op, h264_biweight_func *weight_avg){
2347
    MpegEncContext * const s = &h->s;
2348
    const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
2349
    const int mb_type= s->current_picture.mb_type[mb_xy];
2350
    
2351
    assert(IS_INTER(mb_type));
2352
    
2353
    if(IS_16X16(mb_type)){
2354
        mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
2355
                qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
2356
                &weight_op[0], &weight_avg[0],
2357
                IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
2358
    }else if(IS_16X8(mb_type)){
2359
        mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
2360
                qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
2361
                &weight_op[1], &weight_avg[1],
2362
                IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
2363
        mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
2364
                qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
2365
                &weight_op[1], &weight_avg[1],
2366
                IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
2367
    }else if(IS_8X16(mb_type)){
2368
        mc_part(h, 0, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 0, 0,
2369
                qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
2370
                &weight_op[2], &weight_avg[2],
2371
                IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
2372
        mc_part(h, 4, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 4, 0,
2373
                qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
2374
                &weight_op[2], &weight_avg[2],
2375
                IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
2376
    }else{
2377
        int i;
2378
        
2379
        assert(IS_8X8(mb_type));
2380

    
2381
        for(i=0; i<4; i++){
2382
            const int sub_mb_type= h->sub_mb_type[i];
2383
            const int n= 4*i;
2384
            int x_offset= (i&1)<<2;
2385
            int y_offset= (i&2)<<1;
2386

    
2387
            if(IS_SUB_8X8(sub_mb_type)){
2388
                mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
2389
                    qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
2390
                    &weight_op[3], &weight_avg[3],
2391
                    IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2392
            }else if(IS_SUB_8X4(sub_mb_type)){
2393
                mc_part(h, n  , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
2394
                    qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
2395
                    &weight_op[4], &weight_avg[4],
2396
                    IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2397
                mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
2398
                    qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
2399
                    &weight_op[4], &weight_avg[4],
2400
                    IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2401
            }else if(IS_SUB_4X8(sub_mb_type)){
2402
                mc_part(h, n  , 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
2403
                    qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2404
                    &weight_op[5], &weight_avg[5],
2405
                    IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2406
                mc_part(h, n+1, 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
2407
                    qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2408
                    &weight_op[5], &weight_avg[5],
2409
                    IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2410
            }else{
2411
                int j;
2412
                assert(IS_SUB_4X4(sub_mb_type));
2413
                for(j=0; j<4; j++){
2414
                    int sub_x_offset= x_offset + 2*(j&1);
2415
                    int sub_y_offset= y_offset +   (j&2);
2416
                    mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
2417
                        qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2418
                        &weight_op[6], &weight_avg[6],
2419
                        IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2420
                }
2421
            }
2422
        }
2423
    }
2424
}
2425

    
2426
static void decode_init_vlc(H264Context *h){
2427
    static int done = 0;
2428

    
2429
    if (!done) {
2430
        int i;
2431
        done = 1;
2432

    
2433
        init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5, 
2434
                 &chroma_dc_coeff_token_len [0], 1, 1,
2435
                 &chroma_dc_coeff_token_bits[0], 1, 1, 1);
2436

    
2437
        for(i=0; i<4; i++){
2438
            init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17, 
2439
                     &coeff_token_len [i][0], 1, 1,
2440
                     &coeff_token_bits[i][0], 1, 1, 1);
2441
        }
2442

    
2443
        for(i=0; i<3; i++){
2444
            init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
2445
                     &chroma_dc_total_zeros_len [i][0], 1, 1,
2446
                     &chroma_dc_total_zeros_bits[i][0], 1, 1, 1);
2447
        }
2448
        for(i=0; i<15; i++){
2449
            init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16, 
2450
                     &total_zeros_len [i][0], 1, 1,
2451
                     &total_zeros_bits[i][0], 1, 1, 1);
2452
        }
2453

    
2454
        for(i=0; i<6; i++){
2455
            init_vlc(&run_vlc[i], RUN_VLC_BITS, 7, 
2456
                     &run_len [i][0], 1, 1,
2457
                     &run_bits[i][0], 1, 1, 1);
2458
        }
2459
        init_vlc(&run7_vlc, RUN7_VLC_BITS, 16, 
2460
                 &run_len [6][0], 1, 1,
2461
                 &run_bits[6][0], 1, 1, 1);
2462
    }
2463
}
2464

    
2465
/**
2466
 * Sets the intra prediction function pointers.
2467
 */
2468
static void init_pred_ptrs(H264Context *h){
2469
//    MpegEncContext * const s = &h->s;
2470

    
2471
    h->pred4x4[VERT_PRED           ]= pred4x4_vertical_c;
2472
    h->pred4x4[HOR_PRED            ]= pred4x4_horizontal_c;
2473
    h->pred4x4[DC_PRED             ]= pred4x4_dc_c;
2474
    h->pred4x4[DIAG_DOWN_LEFT_PRED ]= pred4x4_down_left_c;
2475
    h->pred4x4[DIAG_DOWN_RIGHT_PRED]= pred4x4_down_right_c;
2476
    h->pred4x4[VERT_RIGHT_PRED     ]= pred4x4_vertical_right_c;
2477
    h->pred4x4[HOR_DOWN_PRED       ]= pred4x4_horizontal_down_c;
2478
    h->pred4x4[VERT_LEFT_PRED      ]= pred4x4_vertical_left_c;
2479
    h->pred4x4[HOR_UP_PRED         ]= pred4x4_horizontal_up_c;
2480
    h->pred4x4[LEFT_DC_PRED        ]= pred4x4_left_dc_c;
2481
    h->pred4x4[TOP_DC_PRED         ]= pred4x4_top_dc_c;
2482
    h->pred4x4[DC_128_PRED         ]= pred4x4_128_dc_c;
2483

    
2484
    h->pred8x8[DC_PRED8x8     ]= pred8x8_dc_c;
2485
    h->pred8x8[VERT_PRED8x8   ]= pred8x8_vertical_c;
2486
    h->pred8x8[HOR_PRED8x8    ]= pred8x8_horizontal_c;
2487
    h->pred8x8[PLANE_PRED8x8  ]= pred8x8_plane_c;
2488
    h->pred8x8[LEFT_DC_PRED8x8]= pred8x8_left_dc_c;
2489
    h->pred8x8[TOP_DC_PRED8x8 ]= pred8x8_top_dc_c;
2490
    h->pred8x8[DC_128_PRED8x8 ]= pred8x8_128_dc_c;
2491

    
2492
    h->pred16x16[DC_PRED8x8     ]= pred16x16_dc_c;
2493
    h->pred16x16[VERT_PRED8x8   ]= pred16x16_vertical_c;
2494
    h->pred16x16[HOR_PRED8x8    ]= pred16x16_horizontal_c;
2495
    h->pred16x16[PLANE_PRED8x8  ]= pred16x16_plane_c;
2496
    h->pred16x16[LEFT_DC_PRED8x8]= pred16x16_left_dc_c;
2497
    h->pred16x16[TOP_DC_PRED8x8 ]= pred16x16_top_dc_c;
2498
    h->pred16x16[DC_128_PRED8x8 ]= pred16x16_128_dc_c;
2499
}
2500

    
2501
static void free_tables(H264Context *h){
2502
    av_freep(&h->intra4x4_pred_mode);
2503
    av_freep(&h->chroma_pred_mode_table);
2504
    av_freep(&h->cbp_table);
2505
    av_freep(&h->mvd_table[0]);
2506
    av_freep(&h->mvd_table[1]);
2507
    av_freep(&h->direct_table);
2508
    av_freep(&h->non_zero_count);
2509
    av_freep(&h->slice_table_base);
2510
    av_freep(&h->top_border);
2511
    h->slice_table= NULL;
2512

    
2513
    av_freep(&h->mb2b_xy);
2514
    av_freep(&h->mb2b8_xy);
2515

    
2516
    av_freep(&h->s.obmc_scratchpad);
2517
}
2518

    
2519
/**
2520
 * allocates tables.
2521
 * needs widzh/height
2522
 */
2523
static int alloc_tables(H264Context *h){
2524
    MpegEncContext * const s = &h->s;
2525
    const int big_mb_num= s->mb_stride * (s->mb_height+1);
2526
    int x,y;
2527

    
2528
    CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8  * sizeof(uint8_t))
2529

    
2530
    CHECKED_ALLOCZ(h->non_zero_count    , big_mb_num * 16 * sizeof(uint8_t))
2531
    CHECKED_ALLOCZ(h->slice_table_base  , big_mb_num * sizeof(uint8_t))
2532
    CHECKED_ALLOCZ(h->top_border       , s->mb_width * (16+8+8) * sizeof(uint8_t))
2533
    CHECKED_ALLOCZ(h->cbp_table, big_mb_num * sizeof(uint16_t))
2534

    
2535
    if( h->pps.cabac ) {
2536
        CHECKED_ALLOCZ(h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t))
2537
        CHECKED_ALLOCZ(h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t));
2538
        CHECKED_ALLOCZ(h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t));
2539
        CHECKED_ALLOCZ(h->direct_table, 32*big_mb_num * sizeof(uint8_t));
2540
    }
2541

    
2542
    memset(h->slice_table_base, -1, big_mb_num  * sizeof(uint8_t));
2543
    h->slice_table= h->slice_table_base + s->mb_stride + 1;
2544

    
2545
    CHECKED_ALLOCZ(h->mb2b_xy  , big_mb_num * sizeof(uint16_t));
2546
    CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint16_t));
2547
    for(y=0; y<s->mb_height; y++){
2548
        for(x=0; x<s->mb_width; x++){
2549
            const int mb_xy= x + y*s->mb_stride;
2550
            const int b_xy = 4*x + 4*y*h->b_stride;
2551
            const int b8_xy= 2*x + 2*y*h->b8_stride;
2552
        
2553
            h->mb2b_xy [mb_xy]= b_xy;
2554
            h->mb2b8_xy[mb_xy]= b8_xy;
2555
        }
2556
    }
2557

    
2558
    s->obmc_scratchpad = NULL;
2559

    
2560
    return 0;
2561
fail:
2562
    free_tables(h);
2563
    return -1;
2564
}
2565

    
2566
static void common_init(H264Context *h){
2567
    MpegEncContext * const s = &h->s;
2568

    
2569
    s->width = s->avctx->width;
2570
    s->height = s->avctx->height;
2571
    s->codec_id= s->avctx->codec->id;
2572
    
2573
    init_pred_ptrs(h);
2574

    
2575
    s->unrestricted_mv=1;
2576
    s->decode=1; //FIXME
2577
}
2578

    
2579
static int decode_init(AVCodecContext *avctx){
2580
    H264Context *h= avctx->priv_data;
2581
    MpegEncContext * const s = &h->s;
2582

    
2583
    MPV_decode_defaults(s);
2584
    
2585
    s->avctx = avctx;
2586
    common_init(h);
2587

    
2588
    s->out_format = FMT_H264;
2589
    s->workaround_bugs= avctx->workaround_bugs;
2590

    
2591
    // set defaults
2592
//    s->decode_mb= ff_h263_decode_mb;
2593
    s->low_delay= 1;
2594
    avctx->pix_fmt= PIX_FMT_YUV420P;
2595

    
2596
    decode_init_vlc(h);
2597
    
2598
    if(avctx->codec_tag != 0x31637661 && avctx->codec_tag != 0x31435641) // avc1
2599
        h->is_avc = 0;
2600
    else {
2601
        if((avctx->extradata_size == 0) || (avctx->extradata == NULL)) {
2602
            av_log(avctx, AV_LOG_ERROR, "AVC codec requires avcC data\n");
2603
            return -1;
2604
        }
2605
        h->is_avc = 1;
2606
        h->got_avcC = 0;
2607
    }
2608

    
2609
    return 0;
2610
}
2611

    
2612
static void frame_start(H264Context *h){
2613
    MpegEncContext * const s = &h->s;
2614
    int i;
2615

    
2616
    MPV_frame_start(s, s->avctx);
2617
    ff_er_frame_start(s);
2618

    
2619
    assert(s->linesize && s->uvlinesize);
2620

    
2621
    for(i=0; i<16; i++){
2622
        h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
2623
        h->chroma_subblock_offset[i]= 2*((scan8[i] - scan8[0])&7) + 2*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2624
    }
2625
    for(i=0; i<4; i++){
2626
        h->block_offset[16+i]=
2627
        h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2628
    }
2629

    
2630
    /* can't be in alloc_tables because linesize isn't known there.
2631
     * FIXME: redo bipred weight to not require extra buffer? */
2632
    if(!s->obmc_scratchpad)
2633
        s->obmc_scratchpad = av_malloc(16*s->linesize + 2*8*s->uvlinesize);
2634

    
2635
//    s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
2636
}
2637

    
2638
static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
2639
    MpegEncContext * const s = &h->s;
2640
    int i;
2641
    
2642
    src_y  -=   linesize;
2643
    src_cb -= uvlinesize;
2644
    src_cr -= uvlinesize;
2645

    
2646
    h->left_border[0]= h->top_border[s->mb_x][15];
2647
    for(i=1; i<17; i++){
2648
        h->left_border[i]= src_y[15+i*  linesize];
2649
    }
2650
    
2651
    *(uint64_t*)(h->top_border[s->mb_x]+0)= *(uint64_t*)(src_y +  16*linesize);
2652
    *(uint64_t*)(h->top_border[s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
2653

    
2654
    if(!(s->flags&CODEC_FLAG_GRAY)){
2655
        h->left_border[17  ]= h->top_border[s->mb_x][16+7];
2656
        h->left_border[17+9]= h->top_border[s->mb_x][24+7];
2657
        for(i=1; i<9; i++){
2658
            h->left_border[i+17  ]= src_cb[7+i*uvlinesize];
2659
            h->left_border[i+17+9]= src_cr[7+i*uvlinesize];
2660
        }
2661
        *(uint64_t*)(h->top_border[s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
2662
        *(uint64_t*)(h->top_border[s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
2663
    }
2664
}
2665

    
2666
static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
2667
    MpegEncContext * const s = &h->s;
2668
    int temp8, i;
2669
    uint64_t temp64;
2670
    int deblock_left = (s->mb_x > 0);
2671
    int deblock_top  = (s->mb_y > 0);
2672

    
2673
    src_y  -=   linesize + 1;
2674
    src_cb -= uvlinesize + 1;
2675
    src_cr -= uvlinesize + 1;
2676

    
2677
#define XCHG(a,b,t,xchg)\
2678
t= a;\
2679
if(xchg)\
2680
    a= b;\
2681
b= t;
2682

    
2683
    if(deblock_left){
2684
        for(i = !deblock_top; i<17; i++){
2685
            XCHG(h->left_border[i     ], src_y [i*  linesize], temp8, xchg);
2686
        }
2687
    }
2688

    
2689
    if(deblock_top){
2690
        XCHG(*(uint64_t*)(h->top_border[s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
2691
        XCHG(*(uint64_t*)(h->top_border[s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
2692
    }
2693

    
2694
    if(!(s->flags&CODEC_FLAG_GRAY)){
2695
        if(deblock_left){
2696
            for(i = !deblock_top; i<9; i++){
2697
                XCHG(h->left_border[i+17  ], src_cb[i*uvlinesize], temp8, xchg);
2698
                XCHG(h->left_border[i+17+9], src_cr[i*uvlinesize], temp8, xchg);
2699
            }
2700
        }
2701
        if(deblock_top){
2702
            XCHG(*(uint64_t*)(h->top_border[s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
2703
            XCHG(*(uint64_t*)(h->top_border[s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
2704
        }
2705
    }
2706
}
2707

    
2708
static void hl_decode_mb(H264Context *h){
2709
    MpegEncContext * const s = &h->s;
2710
    const int mb_x= s->mb_x;
2711
    const int mb_y= s->mb_y;
2712
    const int mb_xy= mb_x + mb_y*s->mb_stride;
2713
    const int mb_type= s->current_picture.mb_type[mb_xy];
2714
    uint8_t  *dest_y, *dest_cb, *dest_cr;
2715
    int linesize, uvlinesize /*dct_offset*/;
2716
    int i;
2717

    
2718
    if(!s->decode)
2719
        return;
2720

    
2721
    if(s->mb_skiped){
2722
    }
2723

    
2724
    dest_y  = s->current_picture.data[0] + (mb_y * 16* s->linesize  ) + mb_x * 16;
2725
    dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2726
    dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2727

    
2728
    if (h->mb_field_decoding_flag) {
2729
        linesize = s->linesize * 2;
2730
        uvlinesize = s->uvlinesize * 2;
2731
        if(mb_y&1){ //FIXME move out of this func?
2732
            dest_y -= s->linesize*15;
2733
            dest_cb-= s->linesize*7;
2734
            dest_cr-= s->linesize*7;
2735
        }
2736
    } else {
2737
        linesize = s->linesize;
2738
        uvlinesize = s->uvlinesize;
2739
//        dct_offset = s->linesize * 16;
2740
    }
2741

    
2742
    if(IS_INTRA(mb_type)){
2743
        if(h->deblocking_filter)
2744
            xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1);
2745

    
2746
        if(!(s->flags&CODEC_FLAG_GRAY)){
2747
            h->pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
2748
            h->pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
2749
        }
2750

    
2751
        if(IS_INTRA4x4(mb_type)){
2752
            if(!s->encoding){
2753
                for(i=0; i<16; i++){
2754
                    uint8_t * const ptr= dest_y + h->block_offset[i];
2755
                    uint8_t *topright;
2756
                    const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
2757
                    int tr;
2758

    
2759
                    if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
2760
                        const int topright_avail= (h->topright_samples_available<<i)&0x8000;
2761
                        assert(mb_y || linesize <= h->block_offset[i]);
2762
                        if(!topright_avail){
2763
                            tr= ptr[3 - linesize]*0x01010101;
2764
                            topright= (uint8_t*) &tr;
2765
                        }else if(i==5 && h->deblocking_filter){
2766
                            tr= *(uint32_t*)h->top_border[mb_x+1];
2767
                            topright= (uint8_t*) &tr;
2768
                        }else
2769
                            topright= ptr + 4 - linesize;
2770
                    }else
2771
                        topright= NULL;
2772

    
2773
                    h->pred4x4[ dir ](ptr, topright, linesize);
2774
                    if(h->non_zero_count_cache[ scan8[i] ]){
2775
                        if(s->codec_id == CODEC_ID_H264)
2776
                            s->dsp.h264_idct_add(ptr, h->mb + i*16, linesize);
2777
                        else
2778
                            svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
2779
                    }
2780
                }
2781
            }
2782
        }else{
2783
            h->pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
2784
            if(s->codec_id == CODEC_ID_H264)
2785
                h264_luma_dc_dequant_idct_c(h->mb, s->qscale);
2786
            else
2787
                svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
2788
        }
2789
        if(h->deblocking_filter)
2790
            xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0);
2791
    }else if(s->codec_id == CODEC_ID_H264){
2792
        hl_motion(h, dest_y, dest_cb, dest_cr,
2793
                  s->dsp.put_h264_qpel_pixels_tab, s->dsp.put_h264_chroma_pixels_tab, 
2794
                  s->dsp.avg_h264_qpel_pixels_tab, s->dsp.avg_h264_chroma_pixels_tab,
2795
                  s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab);
2796
    }
2797

    
2798

    
2799
    if(!IS_INTRA4x4(mb_type)){
2800
        if(s->codec_id == CODEC_ID_H264){
2801
            for(i=0; i<16; i++){
2802
                if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
2803
                    uint8_t * const ptr= dest_y + h->block_offset[i];
2804
                    s->dsp.h264_idct_add(ptr, h->mb + i*16, linesize);
2805
                }
2806
            }
2807
        }else{
2808
            for(i=0; i<16; i++){
2809
                if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
2810
                    uint8_t * const ptr= dest_y + h->block_offset[i];
2811
                    svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
2812
                }
2813
            }
2814
        }
2815
    }
2816

    
2817
    if(!(s->flags&CODEC_FLAG_GRAY)){
2818
        chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp);
2819
        chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp);
2820
        if(s->codec_id == CODEC_ID_H264){
2821
            for(i=16; i<16+4; i++){
2822
                if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2823
                    uint8_t * const ptr= dest_cb + h->block_offset[i];
2824
                    s->dsp.h264_idct_add(ptr, h->mb + i*16, uvlinesize);
2825
                }
2826
            }
2827
            for(i=20; i<20+4; i++){
2828
                if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2829
                    uint8_t * const ptr= dest_cr + h->block_offset[i];
2830
                    s->dsp.h264_idct_add(ptr, h->mb + i*16, uvlinesize);
2831
                }
2832
            }
2833
        }else{
2834
            for(i=16; i<16+4; i++){
2835
                if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2836
                    uint8_t * const ptr= dest_cb + h->block_offset[i];
2837
                    svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
2838
                }
2839
            }
2840
            for(i=20; i<20+4; i++){
2841
                if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2842
                    uint8_t * const ptr= dest_cr + h->block_offset[i];
2843
                    svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
2844
                }
2845
            }
2846
        }
2847
    }
2848
    if(h->deblocking_filter) {
2849
        backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
2850
        fill_caches(h, mb_type, 1); //FIXME dont fill stuff which isnt used by filter_mb
2851
        filter_mb(h, mb_x, mb_y, dest_y, dest_cb, dest_cr);
2852
    }
2853
}
2854

    
2855
/**
2856
 * fills the default_ref_list.
2857
 */
2858
static int fill_default_ref_list(H264Context *h){
2859
    MpegEncContext * const s = &h->s;
2860
    int i;
2861
    int smallest_poc_greater_than_current = -1;
2862
    Picture sorted_short_ref[16];
2863
    
2864
    if(h->slice_type==B_TYPE){
2865
        int out_i;
2866
        int limit= -1;
2867

    
2868
        /* sort frame according to poc in B slice */
2869
        for(out_i=0; out_i<h->short_ref_count; out_i++){
2870
            int best_i=-1;
2871
            int best_poc=INT_MAX;
2872

    
2873
            for(i=0; i<h->short_ref_count; i++){
2874
                const int poc= h->short_ref[i]->poc;
2875
                if(poc > limit && poc < best_poc){
2876
                    best_poc= poc;
2877
                    best_i= i;
2878
                }
2879
            }
2880
            
2881
            assert(best_i != -1);
2882
            
2883
            limit= best_poc;
2884
            sorted_short_ref[out_i]= *h->short_ref[best_i];
2885
            tprintf("sorted poc: %d->%d poc:%d fn:%d\n", best_i, out_i, sorted_short_ref[out_i].poc, sorted_short_ref[out_i].frame_num);
2886
            if (-1 == smallest_poc_greater_than_current) {
2887
                if (h->short_ref[best_i]->poc >= s->current_picture_ptr->poc) {
2888
                    smallest_poc_greater_than_current = out_i;
2889
                }
2890
            }
2891
        }
2892
    }
2893

    
2894
    if(s->picture_structure == PICT_FRAME){
2895
        if(h->slice_type==B_TYPE){
2896
            int list;
2897
            tprintf("current poc: %d, smallest_poc_greater_than_current: %d\n", s->current_picture_ptr->poc, smallest_poc_greater_than_current);
2898

    
2899
            // find the largest poc
2900
            for(list=0; list<2; list++){
2901
                int index = 0;
2902
                int j= -99;
2903
                int step= list ? -1 : 1;
2904

    
2905
                for(i=0; i<h->short_ref_count && index < h->ref_count[list]; i++, j+=step) {
2906
                    while(j<0 || j>= h->short_ref_count){
2907
                        step = -step;
2908
                        j= smallest_poc_greater_than_current + (step>>1);
2909
                    }
2910
                    if(sorted_short_ref[j].reference != 3) continue;
2911
                    h->default_ref_list[list][index  ]= sorted_short_ref[j];
2912
                    h->default_ref_list[list][index++].pic_id= sorted_short_ref[j].frame_num;
2913
                }
2914

    
2915
                for(i = 0; i < 16 && index < h->ref_count[ list ]; i++){
2916
                    if(h->long_ref[i] == NULL) continue;
2917
                    if(h->long_ref[i]->reference != 3) continue;
2918

    
2919
                    h->default_ref_list[ list ][index  ]= *h->long_ref[i];
2920
                    h->default_ref_list[ list ][index++].pic_id= i;;
2921
                }
2922
                
2923
                if(list && (smallest_poc_greater_than_current<=0 || smallest_poc_greater_than_current>=h->short_ref_count) && (1 < index)){
2924
                    // swap the two first elements of L1 when
2925
                    // L0 and L1 are identical
2926
                    Picture temp= h->default_ref_list[1][0];
2927
                    h->default_ref_list[1][0] = h->default_ref_list[1][1];
2928
                    h->default_ref_list[1][0] = temp;
2929
                }
2930

    
2931
                if(index < h->ref_count[ list ])
2932
                    memset(&h->default_ref_list[list][index], 0, sizeof(Picture)*(h->ref_count[ list ] - index));
2933
            }
2934
        }else{
2935
            int index=0;
2936
            for(i=0; i<h->short_ref_count && index < h->ref_count[0]; i++){
2937
                if(h->short_ref[i]->reference != 3) continue; //FIXME refernce field shit
2938
                h->default_ref_list[0][index  ]= *h->short_ref[i];
2939
                h->default_ref_list[0][index++].pic_id= h->short_ref[i]->frame_num;
2940
            }
2941
            for(i = 0; i < 16 && index < h->ref_count[0]; i++){
2942
                if(h->long_ref[i] == NULL) continue;
2943
                if(h->long_ref[i]->reference != 3) continue;
2944
                h->default_ref_list[0][index  ]= *h->long_ref[i];
2945
                h->default_ref_list[0][index++].pic_id= i;;
2946
            }
2947
            if(index < h->ref_count[0])
2948
                memset(&h->default_ref_list[0][index], 0, sizeof(Picture)*(h->ref_count[0] - index));
2949
        }
2950
    }else{ //FIELD
2951
        if(h->slice_type==B_TYPE){
2952
        }else{
2953
            //FIXME second field balh
2954
        }
2955
    }
2956
#ifdef TRACE
2957
    for (i=0; i<h->ref_count[0]; i++) {
2958
        tprintf("List0: %s fn:%d 0x%p\n", (h->default_ref_list[0][i].long_ref ? "LT" : "ST"), h->default_ref_list[0][i].pic_id, h->default_ref_list[0][i].data[0]);
2959
    }
2960
    if(h->slice_type==B_TYPE){
2961
        for (i=0; i<h->ref_count[1]; i++) {
2962
            tprintf("List1: %s fn:%d 0x%p\n", (h->default_ref_list[1][i].long_ref ? "LT" : "ST"), h->default_ref_list[1][i].pic_id, h->default_ref_list[0][i].data[0]);
2963
        }
2964
    }
2965
#endif
2966
    return 0;
2967
}
2968

    
2969
static void print_short_term(H264Context *h);
2970
static void print_long_term(H264Context *h);
2971

    
2972
static int decode_ref_pic_list_reordering(H264Context *h){
2973
    MpegEncContext * const s = &h->s;
2974
    int list;
2975
    
2976
    print_short_term(h);
2977
    print_long_term(h);
2978
    if(h->slice_type==I_TYPE || h->slice_type==SI_TYPE) return 0; //FIXME move beofre func
2979
    
2980
    for(list=0; list<2; list++){
2981
        memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
2982

    
2983
        if(get_bits1(&s->gb)){
2984
            int pred= h->curr_pic_num;
2985
            int index;
2986

    
2987
            for(index=0; ; index++){
2988
                int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb);
2989
                int pic_id;
2990
                int i;
2991
                
2992
                if(reordering_of_pic_nums_idc==3) 
2993
                    break;
2994
                
2995
                if(index >= h->ref_count[list]){
2996
                    av_log(h->s.avctx, AV_LOG_ERROR, "reference count overflow\n");
2997
                    return -1;
2998
                }
2999
                
3000
                if(reordering_of_pic_nums_idc<3){
3001
                    if(reordering_of_pic_nums_idc<2){
3002
                        const int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1;
3003

    
3004
                        if(abs_diff_pic_num >= h->max_pic_num){
3005
                            av_log(h->s.avctx, AV_LOG_ERROR, "abs_diff_pic_num overflow\n");
3006
                            return -1;
3007
                        }
3008

    
3009
                        if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num;
3010
                        else                                pred+= abs_diff_pic_num;
3011
                        pred &= h->max_pic_num - 1;
3012
                    
3013
                        for(i= h->ref_count[list]-1; i>=index; i--){
3014
                            if(h->ref_list[list][i].pic_id == pred && h->ref_list[list][i].long_ref==0)
3015
                                break;
3016
                        }
3017
                    }else{
3018
                        pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx
3019

    
3020
                        for(i= h->ref_count[list]-1; i>=index; i--){
3021
                            if(h->ref_list[list][i].pic_id == pic_id && h->ref_list[list][i].long_ref==1)
3022
                                break;
3023
                        }
3024
                    }
3025

    
3026
                    if(i < index){
3027
                        av_log(h->s.avctx, AV_LOG_ERROR, "reference picture missing during reorder\n");
3028
                        memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME
3029
                    }else if(i > index){
3030
                        Picture tmp= h->ref_list[list][i];
3031
                        for(; i>index; i--){
3032
                            h->ref_list[list][i]= h->ref_list[list][i-1];
3033
                        }
3034
                        h->ref_list[list][index]= tmp;
3035
                    }
3036
                }else{
3037
                    av_log(h->s.avctx, AV_LOG_ERROR, "illegal reordering_of_pic_nums_idc\n");
3038
                    return -1;
3039
                }
3040
            }
3041
        }
3042

    
3043
        if(h->slice_type!=B_TYPE) break;
3044
    }
3045
    
3046
    if(h->slice_type==B_TYPE && !h->direct_spatial_mv_pred)
3047
        direct_dist_scale_factor(h);
3048
    return 0;    
3049
}
3050

    
3051
static int pred_weight_table(H264Context *h){
3052
    MpegEncContext * const s = &h->s;
3053
    int list, i;
3054
    int luma_def, chroma_def;
3055
    
3056
    h->use_weight= 0;
3057
    h->use_weight_chroma= 0;
3058
    h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
3059
    h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
3060
    luma_def = 1<<h->luma_log2_weight_denom;
3061
    chroma_def = 1<<h->chroma_log2_weight_denom;
3062

    
3063
    for(list=0; list<2; list++){
3064
        for(i=0; i<h->ref_count[list]; i++){
3065
            int luma_weight_flag, chroma_weight_flag;
3066
            
3067
            luma_weight_flag= get_bits1(&s->gb);
3068
            if(luma_weight_flag){
3069
                h->luma_weight[list][i]= get_se_golomb(&s->gb);
3070
                h->luma_offset[list][i]= get_se_golomb(&s->gb);
3071
                if(   h->luma_weight[list][i] != luma_def
3072
                   || h->luma_offset[list][i] != 0)
3073
                    h->use_weight= 1;
3074
            }else{
3075
                h->luma_weight[list][i]= luma_def;
3076
                h->luma_offset[list][i]= 0;
3077
            }
3078

    
3079
            chroma_weight_flag= get_bits1(&s->gb);
3080
            if(chroma_weight_flag){
3081
                int j;
3082
                for(j=0; j<2; j++){
3083
                    h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
3084
                    h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
3085
                    if(   h->chroma_weight[list][i][j] != chroma_def
3086
                       || h->chroma_offset[list][i][j] != 0)
3087
                        h->use_weight_chroma= 1;
3088
                }
3089
            }else{
3090
                int j;
3091
                for(j=0; j<2; j++){
3092
                    h->chroma_weight[list][i][j]= chroma_def;
3093
                    h->chroma_offset[list][i][j]= 0;
3094
                }
3095
            }
3096
        }
3097
        if(h->slice_type != B_TYPE) break;
3098
    }
3099
    h->use_weight= h->use_weight || h->use_weight_chroma;
3100
    return 0;
3101
}
3102

    
3103
static void implicit_weight_table(H264Context *h){
3104
    MpegEncContext * const s = &h->s;
3105
    int ref0, ref1;
3106
    int cur_poc = s->current_picture_ptr->poc;
3107

    
3108
    if(   h->ref_count[0] == 1 && h->ref_count[1] == 1
3109
       && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
3110
        h->use_weight= 0;
3111
        h->use_weight_chroma= 0;
3112
        return;
3113
    }
3114

    
3115
    h->use_weight= 2;
3116
    h->use_weight_chroma= 2;
3117
    h->luma_log2_weight_denom= 5;
3118
    h->chroma_log2_weight_denom= 5;
3119

    
3120
    /* FIXME: MBAFF */
3121
    for(ref0=0; ref0 < h->ref_count[0]; ref0++){
3122
        int poc0 = h->ref_list[0][ref0].poc;
3123
        for(ref1=0; ref1 < h->ref_count[1]; ref1++){
3124
            int poc1 = h->ref_list[0][ref1].poc;
3125
            int td = clip(poc1 - poc0, -128, 127);
3126
            if(td){
3127
                int tb = clip(cur_poc - poc0, -128, 127);
3128
                int tx = (16384 + (ABS(td) >> 1)) / td;
3129
                int dist_scale_factor = clip((tb*tx + 32) >> 6, -1024, 1023) >> 2;
3130
                if(dist_scale_factor < -64 || dist_scale_factor > 128)
3131
                    h->implicit_weight[ref0][ref1] = 32;
3132
                else
3133
                    h->implicit_weight[ref0][ref1] = 64 - dist_scale_factor;
3134
            }else
3135
                h->implicit_weight[ref0][ref1] = 32;
3136
        }
3137
    }
3138
}
3139

    
3140
/**
3141
 * instantaneous decoder refresh.
3142
 */
3143
static void idr(H264Context *h){
3144
    int i,j;
3145

    
3146
#define CHECK_DELAY(pic) \
3147
    for(j = 0; h->delayed_pic[j]; j++) \
3148
        if(pic == h->delayed_pic[j]){ \
3149
            pic->reference=1; \
3150
            break; \
3151
        }
3152

    
3153
    for(i=0; i<16; i++){
3154
        if (h->long_ref[i] != NULL) {
3155
            h->long_ref[i]->reference=0;
3156
            CHECK_DELAY(h->long_ref[i]);
3157
            h->long_ref[i]= NULL;
3158
        }
3159
    }
3160
    h->long_ref_count=0;
3161

    
3162
    for(i=0; i<h->short_ref_count; i++){
3163
        h->short_ref[i]->reference=0;
3164
        CHECK_DELAY(h->short_ref[i]);
3165
        h->short_ref[i]= NULL;
3166
    }
3167
    h->short_ref_count=0;
3168
}
3169
#undef CHECK_DELAY
3170

    
3171
/**
3172
 *
3173
 * @return the removed picture or NULL if an error occures
3174
 */
3175
static Picture * remove_short(H264Context *h, int frame_num){
3176
    MpegEncContext * const s = &h->s;
3177
    int i;
3178
    
3179
    if(s->avctx->debug&FF_DEBUG_MMCO)
3180
        av_log(h->s.avctx, AV_LOG_DEBUG, "remove short %d count %d\n", frame_num, h->short_ref_count);
3181
    
3182
    for(i=0; i<h->short_ref_count; i++){
3183
        Picture *pic= h->short_ref[i];
3184
        if(s->avctx->debug&FF_DEBUG_MMCO)
3185
            av_log(h->s.avctx, AV_LOG_DEBUG, "%d %d %p\n", i, pic->frame_num, pic);
3186
        if(pic->frame_num == frame_num){
3187
            h->short_ref[i]= NULL;
3188
            memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i - 1)*sizeof(Picture*));
3189
            h->short_ref_count--;
3190
            return pic;
3191
        }
3192
    }
3193
    return NULL;
3194
}
3195

    
3196
/**
3197
 *
3198
 * @return the removed picture or NULL if an error occures
3199
 */
3200
static Picture * remove_long(H264Context *h, int i){
3201
    Picture *pic;
3202

    
3203
    pic= h->long_ref[i];
3204
    h->long_ref[i]= NULL;
3205
    if(pic) h->long_ref_count--;
3206

    
3207
    return pic;
3208
}
3209

    
3210
/**
3211
 * print short term list
3212
 */
3213
static void print_short_term(H264Context *h) {
3214
    uint32_t i;
3215
    if(h->s.avctx->debug&FF_DEBUG_MMCO) {
3216
        av_log(h->s.avctx, AV_LOG_DEBUG, "short term list:\n");
3217
        for(i=0; i<h->short_ref_count; i++){
3218
            Picture *pic= h->short_ref[i];
3219
            av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
3220
        }
3221
    }
3222
}
3223

    
3224
/**
3225
 * print long term list
3226
 */
3227
static void print_long_term(H264Context *h) {
3228
    uint32_t i;
3229
    if(h->s.avctx->debug&FF_DEBUG_MMCO) {
3230
        av_log(h->s.avctx, AV_LOG_DEBUG, "long term list:\n");
3231
        for(i = 0; i < 16; i++){
3232
            Picture *pic= h->long_ref[i];
3233
            if (pic) {
3234
                av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
3235
            }
3236
        }
3237
    }
3238
}
3239

    
3240
/**
3241
 * Executes the reference picture marking (memory management control operations).
3242
 */
3243
static int execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count){
3244
    MpegEncContext * const s = &h->s;
3245
    int i, j;
3246
    int current_is_long=0;
3247
    Picture *pic;
3248
    
3249
    if((s->avctx->debug&FF_DEBUG_MMCO) && mmco_count==0)
3250
        av_log(h->s.avctx, AV_LOG_DEBUG, "no mmco here\n");
3251
        
3252
    for(i=0; i<mmco_count; i++){
3253
        if(s->avctx->debug&FF_DEBUG_MMCO)
3254
            av_log(h->s.avctx, AV_LOG_DEBUG, "mmco:%d %d %d\n", h->mmco[i].opcode, h->mmco[i].short_frame_num, h->mmco[i].long_index);
3255

    
3256
        switch(mmco[i].opcode){
3257
        case MMCO_SHORT2UNUSED:
3258
            pic= remove_short(h, mmco[i].short_frame_num);
3259
            if(pic==NULL) return -1;
3260
            pic->reference= 0;
3261
            break;
3262
        case MMCO_SHORT2LONG:
3263
            pic= remove_long(h, mmco[i].long_index);
3264
            if(pic) pic->reference=0;
3265
            
3266
            h->long_ref[ mmco[i].long_index ]= remove_short(h, mmco[i].short_frame_num);
3267
            h->long_ref[ mmco[i].long_index ]->long_ref=1;
3268
            h->long_ref_count++;
3269
            break;
3270
        case MMCO_LONG2UNUSED:
3271
            pic= remove_long(h, mmco[i].long_index);
3272
            if(pic==NULL) return -1;
3273
            pic->reference= 0;
3274
            break;
3275
        case MMCO_LONG:
3276
            pic= remove_long(h, mmco[i].long_index);
3277
            if(pic) pic->reference=0;
3278
            
3279
            h->long_ref[ mmco[i].long_index ]= s->current_picture_ptr;
3280
            h->long_ref[ mmco[i].long_index ]->long_ref=1;
3281
            h->long_ref_count++;
3282
            
3283
            current_is_long=1;
3284
            break;
3285
        case MMCO_SET_MAX_LONG:
3286
            assert(mmco[i].long_index <= 16);
3287
            // just remove the long term which index is greater than new max
3288
            for(j = mmco[i].long_index; j<16; j++){
3289
                pic = remove_long(h, j);
3290
                if (pic) pic->reference=0;
3291
            }
3292
            break;
3293
        case MMCO_RESET:
3294
            while(h->short_ref_count){
3295
                pic= remove_short(h, h->short_ref[0]->frame_num);
3296
                pic->reference=0;
3297
            }
3298
            for(j = 0; j < 16; j++) {
3299
                pic= remove_long(h, j);
3300
                if(pic) pic->reference=0;
3301
            }
3302
            break;
3303
        default: assert(0);
3304
        }
3305
    }
3306
    
3307
    if(!current_is_long){
3308
        pic= remove_short(h, s->current_picture_ptr->frame_num);
3309
        if(pic){
3310
            pic->reference=0;
3311
            av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term buffer state detected\n");
3312
        }
3313
        
3314
        if(h->short_ref_count)
3315
            memmove(&h->short_ref[1], &h->short_ref[0], h->short_ref_count*sizeof(Picture*));
3316

    
3317
        h->short_ref[0]= s->current_picture_ptr;
3318
        h->short_ref[0]->long_ref=0;
3319
        h->short_ref_count++;
3320
    }
3321
    
3322
    print_short_term(h);
3323
    print_long_term(h);
3324
    return 0; 
3325
}
3326

    
3327
static int decode_ref_pic_marking(H264Context *h){
3328
    MpegEncContext * const s = &h->s;
3329
    int i;
3330
    
3331
    if(h->nal_unit_type == NAL_IDR_SLICE){ //FIXME fields
3332
        s->broken_link= get_bits1(&s->gb) -1;
3333
        h->mmco[0].long_index= get_bits1(&s->gb) - 1; // current_long_term_idx
3334
        if(h->mmco[0].long_index == -1)
3335
            h->mmco_index= 0;
3336
        else{
3337
            h->mmco[0].opcode= MMCO_LONG;
3338
            h->mmco_index= 1;
3339
        } 
3340
    }else{
3341
        if(get_bits1(&s->gb)){ // adaptive_ref_pic_marking_mode_flag
3342
            for(i= 0; i<MAX_MMCO_COUNT; i++) { 
3343
                MMCOOpcode opcode= get_ue_golomb(&s->gb);;
3344

    
3345
                h->mmco[i].opcode= opcode;
3346
                if(opcode==MMCO_SHORT2UNUSED || opcode==MMCO_SHORT2LONG){
3347
                    h->mmco[i].short_frame_num= (h->frame_num - get_ue_golomb(&s->gb) - 1) & ((1<<h->sps.log2_max_frame_num)-1); //FIXME fields
3348
/*                    if(h->mmco[i].short_frame_num >= h->short_ref_count || h->short_ref[ h->mmco[i].short_frame_num ] == NULL){
3349
                        fprintf(stderr, "illegal short ref in memory management control operation %d\n", mmco);
3350
                        return -1;
3351
                    }*/
3352
                }
3353
                if(opcode==MMCO_SHORT2LONG || opcode==MMCO_LONG2UNUSED || opcode==MMCO_LONG || opcode==MMCO_SET_MAX_LONG){
3354
                    h->mmco[i].long_index= get_ue_golomb(&s->gb);
3355
                    if(/*h->mmco[i].long_index >= h->long_ref_count || h->long_ref[ h->mmco[i].long_index ] == NULL*/ h->mmco[i].long_index >= 16){
3356
                        av_log(h->s.avctx, AV_LOG_ERROR, "illegal long ref in memory management control operation %d\n", opcode);
3357
                        return -1;
3358
                    }
3359
                }
3360
                    
3361
                if(opcode > MMCO_LONG){
3362
                    av_log(h->s.avctx, AV_LOG_ERROR, "illegal memory management control operation %d\n", opcode);
3363
                    return -1;
3364
                }
3365
                if(opcode == MMCO_END)
3366
                    break;
3367
            }
3368
            h->mmco_index= i;
3369
        }else{
3370
            assert(h->long_ref_count + h->short_ref_count <= h->sps.ref_frame_count);
3371

    
3372
            if(h->long_ref_count + h->short_ref_count == h->sps.ref_frame_count){ //FIXME fields
3373
                h->mmco[0].opcode= MMCO_SHORT2UNUSED;
3374
                h->mmco[0].short_frame_num= h->short_ref[ h->short_ref_count - 1 ]->frame_num;
3375
                h->mmco_index= 1;
3376
            }else
3377
                h->mmco_index= 0;
3378
        }
3379
    }
3380
    
3381
    return 0; 
3382
}
3383

    
3384
static int init_poc(H264Context *h){
3385
    MpegEncContext * const s = &h->s;
3386
    const int max_frame_num= 1<<h->sps.log2_max_frame_num;
3387
    int field_poc[2];
3388

    
3389
    if(h->nal_unit_type == NAL_IDR_SLICE){
3390
        h->frame_num_offset= 0;
3391
    }else{
3392
        if(h->frame_num < h->prev_frame_num)
3393
            h->frame_num_offset= h->prev_frame_num_offset + max_frame_num;
3394
        else
3395
            h->frame_num_offset= h->prev_frame_num_offset;
3396
    }
3397

    
3398
    if(h->sps.poc_type==0){
3399
        const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
3400

    
3401
        if     (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
3402
            h->poc_msb = h->prev_poc_msb + max_poc_lsb;
3403
        else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
3404
            h->poc_msb = h->prev_poc_msb - max_poc_lsb;
3405
        else
3406
            h->poc_msb = h->prev_poc_msb;
3407
//printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
3408
        field_poc[0] = 
3409
        field_poc[1] = h->poc_msb + h->poc_lsb;
3410
        if(s->picture_structure == PICT_FRAME) 
3411
            field_poc[1] += h->delta_poc_bottom;
3412
    }else if(h->sps.poc_type==1){
3413
        int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
3414
        int i;
3415

    
3416
        if(h->sps.poc_cycle_length != 0)
3417
            abs_frame_num = h->frame_num_offset + h->frame_num;
3418
        else
3419
            abs_frame_num = 0;
3420

    
3421
        if(h->nal_ref_idc==0 && abs_frame_num > 0)
3422
            abs_frame_num--;
3423
            
3424
        expected_delta_per_poc_cycle = 0;
3425
        for(i=0; i < h->sps.poc_cycle_length; i++)
3426
            expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
3427

    
3428
        if(abs_frame_num > 0){
3429
            int poc_cycle_cnt          = (abs_frame_num - 1) / h->sps.poc_cycle_length;
3430
            int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
3431

    
3432
            expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
3433
            for(i = 0; i <= frame_num_in_poc_cycle; i++)
3434
                expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
3435
        } else
3436
            expectedpoc = 0;
3437

    
3438
        if(h->nal_ref_idc == 0) 
3439
            expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
3440
        
3441
        field_poc[0] = expectedpoc + h->delta_poc[0];
3442
        field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
3443

    
3444
        if(s->picture_structure == PICT_FRAME)
3445
            field_poc[1] += h->delta_poc[1];
3446
    }else{
3447
        int poc;
3448
        if(h->nal_unit_type == NAL_IDR_SLICE){
3449
            poc= 0;
3450
        }else{
3451
            if(h->nal_ref_idc) poc= 2*(h->frame_num_offset + h->frame_num);
3452
            else               poc= 2*(h->frame_num_offset + h->frame_num) - 1;
3453
        }
3454
        field_poc[0]= poc;
3455
        field_poc[1]= poc;
3456
    }
3457
    
3458
    if(s->picture_structure != PICT_BOTTOM_FIELD)
3459
        s->current_picture_ptr->field_poc[0]= field_poc[0];
3460
    if(s->picture_structure != PICT_TOP_FIELD)
3461
        s->current_picture_ptr->field_poc[1]= field_poc[1];
3462
    if(s->picture_structure == PICT_FRAME) // FIXME field pix?
3463
        s->current_picture_ptr->poc= FFMIN(field_poc[0], field_poc[1]);
3464

    
3465
    return 0;
3466
}
3467

    
3468
/**
3469
 * decodes a slice header.
3470
 * this will allso call MPV_common_init() and frame_start() as needed
3471
 */
3472
static int decode_slice_header(H264Context *h){
3473
    MpegEncContext * const s = &h->s;
3474
    int first_mb_in_slice, pps_id;
3475
    int num_ref_idx_active_override_flag;
3476
    static const uint8_t slice_type_map[5]= {P_TYPE, B_TYPE, I_TYPE, SP_TYPE, SI_TYPE};
3477

    
3478
    s->current_picture.reference= h->nal_ref_idc != 0;
3479

    
3480
    first_mb_in_slice= get_ue_golomb(&s->gb);
3481

    
3482
    h->slice_type= get_ue_golomb(&s->gb);
3483
    if(h->slice_type > 9){
3484
        av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
3485
        return -1;
3486
    }
3487
    if(h->slice_type > 4){
3488
        h->slice_type -= 5;
3489
        h->slice_type_fixed=1;
3490
    }else
3491
        h->slice_type_fixed=0;
3492
    
3493
    h->slice_type= slice_type_map[ h->slice_type ];
3494
    
3495
    s->pict_type= h->slice_type; // to make a few old func happy, its wrong though
3496
        
3497
    pps_id= get_ue_golomb(&s->gb);
3498
    if(pps_id>255){
3499
        av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
3500
        return -1;
3501
    }
3502
    h->pps= h->pps_buffer[pps_id];
3503
    if(h->pps.slice_group_count == 0){
3504
        av_log(h->s.avctx, AV_LOG_ERROR, "non existing PPS referenced\n");
3505
        return -1;
3506
    }
3507

    
3508
    h->sps= h->sps_buffer[ h->pps.sps_id ];
3509
    if(h->sps.log2_max_frame_num == 0){
3510
        av_log(h->s.avctx, AV_LOG_ERROR, "non existing SPS referenced\n");
3511
        return -1;
3512
    }
3513
    
3514
    s->mb_width= h->sps.mb_width;
3515
    s->mb_height= h->sps.mb_height;
3516
    
3517
    h->b_stride=  s->mb_width*4 + 1;
3518
    h->b8_stride= s->mb_width*2 + 1;
3519

    
3520
    s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width;
3521
    s->resync_mb_y = s->mb_y = first_mb_in_slice / s->mb_width; //FIXME AFFW
3522
    
3523
    s->width = 16*s->mb_width - 2*(h->sps.crop_left + h->sps.crop_right );
3524
    if(h->sps.frame_mbs_only_flag)
3525
        s->height= 16*s->mb_height - 2*(h->sps.crop_top  + h->sps.crop_bottom);
3526
    else
3527
        s->height= 16*s->mb_height - 4*(h->sps.crop_top  + h->sps.crop_bottom); //FIXME recheck
3528
    
3529
    if (s->context_initialized 
3530
        && (   s->width != s->avctx->width || s->height != s->avctx->height)) {
3531
        free_tables(h);
3532
        MPV_common_end(s);
3533
    }
3534
    if (!s->context_initialized) {
3535
        if (MPV_common_init(s) < 0)
3536
            return -1;
3537

    
3538
        alloc_tables(h);
3539

    
3540
        s->avctx->width = s->width;
3541
        s->avctx->height = s->height;
3542
        s->avctx->sample_aspect_ratio= h->sps.sar;
3543
        if(!s->avctx->sample_aspect_ratio.den)
3544
            s->avctx->sample_aspect_ratio.den = 1;
3545

    
3546
        if(h->sps.timing_info_present_flag && h->sps.fixed_frame_rate_flag){
3547
            s->avctx->frame_rate = h->sps.time_scale;
3548
            s->avctx->frame_rate_base = h->sps.num_units_in_tick;
3549
        }
3550
    }
3551

    
3552
    if(h->slice_num == 0){
3553
        frame_start(h);
3554
    }
3555

    
3556
    s->current_picture_ptr->frame_num= //FIXME frame_num cleanup
3557
    h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
3558

    
3559
    if(h->sps.frame_mbs_only_flag){
3560
        s->picture_structure= PICT_FRAME;
3561
    }else{
3562
        if(get_bits1(&s->gb)) //field_pic_flag
3563
            s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
3564
        else
3565
            s->picture_structure= PICT_FRAME;
3566
    }
3567

    
3568
    if(s->picture_structure==PICT_FRAME){
3569
        h->curr_pic_num=   h->frame_num;
3570
        h->max_pic_num= 1<< h->sps.log2_max_frame_num;
3571
    }else{
3572
        h->curr_pic_num= 2*h->frame_num;
3573
        h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
3574
    }
3575
        
3576
    if(h->nal_unit_type == NAL_IDR_SLICE){
3577
        get_ue_golomb(&s->gb); /* idr_pic_id */
3578
    }
3579
   
3580
    if(h->sps.poc_type==0){
3581
        h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
3582
        
3583
        if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
3584
            h->delta_poc_bottom= get_se_golomb(&s->gb);
3585
        }
3586
    }
3587
    
3588
    if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
3589
        h->delta_poc[0]= get_se_golomb(&s->gb);
3590
        
3591
        if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
3592
            h->delta_poc[1]= get_se_golomb(&s->gb);
3593
    }
3594
    
3595
    init_poc(h);
3596
    
3597
    if(h->pps.redundant_pic_cnt_present){
3598
        h->redundant_pic_count= get_ue_golomb(&s->gb);
3599
    }
3600

    
3601
    //set defaults, might be overriden a few line later
3602
    h->ref_count[0]= h->pps.ref_count[0];
3603
    h->ref_count[1]= h->pps.ref_count[1];
3604

    
3605
    if(h->slice_type == P_TYPE || h->slice_type == SP_TYPE || h->slice_type == B_TYPE){
3606
        if(h->slice_type == B_TYPE){
3607
            h->direct_spatial_mv_pred= get_bits1(&s->gb);
3608
        }
3609
        num_ref_idx_active_override_flag= get_bits1(&s->gb);
3610
    
3611
        if(num_ref_idx_active_override_flag){
3612
            h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
3613
            if(h->slice_type==B_TYPE)
3614
                h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
3615

    
3616
            if(h->ref_count[0] > 32 || h->ref_count[1] > 32){
3617
                av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
3618
                return -1;
3619
            }
3620
        }
3621
    }
3622

    
3623
    if(h->slice_num == 0){
3624
        fill_default_ref_list(h);
3625
    }
3626

    
3627
    decode_ref_pic_list_reordering(h);
3628

    
3629
    if(   (h->pps.weighted_pred          && (h->slice_type == P_TYPE || h->slice_type == SP_TYPE )) 
3630
       || (h->pps.weighted_bipred_idc==1 && h->slice_type==B_TYPE ) )
3631
        pred_weight_table(h);
3632
    else if(h->pps.weighted_bipred_idc==2 && h->slice_type==B_TYPE)
3633
        implicit_weight_table(h);
3634
    else
3635
        h->use_weight = 0;
3636
    
3637
    if(s->current_picture.reference)
3638
        decode_ref_pic_marking(h);
3639

    
3640
    if( h->slice_type != I_TYPE && h->slice_type != SI_TYPE && h->pps.cabac )
3641
        h->cabac_init_idc = get_ue_golomb(&s->gb);
3642

    
3643
    h->last_qscale_diff = 0;
3644
    s->qscale = h->pps.init_qp + get_se_golomb(&s->gb);
3645
    if(s->qscale<0 || s->qscale>51){
3646
        av_log(s->avctx, AV_LOG_ERROR, "QP %d out of range\n", s->qscale);
3647
        return -1;
3648
    }
3649
    h->chroma_qp = get_chroma_qp(h, s->qscale);
3650
    //FIXME qscale / qp ... stuff
3651
    if(h->slice_type == SP_TYPE){
3652
        get_bits1(&s->gb); /* sp_for_switch_flag */
3653
    }
3654
    if(h->slice_type==SP_TYPE || h->slice_type == SI_TYPE){
3655
        get_se_golomb(&s->gb); /* slice_qs_delta */
3656
    }
3657

    
3658
    h->deblocking_filter = 1;
3659
    h->slice_alpha_c0_offset = 0;
3660
    h->slice_beta_offset = 0;
3661
    if( h->pps.deblocking_filter_parameters_present ) {
3662
        h->deblocking_filter= get_ue_golomb(&s->gb);
3663
        if(h->deblocking_filter < 2) 
3664
            h->deblocking_filter^= 1; // 1<->0
3665

    
3666
        if( h->deblocking_filter ) {
3667
            h->slice_alpha_c0_offset = get_se_golomb(&s->gb) << 1;
3668
            h->slice_beta_offset = get_se_golomb(&s->gb) << 1;
3669
        }
3670
    }
3671

    
3672
#if 0 //FMO
3673
    if( h->pps.num_slice_groups > 1  && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
3674
        slice_group_change_cycle= get_bits(&s->gb, ?);
3675
#endif
3676

    
3677
    h->slice_num++;
3678

    
3679
    if(s->avctx->debug&FF_DEBUG_PICT_INFO){
3680
        av_log(h->s.avctx, AV_LOG_DEBUG, "slice:%d mb:%d %c pps:%d frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d weight:%d%s\n", 
3681
               h->slice_num, first_mb_in_slice, 
3682
               av_get_pict_type_char(h->slice_type),
3683
               pps_id, h->frame_num,
3684
               s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
3685
               h->ref_count[0], h->ref_count[1],
3686
               s->qscale,
3687
               h->deblocking_filter,
3688
               h->use_weight,
3689
               h->use_weight==1 && h->use_weight_chroma ? "c" : ""
3690
               );
3691
    }
3692

    
3693
    return 0;
3694
}
3695

    
3696
/**
3697
 *
3698
 */
3699
static inline int get_level_prefix(GetBitContext *gb){
3700
    unsigned int buf;
3701
    int log;
3702
    
3703
    OPEN_READER(re, gb);
3704
    UPDATE_CACHE(re, gb);
3705
    buf=GET_CACHE(re, gb);
3706
    
3707
    log= 32 - av_log2(buf);
3708
#ifdef TRACE
3709
    print_bin(buf>>(32-log), log);
3710
    av_log(NULL, AV_LOG_DEBUG, "%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__);
3711
#endif
3712

    
3713
    LAST_SKIP_BITS(re, gb, log);
3714
    CLOSE_READER(re, gb);
3715

    
3716
    return log-1;
3717
}
3718

    
3719
/**
3720
 * decodes a residual block.
3721
 * @param n block index
3722
 * @param scantable scantable
3723
 * @param max_coeff number of coefficients in the block
3724
 * @return <0 if an error occured
3725
 */
3726
static int decode_residual(H264Context *h, GetBitContext *gb, DCTELEM *block, int n, const uint8_t *scantable, int qp, int max_coeff){
3727
    MpegEncContext * const s = &h->s;
3728
    const uint16_t *qmul= dequant_coeff[qp];
3729
    static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3};
3730
    int level[16], run[16];
3731
    int suffix_length, zeros_left, coeff_num, coeff_token, total_coeff, i, trailing_ones;
3732

    
3733
    //FIXME put trailing_onex into the context
3734

    
3735
    if(n == CHROMA_DC_BLOCK_INDEX){
3736
        coeff_token= get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1);
3737
        total_coeff= coeff_token>>2;
3738
    }else{    
3739
        if(n == LUMA_DC_BLOCK_INDEX){
3740
            total_coeff= pred_non_zero_count(h, 0);
3741
            coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
3742
            total_coeff= coeff_token>>2;
3743
        }else{
3744
            total_coeff= pred_non_zero_count(h, n);
3745
            coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
3746
            total_coeff= coeff_token>>2;
3747
            h->non_zero_count_cache[ scan8[n] ]= total_coeff;
3748
        }
3749
    }
3750

    
3751
    //FIXME set last_non_zero?
3752

    
3753
    if(total_coeff==0)
3754
        return 0;
3755
        
3756
    trailing_ones= coeff_token&3;
3757
    tprintf("trailing:%d, total:%d\n", trailing_ones, total_coeff);
3758
    assert(total_coeff<=16);
3759
    
3760
    for(i=0; i<trailing_ones; i++){
3761
        level[i]= 1 - 2*get_bits1(gb);
3762
    }
3763

    
3764
    suffix_length= total_coeff > 10 && trailing_ones < 3;
3765

    
3766
    for(; i<total_coeff; i++){
3767
        const int prefix= get_level_prefix(gb);
3768
        int level_code, mask;
3769

    
3770
        if(prefix<14){ //FIXME try to build a large unified VLC table for all this
3771
            if(suffix_length)
3772
                level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
3773
            else
3774
                level_code= (prefix<<suffix_length); //part
3775
        }else if(prefix==14){
3776
            if(suffix_length)
3777
                level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
3778
            else
3779
                level_code= prefix + get_bits(gb, 4); //part
3780
        }else if(prefix==15){
3781
            level_code= (prefix<<suffix_length) + get_bits(gb, 12); //part
3782
            if(suffix_length==0) level_code+=15; //FIXME doesnt make (much)sense
3783
        }else{
3784
            av_log(h->s.avctx, AV_LOG_ERROR, "prefix too large at %d %d\n", s->mb_x, s->mb_y);
3785
            return -1;
3786
        }
3787

    
3788
        if(i==trailing_ones && i<3) level_code+= 2; //FIXME split first iteration
3789

    
3790
        mask= -(level_code&1);
3791
        level[i]= (((2+level_code)>>1) ^ mask) - mask;
3792

    
3793
        if(suffix_length==0) suffix_length=1; //FIXME split first iteration
3794

    
3795
#if 1
3796
        if(ABS(level[i]) > (3<<(suffix_length-1)) && suffix_length<6) suffix_length++;
3797
#else        
3798
        if((2+level_code)>>1) > (3<<(suffix_length-1)) && suffix_length<6) suffix_length++;
3799
        /* ? == prefix > 2 or sth */
3800
#endif
3801
        tprintf("level: %d suffix_length:%d\n", level[i], suffix_length);
3802
    }
3803

    
3804
    if(total_coeff == max_coeff)
3805
        zeros_left=0;
3806
    else{
3807
        if(n == CHROMA_DC_BLOCK_INDEX)
3808
            zeros_left= get_vlc2(gb, chroma_dc_total_zeros_vlc[ total_coeff-1 ].table, CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1);
3809
        else
3810
            zeros_left= get_vlc2(gb, total_zeros_vlc[ total_coeff-1 ].table, TOTAL_ZEROS_VLC_BITS, 1);
3811
    }
3812
    
3813
    for(i=0; i<total_coeff-1; i++){
3814
        if(zeros_left <=0)
3815
            break;
3816
        else if(zeros_left < 7){
3817
            run[i]= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
3818
        }else{
3819
            run[i]= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
3820
        }
3821
        zeros_left -= run[i];
3822
    }
3823

    
3824
    if(zeros_left<0){
3825
        av_log(h->s.avctx, AV_LOG_ERROR, "negative number of zero coeffs at %d %d\n", s->mb_x, s->mb_y);
3826
        return -1;
3827
    }
3828
    
3829
    for(; i<total_coeff-1; i++){
3830
        run[i]= 0;
3831
    }
3832

    
3833
    run[i]= zeros_left;
3834

    
3835
    coeff_num=-1;
3836
    if(n > 24){
3837
        for(i=total_coeff-1; i>=0; i--){ //FIXME merge into rundecode?
3838
            int j;
3839

    
3840
            coeff_num += run[i] + 1; //FIXME add 1 earlier ?
3841
            j= scantable[ coeff_num ];
3842

    
3843
            block[j]= level[i];
3844
        }
3845
    }else{
3846
        for(i=total_coeff-1; i>=0; i--){ //FIXME merge into  rundecode?
3847
            int j;
3848

    
3849
            coeff_num += run[i] + 1; //FIXME add 1 earlier ?
3850
            j= scantable[ coeff_num ];
3851

    
3852
            block[j]= level[i] * qmul[j];
3853
//            printf("%d %d  ", block[j], qmul[j]);
3854
        }
3855
    }
3856
    return 0;
3857
}
3858

    
3859
/**
3860
 * decodes a P_SKIP or B_SKIP macroblock
3861
 */
3862
static void decode_mb_skip(H264Context *h){
3863
    MpegEncContext * const s = &h->s;
3864
    const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
3865
    int mb_type;
3866
    
3867
    memset(h->non_zero_count[mb_xy], 0, 16);
3868
    memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
3869

    
3870
    if( h->slice_type == B_TYPE )
3871
    {
3872
        // just for fill_caches. pred_direct_motion will set the real mb_type
3873
        mb_type= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
3874
        //FIXME mbaff
3875

    
3876
        fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
3877
        pred_direct_motion(h, &mb_type);
3878
        if(h->pps.cabac){
3879
            fill_rectangle(h->mvd_cache[0][scan8[0]], 4, 4, 8, 0, 4);
3880
            fill_rectangle(h->mvd_cache[1][scan8[0]], 4, 4, 8, 0, 4);
3881
        }
3882
    }
3883
    else
3884
    {
3885
        int mx, my;
3886
        mb_type= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
3887

    
3888
        if(h->sps.mb_aff && s->mb_skip_run==0 && (s->mb_y&1)==0){
3889
            h->mb_field_decoding_flag= get_bits1(&s->gb);
3890
        }
3891
        if(h->mb_field_decoding_flag)
3892
            mb_type|= MB_TYPE_INTERLACED;
3893
        
3894
        fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
3895
        pred_pskip_motion(h, &mx, &my);
3896
        fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
3897
        fill_rectangle(  h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
3898
        if(h->pps.cabac)
3899
            fill_rectangle(h->mvd_cache[0][scan8[0]], 4, 4, 8, 0, 4);
3900
    }
3901

    
3902
    write_back_motion(h, mb_type);
3903
    s->current_picture.mb_type[mb_xy]= mb_type|MB_TYPE_SKIP;
3904
    s->current_picture.qscale_table[mb_xy]= s->qscale;
3905
    h->slice_table[ mb_xy ]= h->slice_num;
3906
    h->prev_mb_skiped= 1;
3907
}
3908

    
3909
/**
3910
 * decodes a macroblock
3911
 * @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
3912
 */
3913
static int decode_mb_cavlc(H264Context *h){
3914
    MpegEncContext * const s = &h->s;
3915
    const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
3916
    int mb_type, partition_count, cbp;
3917

    
3918
    s->dsp.clear_blocks(h->mb); //FIXME avoid if allready clear (move after skip handlong?    
3919

    
3920
    tprintf("pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
3921
    cbp = 0; /* avoid warning. FIXME: find a solution without slowing
3922
                down the code */
3923
    if(h->slice_type != I_TYPE && h->slice_type != SI_TYPE){
3924
        if(s->mb_skip_run==-1)
3925
            s->mb_skip_run= get_ue_golomb(&s->gb);
3926
        
3927
        if (s->mb_skip_run--) {
3928
            decode_mb_skip(h);
3929
            return 0;
3930
        }
3931
    }
3932
    if(h->sps.mb_aff /* && !field pic FIXME needed? */){
3933
        if((s->mb_y&1)==0)
3934
            h->mb_field_decoding_flag = get_bits1(&s->gb);
3935
    }else
3936
        h->mb_field_decoding_flag=0; //FIXME som ed note ?!
3937
    
3938
    h->prev_mb_skiped= 0;
3939
    
3940
    mb_type= get_ue_golomb(&s->gb);
3941
    if(h->slice_type == B_TYPE){
3942
        if(mb_type < 23){
3943
            partition_count= b_mb_type_info[mb_type].partition_count;
3944
            mb_type=         b_mb_type_info[mb_type].type;
3945
        }else{
3946
            mb_type -= 23;
3947
            goto decode_intra_mb;
3948
        }
3949
    }else if(h->slice_type == P_TYPE /*|| h->slice_type == SP_TYPE */){
3950
        if(mb_type < 5){
3951
            partition_count= p_mb_type_info[mb_type].partition_count;
3952
            mb_type=         p_mb_type_info[mb_type].type;
3953
        }else{
3954
            mb_type -= 5;
3955
            goto decode_intra_mb;
3956
        }
3957
    }else{
3958
       assert(h->slice_type == I_TYPE);
3959
decode_intra_mb:
3960
        if(mb_type > 25){
3961
            av_log(h->s.avctx, AV_LOG_ERROR, "mb_type %d in %c slice to large at %d %d\n", mb_type, av_get_pict_type_char(h->slice_type), s->mb_x, s->mb_y);
3962
            return -1;
3963
        }
3964
        partition_count=0;
3965
        cbp= i_mb_type_info[mb_type].cbp;
3966
        h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
3967
        mb_type= i_mb_type_info[mb_type].type;
3968
    }
3969

    
3970
    if(h->mb_field_decoding_flag)
3971
        mb_type |= MB_TYPE_INTERLACED;
3972

    
3973
    s->current_picture.mb_type[mb_xy]= mb_type;
3974
    h->slice_table[ mb_xy ]= h->slice_num;
3975
    
3976
    if(IS_INTRA_PCM(mb_type)){
3977
        const uint8_t *ptr;
3978
        int x, y;
3979
        
3980
        // we assume these blocks are very rare so we dont optimize it
3981
        align_get_bits(&s->gb);
3982
        
3983
        ptr= s->gb.buffer + get_bits_count(&s->gb);
3984
    
3985
        for(y=0; y<16; y++){
3986
            const int index= 4*(y&3) + 64*(y>>2);
3987
            for(x=0; x<16; x++){
3988
                h->mb[index + (x&3) + 16*(x>>2)]= *(ptr++);
3989
            }
3990
        }
3991
        for(y=0; y<8; y++){
3992
            const int index= 256 + 4*(y&3) + 32*(y>>2);
3993
            for(x=0; x<8; x++){
3994
                h->mb[index + (x&3) + 16*(x>>2)]= *(ptr++);
3995
            }
3996
        }
3997
        for(y=0; y<8; y++){
3998
            const int index= 256 + 64 + 4*(y&3) + 32*(y>>2);
3999
            for(x=0; x<8; x++){
4000
                h->mb[index + (x&3) + 16*(x>>2)]= *(ptr++);
4001
            }
4002
        }
4003
    
4004
        skip_bits(&s->gb, 384); //FIXME check /fix the bitstream readers
4005
        
4006
        //FIXME deblock filter, non_zero_count_cache init ...
4007
        memset(h->non_zero_count[mb_xy], 16, 16);
4008
        s->current_picture.qscale_table[mb_xy]= s->qscale;
4009
        
4010
        return 0;
4011
    }
4012
        
4013
    fill_caches(h, mb_type, 0);
4014

    
4015
    //mb_pred
4016
    if(IS_INTRA(mb_type)){
4017
//            init_top_left_availability(h);
4018
            if(IS_INTRA4x4(mb_type)){
4019
                int i;
4020

    
4021
//                fill_intra4x4_pred_table(h);
4022
                for(i=0; i<16; i++){
4023
                    const int mode_coded= !get_bits1(&s->gb);
4024
                    const int predicted_mode=  pred_intra_mode(h, i);
4025
                    int mode;
4026

    
4027
                    if(mode_coded){
4028
                        const int rem_mode= get_bits(&s->gb, 3);
4029
                        if(rem_mode<predicted_mode)
4030
                            mode= rem_mode;
4031
                        else
4032
                            mode= rem_mode + 1;
4033
                    }else{
4034
                        mode= predicted_mode;
4035
                    }
4036
                    
4037
                    h->intra4x4_pred_mode_cache[ scan8[i] ] = mode;
4038
                }
4039
                write_back_intra_pred_mode(h);
4040
                if( check_intra4x4_pred_mode(h) < 0)
4041
                    return -1;
4042
            }else{
4043
                h->intra16x16_pred_mode= check_intra_pred_mode(h, h->intra16x16_pred_mode);
4044
                if(h->intra16x16_pred_mode < 0)
4045
                    return -1;
4046
            }
4047
            h->chroma_pred_mode= get_ue_golomb(&s->gb);
4048

    
4049
            h->chroma_pred_mode= check_intra_pred_mode(h, h->chroma_pred_mode);
4050
            if(h->chroma_pred_mode < 0)
4051
                return -1;
4052
    }else if(partition_count==4){
4053
        int i, j, sub_partition_count[4], list, ref[2][4];
4054
        
4055
        if(h->slice_type == B_TYPE){
4056
            for(i=0; i<4; i++){
4057
                h->sub_mb_type[i]= get_ue_golomb(&s->gb);
4058
                if(h->sub_mb_type[i] >=13){
4059
                    av_log(h->s.avctx, AV_LOG_ERROR, "B sub_mb_type %d out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
4060
                    return -1;
4061
                }
4062
                sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
4063
                h->sub_mb_type[i]=      b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
4064
            }
4065
            if(   IS_DIRECT(h->sub_mb_type[0]) || IS_DIRECT(h->sub_mb_type[1])
4066
               || IS_DIRECT(h->sub_mb_type[2]) || IS_DIRECT(h->sub_mb_type[3]))
4067
                pred_direct_motion(h, &mb_type);
4068
        }else{
4069
            assert(h->slice_type == P_TYPE || h->slice_type == SP_TYPE); //FIXME SP correct ?
4070
            for(i=0; i<4; i++){
4071
                h->sub_mb_type[i]= get_ue_golomb(&s->gb);
4072
                if(h->sub_mb_type[i] >=4){
4073
                    av_log(h->s.avctx, AV_LOG_ERROR, "P sub_mb_type %d out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
4074
                    return -1;
4075
                }
4076
                sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
4077
                h->sub_mb_type[i]=      p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
4078
            }
4079
        }
4080
        
4081
        for(list=0; list<2; list++){
4082
            const int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
4083
            if(ref_count == 0) continue;
4084
            for(i=0; i<4; i++){
4085
                if(IS_DIRECT(h->sub_mb_type[i])) continue;
4086
                if(IS_DIR(h->sub_mb_type[i], 0, list)){
4087
                    ref[list][i] = get_te0_golomb(&s->gb, ref_count); //FIXME init to 0 before and skip?
4088
                }else{
4089
                 //FIXME
4090
                    ref[list][i] = -1;
4091
                }
4092
            }
4093
        }
4094
        
4095
        for(list=0; list<2; list++){
4096
            const int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
4097
            if(ref_count == 0) continue;
4098

    
4099
            for(i=0; i<4; i++){
4100
                if(IS_DIRECT(h->sub_mb_type[i])) continue;
4101
                h->ref_cache[list][ scan8[4*i]   ]=h->ref_cache[list][ scan8[4*i]+1 ]=
4102
                h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
4103

    
4104
                if(IS_DIR(h->sub_mb_type[i], 0, list)){
4105
                    const int sub_mb_type= h->sub_mb_type[i];
4106
                    const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
4107
                    for(j=0; j<sub_partition_count[i]; j++){
4108
                        int mx, my;
4109
                        const int index= 4*i + block_width*j;
4110
                        int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
4111
                        pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mx, &my);
4112
                        mx += get_se_golomb(&s->gb);
4113
                        my += get_se_golomb(&s->gb);
4114
                        tprintf("final mv:%d %d\n", mx, my);
4115

    
4116
                        if(IS_SUB_8X8(sub_mb_type)){
4117
                            mv_cache[ 0 ][0]= mv_cache[ 1 ][0]= 
4118
                            mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
4119
                            mv_cache[ 0 ][1]= mv_cache[ 1 ][1]= 
4120
                            mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
4121
                        }else if(IS_SUB_8X4(sub_mb_type)){
4122
                            mv_cache[ 0 ][0]= mv_cache[ 1 ][0]= mx;
4123
                            mv_cache[ 0 ][1]= mv_cache[ 1 ][1]= my;
4124
                        }else if(IS_SUB_4X8(sub_mb_type)){
4125
                            mv_cache[ 0 ][0]= mv_cache[ 8 ][0]= mx;
4126
                            mv_cache[ 0 ][1]= mv_cache[ 8 ][1]= my;
4127
                        }else{
4128
                            assert(IS_SUB_4X4(sub_mb_type));
4129
                            mv_cache[ 0 ][0]= mx;
4130
                            mv_cache[ 0 ][1]= my;
4131
                        }
4132
                    }
4133
                }else{
4134
                    uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
4135
                    p[0] = p[1]=
4136
                    p[8] = p[9]= 0;
4137
                }
4138
            }
4139
        }
4140
    }else if(IS_DIRECT(mb_type)){
4141
        pred_direct_motion(h, &mb_type);
4142
        s->current_picture.mb_type[mb_xy]= mb_type;
4143
    }else{
4144
        int list, mx, my, i;
4145
         //FIXME we should set ref_idx_l? to 0 if we use that later ...
4146
        if(IS_16X16(mb_type)){
4147
            for(list=0; list<2; list++){
4148
                if(h->ref_count[list]>0){
4149
                    if(IS_DIR(mb_type, 0, list)){
4150
                        const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
4151
                        fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, val, 1);
4152
                    }
4153
                }
4154
            }
4155
            for(list=0; list<2; list++){
4156
                if(IS_DIR(mb_type, 0, list)){
4157
                    pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mx, &my);
4158
                    mx += get_se_golomb(&s->gb);
4159
                    my += get_se_golomb(&s->gb);
4160
                    tprintf("final mv:%d %d\n", mx, my);
4161

    
4162
                    fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4);
4163
                }
4164
            }
4165
        }
4166
        else if(IS_16X8(mb_type)){
4167
            for(list=0; list<2; list++){
4168
                if(h->ref_count[list]>0){
4169
                    for(i=0; i<2; i++){
4170
                        if(IS_DIR(mb_type, i, list)){
4171
                            const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
4172
                            fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 1);
4173
                        }else // needed only for mixed refs (e.g. B_L0_L1_16x8)
4174
                            fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, (LIST_NOT_USED&0xFF), 1);
4175
                    }
4176
                }
4177
            }
4178
            for(list=0; list<2; list++){
4179
                for(i=0; i<2; i++){
4180
                    if(IS_DIR(mb_type, i, list)){
4181
                        pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mx, &my);
4182
                        mx += get_se_golomb(&s->gb);
4183
                        my += get_se_golomb(&s->gb);
4184
                        tprintf("final mv:%d %d\n", mx, my);
4185

    
4186
                        fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx,my), 4);
4187
                    }else
4188
                        fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
4189
                }
4190
            }
4191
        }else{
4192
            assert(IS_8X16(mb_type));
4193
            for(list=0; list<2; list++){
4194
                if(h->ref_count[list]>0){
4195
                    for(i=0; i<2; i++){
4196
                        if(IS_DIR(mb_type, i, list)){ //FIXME optimize
4197
                            const int val= get_te0_golomb(&s->gb, h->ref_count[list]);
4198
                            fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 1);
4199
                        }else // needed only for mixed refs
4200
                            fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, (LIST_NOT_USED&0xFF), 1);
4201
                    }
4202
                }
4203
            }
4204
            for(list=0; list<2; list++){
4205
                for(i=0; i<2; i++){
4206
                    if(IS_DIR(mb_type, i, list)){
4207
                        pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mx, &my);
4208
                        mx += get_se_golomb(&s->gb);
4209
                        my += get_se_golomb(&s->gb);
4210
                        tprintf("final mv:%d %d\n", mx, my);
4211

    
4212
                        fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx,my), 4);
4213
                    }else
4214
                        fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
4215
                }
4216
            }
4217
        }
4218
    }
4219
    
4220
    if(IS_INTER(mb_type))
4221
        write_back_motion(h, mb_type);
4222
    
4223
    if(!IS_INTRA16x16(mb_type)){
4224
        cbp= get_ue_golomb(&s->gb);
4225
        if(cbp > 47){
4226
            av_log(h->s.avctx, AV_LOG_ERROR, "cbp too large (%d) at %d %d\n", cbp, s->mb_x, s->mb_y);
4227
            return -1;
4228
        }
4229
        
4230
        if(IS_INTRA4x4(mb_type))
4231
            cbp= golomb_to_intra4x4_cbp[cbp];
4232
        else
4233
            cbp= golomb_to_inter_cbp[cbp];
4234
    }
4235

    
4236
    if(cbp || IS_INTRA16x16(mb_type)){
4237
        int i8x8, i4x4, chroma_idx;
4238
        int chroma_qp, dquant;
4239
        GetBitContext *gb= IS_INTRA(mb_type) ? h->intra_gb_ptr : h->inter_gb_ptr;
4240
        const uint8_t *scan, *dc_scan;
4241
        
4242
//        fill_non_zero_count_cache(h);
4243

    
4244
        if(IS_INTERLACED(mb_type)){
4245
            scan= field_scan;
4246
            dc_scan= luma_dc_field_scan;
4247
        }else{
4248
            scan= zigzag_scan;
4249
            dc_scan= luma_dc_zigzag_scan;
4250
        }
4251

    
4252
        dquant= get_se_golomb(&s->gb);
4253

    
4254
        if( dquant > 25 || dquant < -26 ){
4255
            av_log(h->s.avctx, AV_LOG_ERROR, "dquant out of range (%d) at %d %d\n", dquant, s->mb_x, s->mb_y);
4256
            return -1;
4257
        }
4258
        
4259
        s->qscale += dquant;
4260
        if(((unsigned)s->qscale) > 51){
4261
            if(s->qscale<0) s->qscale+= 52;
4262
            else            s->qscale-= 52;
4263
        }
4264
        
4265
        h->chroma_qp= chroma_qp= get_chroma_qp(h, s->qscale);
4266
        if(IS_INTRA16x16(mb_type)){
4267
            if( decode_residual(h, h->intra_gb_ptr, h->mb, LUMA_DC_BLOCK_INDEX, dc_scan, s->qscale, 16) < 0){
4268
                return -1; //FIXME continue if partotioned and other retirn -1 too
4269
            }
4270

    
4271
            assert((cbp&15) == 0 || (cbp&15) == 15);
4272

    
4273
            if(cbp&15){
4274
                for(i8x8=0; i8x8<4; i8x8++){
4275
                    for(i4x4=0; i4x4<4; i4x4++){
4276
                        const int index= i4x4 + 4*i8x8;
4277
                        if( decode_residual(h, h->intra_gb_ptr, h->mb + 16*index, index, scan + 1, s->qscale, 15) < 0 ){
4278
                            return -1;
4279
                        }
4280
                    }
4281
                }
4282
            }else{
4283
                fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
4284
            }
4285
        }else{
4286
            for(i8x8=0; i8x8<4; i8x8++){
4287
                if(cbp & (1<<i8x8)){
4288
                    for(i4x4=0; i4x4<4; i4x4++){
4289
                        const int index= i4x4 + 4*i8x8;
4290
                        
4291
                        if( decode_residual(h, gb, h->mb + 16*index, index, scan, s->qscale, 16) <0 ){
4292
                            return -1;
4293
                        }
4294
                    }
4295
                }else{
4296
                    uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
4297
                    nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
4298
                }
4299
            }
4300
        }
4301
        
4302
        if(cbp&0x30){
4303
            for(chroma_idx=0; chroma_idx<2; chroma_idx++)
4304
                if( decode_residual(h, gb, h->mb + 256 + 16*4*chroma_idx, CHROMA_DC_BLOCK_INDEX, chroma_dc_scan, chroma_qp, 4) < 0){
4305
                    return -1;
4306
                }
4307
        }
4308

    
4309
        if(cbp&0x20){
4310
            for(chroma_idx=0; chroma_idx<2; chroma_idx++){
4311
                for(i4x4=0; i4x4<4; i4x4++){
4312
                    const int index= 16 + 4*chroma_idx + i4x4;
4313
                    if( decode_residual(h, gb, h->mb + 16*index, index, scan + 1, chroma_qp, 15) < 0){
4314
                        return -1;
4315
                    }
4316
                }
4317
            }
4318
        }else{
4319
            uint8_t * const nnz= &h->non_zero_count_cache[0];
4320
            nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
4321
            nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
4322
        }
4323
    }else{
4324
        uint8_t * const nnz= &h->non_zero_count_cache[0];
4325
        fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1);
4326
        nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
4327
        nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
4328
    }
4329
    s->current_picture.qscale_table[mb_xy]= s->qscale;
4330
    write_back_non_zero_count(h);
4331

    
4332
    return 0;
4333
}
4334

    
4335
static int decode_cabac_intra_mb_type(H264Context *h, int ctx_base, int intra_slice) {
4336
    uint8_t *state= &h->cabac_state[ctx_base];
4337
    int mb_type;
4338
    
4339
    if(intra_slice){
4340
        MpegEncContext * const s = &h->s;
4341
        const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
4342
        int ctx=0;
4343
        if( s->mb_x > 0 && !IS_INTRA4x4( s->current_picture.mb_type[mb_xy-1] ) )
4344
            ctx++;
4345
        if( s->mb_y > 0 && !IS_INTRA4x4( s->current_picture.mb_type[mb_xy-s->mb_stride] ) )
4346
            ctx++;
4347
        if( get_cabac( &h->cabac, &state[ctx] ) == 0 )
4348
            return 0;   /* I4x4 */
4349
        state += 2;
4350
    }else{
4351
        if( get_cabac( &h->cabac, &state[0] ) == 0 )
4352
            return 0;   /* I4x4 */
4353
    }
4354

    
4355
    if( get_cabac_terminate( &h->cabac ) )
4356
        return 25;  /* PCM */
4357

    
4358
    mb_type = 1; /* I16x16 */
4359
    if( get_cabac( &h->cabac, &state[1] ) )
4360
        mb_type += 12;  /* cbp_luma != 0 */
4361

    
4362
    if( get_cabac( &h->cabac, &state[2] ) ) {
4363
        if( get_cabac( &h->cabac, &state[2+intra_slice] ) )
4364
            mb_type += 4 * 2;   /* cbp_chroma == 2 */
4365
        else
4366
            mb_type += 4 * 1;   /* cbp_chroma == 1 */
4367
    }
4368
    if( get_cabac( &h->cabac, &state[3+intra_slice] ) )
4369
        mb_type += 2;
4370
    if( get_cabac( &h->cabac, &state[3+2*intra_slice] ) )
4371
        mb_type += 1;
4372
    return mb_type;
4373
}
4374

    
4375
static int decode_cabac_mb_type( H264Context *h ) {
4376
    MpegEncContext * const s = &h->s;
4377

    
4378
    if( h->slice_type == I_TYPE ) {
4379
        return decode_cabac_intra_mb_type(h, 3, 1);
4380
    } else if( h->slice_type == P_TYPE ) {
4381
        if( get_cabac( &h->cabac, &h->cabac_state[14] ) == 0 ) {
4382
            /* P-type */
4383
            if( get_cabac( &h->cabac, &h->cabac_state[15] ) == 0 ) {
4384
                if( get_cabac( &h->cabac, &h->cabac_state[16] ) == 0 )
4385
                    return 0; /* P_L0_D16x16; */
4386
                else
4387
                    return 3; /* P_8x8; */
4388
            } else {
4389
                if( get_cabac( &h->cabac, &h->cabac_state[17] ) == 0 )
4390
                    return 2; /* P_L0_D8x16; */
4391
                else
4392
                    return 1; /* P_L0_D16x8; */
4393
            }
4394
        } else {
4395
            return decode_cabac_intra_mb_type(h, 17, 0) + 5;
4396
        }
4397
    } else if( h->slice_type == B_TYPE ) {
4398
        const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
4399
        int ctx = 0;
4400
        int bits;
4401

    
4402
        if( s->mb_x > 0 && !IS_SKIP( s->current_picture.mb_type[mb_xy-1] )
4403
                      && !IS_DIRECT( s->current_picture.mb_type[mb_xy-1] ) )
4404
            ctx++;
4405
        if( s->mb_y > 0 && !IS_SKIP( s->current_picture.mb_type[mb_xy-s->mb_stride] )
4406
                      && !IS_DIRECT( s->current_picture.mb_type[mb_xy-s->mb_stride] ) )
4407
            ctx++;
4408

    
4409
        if( !get_cabac( &h->cabac, &h->cabac_state[27+ctx] ) )
4410
            return 0; /* B_Direct_16x16 */
4411

    
4412
        if( !get_cabac( &h->cabac, &h->cabac_state[27+3] ) ) {
4413
            return 1 + get_cabac( &h->cabac, &h->cabac_state[27+5] ); /* B_L[01]_16x16 */
4414
        }
4415

    
4416
        bits = get_cabac( &h->cabac, &h->cabac_state[27+4] ) << 3;
4417
        bits|= get_cabac( &h->cabac, &h->cabac_state[27+5] ) << 2;
4418
        bits|= get_cabac( &h->cabac, &h->cabac_state[27+5] ) << 1;
4419
        bits|= get_cabac( &h->cabac, &h->cabac_state[27+5] );
4420
        if( bits < 8 )
4421
            return bits + 3; /* B_Bi_16x16 through B_L1_L0_16x8 */
4422
        else if( bits == 13 ) {
4423
            return decode_cabac_intra_mb_type(h, 32, 0) + 23;
4424
        } else if( bits == 14 )
4425
            return 11; /* B_L1_L0_8x16 */
4426
        else if( bits == 15 )
4427
            return 22; /* B_8x8 */
4428

    
4429
        bits= ( bits<<1 ) | get_cabac( &h->cabac, &h->cabac_state[27+5] );
4430
        return bits - 4; /* B_L0_Bi_* through B_Bi_Bi_* */
4431
    } else {
4432
        /* TODO SI/SP frames? */
4433
        return -1;
4434
    }
4435
}
4436

    
4437
static int decode_cabac_mb_skip( H264Context *h) {
4438
    MpegEncContext * const s = &h->s;
4439
    const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
4440
    const int mba_xy = mb_xy - 1;
4441
    const int mbb_xy = mb_xy - s->mb_stride;
4442
    int ctx = 0;
4443

    
4444
    if( s->mb_x > 0 && !IS_SKIP( s->current_picture.mb_type[mba_xy] ) )
4445
        ctx++;
4446
    if( s->mb_y > 0 && !IS_SKIP( s->current_picture.mb_type[mbb_xy] ) )
4447
        ctx++;
4448

    
4449
    if( h->slice_type == P_TYPE || h->slice_type == SP_TYPE)
4450
        return get_cabac( &h->cabac, &h->cabac_state[11+ctx] );
4451
    else /* B-frame */
4452
        return get_cabac( &h->cabac, &h->cabac_state[24+ctx] );
4453
}
4454

    
4455
static int decode_cabac_mb_intra4x4_pred_mode( H264Context *h, int pred_mode ) {
4456
    int mode = 0;
4457

    
4458
    if( get_cabac( &h->cabac, &h->cabac_state[68] ) )
4459
        return pred_mode;
4460

    
4461
    if( get_cabac( &h->cabac, &h->cabac_state[69] ) )
4462
        mode += 1;
4463
    if( get_cabac( &h->cabac, &h->cabac_state[69] ) )
4464
        mode += 2;
4465
    if( get_cabac( &h->cabac, &h->cabac_state[69] ) )
4466
        mode += 4;
4467
    if( mode >= pred_mode )
4468
        return mode + 1;
4469
    else
4470
        return mode;
4471
}
4472

    
4473
static int decode_cabac_mb_chroma_pre_mode( H264Context *h) {
4474
    MpegEncContext * const s = &h->s;
4475
    const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
4476
    const int mba_xy = mb_xy - 1;
4477
    const int mbb_xy = mb_xy - s->mb_stride;
4478

    
4479
    int ctx = 0;
4480

    
4481
    /* No need t