Statistics
| Branch: | Revision:

ffmpeg / libavcodec / aacsbr.c @ dd8871a6

History | View | Annotate | Download (66 KB)

1
/*
2
 * AAC Spectral Band Replication decoding functions
3
 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4
 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22

    
23
/**
24
 * @file
25
 * AAC Spectral Band Replication decoding functions
26
 * @author Robert Swain ( rob opendot cl )
27
 */
28

    
29
#include "aac.h"
30
#include "sbr.h"
31
#include "aacsbr.h"
32
#include "aacsbrdata.h"
33
#include "fft.h"
34

    
35
#include <stdint.h>
36
#include <float.h>
37

    
38
#define ENVELOPE_ADJUSTMENT_OFFSET 2
39
#define NOISE_FLOOR_OFFSET 6.0f
40

    
41
/**
42
 * SBR VLC tables
43
 */
44
enum {
45
    T_HUFFMAN_ENV_1_5DB,
46
    F_HUFFMAN_ENV_1_5DB,
47
    T_HUFFMAN_ENV_BAL_1_5DB,
48
    F_HUFFMAN_ENV_BAL_1_5DB,
49
    T_HUFFMAN_ENV_3_0DB,
50
    F_HUFFMAN_ENV_3_0DB,
51
    T_HUFFMAN_ENV_BAL_3_0DB,
52
    F_HUFFMAN_ENV_BAL_3_0DB,
53
    T_HUFFMAN_NOISE_3_0DB,
54
    T_HUFFMAN_NOISE_BAL_3_0DB,
55
};
56

    
57
/**
58
 * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
59
 */
60
enum {
61
    FIXFIX,
62
    FIXVAR,
63
    VARFIX,
64
    VARVAR,
65
};
66

    
67
enum {
68
    EXTENSION_ID_PS = 2,
69
};
70

    
71
static VLC vlc_sbr[10];
72
static const int8_t vlc_sbr_lav[10] =
73
    { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
74
static DECLARE_ALIGNED(16, float, analysis_cos_pre)[64];
75
static DECLARE_ALIGNED(16, float, analysis_sin_pre)[64];
76
static DECLARE_ALIGNED(16, float, analysis_cossin_post)[32][2];
77
static const DECLARE_ALIGNED(16, float, zero64)[64];
78

    
79
#define SBR_INIT_VLC_STATIC(num, size) \
80
    INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size,     \
81
                    sbr_tmp[num].sbr_bits ,                      1,                      1, \
82
                    sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
83
                    size)
84

    
85
#define SBR_VLC_ROW(name) \
86
    { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
87

    
88
av_cold void ff_aac_sbr_init(void)
89
{
90
    int n, k;
91
    static const struct {
92
        const void *sbr_codes, *sbr_bits;
93
        const unsigned int table_size, elem_size;
94
    } sbr_tmp[] = {
95
        SBR_VLC_ROW(t_huffman_env_1_5dB),
96
        SBR_VLC_ROW(f_huffman_env_1_5dB),
97
        SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
98
        SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
99
        SBR_VLC_ROW(t_huffman_env_3_0dB),
100
        SBR_VLC_ROW(f_huffman_env_3_0dB),
101
        SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
102
        SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
103
        SBR_VLC_ROW(t_huffman_noise_3_0dB),
104
        SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
105
    };
106

    
107
    // SBR VLC table initialization
108
    SBR_INIT_VLC_STATIC(0, 1098);
109
    SBR_INIT_VLC_STATIC(1, 1092);
110
    SBR_INIT_VLC_STATIC(2, 768);
111
    SBR_INIT_VLC_STATIC(3, 1026);
112
    SBR_INIT_VLC_STATIC(4, 1058);
113
    SBR_INIT_VLC_STATIC(5, 1052);
114
    SBR_INIT_VLC_STATIC(6, 544);
115
    SBR_INIT_VLC_STATIC(7, 544);
116
    SBR_INIT_VLC_STATIC(8, 592);
117
    SBR_INIT_VLC_STATIC(9, 512);
118

    
119
    for (n = 0; n < 64; n++) {
120
        float pre = M_PI * n / 64;
121
        analysis_cos_pre[n] = cosf(pre);
122
        analysis_sin_pre[n] = sinf(pre);
123
    }
124
    for (k = 0; k < 32; k++) {
125
        float post = M_PI * (k + 0.5) / 128;
126
        analysis_cossin_post[k][0] =  4.0 * cosf(post);
127
        analysis_cossin_post[k][1] = -4.0 * sinf(post);
128
    }
129
    for (n = 1; n < 320; n++)
130
        sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
131
    sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
132
    sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
133

    
134
    for (n = 0; n < 320; n++)
135
        sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
136
}
137

    
138
av_cold void ff_aac_sbr_ctx_init(SpectralBandReplication *sbr)
139
{
140
    sbr->kx[0] = sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
141
    sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
142
    sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
143
    sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
144
    ff_mdct_init(&sbr->mdct, 7, 1, 1.0/64);
145
    ff_rdft_init(&sbr->rdft, 6, IDFT_R2C);
146
}
147

    
148
av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
149
{
150
    ff_mdct_end(&sbr->mdct);
151
    ff_rdft_end(&sbr->rdft);
152
}
153

    
154
static int qsort_comparison_function_int16(const void *a, const void *b)
155
{
156
    return *(const int16_t *)a - *(const int16_t *)b;
157
}
158

    
159
static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
160
{
161
    int i;
162
    for (i = 0; i <= last_el; i++)
163
        if (table[i] == needle)
164
            return 1;
165
    return 0;
166
}
167

    
168
/// Limiter Frequency Band Table (14496-3 sp04 p198)
169
static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
170
{
171
    int k;
172
    if (sbr->bs_limiter_bands > 0) {
173
        static const float bands_warped[3] = { 1.32715174233856803909f,   //2^(0.49/1.2)
174
                                               1.18509277094158210129f,   //2^(0.49/2)
175
                                               1.11987160404675912501f }; //2^(0.49/3)
176
        const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
177
        int16_t patch_borders[7];
178
        uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
179

    
180
        patch_borders[0] = sbr->kx[1];
181
        for (k = 1; k <= sbr->num_patches; k++)
182
            patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
183

    
184
        memcpy(sbr->f_tablelim, sbr->f_tablelow,
185
               (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
186
        if (sbr->num_patches > 1)
187
            memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
188
                   (sbr->num_patches - 1) * sizeof(patch_borders[0]));
189

    
190
        qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
191
              sizeof(sbr->f_tablelim[0]),
192
              qsort_comparison_function_int16);
193

    
194
        sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
195
        while (out < sbr->f_tablelim + sbr->n_lim) {
196
            if (*in >= *out * lim_bands_per_octave_warped) {
197
                *++out = *in++;
198
            } else if (*in == *out ||
199
                !in_table_int16(patch_borders, sbr->num_patches, *in)) {
200
                in++;
201
                sbr->n_lim--;
202
            } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
203
                *out = *in++;
204
                sbr->n_lim--;
205
            } else {
206
                *++out = *in++;
207
            }
208
        }
209
    } else {
210
        sbr->f_tablelim[0] = sbr->f_tablelow[0];
211
        sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
212
        sbr->n_lim = 1;
213
    }
214
}
215

    
216
static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
217
{
218
    unsigned int cnt = get_bits_count(gb);
219
    uint8_t bs_header_extra_1;
220
    uint8_t bs_header_extra_2;
221
    int old_bs_limiter_bands = sbr->bs_limiter_bands;
222
    SpectrumParameters old_spectrum_params;
223

    
224
    sbr->start = 1;
225

    
226
    // Save last spectrum parameters variables to compare to new ones
227
    memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
228

    
229
    sbr->bs_amp_res_header              = get_bits1(gb);
230
    sbr->spectrum_params.bs_start_freq  = get_bits(gb, 4);
231
    sbr->spectrum_params.bs_stop_freq   = get_bits(gb, 4);
232
    sbr->spectrum_params.bs_xover_band  = get_bits(gb, 3);
233
                                          skip_bits(gb, 2); // bs_reserved
234

    
235
    bs_header_extra_1 = get_bits1(gb);
236
    bs_header_extra_2 = get_bits1(gb);
237

    
238
    if (bs_header_extra_1) {
239
        sbr->spectrum_params.bs_freq_scale  = get_bits(gb, 2);
240
        sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
241
        sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
242
    } else {
243
        sbr->spectrum_params.bs_freq_scale  = 2;
244
        sbr->spectrum_params.bs_alter_scale = 1;
245
        sbr->spectrum_params.bs_noise_bands = 2;
246
    }
247

    
248
    // Check if spectrum parameters changed
249
    if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
250
        sbr->reset = 1;
251

    
252
    if (bs_header_extra_2) {
253
        sbr->bs_limiter_bands  = get_bits(gb, 2);
254
        sbr->bs_limiter_gains  = get_bits(gb, 2);
255
        sbr->bs_interpol_freq  = get_bits1(gb);
256
        sbr->bs_smoothing_mode = get_bits1(gb);
257
    } else {
258
        sbr->bs_limiter_bands  = 2;
259
        sbr->bs_limiter_gains  = 2;
260
        sbr->bs_interpol_freq  = 1;
261
        sbr->bs_smoothing_mode = 1;
262
    }
263

    
264
    if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
265
        sbr_make_f_tablelim(sbr);
266

    
267
    return get_bits_count(gb) - cnt;
268
}
269

    
270
static int array_min_int16(const int16_t *array, int nel)
271
{
272
    int i, min = array[0];
273
    for (i = 1; i < nel; i++)
274
        min = FFMIN(array[i], min);
275
    return min;
276
}
277

    
278
static void make_bands(int16_t* bands, int start, int stop, int num_bands)
279
{
280
    int k, previous, present;
281
    float base, prod;
282

    
283
    base = powf((float)stop / start, 1.0f / num_bands);
284
    prod = start;
285
    previous = start;
286

    
287
    for (k = 0; k < num_bands-1; k++) {
288
        prod *= base;
289
        present  = lrintf(prod);
290
        bands[k] = present - previous;
291
        previous = present;
292
    }
293
    bands[num_bands-1] = stop - previous;
294
}
295

    
296
static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
297
{
298
    // Requirements (14496-3 sp04 p205)
299
    if (n_master <= 0) {
300
        av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
301
        return -1;
302
    }
303
    if (bs_xover_band >= n_master) {
304
        av_log(avctx, AV_LOG_ERROR,
305
               "Invalid bitstream, crossover band index beyond array bounds: %d\n",
306
               bs_xover_band);
307
        return -1;
308
    }
309
    return 0;
310
}
311

    
312
/// Master Frequency Band Table (14496-3 sp04 p194)
313
static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
314
                             SpectrumParameters *spectrum)
315
{
316
    unsigned int temp, max_qmf_subbands;
317
    unsigned int start_min, stop_min;
318
    int k;
319
    const int8_t *sbr_offset_ptr;
320
    int16_t stop_dk[13];
321

    
322
    if (sbr->sample_rate < 32000) {
323
        temp = 3000;
324
    } else if (sbr->sample_rate < 64000) {
325
        temp = 4000;
326
    } else
327
        temp = 5000;
328

    
329
    start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
330
    stop_min  = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
331

    
332
    switch (sbr->sample_rate) {
333
    case 16000:
334
        sbr_offset_ptr = sbr_offset[0];
335
        break;
336
    case 22050:
337
        sbr_offset_ptr = sbr_offset[1];
338
        break;
339
    case 24000:
340
        sbr_offset_ptr = sbr_offset[2];
341
        break;
342
    case 32000:
343
        sbr_offset_ptr = sbr_offset[3];
344
        break;
345
    case 44100: case 48000: case 64000:
346
        sbr_offset_ptr = sbr_offset[4];
347
        break;
348
    case 88200: case 96000: case 128000: case 176400: case 192000:
349
        sbr_offset_ptr = sbr_offset[5];
350
        break;
351
    default:
352
        av_log(ac->avctx, AV_LOG_ERROR,
353
               "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
354
        return -1;
355
    }
356

    
357
    sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
358

    
359
    if (spectrum->bs_stop_freq < 14) {
360
        sbr->k[2] = stop_min;
361
        make_bands(stop_dk, stop_min, 64, 13);
362
        qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
363
        for (k = 0; k < spectrum->bs_stop_freq; k++)
364
            sbr->k[2] += stop_dk[k];
365
    } else if (spectrum->bs_stop_freq == 14) {
366
        sbr->k[2] = 2*sbr->k[0];
367
    } else if (spectrum->bs_stop_freq == 15) {
368
        sbr->k[2] = 3*sbr->k[0];
369
    } else {
370
        av_log(ac->avctx, AV_LOG_ERROR,
371
               "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
372
        return -1;
373
    }
374
    sbr->k[2] = FFMIN(64, sbr->k[2]);
375

    
376
    // Requirements (14496-3 sp04 p205)
377
    if (sbr->sample_rate <= 32000) {
378
        max_qmf_subbands = 48;
379
    } else if (sbr->sample_rate == 44100) {
380
        max_qmf_subbands = 35;
381
    } else if (sbr->sample_rate >= 48000)
382
        max_qmf_subbands = 32;
383

    
384
    if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
385
        av_log(ac->avctx, AV_LOG_ERROR,
386
               "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
387
        return -1;
388
    }
389

    
390
    if (!spectrum->bs_freq_scale) {
391
        unsigned int dk;
392
        int k2diff;
393

    
394
        dk = spectrum->bs_alter_scale + 1;
395
        sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
396
        if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
397
            return -1;
398

    
399
        for (k = 1; k <= sbr->n_master; k++)
400
            sbr->f_master[k] = dk;
401

    
402
        k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
403
        if (k2diff < 0) {
404
            sbr->f_master[1]--;
405
            sbr->f_master[2]-= (k2diff < 1);
406
        } else if (k2diff) {
407
            sbr->f_master[sbr->n_master]++;
408
        }
409

    
410
        sbr->f_master[0] = sbr->k[0];
411
        for (k = 1; k <= sbr->n_master; k++)
412
            sbr->f_master[k] += sbr->f_master[k - 1];
413

    
414
    } else {
415
        int half_bands = 7 - spectrum->bs_freq_scale;      // bs_freq_scale  = {1,2,3}
416
        int two_regions, num_bands_0;
417
        int vdk0_max, vdk1_min;
418
        int16_t vk0[49];
419

    
420
        if (49 * sbr->k[2] > 110 * sbr->k[0]) {
421
            two_regions = 1;
422
            sbr->k[1] = 2 * sbr->k[0];
423
        } else {
424
            two_regions = 0;
425
            sbr->k[1] = sbr->k[2];
426
        }
427

    
428
        num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
429

    
430
        if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
431
            av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
432
            return -1;
433
        }
434

    
435
        vk0[0] = 0;
436

    
437
        make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
438

    
439
        qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
440
        vdk0_max = vk0[num_bands_0];
441

    
442
        vk0[0] = sbr->k[0];
443
        for (k = 1; k <= num_bands_0; k++) {
444
            if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
445
                av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
446
                return -1;
447
            }
448
            vk0[k] += vk0[k-1];
449
        }
450

    
451
        if (two_regions) {
452
            int16_t vk1[49];
453
            float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
454
                                                     : 1.0f; // bs_alter_scale = {0,1}
455
            int num_bands_1 = lrintf(half_bands * invwarp *
456
                                     log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
457

    
458
            make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
459

    
460
            vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
461

    
462
            if (vdk1_min < vdk0_max) {
463
                int change;
464
                qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
465
                change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
466
                vk1[1]           += change;
467
                vk1[num_bands_1] -= change;
468
            }
469

    
470
            qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
471

    
472
            vk1[0] = sbr->k[1];
473
            for (k = 1; k <= num_bands_1; k++) {
474
                if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
475
                    av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
476
                    return -1;
477
                }
478
                vk1[k] += vk1[k-1];
479
            }
480

    
481
            sbr->n_master = num_bands_0 + num_bands_1;
482
            if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
483
                return -1;
484
            memcpy(&sbr->f_master[0],               vk0,
485
                   (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
486
            memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
487
                    num_bands_1      * sizeof(sbr->f_master[0]));
488

    
489
        } else {
490
            sbr->n_master = num_bands_0;
491
            if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
492
                return -1;
493
            memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
494
        }
495
    }
496

    
497
    return 0;
498
}
499

    
500
/// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
501
static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
502
{
503
    int i, k, sb = 0;
504
    int msb = sbr->k[0];
505
    int usb = sbr->kx[1];
506
    int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
507

    
508
    sbr->num_patches = 0;
509

    
510
    if (goal_sb < sbr->kx[1] + sbr->m[1]) {
511
        for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
512
    } else
513
        k = sbr->n_master;
514

    
515
    do {
516
        int odd = 0;
517
        for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
518
            sb = sbr->f_master[i];
519
            odd = (sb + sbr->k[0]) & 1;
520
        }
521

    
522
        // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
523
        // After this check the final number of patches can still be six which is
524
        // illegal however the Coding Technologies decoder check stream has a final
525
        // count of 6 patches
526
        if (sbr->num_patches > 5) {
527
            av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
528
            return -1;
529
        }
530

    
531
        sbr->patch_num_subbands[sbr->num_patches]  = FFMAX(sb - usb, 0);
532
        sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
533

    
534
        if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
535
            usb = sb;
536
            msb = sb;
537
            sbr->num_patches++;
538
        } else
539
            msb = sbr->kx[1];
540

    
541
        if (sbr->f_master[k] - sb < 3)
542
            k = sbr->n_master;
543
    } while (sb != sbr->kx[1] + sbr->m[1]);
544

    
545
    if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
546
        sbr->num_patches--;
547

    
548
    return 0;
549
}
550

    
551
/// Derived Frequency Band Tables (14496-3 sp04 p197)
552
static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
553
{
554
    int k, temp;
555

    
556
    sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
557
    sbr->n[0] = (sbr->n[1] + 1) >> 1;
558

    
559
    memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
560
           (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
561
    sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
562
    sbr->kx[1] = sbr->f_tablehigh[0];
563

    
564
    // Requirements (14496-3 sp04 p205)
565
    if (sbr->kx[1] + sbr->m[1] > 64) {
566
        av_log(ac->avctx, AV_LOG_ERROR,
567
               "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
568
        return -1;
569
    }
570
    if (sbr->kx[1] > 32) {
571
        av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
572
        return -1;
573
    }
574

    
575
    sbr->f_tablelow[0] = sbr->f_tablehigh[0];
576
    temp = sbr->n[1] & 1;
577
    for (k = 1; k <= sbr->n[0]; k++)
578
        sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
579

    
580
    sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
581
                               log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
582
    if (sbr->n_q > 5) {
583
        av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
584
        return -1;
585
    }
586

    
587
    sbr->f_tablenoise[0] = sbr->f_tablelow[0];
588
    temp = 0;
589
    for (k = 1; k <= sbr->n_q; k++) {
590
        temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
591
        sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
592
    }
593

    
594
    if (sbr_hf_calc_npatches(ac, sbr) < 0)
595
        return -1;
596

    
597
    sbr_make_f_tablelim(sbr);
598

    
599
    sbr->data[0].f_indexnoise = 0;
600
    sbr->data[1].f_indexnoise = 0;
601

    
602
    return 0;
603
}
604

    
605
static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
606
                                              int elements)
607
{
608
    int i;
609
    for (i = 0; i < elements; i++) {
610
        vec[i] = get_bits1(gb);
611
    }
612
}
613

    
614
/** ceil(log2(index+1)) */
615
static const int8_t ceil_log2[] = {
616
    0, 1, 2, 2, 3, 3,
617
};
618

    
619
static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
620
                         GetBitContext *gb, SBRData *ch_data)
621
{
622
    int i;
623
    unsigned bs_pointer = 0;
624
    // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
625
    int abs_bord_trail = 16;
626
    int num_rel_lead, num_rel_trail;
627
    unsigned bs_num_env_old = ch_data->bs_num_env;
628

    
629
    ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
630
    ch_data->bs_amp_res = sbr->bs_amp_res_header;
631
    ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
632

    
633
    switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
634
    case FIXFIX:
635
        ch_data->bs_num_env                 = 1 << get_bits(gb, 2);
636
        num_rel_lead                        = ch_data->bs_num_env - 1;
637
        if (ch_data->bs_num_env == 1)
638
            ch_data->bs_amp_res = 0;
639

    
640
        if (ch_data->bs_num_env > 4) {
641
            av_log(ac->avctx, AV_LOG_ERROR,
642
                   "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
643
                   ch_data->bs_num_env);
644
            return -1;
645
        }
646

    
647
        ch_data->t_env[0]                   = 0;
648
        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
649

    
650
        abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
651
                   ch_data->bs_num_env;
652
        for (i = 0; i < num_rel_lead; i++)
653
            ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
654

    
655
        ch_data->bs_freq_res[1] = get_bits1(gb);
656
        for (i = 1; i < ch_data->bs_num_env; i++)
657
            ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
658
        break;
659
    case FIXVAR:
660
        abs_bord_trail                     += get_bits(gb, 2);
661
        num_rel_trail                       = get_bits(gb, 2);
662
        ch_data->bs_num_env                 = num_rel_trail + 1;
663
        ch_data->t_env[0]                   = 0;
664
        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
665

    
666
        for (i = 0; i < num_rel_trail; i++)
667
            ch_data->t_env[ch_data->bs_num_env - 1 - i] =
668
                ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
669

    
670
        bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
671

    
672
        for (i = 0; i < ch_data->bs_num_env; i++)
673
            ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
674
        break;
675
    case VARFIX:
676
        ch_data->t_env[0]                   = get_bits(gb, 2);
677
        num_rel_lead                        = get_bits(gb, 2);
678
        ch_data->bs_num_env                 = num_rel_lead + 1;
679
        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
680

    
681
        for (i = 0; i < num_rel_lead; i++)
682
            ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
683

    
684
        bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
685

    
686
        get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
687
        break;
688
    case VARVAR:
689
        ch_data->t_env[0]                   = get_bits(gb, 2);
690
        abs_bord_trail                     += get_bits(gb, 2);
691
        num_rel_lead                        = get_bits(gb, 2);
692
        num_rel_trail                       = get_bits(gb, 2);
693
        ch_data->bs_num_env                 = num_rel_lead + num_rel_trail + 1;
694

    
695
        if (ch_data->bs_num_env > 5) {
696
            av_log(ac->avctx, AV_LOG_ERROR,
697
                   "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
698
                   ch_data->bs_num_env);
699
            return -1;
700
        }
701

    
702
        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
703

    
704
        for (i = 0; i < num_rel_lead; i++)
705
            ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
706
        for (i = 0; i < num_rel_trail; i++)
707
            ch_data->t_env[ch_data->bs_num_env - 1 - i] =
708
                ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
709

    
710
        bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
711

    
712
        get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
713
        break;
714
    }
715

    
716
    if (bs_pointer > ch_data->bs_num_env + 1) {
717
        av_log(ac->avctx, AV_LOG_ERROR,
718
               "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
719
               bs_pointer);
720
        return -1;
721
    }
722

    
723
    for (i = 1; i <= ch_data->bs_num_env; i++) {
724
        if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
725
            av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
726
            return -1;
727
        }
728
    }
729

    
730
    ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
731

    
732
    ch_data->t_q[0]                     = ch_data->t_env[0];
733
    ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
734
    if (ch_data->bs_num_noise > 1) {
735
        unsigned int idx;
736
        if (ch_data->bs_frame_class == FIXFIX) {
737
            idx = ch_data->bs_num_env >> 1;
738
        } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
739
            idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
740
        } else { // VARFIX
741
            if (!bs_pointer)
742
                idx = 1;
743
            else if (bs_pointer == 1)
744
                idx = ch_data->bs_num_env - 1;
745
            else // bs_pointer > 1
746
                idx = bs_pointer - 1;
747
        }
748
        ch_data->t_q[1] = ch_data->t_env[idx];
749
    }
750

    
751
    ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
752
    ch_data->e_a[1] = -1;
753
    if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
754
        ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
755
    } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
756
        ch_data->e_a[1] = bs_pointer - 1;
757

    
758
    return 0;
759
}
760

    
761
static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
762
    //These variables are saved from the previous frame rather than copied
763
    dst->bs_freq_res[0]    = dst->bs_freq_res[dst->bs_num_env];
764
    dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
765
    dst->e_a[0]            = -(dst->e_a[1] != dst->bs_num_env);
766

    
767
    //These variables are read from the bitstream and therefore copied
768
    memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
769
    memcpy(dst->t_env,         src->t_env,         sizeof(dst->t_env));
770
    memcpy(dst->t_q,           src->t_q,           sizeof(dst->t_q));
771
    dst->bs_num_env        = src->bs_num_env;
772
    dst->bs_amp_res        = src->bs_amp_res;
773
    dst->bs_num_noise      = src->bs_num_noise;
774
    dst->bs_frame_class    = src->bs_frame_class;
775
    dst->e_a[1]            = src->e_a[1];
776
}
777

    
778
/// Read how the envelope and noise floor data is delta coded
779
static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
780
                          SBRData *ch_data)
781
{
782
    get_bits1_vector(gb, ch_data->bs_df_env,   ch_data->bs_num_env);
783
    get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
784
}
785

    
786
/// Read inverse filtering data
787
static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
788
                          SBRData *ch_data)
789
{
790
    int i;
791

    
792
    memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
793
    for (i = 0; i < sbr->n_q; i++)
794
        ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
795
}
796

    
797
static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
798
                              SBRData *ch_data, int ch)
799
{
800
    int bits;
801
    int i, j, k;
802
    VLC_TYPE (*t_huff)[2], (*f_huff)[2];
803
    int t_lav, f_lav;
804
    const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
805
    const int odd = sbr->n[1] & 1;
806

    
807
    if (sbr->bs_coupling && ch) {
808
        if (ch_data->bs_amp_res) {
809
            bits   = 5;
810
            t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
811
            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
812
            f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
813
            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
814
        } else {
815
            bits   = 6;
816
            t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
817
            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
818
            f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
819
            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
820
        }
821
    } else {
822
        if (ch_data->bs_amp_res) {
823
            bits   = 6;
824
            t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
825
            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
826
            f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
827
            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
828
        } else {
829
            bits   = 7;
830
            t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
831
            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
832
            f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
833
            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
834
        }
835
    }
836

    
837
    for (i = 0; i < ch_data->bs_num_env; i++) {
838
        if (ch_data->bs_df_env[i]) {
839
            // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
840
            if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
841
                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
842
                    ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
843
            } else if (ch_data->bs_freq_res[i + 1]) {
844
                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
845
                    k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
846
                    ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
847
                }
848
            } else {
849
                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
850
                    k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
851
                    ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
852
                }
853
            }
854
        } else {
855
            ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
856
            for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
857
                ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
858
        }
859
    }
860

    
861
    //assign 0th elements of env_facs from last elements
862
    memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
863
           sizeof(ch_data->env_facs[0]));
864
}
865

    
866
static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
867
                           SBRData *ch_data, int ch)
868
{
869
    int i, j;
870
    VLC_TYPE (*t_huff)[2], (*f_huff)[2];
871
    int t_lav, f_lav;
872
    int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
873

    
874
    if (sbr->bs_coupling && ch) {
875
        t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
876
        t_lav  = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
877
        f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
878
        f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
879
    } else {
880
        t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
881
        t_lav  = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
882
        f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
883
        f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
884
    }
885

    
886
    for (i = 0; i < ch_data->bs_num_noise; i++) {
887
        if (ch_data->bs_df_noise[i]) {
888
            for (j = 0; j < sbr->n_q; j++)
889
                ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
890
        } else {
891
            ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
892
            for (j = 1; j < sbr->n_q; j++)
893
                ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
894
        }
895
    }
896

    
897
    //assign 0th elements of noise_facs from last elements
898
    memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
899
           sizeof(ch_data->noise_facs[0]));
900
}
901

    
902
static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
903
                               GetBitContext *gb,
904
                               int bs_extension_id, int *num_bits_left)
905
{
906
//TODO - implement ps_data for parametric stereo parsing
907
    switch (bs_extension_id) {
908
    case EXTENSION_ID_PS:
909
        if (!ac->m4ac.ps) {
910
            av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
911
            skip_bits_long(gb, *num_bits_left); // bs_fill_bits
912
            *num_bits_left = 0;
913
        } else {
914
#if 0
915
            *num_bits_left -= ff_ps_data(gb, ps);
916
#else
917
            av_log_missing_feature(ac->avctx, "Parametric Stereo is", 0);
918
            skip_bits_long(gb, *num_bits_left); // bs_fill_bits
919
            *num_bits_left = 0;
920
#endif
921
        }
922
        break;
923
    default:
924
        av_log_missing_feature(ac->avctx, "Reserved SBR extensions are", 1);
925
        skip_bits_long(gb, *num_bits_left); // bs_fill_bits
926
        *num_bits_left = 0;
927
        break;
928
    }
929
}
930

    
931
static int read_sbr_single_channel_element(AACContext *ac,
932
                                            SpectralBandReplication *sbr,
933
                                            GetBitContext *gb)
934
{
935
    if (get_bits1(gb)) // bs_data_extra
936
        skip_bits(gb, 4); // bs_reserved
937

    
938
    if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
939
        return -1;
940
    read_sbr_dtdf(sbr, gb, &sbr->data[0]);
941
    read_sbr_invf(sbr, gb, &sbr->data[0]);
942
    read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
943
    read_sbr_noise(sbr, gb, &sbr->data[0], 0);
944

    
945
    if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
946
        get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
947

    
948
    return 0;
949
}
950

    
951
static int read_sbr_channel_pair_element(AACContext *ac,
952
                                          SpectralBandReplication *sbr,
953
                                          GetBitContext *gb)
954
{
955
    if (get_bits1(gb))    // bs_data_extra
956
        skip_bits(gb, 8); // bs_reserved
957

    
958
    if ((sbr->bs_coupling = get_bits1(gb))) {
959
        if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
960
            return -1;
961
        copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
962
        read_sbr_dtdf(sbr, gb, &sbr->data[0]);
963
        read_sbr_dtdf(sbr, gb, &sbr->data[1]);
964
        read_sbr_invf(sbr, gb, &sbr->data[0]);
965
        memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
966
        memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
967
        read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
968
        read_sbr_noise(sbr, gb, &sbr->data[0], 0);
969
        read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
970
        read_sbr_noise(sbr, gb, &sbr->data[1], 1);
971
    } else {
972
        if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
973
            read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
974
            return -1;
975
        read_sbr_dtdf(sbr, gb, &sbr->data[0]);
976
        read_sbr_dtdf(sbr, gb, &sbr->data[1]);
977
        read_sbr_invf(sbr, gb, &sbr->data[0]);
978
        read_sbr_invf(sbr, gb, &sbr->data[1]);
979
        read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
980
        read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
981
        read_sbr_noise(sbr, gb, &sbr->data[0], 0);
982
        read_sbr_noise(sbr, gb, &sbr->data[1], 1);
983
    }
984

    
985
    if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
986
        get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
987
    if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
988
        get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
989

    
990
    return 0;
991
}
992

    
993
static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
994
                                  GetBitContext *gb, int id_aac)
995
{
996
    unsigned int cnt = get_bits_count(gb);
997

    
998
    if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
999
        if (read_sbr_single_channel_element(ac, sbr, gb)) {
1000
            sbr->start = 0;
1001
            return get_bits_count(gb) - cnt;
1002
        }
1003
    } else if (id_aac == TYPE_CPE) {
1004
        if (read_sbr_channel_pair_element(ac, sbr, gb)) {
1005
            sbr->start = 0;
1006
            return get_bits_count(gb) - cnt;
1007
        }
1008
    } else {
1009
        av_log(ac->avctx, AV_LOG_ERROR,
1010
            "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
1011
        sbr->start = 0;
1012
        return get_bits_count(gb) - cnt;
1013
    }
1014
    if (get_bits1(gb)) { // bs_extended_data
1015
        int num_bits_left = get_bits(gb, 4); // bs_extension_size
1016
        if (num_bits_left == 15)
1017
            num_bits_left += get_bits(gb, 8); // bs_esc_count
1018

    
1019
        num_bits_left <<= 3;
1020
        while (num_bits_left > 7) {
1021
            num_bits_left -= 2;
1022
            read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
1023
        }
1024
    }
1025

    
1026
    return get_bits_count(gb) - cnt;
1027
}
1028

    
1029
static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
1030
{
1031
    int err;
1032
    err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
1033
    if (err >= 0)
1034
        err = sbr_make_f_derived(ac, sbr);
1035
    if (err < 0) {
1036
        av_log(ac->avctx, AV_LOG_ERROR,
1037
               "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1038
        sbr->start = 0;
1039
    }
1040
}
1041

    
1042
/**
1043
 * Decode Spectral Band Replication extension data; reference: table 4.55.
1044
 *
1045
 * @param   crc flag indicating the presence of CRC checksum
1046
 * @param   cnt length of TYPE_FIL syntactic element in bytes
1047
 *
1048
 * @return  Returns number of bytes consumed from the TYPE_FIL element.
1049
 */
1050
int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
1051
                            GetBitContext *gb_host, int crc, int cnt, int id_aac)
1052
{
1053
    unsigned int num_sbr_bits = 0, num_align_bits;
1054
    unsigned bytes_read;
1055
    GetBitContext gbc = *gb_host, *gb = &gbc;
1056
    skip_bits_long(gb_host, cnt*8 - 4);
1057

    
1058
    sbr->reset = 0;
1059

    
1060
    if (!sbr->sample_rate)
1061
        sbr->sample_rate = 2 * ac->m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
1062
    if (!ac->m4ac.ext_sample_rate)
1063
        ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate;
1064

    
1065
    if (crc) {
1066
        skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1067
        num_sbr_bits += 10;
1068
    }
1069

    
1070
    //Save some state from the previous frame.
1071
    sbr->kx[0] = sbr->kx[1];
1072
    sbr->m[0] = sbr->m[1];
1073

    
1074
    num_sbr_bits++;
1075
    if (get_bits1(gb)) // bs_header_flag
1076
        num_sbr_bits += read_sbr_header(sbr, gb);
1077

    
1078
    if (sbr->reset)
1079
        sbr_reset(ac, sbr);
1080

    
1081
    if (sbr->start)
1082
        num_sbr_bits  += read_sbr_data(ac, sbr, gb, id_aac);
1083

    
1084
    num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1085
    bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1086

    
1087
    if (bytes_read > cnt) {
1088
        av_log(ac->avctx, AV_LOG_ERROR,
1089
               "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1090
    }
1091
    return cnt;
1092
}
1093

    
1094
/// Dequantization and stereo decoding (14496-3 sp04 p203)
1095
static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
1096
{
1097
    int k, e;
1098
    int ch;
1099

    
1100
    if (id_aac == TYPE_CPE && sbr->bs_coupling) {
1101
        float alpha      = sbr->data[0].bs_amp_res ?  1.0f :  0.5f;
1102
        float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
1103
        for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
1104
            for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
1105
                float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
1106
                float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
1107
                float fac   = temp1 / (1.0f + temp2);
1108
                sbr->data[0].env_facs[e][k] = fac;
1109
                sbr->data[1].env_facs[e][k] = fac * temp2;
1110
            }
1111
        }
1112
        for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
1113
            for (k = 0; k < sbr->n_q; k++) {
1114
                float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
1115
                float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
1116
                float fac   = temp1 / (1.0f + temp2);
1117
                sbr->data[0].noise_facs[e][k] = fac;
1118
                sbr->data[1].noise_facs[e][k] = fac * temp2;
1119
            }
1120
        }
1121
    } else { // SCE or one non-coupled CPE
1122
        for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
1123
            float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
1124
            for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
1125
                for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
1126
                    sbr->data[ch].env_facs[e][k] =
1127
                        exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
1128
            for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
1129
                for (k = 0; k < sbr->n_q; k++)
1130
                    sbr->data[ch].noise_facs[e][k] =
1131
                        exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
1132
        }
1133
    }
1134
}
1135

    
1136
/**
1137
 * Analysis QMF Bank (14496-3 sp04 p206)
1138
 *
1139
 * @param   x       pointer to the beginning of the first sample window
1140
 * @param   W       array of complex-valued samples split into subbands
1141
 */
1142
static void sbr_qmf_analysis(DSPContext *dsp, RDFTContext *rdft, const float *in, float *x,
1143
                             float z[320], float W[2][32][32][2],
1144
                             float scale)
1145
{
1146
    int i, k;
1147
    memcpy(W[0], W[1], sizeof(W[0]));
1148
    memcpy(x    , x+1024, (320-32)*sizeof(x[0]));
1149
    if (scale != 1.0f)
1150
        dsp->vector_fmul_scalar(x+288, in, scale, 1024);
1151
    else
1152
        memcpy(x+288, in, 1024*sizeof(*x));
1153
    for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1154
                               // are not supported
1155
        float re, im;
1156
        dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
1157
        for (k = 0; k < 64; k++) {
1158
            float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
1159
            z[k] = f * analysis_cos_pre[k];
1160
            z[k+64] = f;
1161
        }
1162
        ff_rdft_calc(rdft, z);
1163
        re = z[0] * 0.5f;
1164
        im = 0.5f * dsp->scalarproduct_float(z+64, analysis_sin_pre, 64);
1165
        W[1][i][0][0] = re * analysis_cossin_post[0][0] - im * analysis_cossin_post[0][1];
1166
        W[1][i][0][1] = re * analysis_cossin_post[0][1] + im * analysis_cossin_post[0][0];
1167
        for (k = 1; k < 32; k++) {
1168
            re = z[2*k  ] - re;
1169
            im = z[2*k+1] - im;
1170
            W[1][i][k][0] = re * analysis_cossin_post[k][0] - im * analysis_cossin_post[k][1];
1171
            W[1][i][k][1] = re * analysis_cossin_post[k][1] + im * analysis_cossin_post[k][0];
1172
        }
1173
        x += 32;
1174
    }
1175
}
1176

    
1177
/**
1178
 * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1179
 * (14496-3 sp04 p206)
1180
 */
1181
static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
1182
                              float *out, float X[2][32][64],
1183
                              float mdct_buf[2][64],
1184
                              float *v0, int *v_off, const unsigned int div,
1185
                              float bias, float scale)
1186
{
1187
    int i, n;
1188
    const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1189
    int scale_and_bias = scale != 1.0f || bias != 0.0f;
1190
    float *v;
1191
    for (i = 0; i < 32; i++) {
1192
        if (*v_off == 0) {
1193
            int saved_samples = (1280 - 128) >> div;
1194
            memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
1195
            *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - (128 >> div);
1196
        } else {
1197
            *v_off -= 128 >> div;
1198
        }
1199
        v = v0 + *v_off;
1200
        for (n = 1; n < 64 >> div; n+=2) {
1201
            X[1][i][n] = -X[1][i][n];
1202
        }
1203
        if (div) {
1204
            memset(X[0][i]+32, 0, 32*sizeof(float));
1205
            memset(X[1][i]+32, 0, 32*sizeof(float));
1206
        }
1207
        ff_imdct_half(mdct, mdct_buf[0], X[0][i]);
1208
        ff_imdct_half(mdct, mdct_buf[1], X[1][i]);
1209
        if (div) {
1210
            for (n = 0; n < 32; n++) {
1211
                v[      n] = -mdct_buf[0][63 - 2*n] + mdct_buf[1][2*n    ];
1212
                v[ 63 - n] =  mdct_buf[0][62 - 2*n] + mdct_buf[1][2*n + 1];
1213
            }
1214
        } else {
1215
            for (n = 0; n < 64; n++) {
1216
                v[      n] = -mdct_buf[0][63 -   n] + mdct_buf[1][  n    ];
1217
                v[127 - n] =  mdct_buf[0][63 -   n] + mdct_buf[1][  n    ];
1218
            }
1219
        }
1220
        dsp->vector_fmul_add(out, v                , sbr_qmf_window               , zero64, 64 >> div);
1221
        dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out   , 64 >> div);
1222
        dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out   , 64 >> div);
1223
        dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out   , 64 >> div);
1224
        dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out   , 64 >> div);
1225
        dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out   , 64 >> div);
1226
        dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out   , 64 >> div);
1227
        dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out   , 64 >> div);
1228
        dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out   , 64 >> div);
1229
        dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out   , 64 >> div);
1230
        if (scale_and_bias)
1231
            for (n = 0; n < 64 >> div; n++)
1232
                out[n] = out[n] * scale + bias;
1233
        out += 64 >> div;
1234
    }
1235
}
1236

    
1237
static void autocorrelate(const float x[40][2], float phi[3][2][2], int lag)
1238
{
1239
    int i;
1240
    float real_sum = 0.0f;
1241
    float imag_sum = 0.0f;
1242
    if (lag) {
1243
        for (i = 1; i < 38; i++) {
1244
            real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
1245
            imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
1246
        }
1247
        phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
1248
        phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
1249
        if (lag == 1) {
1250
            phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
1251
            phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
1252
        }
1253
    } else {
1254
        for (i = 1; i < 38; i++) {
1255
            real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
1256
        }
1257
        phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
1258
        phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
1259
    }
1260
}
1261

    
1262
/** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
1263
 * (14496-3 sp04 p214)
1264
 * Warning: This routine does not seem numerically stable.
1265
 */
1266
static void sbr_hf_inverse_filter(float (*alpha0)[2], float (*alpha1)[2],
1267
                                  const float X_low[32][40][2], int k0)
1268
{
1269
    int k;
1270
    for (k = 0; k < k0; k++) {
1271
        float phi[3][2][2], dk;
1272

    
1273
        autocorrelate(X_low[k], phi, 0);
1274
        autocorrelate(X_low[k], phi, 1);
1275
        autocorrelate(X_low[k], phi, 2);
1276

    
1277
        dk =  phi[2][1][0] * phi[1][0][0] -
1278
             (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
1279

    
1280
        if (!dk) {
1281
            alpha1[k][0] = 0;
1282
            alpha1[k][1] = 0;
1283
        } else {
1284
            float temp_real, temp_im;
1285
            temp_real = phi[0][0][0] * phi[1][1][0] -
1286
                        phi[0][0][1] * phi[1][1][1] -
1287
                        phi[0][1][0] * phi[1][0][0];
1288
            temp_im   = phi[0][0][0] * phi[1][1][1] +
1289
                        phi[0][0][1] * phi[1][1][0] -
1290
                        phi[0][1][1] * phi[1][0][0];
1291

    
1292
            alpha1[k][0] = temp_real / dk;
1293
            alpha1[k][1] = temp_im   / dk;
1294
        }
1295

    
1296
        if (!phi[1][0][0]) {
1297
            alpha0[k][0] = 0;
1298
            alpha0[k][1] = 0;
1299
        } else {
1300
            float temp_real, temp_im;
1301
            temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
1302
                                       alpha1[k][1] * phi[1][1][1];
1303
            temp_im   = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
1304
                                       alpha1[k][0] * phi[1][1][1];
1305

    
1306
            alpha0[k][0] = -temp_real / phi[1][0][0];
1307
            alpha0[k][1] = -temp_im   / phi[1][0][0];
1308
        }
1309

    
1310
        if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
1311
           alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
1312
            alpha1[k][0] = 0;
1313
            alpha1[k][1] = 0;
1314
            alpha0[k][0] = 0;
1315
            alpha0[k][1] = 0;
1316
        }
1317
    }
1318
}
1319

    
1320
/// Chirp Factors (14496-3 sp04 p214)
1321
static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
1322
{
1323
    int i;
1324
    float new_bw;
1325
    static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
1326

    
1327
    for (i = 0; i < sbr->n_q; i++) {
1328
        if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
1329
            new_bw = 0.6f;
1330
        } else
1331
            new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
1332

    
1333
        if (new_bw < ch_data->bw_array[i]) {
1334
            new_bw = 0.75f    * new_bw + 0.25f    * ch_data->bw_array[i];
1335
        } else
1336
            new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
1337
        ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
1338
    }
1339
}
1340

    
1341
/// Generate the subband filtered lowband
1342
static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
1343
                      float X_low[32][40][2], const float W[2][32][32][2])
1344
{
1345
    int i, k;
1346
    const int t_HFGen = 8;
1347
    const int i_f = 32;
1348
    memset(X_low, 0, 32*sizeof(*X_low));
1349
    for (k = 0; k < sbr->kx[1]; k++) {
1350
        for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1351
            X_low[k][i][0] = W[1][i - t_HFGen][k][0];
1352
            X_low[k][i][1] = W[1][i - t_HFGen][k][1];
1353
        }
1354
    }
1355
    for (k = 0; k < sbr->kx[0]; k++) {
1356
        for (i = 0; i < t_HFGen; i++) {
1357
            X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0];
1358
            X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1];
1359
        }
1360
    }
1361
    return 0;
1362
}
1363

    
1364
/// High Frequency Generator (14496-3 sp04 p215)
1365
static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
1366
                      float X_high[64][40][2], const float X_low[32][40][2],
1367
                      const float (*alpha0)[2], const float (*alpha1)[2],
1368
                      const float bw_array[5], const uint8_t *t_env,
1369
                      int bs_num_env)
1370
{
1371
    int i, j, x;
1372
    int g = 0;
1373
    int k = sbr->kx[1];
1374
    for (j = 0; j < sbr->num_patches; j++) {
1375
        for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
1376
            float alpha[4];
1377
            const int p = sbr->patch_start_subband[j] + x;
1378
            while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
1379
                g++;
1380
            g--;
1381

    
1382
            if (g < 0) {
1383
                av_log(ac->avctx, AV_LOG_ERROR,
1384
                       "ERROR : no subband found for frequency %d\n", k);
1385
                return -1;
1386
            }
1387

    
1388
            alpha[0] = alpha1[p][0] * bw_array[g] * bw_array[g];
1389
            alpha[1] = alpha1[p][1] * bw_array[g] * bw_array[g];
1390
            alpha[2] = alpha0[p][0] * bw_array[g];
1391
            alpha[3] = alpha0[p][1] * bw_array[g];
1392

    
1393
            for (i = 2 * t_env[0]; i < 2 * t_env[bs_num_env]; i++) {
1394
                const int idx = i + ENVELOPE_ADJUSTMENT_OFFSET;
1395
                X_high[k][idx][0] =
1396
                    X_low[p][idx - 2][0] * alpha[0] -
1397
                    X_low[p][idx - 2][1] * alpha[1] +
1398
                    X_low[p][idx - 1][0] * alpha[2] -
1399
                    X_low[p][idx - 1][1] * alpha[3] +
1400
                    X_low[p][idx][0];
1401
                X_high[k][idx][1] =
1402
                    X_low[p][idx - 2][1] * alpha[0] +
1403
                    X_low[p][idx - 2][0] * alpha[1] +
1404
                    X_low[p][idx - 1][1] * alpha[2] +
1405
                    X_low[p][idx - 1][0] * alpha[3] +
1406
                    X_low[p][idx][1];
1407
            }
1408
        }
1409
    }
1410
    if (k < sbr->m[1] + sbr->kx[1])
1411
        memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
1412

    
1413
    return 0;
1414
}
1415

    
1416
/// Generate the subband filtered lowband
1417
static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][32][64],
1418
                     const float X_low[32][40][2], const float Y[2][38][64][2],
1419
                     int ch)
1420
{
1421
    int k, i;
1422
    const int i_f = 32;
1423
    const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
1424
    memset(X, 0, 2*sizeof(*X));
1425
    for (k = 0; k < sbr->kx[0]; k++) {
1426
        for (i = 0; i < i_Temp; i++) {
1427
            X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1428
            X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1429
        }
1430
    }
1431
    for (; k < sbr->kx[0] + sbr->m[0]; k++) {
1432
        for (i = 0; i < i_Temp; i++) {
1433
            X[0][i][k] = Y[0][i + i_f][k][0];
1434
            X[1][i][k] = Y[0][i + i_f][k][1];
1435
        }
1436
    }
1437

    
1438
    for (k = 0; k < sbr->kx[1]; k++) {
1439
        for (i = i_Temp; i < i_f; i++) {
1440
            X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1441
            X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1442
        }
1443
    }
1444
    for (; k < sbr->kx[1] + sbr->m[1]; k++) {
1445
        for (i = i_Temp; i < i_f; i++) {
1446
            X[0][i][k] = Y[1][i][k][0];
1447
            X[1][i][k] = Y[1][i][k][1];
1448
        }
1449
    }
1450
    return 0;
1451
}
1452

    
1453
/** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1454
 * (14496-3 sp04 p217)
1455
 */
1456
static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
1457
                        SBRData *ch_data, int e_a[2])
1458
{
1459
    int e, i, m;
1460

    
1461
    memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
1462
    for (e = 0; e < ch_data->bs_num_env; e++) {
1463
        const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
1464
        uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1465
        int k;
1466

    
1467
        for (i = 0; i < ilim; i++)
1468
            for (m = table[i]; m < table[i + 1]; m++)
1469
                sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
1470

    
1471
        // ch_data->bs_num_noise > 1 => 2 noise floors
1472
        k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
1473
        for (i = 0; i < sbr->n_q; i++)
1474
            for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1475
                sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
1476

    
1477
        for (i = 0; i < sbr->n[1]; i++) {
1478
            if (ch_data->bs_add_harmonic_flag) {
1479
                const unsigned int m_midpoint =
1480
                    (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
1481

    
1482
                ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
1483
                    (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
1484
            }
1485
        }
1486

    
1487
        for (i = 0; i < ilim; i++) {
1488
            int additional_sinusoid_present = 0;
1489
            for (m = table[i]; m < table[i + 1]; m++) {
1490
                if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
1491
                    additional_sinusoid_present = 1;
1492
                    break;
1493
                }
1494
            }
1495
            memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
1496
                   (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
1497
        }
1498
    }
1499

    
1500
    memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
1501
}
1502

    
1503
/// Estimation of current envelope (14496-3 sp04 p218)
1504
static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
1505
                             SpectralBandReplication *sbr, SBRData *ch_data)
1506
{
1507
    int e, i, m;
1508

    
1509
    if (sbr->bs_interpol_freq) {
1510
        for (e = 0; e < ch_data->bs_num_env; e++) {
1511
            const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1512
            int ilb = ch_data->t_env[e]     * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1513
            int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1514

    
1515
            for (m = 0; m < sbr->m[1]; m++) {
1516
                float sum = 0.0f;
1517

    
1518
                for (i = ilb; i < iub; i++) {
1519
                    sum += X_high[m + sbr->kx[1]][i][0] * X_high[m + sbr->kx[1]][i][0] +
1520
                           X_high[m + sbr->kx[1]][i][1] * X_high[m + sbr->kx[1]][i][1];
1521
                }
1522
                e_curr[e][m] = sum * recip_env_size;
1523
            }
1524
        }
1525
    } else {
1526
        int k, p;
1527

    
1528
        for (e = 0; e < ch_data->bs_num_env; e++) {
1529
            const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1530
            int ilb = ch_data->t_env[e]     * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1531
            int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1532
            const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1533

    
1534
            for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1535
                float sum = 0.0f;
1536
                const int den = env_size * (table[p + 1] - table[p]);
1537

    
1538
                for (k = table[p]; k < table[p + 1]; k++) {
1539
                    for (i = ilb; i < iub; i++) {
1540
                        sum += X_high[k][i][0] * X_high[k][i][0] +
1541
                               X_high[k][i][1] * X_high[k][i][1];
1542
                    }
1543
                }
1544
                sum /= den;
1545
                for (k = table[p]; k < table[p + 1]; k++) {
1546
                    e_curr[e][k - sbr->kx[1]] = sum;
1547
                }
1548
            }
1549
        }
1550
    }
1551
}
1552

    
1553
/**
1554
 * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
1555
 * and Calculation of gain (14496-3 sp04 p219)
1556
 */
1557
static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
1558
                          SBRData *ch_data, const int e_a[2])
1559
{
1560
    int e, k, m;
1561
    // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
1562
    static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
1563

    
1564
    for (e = 0; e < ch_data->bs_num_env; e++) {
1565
        int delta = !((e == e_a[1]) || (e == e_a[0]));
1566
        for (k = 0; k < sbr->n_lim; k++) {
1567
            float gain_boost, gain_max;
1568
            float sum[2] = { 0.0f, 0.0f };
1569
            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1570
                const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
1571
                sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
1572
                sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
1573
                if (!sbr->s_mapped[e][m]) {
1574
                    sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
1575
                                            ((1.0f + sbr->e_curr[e][m]) *
1576
                                             (1.0f + sbr->q_mapped[e][m] * delta)));
1577
                } else {
1578
                    sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
1579
                                            ((1.0f + sbr->e_curr[e][m]) *
1580
                                             (1.0f + sbr->q_mapped[e][m])));
1581
                }
1582
            }
1583
            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1584
                sum[0] += sbr->e_origmapped[e][m];
1585
                sum[1] += sbr->e_curr[e][m];
1586
            }
1587
            gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1588
            gain_max = FFMIN(100000, gain_max);
1589
            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1590
                float q_m_max   = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
1591
                sbr->q_m[e][m]  = FFMIN(sbr->q_m[e][m], q_m_max);
1592
                sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
1593
            }
1594
            sum[0] = sum[1] = 0.0f;
1595
            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1596
                sum[0] += sbr->e_origmapped[e][m];
1597
                sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
1598
                          + sbr->s_m[e][m] * sbr->s_m[e][m]
1599
                          + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
1600
            }
1601
            gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
1602
            gain_boost = FFMIN(1.584893192, gain_boost);
1603
            for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
1604
                sbr->gain[e][m] *= gain_boost;
1605
                sbr->q_m[e][m]  *= gain_boost;
1606
                sbr->s_m[e][m]  *= gain_boost;
1607
            }
1608
        }
1609
    }
1610
}
1611

    
1612
/// Assembling HF Signals (14496-3 sp04 p220)
1613
static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2],
1614
                            SpectralBandReplication *sbr, SBRData *ch_data,
1615
                            const int e_a[2])
1616
{
1617
    int e, i, j, m;
1618
    const int h_SL = 4 * !sbr->bs_smoothing_mode;
1619
    const int kx = sbr->kx[1];
1620
    const int m_max = sbr->m[1];
1621
    static const float h_smooth[5] = {
1622
        0.33333333333333,
1623
        0.30150283239582,
1624
        0.21816949906249,
1625
        0.11516383427084,
1626
        0.03183050093751,
1627
    };
1628
    static const int8_t phi[2][4] = {
1629
        {  1,  0, -1,  0}, // real
1630
        {  0,  1,  0, -1}, // imaginary
1631
    };
1632
    float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
1633
    int indexnoise = ch_data->f_indexnoise;
1634
    int indexsine  = ch_data->f_indexsine;
1635
    memcpy(Y[0], Y[1], sizeof(Y[0]));
1636

    
1637
    if (sbr->reset) {
1638
        for (i = 0; i < h_SL; i++) {
1639
            memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
1640
            memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0],  m_max * sizeof(sbr->q_m[0][0]));
1641
        }
1642
    } else if (h_SL) {
1643
        memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
1644
        memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
1645
    }
1646

    
1647
    for (e = 0; e < ch_data->bs_num_env; e++) {
1648
        for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1649
            memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
1650
            memcpy(q_temp[h_SL + i], sbr->q_m[e],  m_max * sizeof(sbr->q_m[0][0]));
1651
        }
1652
    }
1653

    
1654
    for (e = 0; e < ch_data->bs_num_env; e++) {
1655
        for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
1656
            int phi_sign = (1 - 2*(kx & 1));
1657

    
1658
            if (h_SL && e != e_a[0] && e != e_a[1]) {
1659
                for (m = 0; m < m_max; m++) {
1660
                    const int idx1 = i + h_SL;
1661
                    float g_filt = 0.0f;
1662
                    for (j = 0; j <= h_SL; j++)
1663
                        g_filt += g_temp[idx1 - j][m] * h_smooth[j];
1664
                    Y[1][i][m + kx][0] =
1665
                        X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
1666
                    Y[1][i][m + kx][1] =
1667
                        X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
1668
                }
1669
            } else {
1670
                for (m = 0; m < m_max; m++) {
1671
                    const float g_filt = g_temp[i + h_SL][m];
1672
                    Y[1][i][m + kx][0] =
1673
                        X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
1674
                    Y[1][i][m + kx][1] =
1675
                        X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
1676
                }
1677
            }
1678

    
1679
            if (e != e_a[0] && e != e_a[1]) {
1680
                for (m = 0; m < m_max; m++) {
1681
                    indexnoise = (indexnoise + 1) & 0x1ff;
1682
                    if (sbr->s_m[e][m]) {
1683
                        Y[1][i][m + kx][0] +=
1684
                            sbr->s_m[e][m] * phi[0][indexsine];
1685
                        Y[1][i][m + kx][1] +=
1686
                            sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
1687
                    } else {
1688
                        float q_filt;
1689
                        if (h_SL) {
1690
                            const int idx1 = i + h_SL;
1691
                            q_filt = 0.0f;
1692
                            for (j = 0; j <= h_SL; j++)
1693
                                q_filt += q_temp[idx1 - j][m] * h_smooth[j];
1694
                        } else {
1695
                            q_filt = q_temp[i][m];
1696
                        }
1697
                        Y[1][i][m + kx][0] +=
1698
                            q_filt * sbr_noise_table[indexnoise][0];
1699
                        Y[1][i][m + kx][1] +=
1700
                            q_filt * sbr_noise_table[indexnoise][1];
1701
                    }
1702
                    phi_sign = -phi_sign;
1703
                }
1704
            } else {
1705
                indexnoise = (indexnoise + m_max) & 0x1ff;
1706
                for (m = 0; m < m_max; m++) {
1707
                    Y[1][i][m + kx][0] +=
1708
                        sbr->s_m[e][m] * phi[0][indexsine];
1709
                    Y[1][i][m + kx][1] +=
1710
                        sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
1711
                    phi_sign = -phi_sign;
1712
                }
1713
            }
1714
            indexsine = (indexsine + 1) & 3;
1715
        }
1716
    }
1717
    ch_data->f_indexnoise = indexnoise;
1718
    ch_data->f_indexsine  = indexsine;
1719
}
1720

    
1721
void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
1722
                  float* L, float* R)
1723
{
1724
    int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate;
1725
    int ch;
1726
    int nch = (id_aac == TYPE_CPE) ? 2 : 1;
1727

    
1728
    if (sbr->start) {
1729
        sbr_dequant(sbr, id_aac);
1730
    }
1731
    for (ch = 0; ch < nch; ch++) {
1732
        /* decode channel */
1733
        sbr_qmf_analysis(&ac->dsp, &sbr->rdft, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
1734
                         (float*)sbr->qmf_filter_scratch,
1735
                         sbr->data[ch].W, 1/(-1024 * ac->sf_scale));
1736
        sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W);
1737
        if (sbr->start) {
1738
            sbr_hf_inverse_filter(sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
1739
            sbr_chirp(sbr, &sbr->data[ch]);
1740
            sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
1741
                       sbr->data[ch].bw_array, sbr->data[ch].t_env,
1742
                       sbr->data[ch].bs_num_env);
1743

    
1744
            // hf_adj
1745
            sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1746
            sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
1747
            sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1748
            sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch],
1749
                            sbr->data[ch].e_a);
1750
        }
1751

    
1752
        /* synthesis */
1753
        sbr_x_gen(sbr, sbr->X[ch], sbr->X_low, sbr->data[ch].Y, ch);
1754
    }
1755
    sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, L, sbr->X[0], sbr->qmf_filter_scratch,
1756
                      sbr->data[0].synthesis_filterbank_samples,
1757
                      &sbr->data[0].synthesis_filterbank_samples_offset,
1758
                      downsampled,
1759
                      ac->add_bias, -1024 * ac->sf_scale);
1760
    if (nch == 2)
1761
        sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, R, sbr->X[1], sbr->qmf_filter_scratch,
1762
                          sbr->data[1].synthesis_filterbank_samples,
1763
                          &sbr->data[1].synthesis_filterbank_samples_offset,
1764
                          downsampled,
1765
                          ac->add_bias, -1024 * ac->sf_scale);
1766
}