Statistics
| Branch: | Revision:

ffmpeg / libavcodec / cook.c @ de8e2c1d

History | View | Annotate | Download (35.4 KB)

1
/*
2
 * COOK compatible decoder
3
 * Copyright (c) 2003 Sascha Sommer
4
 * Copyright (c) 2005 Benjamin Larsson
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 *
22
 */
23

    
24
/**
25
 * @file cook.c
26
 * Cook compatible decoder. Bastardization of the G.722.1 standard.
27
 * This decoder handles RealNetworks, RealAudio G2 data.
28
 * Cook is identified by the codec name cook in RM files.
29
 *
30
 * To use this decoder, a calling application must supply the extradata
31
 * bytes provided from the RM container; 8+ bytes for mono streams and
32
 * 16+ for stereo streams (maybe more).
33
 *
34
 * Codec technicalities (all this assume a buffer length of 1024):
35
 * Cook works with several different techniques to achieve its compression.
36
 * In the timedomain the buffer is divided into 8 pieces and quantized. If
37
 * two neighboring pieces have different quantization index a smooth
38
 * quantization curve is used to get a smooth overlap between the different
39
 * pieces.
40
 * To get to the transformdomain Cook uses a modulated lapped transform.
41
 * The transform domain has 50 subbands with 20 elements each. This
42
 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
43
 * available.
44
 */
45

    
46
#include <math.h>
47
#include <stddef.h>
48
#include <stdio.h>
49

    
50
#include "avcodec.h"
51
#include "bitstream.h"
52
#include "dsputil.h"
53
#include "common.h"
54
#include "bytestream.h"
55
#include "random.h"
56

    
57
#include "cookdata.h"
58

    
59
/* the different Cook versions */
60
#define MONO            0x1000001
61
#define STEREO          0x1000002
62
#define JOINT_STEREO    0x1000003
63
#define MC_COOK         0x2000000   //multichannel Cook, not supported
64

    
65
#define SUBBAND_SIZE    20
66
//#define COOKDEBUG
67

    
68
typedef struct {
69
    int *now;
70
    int *previous;
71
} cook_gains;
72

    
73
typedef struct {
74
    GetBitContext       gb;
75
    /* stream data */
76
    int                 nb_channels;
77
    int                 joint_stereo;
78
    int                 bit_rate;
79
    int                 sample_rate;
80
    int                 samples_per_channel;
81
    int                 samples_per_frame;
82
    int                 subbands;
83
    int                 log2_numvector_size;
84
    int                 numvector_size;                //1 << log2_numvector_size;
85
    int                 js_subband_start;
86
    int                 total_subbands;
87
    int                 num_vectors;
88
    int                 bits_per_subpacket;
89
    int                 cookversion;
90
    /* states */
91
    AVRandomState       random_state;
92

    
93
    /* transform data */
94
    MDCTContext         mdct_ctx;
95
    DECLARE_ALIGNED_16(FFTSample, mdct_tmp[1024]);  /* temporary storage for imlt */
96
    float*              mlt_window;
97

    
98
    /* gain buffers */
99
    cook_gains          gains1;
100
    cook_gains          gains2;
101
    int                 gain_1[9];
102
    int                 gain_2[9];
103
    int                 gain_3[9];
104
    int                 gain_4[9];
105

    
106
    /* VLC data */
107
    int                 js_vlc_bits;
108
    VLC                 envelope_quant_index[13];
109
    VLC                 sqvh[7];          //scalar quantization
110
    VLC                 ccpl;             //channel coupling
111

    
112
    /* generatable tables and related variables */
113
    int                 gain_size_factor;
114
    float               gain_table[23];
115
    float               pow2tab[127];
116
    float               rootpow2tab[127];
117

    
118
    /* data buffers */
119

    
120
    uint8_t*            decoded_bytes_buffer;
121
    DECLARE_ALIGNED_16(float,mono_mdct_output[2048]);
122
    float               mono_previous_buffer1[1024];
123
    float               mono_previous_buffer2[1024];
124
    float               decode_buffer_1[1024];
125
    float               decode_buffer_2[1024];
126
} COOKContext;
127

    
128
/* debug functions */
129

    
130
#ifdef COOKDEBUG
131
static void dump_float_table(float* table, int size, int delimiter) {
132
    int i=0;
133
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
134
    for (i=0 ; i<size ; i++) {
135
        av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
136
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
137
    }
138
}
139

    
140
static void dump_int_table(int* table, int size, int delimiter) {
141
    int i=0;
142
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
143
    for (i=0 ; i<size ; i++) {
144
        av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
145
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
146
    }
147
}
148

    
149
static void dump_short_table(short* table, int size, int delimiter) {
150
    int i=0;
151
    av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
152
    for (i=0 ; i<size ; i++) {
153
        av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
154
        if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
155
    }
156
}
157

    
158
#endif
159

    
160
/*************** init functions ***************/
161

    
162
/* table generator */
163
static void init_pow2table(COOKContext *q){
164
    int i;
165
    q->pow2tab[63] = 1.0;
166
    for (i=1 ; i<64 ; i++){
167
        q->pow2tab[63+i]=(float)((uint64_t)1<<i);
168
        q->pow2tab[63-i]=1.0/(float)((uint64_t)1<<i);
169
    }
170
}
171

    
172
/* table generator */
173
static void init_rootpow2table(COOKContext *q){
174
    int i;
175
    q->rootpow2tab[63] = 1.0;
176
    for (i=1 ; i<64 ; i++){
177
        q->rootpow2tab[63+i]=sqrt((float)((uint64_t)1<<i));
178
        q->rootpow2tab[63-i]=sqrt(1.0/(float)((uint64_t)1<<i));
179
    }
180
}
181

    
182
/* table generator */
183
static void init_gain_table(COOKContext *q) {
184
    int i;
185
    q->gain_size_factor = q->samples_per_channel/8;
186
    for (i=0 ; i<23 ; i++) {
187
        q->gain_table[i] = pow((double)q->pow2tab[i+52] ,
188
                               (1.0/(double)q->gain_size_factor));
189
    }
190
}
191

    
192

    
193
static int init_cook_vlc_tables(COOKContext *q) {
194
    int i, result;
195

    
196
    result = 0;
197
    for (i=0 ; i<13 ; i++) {
198
        result |= init_vlc (&q->envelope_quant_index[i], 9, 24,
199
            envelope_quant_index_huffbits[i], 1, 1,
200
            envelope_quant_index_huffcodes[i], 2, 2, 0);
201
    }
202
    av_log(NULL,AV_LOG_DEBUG,"sqvh VLC init\n");
203
    for (i=0 ; i<7 ; i++) {
204
        result |= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
205
            cvh_huffbits[i], 1, 1,
206
            cvh_huffcodes[i], 2, 2, 0);
207
    }
208

    
209
    if (q->nb_channels==2 && q->joint_stereo==1){
210
        result |= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1,
211
            ccpl_huffbits[q->js_vlc_bits-2], 1, 1,
212
            ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0);
213
        av_log(NULL,AV_LOG_DEBUG,"Joint-stereo VLC used.\n");
214
    }
215

    
216
    av_log(NULL,AV_LOG_DEBUG,"VLC tables initialized.\n");
217
    return result;
218
}
219

    
220
static int init_cook_mlt(COOKContext *q) {
221
    int j;
222
    float alpha;
223
    int mlt_size = q->samples_per_channel;
224

    
225
    if ((q->mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0)
226
      return -1;
227

    
228
    /* Initialize the MLT window: simple sine window. */
229
    alpha = M_PI / (2.0 * (float)mlt_size);
230
    for(j=0 ; j<mlt_size ; j++)
231
        q->mlt_window[j] = sin((j + 0.5) * alpha) * sqrt(2.0 / q->samples_per_channel);
232

    
233
    /* Initialize the MDCT. */
234
    if (ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1)) {
235
      av_free(q->mlt_window);
236
      return -1;
237
    }
238
    av_log(NULL,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",
239
           av_log2(mlt_size)+1);
240

    
241
    return 0;
242
}
243

    
244
/*************** init functions end ***********/
245

    
246
/**
247
 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
248
 * Why? No idea, some checksum/error detection method maybe.
249
 *
250
 * Out buffer size: extra bytes are needed to cope with
251
 * padding/missalignment.
252
 * Subpackets passed to the decoder can contain two, consecutive
253
 * half-subpackets, of identical but arbitrary size.
254
 *          1234 1234 1234 1234  extraA extraB
255
 * Case 1:  AAAA BBBB              0      0
256
 * Case 2:  AAAA ABBB BB--         3      3
257
 * Case 3:  AAAA AABB BBBB         2      2
258
 * Case 4:  AAAA AAAB BBBB BB--    1      5
259
 *
260
 * Nice way to waste CPU cycles.
261
 *
262
 * @param inbuffer  pointer to byte array of indata
263
 * @param out       pointer to byte array of outdata
264
 * @param bytes     number of bytes
265
 */
266
#define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
267
#define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
268

    
269
static inline int decode_bytes(uint8_t* inbuffer, uint8_t* out, int bytes){
270
    int i, off;
271
    uint32_t c;
272
    uint32_t* buf;
273
    uint32_t* obuf = (uint32_t*) out;
274
    /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
275
     * I'm too lazy though, should be something like
276
     * for(i=0 ; i<bitamount/64 ; i++)
277
     *     (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
278
     * Buffer alignment needs to be checked. */
279

    
280
    off = (int)((long)inbuffer & 3);
281
    buf = (uint32_t*) (inbuffer - off);
282
    c = be2me_32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8))));
283
    bytes += 3 + off;
284
    for (i = 0; i < bytes/4; i++)
285
        obuf[i] = c ^ buf[i];
286

    
287
    return off;
288
}
289

    
290
/**
291
 * Cook uninit
292
 */
293

    
294
static int cook_decode_close(AVCodecContext *avctx)
295
{
296
    int i;
297
    COOKContext *q = avctx->priv_data;
298
    av_log(avctx,AV_LOG_DEBUG, "Deallocating memory.\n");
299

    
300
    /* Free allocated memory buffers. */
301
    av_free(q->mlt_window);
302
    av_free(q->decoded_bytes_buffer);
303

    
304
    /* Free the transform. */
305
    ff_mdct_end(&q->mdct_ctx);
306

    
307
    /* Free the VLC tables. */
308
    for (i=0 ; i<13 ; i++) {
309
        free_vlc(&q->envelope_quant_index[i]);
310
    }
311
    for (i=0 ; i<7 ; i++) {
312
        free_vlc(&q->sqvh[i]);
313
    }
314
    if(q->nb_channels==2 && q->joint_stereo==1 ){
315
        free_vlc(&q->ccpl);
316
    }
317

    
318
    av_log(NULL,AV_LOG_DEBUG,"Memory deallocated.\n");
319

    
320
    return 0;
321
}
322

    
323
/**
324
 * Fill the gain array for the timedomain quantization.
325
 *
326
 * @param q                 pointer to the COOKContext
327
 * @param gaininfo[9]       array of gain indices
328
 */
329

    
330
static void decode_gain_info(GetBitContext *gb, int *gaininfo)
331
{
332
    int i, n;
333

    
334
    while (get_bits1(gb)) {}
335
    n = get_bits_count(gb) - 1;     //amount of elements*2 to update
336

    
337
    i = 0;
338
    while (n--) {
339
        int index = get_bits(gb, 3);
340
        int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
341

    
342
        while (i <= index) gaininfo[i++] = gain;
343
    }
344
    while (i <= 8) gaininfo[i++] = 0;
345
}
346

    
347
/**
348
 * Create the quant index table needed for the envelope.
349
 *
350
 * @param q                 pointer to the COOKContext
351
 * @param quant_index_table pointer to the array
352
 */
353

    
354
static void decode_envelope(COOKContext *q, int* quant_index_table) {
355
    int i,j, vlc_index;
356

    
357
    quant_index_table[0]= get_bits(&q->gb,6) - 6;       //This is used later in categorize
358

    
359
    for (i=1 ; i < q->total_subbands ; i++){
360
        vlc_index=i;
361
        if (i >= q->js_subband_start * 2) {
362
            vlc_index-=q->js_subband_start;
363
        } else {
364
            vlc_index/=2;
365
            if(vlc_index < 1) vlc_index = 1;
366
        }
367
        if (vlc_index>13) vlc_index = 13;           //the VLC tables >13 are identical to No. 13
368

    
369
        j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
370
                     q->envelope_quant_index[vlc_index-1].bits,2);
371
        quant_index_table[i] = quant_index_table[i-1] + j - 12;    //differential encoding
372
    }
373
}
374

    
375
/**
376
 * Calculate the category and category_index vector.
377
 *
378
 * @param q                     pointer to the COOKContext
379
 * @param quant_index_table     pointer to the array
380
 * @param category              pointer to the category array
381
 * @param category_index        pointer to the category_index array
382
 */
383

    
384
static void categorize(COOKContext *q, int* quant_index_table,
385
                       int* category, int* category_index){
386
    int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
387
    int exp_index2[102];
388
    int exp_index1[102];
389

    
390
    int tmp_categorize_array[128*2];
391
    int tmp_categorize_array1_idx=q->numvector_size;
392
    int tmp_categorize_array2_idx=q->numvector_size;
393

    
394
    bits_left =  q->bits_per_subpacket - get_bits_count(&q->gb);
395

    
396
    if(bits_left > q->samples_per_channel) {
397
        bits_left = q->samples_per_channel +
398
                    ((bits_left - q->samples_per_channel)*5)/8;
399
        //av_log(NULL, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
400
    }
401

    
402
    memset(&exp_index1,0,102*sizeof(int));
403
    memset(&exp_index2,0,102*sizeof(int));
404
    memset(&tmp_categorize_array,0,128*2*sizeof(int));
405

    
406
    bias=-32;
407

    
408
    /* Estimate bias. */
409
    for (i=32 ; i>0 ; i=i/2){
410
        num_bits = 0;
411
        index = 0;
412
        for (j=q->total_subbands ; j>0 ; j--){
413
            exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
414
            index++;
415
            num_bits+=expbits_tab[exp_idx];
416
        }
417
        if(num_bits >= bits_left - 32){
418
            bias+=i;
419
        }
420
    }
421

    
422
    /* Calculate total number of bits. */
423
    num_bits=0;
424
    for (i=0 ; i<q->total_subbands ; i++) {
425
        exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
426
        num_bits += expbits_tab[exp_idx];
427
        exp_index1[i] = exp_idx;
428
        exp_index2[i] = exp_idx;
429
    }
430
    tmpbias1 = tmpbias2 = num_bits;
431

    
432
    for (j = 1 ; j < q->numvector_size ; j++) {
433
        if (tmpbias1 + tmpbias2 > 2*bits_left) {  /* ---> */
434
            int max = -999999;
435
            index=-1;
436
            for (i=0 ; i<q->total_subbands ; i++){
437
                if (exp_index1[i] < 7) {
438
                    v = (-2*exp_index1[i]) - quant_index_table[i] + bias;
439
                    if ( v >= max) {
440
                        max = v;
441
                        index = i;
442
                    }
443
                }
444
            }
445
            if(index==-1)break;
446
            tmp_categorize_array[tmp_categorize_array1_idx++] = index;
447
            tmpbias1 -= expbits_tab[exp_index1[index]] -
448
                        expbits_tab[exp_index1[index]+1];
449
            ++exp_index1[index];
450
        } else {  /* <--- */
451
            int min = 999999;
452
            index=-1;
453
            for (i=0 ; i<q->total_subbands ; i++){
454
                if(exp_index2[i] > 0){
455
                    v = (-2*exp_index2[i])-quant_index_table[i]+bias;
456
                    if ( v < min) {
457
                        min = v;
458
                        index = i;
459
                    }
460
                }
461
            }
462
            if(index == -1)break;
463
            tmp_categorize_array[--tmp_categorize_array2_idx] = index;
464
            tmpbias2 -= expbits_tab[exp_index2[index]] -
465
                        expbits_tab[exp_index2[index]-1];
466
            --exp_index2[index];
467
        }
468
    }
469

    
470
    for(i=0 ; i<q->total_subbands ; i++)
471
        category[i] = exp_index2[i];
472

    
473
    for(i=0 ; i<q->numvector_size-1 ; i++)
474
        category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
475

    
476
}
477

    
478

    
479
/**
480
 * Expand the category vector.
481
 *
482
 * @param q                     pointer to the COOKContext
483
 * @param category              pointer to the category array
484
 * @param category_index        pointer to the category_index array
485
 */
486

    
487
static inline void expand_category(COOKContext *q, int* category,
488
                                   int* category_index){
489
    int i;
490
    for(i=0 ; i<q->num_vectors ; i++){
491
        ++category[category_index[i]];
492
    }
493
}
494

    
495
/**
496
 * The real requantization of the mltcoefs
497
 *
498
 * @param q                     pointer to the COOKContext
499
 * @param index                 index
500
 * @param quant_index           quantisation index
501
 * @param subband_coef_index    array of indexes to quant_centroid_tab
502
 * @param subband_coef_sign     signs of coefficients
503
 * @param mlt_p                 pointer into the mlt buffer
504
 */
505

    
506
static void scalar_dequant(COOKContext *q, int index, int quant_index,
507
                           int* subband_coef_index, int* subband_coef_sign,
508
                           float* mlt_p){
509
    int i;
510
    float f1;
511

    
512
    for(i=0 ; i<SUBBAND_SIZE ; i++) {
513
        if (subband_coef_index[i]) {
514
            f1 = quant_centroid_tab[index][subband_coef_index[i]];
515
            if (subband_coef_sign[i]) f1 = -f1;
516
        } else {
517
            /* noise coding if subband_coef_index[i] == 0 */
518
            f1 = dither_tab[index];
519
            if (av_random(&q->random_state) < 0x80000000) f1 = -f1;
520
        }
521
        mlt_p[i] = f1 * q->rootpow2tab[quant_index+63];
522
    }
523
}
524
/**
525
 * Unpack the subband_coef_index and subband_coef_sign vectors.
526
 *
527
 * @param q                     pointer to the COOKContext
528
 * @param category              pointer to the category array
529
 * @param subband_coef_index    array of indexes to quant_centroid_tab
530
 * @param subband_coef_sign     signs of coefficients
531
 */
532

    
533
static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
534
                       int* subband_coef_sign) {
535
    int i,j;
536
    int vlc, vd ,tmp, result;
537

    
538
    vd = vd_tab[category];
539
    result = 0;
540
    for(i=0 ; i<vpr_tab[category] ; i++){
541
        vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
542
        if (q->bits_per_subpacket < get_bits_count(&q->gb)){
543
            vlc = 0;
544
            result = 1;
545
        }
546
        for(j=vd-1 ; j>=0 ; j--){
547
            tmp = (vlc * invradix_tab[category])/0x100000;
548
            subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
549
            vlc = tmp;
550
        }
551
        for(j=0 ; j<vd ; j++){
552
            if (subband_coef_index[i*vd + j]) {
553
                if(get_bits_count(&q->gb) < q->bits_per_subpacket){
554
                    subband_coef_sign[i*vd+j] = get_bits1(&q->gb);
555
                } else {
556
                    result=1;
557
                    subband_coef_sign[i*vd+j]=0;
558
                }
559
            } else {
560
                subband_coef_sign[i*vd+j]=0;
561
            }
562
        }
563
    }
564
    return result;
565
}
566

    
567

    
568
/**
569
 * Fill the mlt_buffer with mlt coefficients.
570
 *
571
 * @param q                 pointer to the COOKContext
572
 * @param category          pointer to the category array
573
 * @param quant_index_table pointer to the array
574
 * @param mlt_buffer        pointer to mlt coefficients
575
 */
576

    
577

    
578
static void decode_vectors(COOKContext* q, int* category,
579
                           int *quant_index_table, float* mlt_buffer){
580
    /* A zero in this table means that the subband coefficient is
581
       random noise coded. */
582
    int subband_coef_index[SUBBAND_SIZE];
583
    /* A zero in this table means that the subband coefficient is a
584
       positive multiplicator. */
585
    int subband_coef_sign[SUBBAND_SIZE];
586
    int band, j;
587
    int index=0;
588

    
589
    for(band=0 ; band<q->total_subbands ; band++){
590
        index = category[band];
591
        if(category[band] < 7){
592
            if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_sign)){
593
                index=7;
594
                for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7;
595
            }
596
        }
597
        if(index==7) {
598
            memset(subband_coef_index, 0, sizeof(subband_coef_index));
599
            memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
600
        }
601
        scalar_dequant(q, index, quant_index_table[band],
602
                       subband_coef_index, subband_coef_sign,
603
                       &mlt_buffer[band * 20]);
604
    }
605

    
606
    if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
607
        return;
608
    } /* FIXME: should this be removed, or moved into loop above? */
609
}
610

    
611

    
612
/**
613
 * function for decoding mono data
614
 *
615
 * @param q                 pointer to the COOKContext
616
 * @param mlt_buffer        pointer to mlt coefficients
617
 */
618

    
619
static void mono_decode(COOKContext *q, float* mlt_buffer) {
620

    
621
    int category_index[128];
622
    int quant_index_table[102];
623
    int category[128];
624

    
625
    memset(&category, 0, 128*sizeof(int));
626
    memset(&category_index, 0, 128*sizeof(int));
627

    
628
    decode_envelope(q, quant_index_table);
629
    q->num_vectors = get_bits(&q->gb,q->log2_numvector_size);
630
    categorize(q, quant_index_table, category, category_index);
631
    expand_category(q, category, category_index);
632
    decode_vectors(q, category, quant_index_table, mlt_buffer);
633
}
634

    
635

    
636
/**
637
 * the actual requantization of the timedomain samples
638
 *
639
 * @param q                 pointer to the COOKContext
640
 * @param buffer            pointer to the timedomain buffer
641
 * @param gain_index        index for the block multiplier
642
 * @param gain_index_next   index for the next block multiplier
643
 */
644

    
645
static void interpolate(COOKContext *q, float* buffer,
646
                        int gain_index, int gain_index_next){
647
    int i;
648
    float fc1, fc2;
649
    fc1 = q->pow2tab[gain_index+63];
650

    
651
    if(gain_index == gain_index_next){              //static gain
652
        for(i=0 ; i<q->gain_size_factor ; i++){
653
            buffer[i]*=fc1;
654
        }
655
        return;
656
    } else {                                        //smooth gain
657
        fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
658
        for(i=0 ; i<q->gain_size_factor ; i++){
659
            buffer[i]*=fc1;
660
            fc1*=fc2;
661
        }
662
        return;
663
    }
664
}
665

    
666

    
667
/**
668
 * The modulated lapped transform, this takes transform coefficients
669
 * and transforms them into timedomain samples.
670
 * Apply transform window, overlap buffers, apply gain profile
671
 * and buffer management.
672
 *
673
 * @param q                 pointer to the COOKContext
674
 * @param inbuffer          pointer to the mltcoefficients
675
 * @param gains_ptr         current and previous gains
676
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
677
 */
678

    
679
static void imlt_gain(COOKContext *q, float *inbuffer,
680
                      cook_gains *gains_ptr, float* previous_buffer)
681
{
682
    const float fc = q->pow2tab[gains_ptr->previous[0] + 63];
683
    float *buffer0 = q->mono_mdct_output;
684
    float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
685
    int i;
686

    
687
    /* Inverse modified discrete cosine transform */
688
    q->mdct_ctx.fft.imdct_calc(&q->mdct_ctx, q->mono_mdct_output,
689
                               inbuffer, q->mdct_tmp);
690

    
691
    /* The weird thing here, is that the two halves of the time domain
692
     * buffer are swapped. Also, the newest data, that we save away for
693
     * next frame, has the wrong sign. Hence the subtraction below.
694
     * Almost sounds like a complex conjugate/reverse data/FFT effect.
695
     */
696

    
697
    /* Apply window and overlap */
698
    for(i = 0; i < q->samples_per_channel; i++){
699
        buffer1[i] = buffer1[i] * fc * q->mlt_window[i] -
700
          previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
701
    }
702

    
703
    /* Apply gain profile */
704
    for (i = 0; i < 8; i++) {
705
        if (gains_ptr->now[i] || gains_ptr->now[i + 1])
706
            interpolate(q, &buffer1[q->gain_size_factor * i],
707
                        gains_ptr->now[i], gains_ptr->now[i + 1]);
708
    }
709

    
710
    /* Save away the current to be previous block. */
711
    memcpy(previous_buffer, buffer0, sizeof(float)*q->samples_per_channel);
712
}
713

    
714

    
715
/**
716
 * function for getting the jointstereo coupling information
717
 *
718
 * @param q                 pointer to the COOKContext
719
 * @param decouple_tab      decoupling array
720
 *
721
 */
722

    
723
static void decouple_info(COOKContext *q, int* decouple_tab){
724
    int length, i;
725

    
726
    if(get_bits1(&q->gb)) {
727
        if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
728

    
729
        length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
730
        for (i=0 ; i<length ; i++) {
731
            decouple_tab[cplband[q->js_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2);
732
        }
733
        return;
734
    }
735

    
736
    if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
737

    
738
    length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
739
    for (i=0 ; i<length ; i++) {
740
       decouple_tab[cplband[q->js_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits);
741
    }
742
    return;
743
}
744

    
745

    
746
/**
747
 * function for decoding joint stereo data
748
 *
749
 * @param q                 pointer to the COOKContext
750
 * @param mlt_buffer1       pointer to left channel mlt coefficients
751
 * @param mlt_buffer2       pointer to right channel mlt coefficients
752
 */
753

    
754
static void joint_decode(COOKContext *q, float* mlt_buffer1,
755
                         float* mlt_buffer2) {
756
    int i,j;
757
    int decouple_tab[SUBBAND_SIZE];
758
    float decode_buffer[1060];
759
    int idx, cpl_tmp,tmp_idx;
760
    float f1,f2;
761
    float* cplscale;
762

    
763
    memset(decouple_tab, 0, sizeof(decouple_tab));
764
    memset(decode_buffer, 0, sizeof(decode_buffer));
765

    
766
    /* Make sure the buffers are zeroed out. */
767
    memset(mlt_buffer1,0, 1024*sizeof(float));
768
    memset(mlt_buffer2,0, 1024*sizeof(float));
769
    decouple_info(q, decouple_tab);
770
    mono_decode(q, decode_buffer);
771

    
772
    /* The two channels are stored interleaved in decode_buffer. */
773
    for (i=0 ; i<q->js_subband_start ; i++) {
774
        for (j=0 ; j<SUBBAND_SIZE ; j++) {
775
            mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
776
            mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
777
        }
778
    }
779

    
780
    /* When we reach js_subband_start (the higher frequencies)
781
       the coefficients are stored in a coupling scheme. */
782
    idx = (1 << q->js_vlc_bits) - 1;
783
    for (i=q->js_subband_start ; i<q->subbands ; i++) {
784
        cpl_tmp = cplband[i];
785
        idx -=decouple_tab[cpl_tmp];
786
        cplscale = (float*)cplscales[q->js_vlc_bits-2];  //choose decoupler table
787
        f1 = cplscale[decouple_tab[cpl_tmp]];
788
        f2 = cplscale[idx-1];
789
        for (j=0 ; j<SUBBAND_SIZE ; j++) {
790
            tmp_idx = ((q->js_subband_start + i)*20)+j;
791
            mlt_buffer1[20*i + j] = f1 * decode_buffer[tmp_idx];
792
            mlt_buffer2[20*i + j] = f2 * decode_buffer[tmp_idx];
793
        }
794
        idx = (1 << q->js_vlc_bits) - 1;
795
    }
796
}
797

    
798
/**
799
 * First part of subpacket decoding:
800
 *  decode raw stream bytes and read gain info.
801
 *
802
 * @param q                 pointer to the COOKContext
803
 * @param inbuffer          pointer to raw stream data
804
 * @param gain_ptr          array of current/prev gain pointers
805
 */
806

    
807
static inline void
808
decode_bytes_and_gain(COOKContext *q, uint8_t *inbuffer,
809
                      cook_gains *gains_ptr)
810
{
811
    int offset;
812

    
813
    offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
814
                          q->bits_per_subpacket/8);
815
    init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
816
                  q->bits_per_subpacket);
817
    decode_gain_info(&q->gb, gains_ptr->now);
818

    
819
    /* Swap current and previous gains */
820
    FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
821
}
822

    
823
/**
824
 * Final part of subpacket decoding:
825
 *  Apply modulated lapped transform, gain compensation,
826
 *  clip and convert to integer.
827
 *
828
 * @param q                 pointer to the COOKContext
829
 * @param decode_buffer     pointer to the mlt coefficients
830
 * @param gain_ptr          array of current/prev gain pointers
831
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
832
 * @param out               pointer to the output buffer
833
 * @param chan              0: left or single channel, 1: right channel
834
 */
835

    
836
static inline void
837
mlt_compensate_output(COOKContext *q, float *decode_buffer,
838
                      cook_gains *gains, float *previous_buffer,
839
                      int16_t *out, int chan)
840
{
841
    float *output = q->mono_mdct_output + q->samples_per_channel;
842
    int j;
843

    
844
    imlt_gain(q, decode_buffer, gains, previous_buffer);
845

    
846
    /* Clip and convert floats to 16 bits.
847
     */
848
    for (j = 0; j < q->samples_per_channel; j++) {
849
        out[chan + q->nb_channels * j] =
850
          av_clip(lrintf(output[j]), -32768, 32767);
851
    }
852
}
853

    
854

    
855
/**
856
 * Cook subpacket decoding. This function returns one decoded subpacket,
857
 * usually 1024 samples per channel.
858
 *
859
 * @param q                 pointer to the COOKContext
860
 * @param inbuffer          pointer to the inbuffer
861
 * @param sub_packet_size   subpacket size
862
 * @param outbuffer         pointer to the outbuffer
863
 */
864

    
865

    
866
static int decode_subpacket(COOKContext *q, uint8_t *inbuffer,
867
                            int sub_packet_size, int16_t *outbuffer) {
868
    /* packet dump */
869
//    for (i=0 ; i<sub_packet_size ; i++) {
870
//        av_log(NULL, AV_LOG_ERROR, "%02x", inbuffer[i]);
871
//    }
872
//    av_log(NULL, AV_LOG_ERROR, "\n");
873

    
874
    decode_bytes_and_gain(q, inbuffer, &q->gains1);
875

    
876
    if (q->joint_stereo) {
877
        joint_decode(q, q->decode_buffer_1, q->decode_buffer_2);
878
    } else {
879
        mono_decode(q, q->decode_buffer_1);
880

    
881
        if (q->nb_channels == 2) {
882
            decode_bytes_and_gain(q, inbuffer + sub_packet_size/2, &q->gains2);
883
            mono_decode(q, q->decode_buffer_2);
884
        }
885
    }
886

    
887
    mlt_compensate_output(q, q->decode_buffer_1, &q->gains1,
888
                          q->mono_previous_buffer1, outbuffer, 0);
889

    
890
    if (q->nb_channels == 2) {
891
        if (q->joint_stereo) {
892
            mlt_compensate_output(q, q->decode_buffer_2, &q->gains1,
893
                                  q->mono_previous_buffer2, outbuffer, 1);
894
        } else {
895
            mlt_compensate_output(q, q->decode_buffer_2, &q->gains2,
896
                                  q->mono_previous_buffer2, outbuffer, 1);
897
        }
898
    }
899
    return q->samples_per_frame * sizeof(int16_t);
900
}
901

    
902

    
903
/**
904
 * Cook frame decoding
905
 *
906
 * @param avctx     pointer to the AVCodecContext
907
 */
908

    
909
static int cook_decode_frame(AVCodecContext *avctx,
910
            void *data, int *data_size,
911
            uint8_t *buf, int buf_size) {
912
    COOKContext *q = avctx->priv_data;
913

    
914
    if (buf_size < avctx->block_align)
915
        return buf_size;
916

    
917
    *data_size = decode_subpacket(q, buf, avctx->block_align, data);
918

    
919
    /* Discard the first two frames: no valid audio. */
920
    if (avctx->frame_number < 2) *data_size = 0;
921

    
922
    return avctx->block_align;
923
}
924

    
925
#ifdef COOKDEBUG
926
static void dump_cook_context(COOKContext *q)
927
{
928
    //int i=0;
929
#define PRINT(a,b) av_log(NULL,AV_LOG_ERROR," %s = %d\n", a, b);
930
    av_log(NULL,AV_LOG_ERROR,"COOKextradata\n");
931
    av_log(NULL,AV_LOG_ERROR,"cookversion=%x\n",q->cookversion);
932
    if (q->cookversion > STEREO) {
933
        PRINT("js_subband_start",q->js_subband_start);
934
        PRINT("js_vlc_bits",q->js_vlc_bits);
935
    }
936
    av_log(NULL,AV_LOG_ERROR,"COOKContext\n");
937
    PRINT("nb_channels",q->nb_channels);
938
    PRINT("bit_rate",q->bit_rate);
939
    PRINT("sample_rate",q->sample_rate);
940
    PRINT("samples_per_channel",q->samples_per_channel);
941
    PRINT("samples_per_frame",q->samples_per_frame);
942
    PRINT("subbands",q->subbands);
943
    PRINT("random_state",q->random_state);
944
    PRINT("js_subband_start",q->js_subband_start);
945
    PRINT("log2_numvector_size",q->log2_numvector_size);
946
    PRINT("numvector_size",q->numvector_size);
947
    PRINT("total_subbands",q->total_subbands);
948
}
949
#endif
950

    
951
/**
952
 * Cook initialization
953
 *
954
 * @param avctx     pointer to the AVCodecContext
955
 */
956

    
957
static int cook_decode_init(AVCodecContext *avctx)
958
{
959
    COOKContext *q = avctx->priv_data;
960
    uint8_t *edata_ptr = avctx->extradata;
961

    
962
    /* Take care of the codec specific extradata. */
963
    if (avctx->extradata_size <= 0) {
964
        av_log(avctx,AV_LOG_ERROR,"Necessary extradata missing!\n");
965
        return -1;
966
    } else {
967
        /* 8 for mono, 16 for stereo, ? for multichannel
968
           Swap to right endianness so we don't need to care later on. */
969
        av_log(avctx,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
970
        if (avctx->extradata_size >= 8){
971
            q->cookversion = bytestream_get_be32(&edata_ptr);
972
            q->samples_per_frame =  bytestream_get_be16(&edata_ptr);
973
            q->subbands = bytestream_get_be16(&edata_ptr);
974
        }
975
        if (avctx->extradata_size >= 16){
976
            bytestream_get_be32(&edata_ptr);    //Unknown unused
977
            q->js_subband_start = bytestream_get_be16(&edata_ptr);
978
            q->js_vlc_bits = bytestream_get_be16(&edata_ptr);
979
        }
980
    }
981

    
982
    /* Take data from the AVCodecContext (RM container). */
983
    q->sample_rate = avctx->sample_rate;
984
    q->nb_channels = avctx->channels;
985
    q->bit_rate = avctx->bit_rate;
986

    
987
    /* Initialize RNG. */
988
    av_init_random(1, &q->random_state);
989

    
990
    /* Initialize extradata related variables. */
991
    q->samples_per_channel = q->samples_per_frame / q->nb_channels;
992
    q->bits_per_subpacket = avctx->block_align * 8;
993

    
994
    /* Initialize default data states. */
995
    q->log2_numvector_size = 5;
996
    q->total_subbands = q->subbands;
997

    
998
    /* Initialize version-dependent variables */
999
    av_log(NULL,AV_LOG_DEBUG,"q->cookversion=%x\n",q->cookversion);
1000
    q->joint_stereo = 0;
1001
    switch (q->cookversion) {
1002
        case MONO:
1003
            if (q->nb_channels != 1) {
1004
                av_log(avctx,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
1005
                return -1;
1006
            }
1007
            av_log(avctx,AV_LOG_DEBUG,"MONO\n");
1008
            break;
1009
        case STEREO:
1010
            if (q->nb_channels != 1) {
1011
                q->bits_per_subpacket = q->bits_per_subpacket/2;
1012
            }
1013
            av_log(avctx,AV_LOG_DEBUG,"STEREO\n");
1014
            break;
1015
        case JOINT_STEREO:
1016
            if (q->nb_channels != 2) {
1017
                av_log(avctx,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
1018
                return -1;
1019
            }
1020
            av_log(avctx,AV_LOG_DEBUG,"JOINT_STEREO\n");
1021
            if (avctx->extradata_size >= 16){
1022
                q->total_subbands = q->subbands + q->js_subband_start;
1023
                q->joint_stereo = 1;
1024
            }
1025
            if (q->samples_per_channel > 256) {
1026
                q->log2_numvector_size  = 6;
1027
            }
1028
            if (q->samples_per_channel > 512) {
1029
                q->log2_numvector_size  = 7;
1030
            }
1031
            break;
1032
        case MC_COOK:
1033
            av_log(avctx,AV_LOG_ERROR,"MC_COOK not supported!\n");
1034
            return -1;
1035
            break;
1036
        default:
1037
            av_log(avctx,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
1038
            return -1;
1039
            break;
1040
    }
1041

    
1042
    /* Initialize variable relations */
1043
    q->numvector_size = (1 << q->log2_numvector_size);
1044

    
1045
    /* Generate tables */
1046
    init_rootpow2table(q);
1047
    init_pow2table(q);
1048
    init_gain_table(q);
1049

    
1050
    if (init_cook_vlc_tables(q) != 0)
1051
        return -1;
1052

    
1053

    
1054
    if(avctx->block_align >= UINT_MAX/2)
1055
        return -1;
1056

    
1057
    /* Pad the databuffer with:
1058
       DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1059
       FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1060
    if (q->nb_channels==2 && q->joint_stereo==0) {
1061
        q->decoded_bytes_buffer =
1062
          av_mallocz(avctx->block_align/2
1063
                     + DECODE_BYTES_PAD2(avctx->block_align/2)
1064
                     + FF_INPUT_BUFFER_PADDING_SIZE);
1065
    } else {
1066
        q->decoded_bytes_buffer =
1067
          av_mallocz(avctx->block_align
1068
                     + DECODE_BYTES_PAD1(avctx->block_align)
1069
                     + FF_INPUT_BUFFER_PADDING_SIZE);
1070
    }
1071
    if (q->decoded_bytes_buffer == NULL)
1072
        return -1;
1073

    
1074
    q->gains1.now      = q->gain_1;
1075
    q->gains1.previous = q->gain_2;
1076
    q->gains2.now      = q->gain_3;
1077
    q->gains2.previous = q->gain_4;
1078

    
1079
    /* Initialize transform. */
1080
    if ( init_cook_mlt(q) != 0 )
1081
        return -1;
1082

    
1083
    /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1084
    if (q->total_subbands > 53) {
1085
        av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
1086
        return -1;
1087
    }
1088
    if (q->subbands > 50) {
1089
        av_log(avctx,AV_LOG_ERROR,"subbands > 50, report sample!\n");
1090
        return -1;
1091
    }
1092
    if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
1093
    } else {
1094
        av_log(avctx,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
1095
        return -1;
1096
    }
1097
    if ((q->js_vlc_bits > 6) || (q->js_vlc_bits < 0)) {
1098
        av_log(avctx,AV_LOG_ERROR,"q->js_vlc_bits = %d, only >= 0 and <= 6 allowed!\n",q->js_vlc_bits);
1099
        return -1;
1100
    }
1101

    
1102
#ifdef COOKDEBUG
1103
    dump_cook_context(q);
1104
#endif
1105
    return 0;
1106
}
1107

    
1108

    
1109
AVCodec cook_decoder =
1110
{
1111
    .name = "cook",
1112
    .type = CODEC_TYPE_AUDIO,
1113
    .id = CODEC_ID_COOK,
1114
    .priv_data_size = sizeof(COOKContext),
1115
    .init = cook_decode_init,
1116
    .close = cook_decode_close,
1117
    .decode = cook_decode_frame,
1118
};