Statistics
| Branch: | Revision:

ffmpeg / libavcodec / vp3.c @ e13cca4b

History | View | Annotate | Download (83.1 KB)

1
/*
2
 * Copyright (C) 2003-2004 the ffmpeg project
3
 *
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2.1 of the License, or (at your option) any later version.
10
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with FFmpeg; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
 */
20

    
21
/**
22
 * @file libavcodec/vp3.c
23
 * On2 VP3 Video Decoder
24
 *
25
 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
26
 * For more information about the VP3 coding process, visit:
27
 *   http://wiki.multimedia.cx/index.php?title=On2_VP3
28
 *
29
 * Theora decoder by Alex Beregszaszi
30
 */
31

    
32
#include <stdio.h>
33
#include <stdlib.h>
34
#include <string.h>
35
#include <unistd.h>
36

    
37
#include "avcodec.h"
38
#include "dsputil.h"
39
#include "get_bits.h"
40

    
41
#include "vp3data.h"
42
#include "xiph.h"
43

    
44
#define FRAGMENT_PIXELS 8
45

    
46
typedef struct Coeff {
47
    struct Coeff *next;
48
    DCTELEM coeff;
49
    uint8_t index;
50
} Coeff;
51

    
52
//FIXME split things out into their own arrays
53
typedef struct Vp3Fragment {
54
    Coeff *next_coeff;
55
    /* address of first pixel taking into account which plane the fragment
56
     * lives on as well as the plane stride */
57
    int first_pixel;
58
    /* this is the macroblock that the fragment belongs to */
59
    uint16_t macroblock;
60
    uint8_t coding_method;
61
    int8_t motion_x;
62
    int8_t motion_y;
63
    uint8_t qpi;
64
} Vp3Fragment;
65

    
66
#define SB_NOT_CODED        0
67
#define SB_PARTIALLY_CODED  1
68
#define SB_FULLY_CODED      2
69

    
70
#define MODE_INTER_NO_MV      0
71
#define MODE_INTRA            1
72
#define MODE_INTER_PLUS_MV    2
73
#define MODE_INTER_LAST_MV    3
74
#define MODE_INTER_PRIOR_LAST 4
75
#define MODE_USING_GOLDEN     5
76
#define MODE_GOLDEN_MV        6
77
#define MODE_INTER_FOURMV     7
78
#define CODING_MODE_COUNT     8
79

    
80
/* special internal mode */
81
#define MODE_COPY             8
82

    
83
/* There are 6 preset schemes, plus a free-form scheme */
84
static const int ModeAlphabet[6][CODING_MODE_COUNT] =
85
{
86
    /* scheme 1: Last motion vector dominates */
87
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
88
         MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
89
         MODE_INTRA,            MODE_USING_GOLDEN,
90
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
91

    
92
    /* scheme 2 */
93
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
94
         MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
95
         MODE_INTRA,            MODE_USING_GOLDEN,
96
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
97

    
98
    /* scheme 3 */
99
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
100
         MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
101
         MODE_INTRA,            MODE_USING_GOLDEN,
102
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
103

    
104
    /* scheme 4 */
105
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
106
         MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
107
         MODE_INTRA,            MODE_USING_GOLDEN,
108
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
109

    
110
    /* scheme 5: No motion vector dominates */
111
    {    MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,
112
         MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
113
         MODE_INTRA,            MODE_USING_GOLDEN,
114
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
115

    
116
    /* scheme 6 */
117
    {    MODE_INTER_NO_MV,      MODE_USING_GOLDEN,
118
         MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
119
         MODE_INTER_PLUS_MV,    MODE_INTRA,
120
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
121

    
122
};
123

    
124
#define MIN_DEQUANT_VAL 2
125

    
126
typedef struct Vp3DecodeContext {
127
    AVCodecContext *avctx;
128
    int theora, theora_tables;
129
    int version;
130
    int width, height;
131
    AVFrame golden_frame;
132
    AVFrame last_frame;
133
    AVFrame current_frame;
134
    int keyframe;
135
    DSPContext dsp;
136
    int flipped_image;
137

    
138
    int qps[3];
139
    int nqps;
140
    int last_qps[3];
141

    
142
    int superblock_count;
143
    int y_superblock_width;
144
    int y_superblock_height;
145
    int c_superblock_width;
146
    int c_superblock_height;
147
    int u_superblock_start;
148
    int v_superblock_start;
149
    unsigned char *superblock_coding;
150

    
151
    int macroblock_count;
152
    int macroblock_width;
153
    int macroblock_height;
154

    
155
    int fragment_count;
156
    int fragment_width;
157
    int fragment_height;
158

    
159
    Vp3Fragment *all_fragments;
160
    uint8_t *coeff_counts;
161
    Coeff *coeffs;
162
    Coeff *next_coeff;
163
    int fragment_start[3];
164

    
165
    ScanTable scantable;
166

    
167
    /* tables */
168
    uint16_t coded_dc_scale_factor[64];
169
    uint32_t coded_ac_scale_factor[64];
170
    uint8_t base_matrix[384][64];
171
    uint8_t qr_count[2][3];
172
    uint8_t qr_size [2][3][64];
173
    uint16_t qr_base[2][3][64];
174

    
175
    /* this is a list of indexes into the all_fragments array indicating
176
     * which of the fragments are coded */
177
    int *coded_fragment_list;
178
    int coded_fragment_list_index;
179
    int pixel_addresses_initialized;
180

    
181
    VLC dc_vlc[16];
182
    VLC ac_vlc_1[16];
183
    VLC ac_vlc_2[16];
184
    VLC ac_vlc_3[16];
185
    VLC ac_vlc_4[16];
186

    
187
    VLC superblock_run_length_vlc;
188
    VLC fragment_run_length_vlc;
189
    VLC mode_code_vlc;
190
    VLC motion_vector_vlc;
191

    
192
    /* these arrays need to be on 16-byte boundaries since SSE2 operations
193
     * index into them */
194
    DECLARE_ALIGNED_16(int16_t, qmat[3][2][3][64]);     //<qmat[qpi][is_inter][plane]
195

    
196
    /* This table contains superblock_count * 16 entries. Each set of 16
197
     * numbers corresponds to the fragment indexes 0..15 of the superblock.
198
     * An entry will be -1 to indicate that no entry corresponds to that
199
     * index. */
200
    int *superblock_fragments;
201

    
202
    /* This table contains superblock_count * 4 entries. Each set of 4
203
     * numbers corresponds to the macroblock indexes 0..3 of the superblock.
204
     * An entry will be -1 to indicate that no entry corresponds to that
205
     * index. */
206
    int *superblock_macroblocks;
207

    
208
    /* This table contains macroblock_count * 6 entries. Each set of 6
209
     * numbers corresponds to the fragment indexes 0..5 which comprise
210
     * the macroblock (4 Y fragments and 2 C fragments). */
211
    int *macroblock_fragments;
212
    /* This is an array that indicates how a particular macroblock
213
     * is coded. */
214
    unsigned char *macroblock_coding;
215

    
216
    int first_coded_y_fragment;
217
    int first_coded_c_fragment;
218
    int last_coded_y_fragment;
219
    int last_coded_c_fragment;
220

    
221
    uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
222
    int8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
223

    
224
    /* Huffman decode */
225
    int hti;
226
    unsigned int hbits;
227
    int entries;
228
    int huff_code_size;
229
    uint16_t huffman_table[80][32][2];
230

    
231
    uint8_t filter_limit_values[64];
232
    DECLARE_ALIGNED_8(int, bounding_values_array[256+2]);
233
} Vp3DecodeContext;
234

    
235
/************************************************************************
236
 * VP3 specific functions
237
 ************************************************************************/
238

    
239
/*
240
 * This function sets up all of the various blocks mappings:
241
 * superblocks <-> fragments, macroblocks <-> fragments,
242
 * superblocks <-> macroblocks
243
 *
244
 * Returns 0 is successful; returns 1 if *anything* went wrong.
245
 */
246
static int init_block_mapping(Vp3DecodeContext *s)
247
{
248
    int i, j;
249
    signed int hilbert_walk_mb[4];
250

    
251
    int current_fragment = 0;
252
    int current_width = 0;
253
    int current_height = 0;
254
    int right_edge = 0;
255
    int bottom_edge = 0;
256
    int superblock_row_inc = 0;
257
    int mapping_index = 0;
258

    
259
    int current_macroblock;
260
    int c_fragment;
261

    
262
    signed char travel_width[16] = {
263
         1,  1,  0, -1,
264
         0,  0,  1,  0,
265
         1,  0,  1,  0,
266
         0, -1,  0,  1
267
    };
268

    
269
    signed char travel_height[16] = {
270
         0,  0,  1,  0,
271
         1,  1,  0, -1,
272
         0,  1,  0, -1,
273
        -1,  0, -1,  0
274
    };
275

    
276
    signed char travel_width_mb[4] = {
277
         1,  0,  1,  0
278
    };
279

    
280
    signed char travel_height_mb[4] = {
281
         0,  1,  0, -1
282
    };
283

    
284
    hilbert_walk_mb[0] = 1;
285
    hilbert_walk_mb[1] = s->macroblock_width;
286
    hilbert_walk_mb[2] = 1;
287
    hilbert_walk_mb[3] = -s->macroblock_width;
288

    
289
    /* iterate through each superblock (all planes) and map the fragments */
290
    for (i = 0; i < s->superblock_count; i++) {
291
        /* time to re-assign the limits? */
292
        if (i == 0) {
293

    
294
            /* start of Y superblocks */
295
            right_edge = s->fragment_width;
296
            bottom_edge = s->fragment_height;
297
            current_width = -1;
298
            current_height = 0;
299
            superblock_row_inc = 3 * s->fragment_width -
300
                (s->y_superblock_width * 4 - s->fragment_width);
301

    
302
            /* the first operation for this variable is to advance by 1 */
303
            current_fragment = -1;
304

    
305
        } else if (i == s->u_superblock_start) {
306

    
307
            /* start of U superblocks */
308
            right_edge = s->fragment_width / 2;
309
            bottom_edge = s->fragment_height / 2;
310
            current_width = -1;
311
            current_height = 0;
312
            superblock_row_inc = 3 * (s->fragment_width / 2) -
313
                (s->c_superblock_width * 4 - s->fragment_width / 2);
314

    
315
            /* the first operation for this variable is to advance by 1 */
316
            current_fragment = s->fragment_start[1] - 1;
317

    
318
        } else if (i == s->v_superblock_start) {
319

    
320
            /* start of V superblocks */
321
            right_edge = s->fragment_width / 2;
322
            bottom_edge = s->fragment_height / 2;
323
            current_width = -1;
324
            current_height = 0;
325
            superblock_row_inc = 3 * (s->fragment_width / 2) -
326
                (s->c_superblock_width * 4 - s->fragment_width / 2);
327

    
328
            /* the first operation for this variable is to advance by 1 */
329
            current_fragment = s->fragment_start[2] - 1;
330

    
331
        }
332

    
333
        if (current_width >= right_edge - 1) {
334
            /* reset width and move to next superblock row */
335
            current_width = -1;
336
            current_height += 4;
337

    
338
            /* fragment is now at the start of a new superblock row */
339
            current_fragment += superblock_row_inc;
340
        }
341

    
342
        /* iterate through all 16 fragments in a superblock */
343
        for (j = 0; j < 16; j++) {
344
            current_fragment += travel_width[j] + right_edge * travel_height[j];
345
            current_width += travel_width[j];
346
            current_height += travel_height[j];
347

    
348
            /* check if the fragment is in bounds */
349
            if ((current_width < right_edge) &&
350
                (current_height < bottom_edge)) {
351
                s->superblock_fragments[mapping_index] = current_fragment;
352
            } else {
353
                s->superblock_fragments[mapping_index] = -1;
354
            }
355

    
356
            mapping_index++;
357
        }
358
    }
359

    
360
    /* initialize the superblock <-> macroblock mapping; iterate through
361
     * all of the Y plane superblocks to build this mapping */
362
    right_edge = s->macroblock_width;
363
    bottom_edge = s->macroblock_height;
364
    current_width = -1;
365
    current_height = 0;
366
    superblock_row_inc = s->macroblock_width -
367
        (s->y_superblock_width * 2 - s->macroblock_width);
368
    mapping_index = 0;
369
    current_macroblock = -1;
370
    for (i = 0; i < s->u_superblock_start; i++) {
371

    
372
        if (current_width >= right_edge - 1) {
373
            /* reset width and move to next superblock row */
374
            current_width = -1;
375
            current_height += 2;
376

    
377
            /* macroblock is now at the start of a new superblock row */
378
            current_macroblock += superblock_row_inc;
379
        }
380

    
381
        /* iterate through each potential macroblock in the superblock */
382
        for (j = 0; j < 4; j++) {
383
            current_macroblock += hilbert_walk_mb[j];
384
            current_width += travel_width_mb[j];
385
            current_height += travel_height_mb[j];
386

    
387
            /* check if the macroblock is in bounds */
388
            if ((current_width < right_edge) &&
389
                (current_height < bottom_edge)) {
390
                s->superblock_macroblocks[mapping_index] = current_macroblock;
391
            } else {
392
                s->superblock_macroblocks[mapping_index] = -1;
393
            }
394

    
395
            mapping_index++;
396
        }
397
    }
398

    
399
    /* initialize the macroblock <-> fragment mapping */
400
    current_fragment = 0;
401
    current_macroblock = 0;
402
    mapping_index = 0;
403
    for (i = 0; i < s->fragment_height; i += 2) {
404

    
405
        for (j = 0; j < s->fragment_width; j += 2) {
406

    
407
            s->all_fragments[current_fragment].macroblock = current_macroblock;
408
            s->macroblock_fragments[mapping_index++] = current_fragment;
409

    
410
            if (j + 1 < s->fragment_width) {
411
                s->all_fragments[current_fragment + 1].macroblock = current_macroblock;
412
                s->macroblock_fragments[mapping_index++] = current_fragment + 1;
413
            } else
414
                s->macroblock_fragments[mapping_index++] = -1;
415

    
416
            if (i + 1 < s->fragment_height) {
417
                s->all_fragments[current_fragment + s->fragment_width].macroblock =
418
                    current_macroblock;
419
                s->macroblock_fragments[mapping_index++] =
420
                    current_fragment + s->fragment_width;
421
            } else
422
                s->macroblock_fragments[mapping_index++] = -1;
423

    
424
            if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) {
425
                s->all_fragments[current_fragment + s->fragment_width + 1].macroblock =
426
                    current_macroblock;
427
                s->macroblock_fragments[mapping_index++] =
428
                    current_fragment + s->fragment_width + 1;
429
            } else
430
                s->macroblock_fragments[mapping_index++] = -1;
431

    
432
            /* C planes */
433
            c_fragment = s->fragment_start[1] +
434
                (i * s->fragment_width / 4) + (j / 2);
435
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
436
            s->macroblock_fragments[mapping_index++] = c_fragment;
437

    
438
            c_fragment = s->fragment_start[2] +
439
                (i * s->fragment_width / 4) + (j / 2);
440
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
441
            s->macroblock_fragments[mapping_index++] = c_fragment;
442

    
443
            if (j + 2 <= s->fragment_width)
444
                current_fragment += 2;
445
            else
446
                current_fragment++;
447
            current_macroblock++;
448
        }
449

    
450
        current_fragment += s->fragment_width;
451
    }
452

    
453
    return 0;  /* successful path out */
454
}
455

    
456
/*
457
 * This function wipes out all of the fragment data.
458
 */
459
static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
460
{
461
    int i;
462

    
463
    /* zero out all of the fragment information */
464
    s->coded_fragment_list_index = 0;
465
    for (i = 0; i < s->fragment_count; i++) {
466
        s->coeff_counts[i] = 0;
467
        s->all_fragments[i].motion_x = 127;
468
        s->all_fragments[i].motion_y = 127;
469
        s->all_fragments[i].next_coeff= NULL;
470
        s->all_fragments[i].qpi = 0;
471
        s->coeffs[i].index=
472
        s->coeffs[i].coeff=0;
473
        s->coeffs[i].next= NULL;
474
    }
475
}
476

    
477
/*
478
 * This function sets up the dequantization tables used for a particular
479
 * frame.
480
 */
481
static void init_dequantizer(Vp3DecodeContext *s, int qpi)
482
{
483
    int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]];
484
    int dc_scale_factor = s->coded_dc_scale_factor[s->qps[qpi]];
485
    int i, plane, inter, qri, bmi, bmj, qistart;
486

    
487
    for(inter=0; inter<2; inter++){
488
        for(plane=0; plane<3; plane++){
489
            int sum=0;
490
            for(qri=0; qri<s->qr_count[inter][plane]; qri++){
491
                sum+= s->qr_size[inter][plane][qri];
492
                if(s->qps[qpi] <= sum)
493
                    break;
494
            }
495
            qistart= sum - s->qr_size[inter][plane][qri];
496
            bmi= s->qr_base[inter][plane][qri  ];
497
            bmj= s->qr_base[inter][plane][qri+1];
498
            for(i=0; i<64; i++){
499
                int coeff= (  2*(sum    -s->qps[qpi])*s->base_matrix[bmi][i]
500
                            - 2*(qistart-s->qps[qpi])*s->base_matrix[bmj][i]
501
                            + s->qr_size[inter][plane][qri])
502
                           / (2*s->qr_size[inter][plane][qri]);
503

    
504
                int qmin= 8<<(inter + !i);
505
                int qscale= i ? ac_scale_factor : dc_scale_factor;
506

    
507
                s->qmat[qpi][inter][plane][s->dsp.idct_permutation[i]]= av_clip((qscale * coeff)/100 * 4, qmin, 4096);
508
            }
509
            // all DC coefficients use the same quant so as not to interfere with DC prediction
510
            s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0];
511
        }
512
    }
513

    
514
    memset(s->qscale_table, (FFMAX(s->qmat[0][0][0][1], s->qmat[0][0][1][1])+8)/16, 512); //FIXME finetune
515
}
516

    
517
/*
518
 * This function initializes the loop filter boundary limits if the frame's
519
 * quality index is different from the previous frame's.
520
 *
521
 * The filter_limit_values may not be larger than 127.
522
 */
523
static void init_loop_filter(Vp3DecodeContext *s)
524
{
525
    int *bounding_values= s->bounding_values_array+127;
526
    int filter_limit;
527
    int x;
528
    int value;
529

    
530
    filter_limit = s->filter_limit_values[s->qps[0]];
531

    
532
    /* set up the bounding values */
533
    memset(s->bounding_values_array, 0, 256 * sizeof(int));
534
    for (x = 0; x < filter_limit; x++) {
535
        bounding_values[-x] = -x;
536
        bounding_values[x] = x;
537
    }
538
    for (x = value = filter_limit; x < 128 && value; x++, value--) {
539
        bounding_values[ x] =  value;
540
        bounding_values[-x] = -value;
541
    }
542
    if (value)
543
        bounding_values[128] = value;
544
    bounding_values[129] = bounding_values[130] = filter_limit * 0x02020202;
545
}
546

    
547
/*
548
 * This function unpacks all of the superblock/macroblock/fragment coding
549
 * information from the bitstream.
550
 */
551
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
552
{
553
    int bit = 0;
554
    int current_superblock = 0;
555
    int current_run = 0;
556
    int decode_fully_flags = 0;
557
    int decode_partial_blocks = 0;
558
    int first_c_fragment_seen;
559

    
560
    int i, j;
561
    int current_fragment;
562

    
563
    if (s->keyframe) {
564
        memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
565

    
566
    } else {
567

    
568
        /* unpack the list of partially-coded superblocks */
569
        bit = get_bits1(gb);
570
        /* toggle the bit because as soon as the first run length is
571
         * fetched the bit will be toggled again */
572
        bit ^= 1;
573
        while (current_superblock < s->superblock_count) {
574
            if (current_run-- == 0) {
575
                bit ^= 1;
576
                current_run = get_vlc2(gb,
577
                    s->superblock_run_length_vlc.table, 6, 2);
578
                if (current_run == 33)
579
                    current_run += get_bits(gb, 12);
580

    
581
                /* if any of the superblocks are not partially coded, flag
582
                 * a boolean to decode the list of fully-coded superblocks */
583
                if (bit == 0) {
584
                    decode_fully_flags = 1;
585
                } else {
586

    
587
                    /* make a note of the fact that there are partially coded
588
                     * superblocks */
589
                    decode_partial_blocks = 1;
590
                }
591
            }
592
            s->superblock_coding[current_superblock++] = bit;
593
        }
594

    
595
        /* unpack the list of fully coded superblocks if any of the blocks were
596
         * not marked as partially coded in the previous step */
597
        if (decode_fully_flags) {
598

    
599
            current_superblock = 0;
600
            current_run = 0;
601
            bit = get_bits1(gb);
602
            /* toggle the bit because as soon as the first run length is
603
             * fetched the bit will be toggled again */
604
            bit ^= 1;
605
            while (current_superblock < s->superblock_count) {
606

    
607
                /* skip any superblocks already marked as partially coded */
608
                if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
609

    
610
                    if (current_run-- == 0) {
611
                        bit ^= 1;
612
                        current_run = get_vlc2(gb,
613
                            s->superblock_run_length_vlc.table, 6, 2);
614
                        if (current_run == 33)
615
                            current_run += get_bits(gb, 12);
616
                    }
617
                    s->superblock_coding[current_superblock] = 2*bit;
618
                }
619
                current_superblock++;
620
            }
621
        }
622

    
623
        /* if there were partial blocks, initialize bitstream for
624
         * unpacking fragment codings */
625
        if (decode_partial_blocks) {
626

    
627
            current_run = 0;
628
            bit = get_bits1(gb);
629
            /* toggle the bit because as soon as the first run length is
630
             * fetched the bit will be toggled again */
631
            bit ^= 1;
632
        }
633
    }
634

    
635
    /* figure out which fragments are coded; iterate through each
636
     * superblock (all planes) */
637
    s->coded_fragment_list_index = 0;
638
    s->next_coeff= s->coeffs + s->fragment_count;
639
    s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
640
    s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
641
    first_c_fragment_seen = 0;
642
    memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
643
    for (i = 0; i < s->superblock_count; i++) {
644

    
645
        /* iterate through all 16 fragments in a superblock */
646
        for (j = 0; j < 16; j++) {
647

    
648
            /* if the fragment is in bounds, check its coding status */
649
            current_fragment = s->superblock_fragments[i * 16 + j];
650
            if (current_fragment >= s->fragment_count) {
651
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
652
                    current_fragment, s->fragment_count);
653
                return 1;
654
            }
655
            if (current_fragment != -1) {
656
                if (s->superblock_coding[i] == SB_NOT_CODED) {
657

    
658
                    /* copy all the fragments from the prior frame */
659
                    s->all_fragments[current_fragment].coding_method =
660
                        MODE_COPY;
661

    
662
                } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
663

    
664
                    /* fragment may or may not be coded; this is the case
665
                     * that cares about the fragment coding runs */
666
                    if (current_run-- == 0) {
667
                        bit ^= 1;
668
                        current_run = get_vlc2(gb,
669
                            s->fragment_run_length_vlc.table, 5, 2);
670
                    }
671

    
672
                    if (bit) {
673
                        /* default mode; actual mode will be decoded in
674
                         * the next phase */
675
                        s->all_fragments[current_fragment].coding_method =
676
                            MODE_INTER_NO_MV;
677
                        s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
678
                        s->coded_fragment_list[s->coded_fragment_list_index] =
679
                            current_fragment;
680
                        if ((current_fragment >= s->fragment_start[1]) &&
681
                            (s->last_coded_y_fragment == -1) &&
682
                            (!first_c_fragment_seen)) {
683
                            s->first_coded_c_fragment = s->coded_fragment_list_index;
684
                            s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
685
                            first_c_fragment_seen = 1;
686
                        }
687
                        s->coded_fragment_list_index++;
688
                        s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
689
                    } else {
690
                        /* not coded; copy this fragment from the prior frame */
691
                        s->all_fragments[current_fragment].coding_method =
692
                            MODE_COPY;
693
                    }
694

    
695
                } else {
696

    
697
                    /* fragments are fully coded in this superblock; actual
698
                     * coding will be determined in next step */
699
                    s->all_fragments[current_fragment].coding_method =
700
                        MODE_INTER_NO_MV;
701
                    s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
702
                    s->coded_fragment_list[s->coded_fragment_list_index] =
703
                        current_fragment;
704
                    if ((current_fragment >= s->fragment_start[1]) &&
705
                        (s->last_coded_y_fragment == -1) &&
706
                        (!first_c_fragment_seen)) {
707
                        s->first_coded_c_fragment = s->coded_fragment_list_index;
708
                        s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
709
                        first_c_fragment_seen = 1;
710
                    }
711
                    s->coded_fragment_list_index++;
712
                    s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
713
                }
714
            }
715
        }
716
    }
717

    
718
    if (!first_c_fragment_seen)
719
        /* only Y fragments coded in this frame */
720
        s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
721
    else
722
        /* end the list of coded C fragments */
723
        s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
724

    
725
    return 0;
726
}
727

    
728
/*
729
 * This function unpacks all the coding mode data for individual macroblocks
730
 * from the bitstream.
731
 */
732
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
733
{
734
    int i, j, k;
735
    int scheme;
736
    int current_macroblock;
737
    int current_fragment;
738
    int coding_mode;
739
    int custom_mode_alphabet[CODING_MODE_COUNT];
740

    
741
    if (s->keyframe) {
742
        for (i = 0; i < s->fragment_count; i++)
743
            s->all_fragments[i].coding_method = MODE_INTRA;
744

    
745
    } else {
746

    
747
        /* fetch the mode coding scheme for this frame */
748
        scheme = get_bits(gb, 3);
749

    
750
        /* is it a custom coding scheme? */
751
        if (scheme == 0) {
752
            for (i = 0; i < 8; i++)
753
                custom_mode_alphabet[i] = MODE_INTER_NO_MV;
754
            for (i = 0; i < 8; i++)
755
                custom_mode_alphabet[get_bits(gb, 3)] = i;
756
        }
757

    
758
        /* iterate through all of the macroblocks that contain 1 or more
759
         * coded fragments */
760
        for (i = 0; i < s->u_superblock_start; i++) {
761

    
762
            for (j = 0; j < 4; j++) {
763
                current_macroblock = s->superblock_macroblocks[i * 4 + j];
764
                if ((current_macroblock == -1) ||
765
                    (s->macroblock_coding[current_macroblock] == MODE_COPY))
766
                    continue;
767
                if (current_macroblock >= s->macroblock_count) {
768
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad macroblock number (%d >= %d)\n",
769
                        current_macroblock, s->macroblock_count);
770
                    return 1;
771
                }
772

    
773
                /* mode 7 means get 3 bits for each coding mode */
774
                if (scheme == 7)
775
                    coding_mode = get_bits(gb, 3);
776
                else if(scheme == 0)
777
                    coding_mode = custom_mode_alphabet
778
                        [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
779
                else
780
                    coding_mode = ModeAlphabet[scheme-1]
781
                        [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
782

    
783
                s->macroblock_coding[current_macroblock] = coding_mode;
784
                for (k = 0; k < 6; k++) {
785
                    current_fragment =
786
                        s->macroblock_fragments[current_macroblock * 6 + k];
787
                    if (current_fragment == -1)
788
                        continue;
789
                    if (current_fragment >= s->fragment_count) {
790
                        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad fragment number (%d >= %d)\n",
791
                            current_fragment, s->fragment_count);
792
                        return 1;
793
                    }
794
                    if (s->all_fragments[current_fragment].coding_method !=
795
                        MODE_COPY)
796
                        s->all_fragments[current_fragment].coding_method =
797
                            coding_mode;
798
                }
799
            }
800
        }
801
    }
802

    
803
    return 0;
804
}
805

    
806
/*
807
 * This function unpacks all the motion vectors for the individual
808
 * macroblocks from the bitstream.
809
 */
810
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
811
{
812
    int i, j, k, l;
813
    int coding_mode;
814
    int motion_x[6];
815
    int motion_y[6];
816
    int last_motion_x = 0;
817
    int last_motion_y = 0;
818
    int prior_last_motion_x = 0;
819
    int prior_last_motion_y = 0;
820
    int current_macroblock;
821
    int current_fragment;
822

    
823
    if (s->keyframe)
824
        return 0;
825

    
826
    memset(motion_x, 0, 6 * sizeof(int));
827
    memset(motion_y, 0, 6 * sizeof(int));
828

    
829
    /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
830
    coding_mode = get_bits1(gb);
831

    
832
    /* iterate through all of the macroblocks that contain 1 or more
833
     * coded fragments */
834
    for (i = 0; i < s->u_superblock_start; i++) {
835

    
836
        for (j = 0; j < 4; j++) {
837
            current_macroblock = s->superblock_macroblocks[i * 4 + j];
838
            if ((current_macroblock == -1) ||
839
                (s->macroblock_coding[current_macroblock] == MODE_COPY))
840
                continue;
841
            if (current_macroblock >= s->macroblock_count) {
842
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n",
843
                    current_macroblock, s->macroblock_count);
844
                return 1;
845
            }
846

    
847
            current_fragment = s->macroblock_fragments[current_macroblock * 6];
848
            if (current_fragment >= s->fragment_count) {
849
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d\n",
850
                    current_fragment, s->fragment_count);
851
                return 1;
852
            }
853
            switch (s->macroblock_coding[current_macroblock]) {
854

    
855
            case MODE_INTER_PLUS_MV:
856
            case MODE_GOLDEN_MV:
857
                /* all 6 fragments use the same motion vector */
858
                if (coding_mode == 0) {
859
                    motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
860
                    motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
861
                } else {
862
                    motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
863
                    motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
864
                }
865

    
866
                for (k = 1; k < 6; k++) {
867
                    motion_x[k] = motion_x[0];
868
                    motion_y[k] = motion_y[0];
869
                }
870

    
871
                /* vector maintenance, only on MODE_INTER_PLUS_MV */
872
                if (s->macroblock_coding[current_macroblock] ==
873
                    MODE_INTER_PLUS_MV) {
874
                    prior_last_motion_x = last_motion_x;
875
                    prior_last_motion_y = last_motion_y;
876
                    last_motion_x = motion_x[0];
877
                    last_motion_y = motion_y[0];
878
                }
879
                break;
880

    
881
            case MODE_INTER_FOURMV:
882
                /* vector maintenance */
883
                prior_last_motion_x = last_motion_x;
884
                prior_last_motion_y = last_motion_y;
885

    
886
                /* fetch 4 vectors from the bitstream, one for each
887
                 * Y fragment, then average for the C fragment vectors */
888
                motion_x[4] = motion_y[4] = 0;
889
                for (k = 0; k < 4; k++) {
890
                    for (l = 0; l < s->coded_fragment_list_index; l++)
891
                        if (s->coded_fragment_list[l] == s->macroblock_fragments[6*current_macroblock + k])
892
                            break;
893
                    if (l < s->coded_fragment_list_index) {
894
                        if (coding_mode == 0) {
895
                            motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
896
                            motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
897
                        } else {
898
                            motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
899
                            motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
900
                        }
901
                        last_motion_x = motion_x[k];
902
                        last_motion_y = motion_y[k];
903
                    } else {
904
                        motion_x[k] = 0;
905
                        motion_y[k] = 0;
906
                    }
907
                    motion_x[4] += motion_x[k];
908
                    motion_y[4] += motion_y[k];
909
                }
910

    
911
                motion_x[5]=
912
                motion_x[4]= RSHIFT(motion_x[4], 2);
913
                motion_y[5]=
914
                motion_y[4]= RSHIFT(motion_y[4], 2);
915
                break;
916

    
917
            case MODE_INTER_LAST_MV:
918
                /* all 6 fragments use the last motion vector */
919
                motion_x[0] = last_motion_x;
920
                motion_y[0] = last_motion_y;
921
                for (k = 1; k < 6; k++) {
922
                    motion_x[k] = motion_x[0];
923
                    motion_y[k] = motion_y[0];
924
                }
925

    
926
                /* no vector maintenance (last vector remains the
927
                 * last vector) */
928
                break;
929

    
930
            case MODE_INTER_PRIOR_LAST:
931
                /* all 6 fragments use the motion vector prior to the
932
                 * last motion vector */
933
                motion_x[0] = prior_last_motion_x;
934
                motion_y[0] = prior_last_motion_y;
935
                for (k = 1; k < 6; k++) {
936
                    motion_x[k] = motion_x[0];
937
                    motion_y[k] = motion_y[0];
938
                }
939

    
940
                /* vector maintenance */
941
                prior_last_motion_x = last_motion_x;
942
                prior_last_motion_y = last_motion_y;
943
                last_motion_x = motion_x[0];
944
                last_motion_y = motion_y[0];
945
                break;
946

    
947
            default:
948
                /* covers intra, inter without MV, golden without MV */
949
                memset(motion_x, 0, 6 * sizeof(int));
950
                memset(motion_y, 0, 6 * sizeof(int));
951

    
952
                /* no vector maintenance */
953
                break;
954
            }
955

    
956
            /* assign the motion vectors to the correct fragments */
957
            for (k = 0; k < 6; k++) {
958
                current_fragment =
959
                    s->macroblock_fragments[current_macroblock * 6 + k];
960
                if (current_fragment == -1)
961
                    continue;
962
                if (current_fragment >= s->fragment_count) {
963
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d)\n",
964
                        current_fragment, s->fragment_count);
965
                    return 1;
966
                }
967
                s->all_fragments[current_fragment].motion_x = motion_x[k];
968
                s->all_fragments[current_fragment].motion_y = motion_y[k];
969
            }
970
        }
971
    }
972

    
973
    return 0;
974
}
975

    
976
static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb)
977
{
978
    int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi;
979
    int num_blocks = s->coded_fragment_list_index;
980

    
981
    for (qpi = 0; qpi < s->nqps-1 && num_blocks > 0; qpi++) {
982
        i = blocks_decoded = num_blocks_at_qpi = 0;
983

    
984
        bit = get_bits1(gb);
985

    
986
        do {
987
            run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 6, 2) + 1;
988
            if (run_length == 34)
989
                run_length += get_bits(gb, 12);
990
            blocks_decoded += run_length;
991

    
992
            if (!bit)
993
                num_blocks_at_qpi += run_length;
994

    
995
            for (j = 0; j < run_length; i++) {
996
                if (i > s->coded_fragment_list_index)
997
                    return -1;
998

    
999
                if (s->all_fragments[s->coded_fragment_list[i]].qpi == qpi) {
1000
                    s->all_fragments[s->coded_fragment_list[i]].qpi += bit;
1001
                    j++;
1002
                }
1003
            }
1004

    
1005
            if (run_length == 4129)
1006
                bit = get_bits1(gb);
1007
            else
1008
                bit ^= 1;
1009
        } while (blocks_decoded < num_blocks);
1010

    
1011
        num_blocks -= num_blocks_at_qpi;
1012
    }
1013

    
1014
    return 0;
1015
}
1016

    
1017
/*
1018
 * This function is called by unpack_dct_coeffs() to extract the VLCs from
1019
 * the bitstream. The VLCs encode tokens which are used to unpack DCT
1020
 * data. This function unpacks all the VLCs for either the Y plane or both
1021
 * C planes, and is called for DC coefficients or different AC coefficient
1022
 * levels (since different coefficient types require different VLC tables.
1023
 *
1024
 * This function returns a residual eob run. E.g, if a particular token gave
1025
 * instructions to EOB the next 5 fragments and there were only 2 fragments
1026
 * left in the current fragment range, 3 would be returned so that it could
1027
 * be passed into the next call to this same function.
1028
 */
1029
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
1030
                        VLC *table, int coeff_index,
1031
                        int first_fragment, int last_fragment,
1032
                        int eob_run)
1033
{
1034
    int i;
1035
    int token;
1036
    int zero_run = 0;
1037
    DCTELEM coeff = 0;
1038
    Vp3Fragment *fragment;
1039
    uint8_t *perm= s->scantable.permutated;
1040
    int bits_to_get;
1041

    
1042
    if ((first_fragment >= s->fragment_count) ||
1043
        (last_fragment >= s->fragment_count)) {
1044

    
1045
        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vlcs(): bad fragment number (%d -> %d ?)\n",
1046
            first_fragment, last_fragment);
1047
        return 0;
1048
    }
1049

    
1050
    for (i = first_fragment; i <= last_fragment; i++) {
1051
        int fragment_num = s->coded_fragment_list[i];
1052

    
1053
        if (s->coeff_counts[fragment_num] > coeff_index)
1054
            continue;
1055
        fragment = &s->all_fragments[fragment_num];
1056

    
1057
        if (!eob_run) {
1058
            /* decode a VLC into a token */
1059
            token = get_vlc2(gb, table->table, 5, 3);
1060
            /* use the token to get a zero run, a coefficient, and an eob run */
1061
            if (token <= 6) {
1062
                eob_run = eob_run_base[token];
1063
                if (eob_run_get_bits[token])
1064
                    eob_run += get_bits(gb, eob_run_get_bits[token]);
1065
                coeff = zero_run = 0;
1066
            } else {
1067
                bits_to_get = coeff_get_bits[token];
1068
                if (!bits_to_get)
1069
                    coeff = coeff_tables[token][0];
1070
                else
1071
                    coeff = coeff_tables[token][get_bits(gb, bits_to_get)];
1072

    
1073
                zero_run = zero_run_base[token];
1074
                if (zero_run_get_bits[token])
1075
                    zero_run += get_bits(gb, zero_run_get_bits[token]);
1076
            }
1077
        }
1078

    
1079
        if (!eob_run) {
1080
            s->coeff_counts[fragment_num] += zero_run;
1081
            if (s->coeff_counts[fragment_num] < 64){
1082
                fragment->next_coeff->coeff= coeff;
1083
                fragment->next_coeff->index= perm[s->coeff_counts[fragment_num]++]; //FIXME perm here already?
1084
                fragment->next_coeff->next= s->next_coeff;
1085
                s->next_coeff->next=NULL;
1086
                fragment->next_coeff= s->next_coeff++;
1087
            }
1088
        } else {
1089
            s->coeff_counts[fragment_num] |= 128;
1090
            eob_run--;
1091
        }
1092
    }
1093

    
1094
    return eob_run;
1095
}
1096

    
1097
/*
1098
 * This function unpacks all of the DCT coefficient data from the
1099
 * bitstream.
1100
 */
1101
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1102
{
1103
    int i;
1104
    int dc_y_table;
1105
    int dc_c_table;
1106
    int ac_y_table;
1107
    int ac_c_table;
1108
    int residual_eob_run = 0;
1109

    
1110
    /* fetch the DC table indexes */
1111
    dc_y_table = get_bits(gb, 4);
1112
    dc_c_table = get_bits(gb, 4);
1113

    
1114
    /* unpack the Y plane DC coefficients */
1115
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1116
        s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1117

    
1118
    /* unpack the C plane DC coefficients */
1119
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1120
        s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1121

    
1122
    /* fetch the AC table indexes */
1123
    ac_y_table = get_bits(gb, 4);
1124
    ac_c_table = get_bits(gb, 4);
1125

    
1126
    /* unpack the group 1 AC coefficients (coeffs 1-5) */
1127
    for (i = 1; i <= 5; i++) {
1128
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i,
1129
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1130

    
1131
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i,
1132
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1133
    }
1134

    
1135
    /* unpack the group 2 AC coefficients (coeffs 6-14) */
1136
    for (i = 6; i <= 14; i++) {
1137
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i,
1138
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1139

    
1140
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i,
1141
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1142
    }
1143

    
1144
    /* unpack the group 3 AC coefficients (coeffs 15-27) */
1145
    for (i = 15; i <= 27; i++) {
1146
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i,
1147
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1148

    
1149
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i,
1150
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1151
    }
1152

    
1153
    /* unpack the group 4 AC coefficients (coeffs 28-63) */
1154
    for (i = 28; i <= 63; i++) {
1155
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i,
1156
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1157

    
1158
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i,
1159
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1160
    }
1161

    
1162
    return 0;
1163
}
1164

    
1165
/*
1166
 * This function reverses the DC prediction for each coded fragment in
1167
 * the frame. Much of this function is adapted directly from the original
1168
 * VP3 source code.
1169
 */
1170
#define COMPATIBLE_FRAME(x) \
1171
  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1172
#define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY)
1173
#define DC_COEFF(u) (s->coeffs[u].index ? 0 : s->coeffs[u].coeff) //FIXME do somethin to simplify this
1174

    
1175
static void reverse_dc_prediction(Vp3DecodeContext *s,
1176
                                  int first_fragment,
1177
                                  int fragment_width,
1178
                                  int fragment_height)
1179
{
1180

    
1181
#define PUL 8
1182
#define PU 4
1183
#define PUR 2
1184
#define PL 1
1185

    
1186
    int x, y;
1187
    int i = first_fragment;
1188

    
1189
    int predicted_dc;
1190

    
1191
    /* DC values for the left, up-left, up, and up-right fragments */
1192
    int vl, vul, vu, vur;
1193

    
1194
    /* indexes for the left, up-left, up, and up-right fragments */
1195
    int l, ul, u, ur;
1196

    
1197
    /*
1198
     * The 6 fields mean:
1199
     *   0: up-left multiplier
1200
     *   1: up multiplier
1201
     *   2: up-right multiplier
1202
     *   3: left multiplier
1203
     */
1204
    int predictor_transform[16][4] = {
1205
        {  0,  0,  0,  0},
1206
        {  0,  0,  0,128},        // PL
1207
        {  0,  0,128,  0},        // PUR
1208
        {  0,  0, 53, 75},        // PUR|PL
1209
        {  0,128,  0,  0},        // PU
1210
        {  0, 64,  0, 64},        // PU|PL
1211
        {  0,128,  0,  0},        // PU|PUR
1212
        {  0,  0, 53, 75},        // PU|PUR|PL
1213
        {128,  0,  0,  0},        // PUL
1214
        {  0,  0,  0,128},        // PUL|PL
1215
        { 64,  0, 64,  0},        // PUL|PUR
1216
        {  0,  0, 53, 75},        // PUL|PUR|PL
1217
        {  0,128,  0,  0},        // PUL|PU
1218
       {-104,116,  0,116},        // PUL|PU|PL
1219
        { 24, 80, 24,  0},        // PUL|PU|PUR
1220
       {-104,116,  0,116}         // PUL|PU|PUR|PL
1221
    };
1222

    
1223
    /* This table shows which types of blocks can use other blocks for
1224
     * prediction. For example, INTRA is the only mode in this table to
1225
     * have a frame number of 0. That means INTRA blocks can only predict
1226
     * from other INTRA blocks. There are 2 golden frame coding types;
1227
     * blocks encoding in these modes can only predict from other blocks
1228
     * that were encoded with these 1 of these 2 modes. */
1229
    unsigned char compatible_frame[8] = {
1230
        1,    /* MODE_INTER_NO_MV */
1231
        0,    /* MODE_INTRA */
1232
        1,    /* MODE_INTER_PLUS_MV */
1233
        1,    /* MODE_INTER_LAST_MV */
1234
        1,    /* MODE_INTER_PRIOR_MV */
1235
        2,    /* MODE_USING_GOLDEN */
1236
        2,    /* MODE_GOLDEN_MV */
1237
        1     /* MODE_INTER_FOUR_MV */
1238
    };
1239
    int current_frame_type;
1240

    
1241
    /* there is a last DC predictor for each of the 3 frame types */
1242
    short last_dc[3];
1243

    
1244
    int transform = 0;
1245

    
1246
    vul = vu = vur = vl = 0;
1247
    last_dc[0] = last_dc[1] = last_dc[2] = 0;
1248

    
1249
    /* for each fragment row... */
1250
    for (y = 0; y < fragment_height; y++) {
1251

    
1252
        /* for each fragment in a row... */
1253
        for (x = 0; x < fragment_width; x++, i++) {
1254

    
1255
            /* reverse prediction if this block was coded */
1256
            if (s->all_fragments[i].coding_method != MODE_COPY) {
1257

    
1258
                current_frame_type =
1259
                    compatible_frame[s->all_fragments[i].coding_method];
1260

    
1261
                transform= 0;
1262
                if(x){
1263
                    l= i-1;
1264
                    vl = DC_COEFF(l);
1265
                    if(FRAME_CODED(l) && COMPATIBLE_FRAME(l))
1266
                        transform |= PL;
1267
                }
1268
                if(y){
1269
                    u= i-fragment_width;
1270
                    vu = DC_COEFF(u);
1271
                    if(FRAME_CODED(u) && COMPATIBLE_FRAME(u))
1272
                        transform |= PU;
1273
                    if(x){
1274
                        ul= i-fragment_width-1;
1275
                        vul = DC_COEFF(ul);
1276
                        if(FRAME_CODED(ul) && COMPATIBLE_FRAME(ul))
1277
                            transform |= PUL;
1278
                    }
1279
                    if(x + 1 < fragment_width){
1280
                        ur= i-fragment_width+1;
1281
                        vur = DC_COEFF(ur);
1282
                        if(FRAME_CODED(ur) && COMPATIBLE_FRAME(ur))
1283
                            transform |= PUR;
1284
                    }
1285
                }
1286

    
1287
                if (transform == 0) {
1288

    
1289
                    /* if there were no fragments to predict from, use last
1290
                     * DC saved */
1291
                    predicted_dc = last_dc[current_frame_type];
1292
                } else {
1293

    
1294
                    /* apply the appropriate predictor transform */
1295
                    predicted_dc =
1296
                        (predictor_transform[transform][0] * vul) +
1297
                        (predictor_transform[transform][1] * vu) +
1298
                        (predictor_transform[transform][2] * vur) +
1299
                        (predictor_transform[transform][3] * vl);
1300

    
1301
                    predicted_dc /= 128;
1302

    
1303
                    /* check for outranging on the [ul u l] and
1304
                     * [ul u ur l] predictors */
1305
                    if ((transform == 13) || (transform == 15)) {
1306
                        if (FFABS(predicted_dc - vu) > 128)
1307
                            predicted_dc = vu;
1308
                        else if (FFABS(predicted_dc - vl) > 128)
1309
                            predicted_dc = vl;
1310
                        else if (FFABS(predicted_dc - vul) > 128)
1311
                            predicted_dc = vul;
1312
                    }
1313
                }
1314

    
1315
                /* at long last, apply the predictor */
1316
                if(s->coeffs[i].index){
1317
                    *s->next_coeff= s->coeffs[i];
1318
                    s->coeffs[i].index=0;
1319
                    s->coeffs[i].coeff=0;
1320
                    s->coeffs[i].next= s->next_coeff++;
1321
                }
1322
                s->coeffs[i].coeff += predicted_dc;
1323
                /* save the DC */
1324
                last_dc[current_frame_type] = DC_COEFF(i);
1325
                if(DC_COEFF(i) && !(s->coeff_counts[i]&127)){
1326
                    s->coeff_counts[i]= 129;
1327
//                    s->all_fragments[i].next_coeff= s->next_coeff;
1328
                    s->coeffs[i].next= s->next_coeff;
1329
                    (s->next_coeff++)->next=NULL;
1330
                }
1331
            }
1332
        }
1333
    }
1334
}
1335

    
1336
/*
1337
 * Perform the final rendering for a particular slice of data.
1338
 * The slice number ranges from 0..(macroblock_height - 1).
1339
 */
1340
static void render_slice(Vp3DecodeContext *s, int slice)
1341
{
1342
    int x;
1343
    int16_t *dequantizer;
1344
    DECLARE_ALIGNED_16(DCTELEM, block[64]);
1345
    int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1346
    int motion_halfpel_index;
1347
    uint8_t *motion_source;
1348
    int plane;
1349
    int current_macroblock_entry = slice * s->macroblock_width * 6;
1350

    
1351
    if (slice >= s->macroblock_height)
1352
        return;
1353

    
1354
    for (plane = 0; plane < 3; plane++) {
1355
        uint8_t *output_plane = s->current_frame.data    [plane];
1356
        uint8_t *  last_plane = s->   last_frame.data    [plane];
1357
        uint8_t *golden_plane = s-> golden_frame.data    [plane];
1358
        int stride            = s->current_frame.linesize[plane];
1359
        int plane_width       = s->width  >> !!plane;
1360
        int plane_height      = s->height >> !!plane;
1361
        int y =        slice *  FRAGMENT_PIXELS << !plane ;
1362
        int slice_height = y + (FRAGMENT_PIXELS << !plane);
1363
        int i = s->macroblock_fragments[current_macroblock_entry + plane + 3*!!plane];
1364

    
1365
        if (!s->flipped_image) stride = -stride;
1366

    
1367

    
1368
        if(FFABS(stride) > 2048)
1369
            return; //various tables are fixed size
1370

    
1371
        /* for each fragment row in the slice (both of them)... */
1372
        for (; y < slice_height; y += 8) {
1373

    
1374
            /* for each fragment in a row... */
1375
            for (x = 0; x < plane_width; x += 8, i++) {
1376

    
1377
                if ((i < 0) || (i >= s->fragment_count)) {
1378
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:render_slice(): bad fragment number (%d)\n", i);
1379
                    return;
1380
                }
1381

    
1382
                /* transform if this block was coded */
1383
                if ((s->all_fragments[i].coding_method != MODE_COPY) &&
1384
                    !((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) {
1385

    
1386
                    if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1387
                        (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1388
                        motion_source= golden_plane;
1389
                    else
1390
                        motion_source= last_plane;
1391

    
1392
                    motion_source += s->all_fragments[i].first_pixel;
1393
                    motion_halfpel_index = 0;
1394

    
1395
                    /* sort out the motion vector if this fragment is coded
1396
                     * using a motion vector method */
1397
                    if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1398
                        (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1399
                        int src_x, src_y;
1400
                        motion_x = s->all_fragments[i].motion_x;
1401
                        motion_y = s->all_fragments[i].motion_y;
1402
                        if(plane){
1403
                            motion_x= (motion_x>>1) | (motion_x&1);
1404
                            motion_y= (motion_y>>1) | (motion_y&1);
1405
                        }
1406

    
1407
                        src_x= (motion_x>>1) + x;
1408
                        src_y= (motion_y>>1) + y;
1409
                        if ((motion_x == 127) || (motion_y == 127))
1410
                            av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y);
1411

    
1412
                        motion_halfpel_index = motion_x & 0x01;
1413
                        motion_source += (motion_x >> 1);
1414

    
1415
                        motion_halfpel_index |= (motion_y & 0x01) << 1;
1416
                        motion_source += ((motion_y >> 1) * stride);
1417

    
1418
                        if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
1419
                            uint8_t *temp= s->edge_emu_buffer;
1420
                            if(stride<0) temp -= 9*stride;
1421
                            else temp += 9*stride;
1422

    
1423
                            ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
1424
                            motion_source= temp;
1425
                        }
1426
                    }
1427

    
1428

    
1429
                    /* first, take care of copying a block from either the
1430
                     * previous or the golden frame */
1431
                    if (s->all_fragments[i].coding_method != MODE_INTRA) {
1432
                        /* Note, it is possible to implement all MC cases with
1433
                           put_no_rnd_pixels_l2 which would look more like the
1434
                           VP3 source but this would be slower as
1435
                           put_no_rnd_pixels_tab is better optimzed */
1436
                        if(motion_halfpel_index != 3){
1437
                            s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1438
                                output_plane + s->all_fragments[i].first_pixel,
1439
                                motion_source, stride, 8);
1440
                        }else{
1441
                            int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
1442
                            s->dsp.put_no_rnd_pixels_l2[1](
1443
                                output_plane + s->all_fragments[i].first_pixel,
1444
                                motion_source - d,
1445
                                motion_source + stride + 1 + d,
1446
                                stride, 8);
1447
                        }
1448
                        dequantizer = s->qmat[s->all_fragments[i].qpi][1][plane];
1449
                    }else{
1450
                        dequantizer = s->qmat[s->all_fragments[i].qpi][0][plane];
1451
                    }
1452

    
1453
                    /* dequantize the DCT coefficients */
1454
                    if(s->avctx->idct_algo==FF_IDCT_VP3){
1455
                        Coeff *coeff= s->coeffs + i;
1456
                        s->dsp.clear_block(block);
1457
                        while(coeff->next){
1458
                            block[coeff->index]= coeff->coeff * dequantizer[coeff->index];
1459
                            coeff= coeff->next;
1460
                        }
1461
                    }else{
1462
                        Coeff *coeff= s->coeffs + i;
1463
                        s->dsp.clear_block(block);
1464
                        while(coeff->next){
1465
                            block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2;
1466
                            coeff= coeff->next;
1467
                        }
1468
                    }
1469

    
1470
                    /* invert DCT and place (or add) in final output */
1471

    
1472
                    if (s->all_fragments[i].coding_method == MODE_INTRA) {
1473
                        if(s->avctx->idct_algo!=FF_IDCT_VP3)
1474
                            block[0] += 128<<3;
1475
                        s->dsp.idct_put(
1476
                            output_plane + s->all_fragments[i].first_pixel,
1477
                            stride,
1478
                            block);
1479
                    } else {
1480
                        s->dsp.idct_add(
1481
                            output_plane + s->all_fragments[i].first_pixel,
1482
                            stride,
1483
                            block);
1484
                    }
1485
                } else {
1486

    
1487
                    /* copy directly from the previous frame */
1488
                    s->dsp.put_pixels_tab[1][0](
1489
                        output_plane + s->all_fragments[i].first_pixel,
1490
                        last_plane + s->all_fragments[i].first_pixel,
1491
                        stride, 8);
1492

    
1493
                }
1494
#if 0
1495
                /* perform the left edge filter if:
1496
                 *   - the fragment is not on the left column
1497
                 *   - the fragment is coded in this frame
1498
                 *   - the fragment is not coded in this frame but the left
1499
                 *     fragment is coded in this frame (this is done instead
1500
                 *     of a right edge filter when rendering the left fragment
1501
                 *     since this fragment is not available yet) */
1502
                if ((x > 0) &&
1503
                    ((s->all_fragments[i].coding_method != MODE_COPY) ||
1504
                     ((s->all_fragments[i].coding_method == MODE_COPY) &&
1505
                      (s->all_fragments[i - 1].coding_method != MODE_COPY)) )) {
1506
                    horizontal_filter(
1507
                        output_plane + s->all_fragments[i].first_pixel + 7*stride,
1508
                        -stride, s->bounding_values_array + 127);
1509
                }
1510

1511
                /* perform the top edge filter if:
1512
                 *   - the fragment is not on the top row
1513
                 *   - the fragment is coded in this frame
1514
                 *   - the fragment is not coded in this frame but the above
1515
                 *     fragment is coded in this frame (this is done instead
1516
                 *     of a bottom edge filter when rendering the above
1517
                 *     fragment since this fragment is not available yet) */
1518
                if ((y > 0) &&
1519
                    ((s->all_fragments[i].coding_method != MODE_COPY) ||
1520
                     ((s->all_fragments[i].coding_method == MODE_COPY) &&
1521
                      (s->all_fragments[i - fragment_width].coding_method != MODE_COPY)) )) {
1522
                    vertical_filter(
1523
                        output_plane + s->all_fragments[i].first_pixel - stride,
1524
                        -stride, s->bounding_values_array + 127);
1525
                }
1526
#endif
1527
            }
1528
        }
1529
    }
1530

    
1531
     /* this looks like a good place for slice dispatch... */
1532
     /* algorithm:
1533
      *   if (slice == s->macroblock_height - 1)
1534
      *     dispatch (both last slice & 2nd-to-last slice);
1535
      *   else if (slice > 0)
1536
      *     dispatch (slice - 1);
1537
      */
1538

    
1539
    emms_c();
1540
}
1541

    
1542
static void apply_loop_filter(Vp3DecodeContext *s)
1543
{
1544
    int plane;
1545
    int x, y;
1546
    int *bounding_values= s->bounding_values_array+127;
1547

    
1548
#if 0
1549
    int bounding_values_array[256];
1550
    int filter_limit;
1551

1552
    /* find the right loop limit value */
1553
    for (x = 63; x >= 0; x--) {
1554
        if (vp31_ac_scale_factor[x] >= s->quality_index)
1555
            break;
1556
    }
1557
    filter_limit = vp31_filter_limit_values[s->quality_index];
1558

1559
    /* set up the bounding values */
1560
    memset(bounding_values_array, 0, 256 * sizeof(int));
1561
    for (x = 0; x < filter_limit; x++) {
1562
        bounding_values[-x - filter_limit] = -filter_limit + x;
1563
        bounding_values[-x] = -x;
1564
        bounding_values[x] = x;
1565
        bounding_values[x + filter_limit] = filter_limit - x;
1566
    }
1567
#endif
1568

    
1569
    for (plane = 0; plane < 3; plane++) {
1570
        int width           = s->fragment_width  >> !!plane;
1571
        int height          = s->fragment_height >> !!plane;
1572
        int fragment        = s->fragment_start        [plane];
1573
        int stride          = s->current_frame.linesize[plane];
1574
        uint8_t *plane_data = s->current_frame.data    [plane];
1575
        if (!s->flipped_image) stride = -stride;
1576

    
1577
        for (y = 0; y < height; y++) {
1578

    
1579
            for (x = 0; x < width; x++) {
1580
                /* do not perform left edge filter for left columns frags */
1581
                if ((x > 0) &&
1582
                    (s->all_fragments[fragment].coding_method != MODE_COPY)) {
1583
                    s->dsp.vp3_h_loop_filter(
1584
                        plane_data + s->all_fragments[fragment].first_pixel,
1585
                        stride, bounding_values);
1586
                }
1587

    
1588
                /* do not perform top edge filter for top row fragments */
1589
                if ((y > 0) &&
1590
                    (s->all_fragments[fragment].coding_method != MODE_COPY)) {
1591
                    s->dsp.vp3_v_loop_filter(
1592
                        plane_data + s->all_fragments[fragment].first_pixel,
1593
                        stride, bounding_values);
1594
                }
1595

    
1596
                /* do not perform right edge filter for right column
1597
                 * fragments or if right fragment neighbor is also coded
1598
                 * in this frame (it will be filtered in next iteration) */
1599
                if ((x < width - 1) &&
1600
                    (s->all_fragments[fragment].coding_method != MODE_COPY) &&
1601
                    (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
1602
                    s->dsp.vp3_h_loop_filter(
1603
                        plane_data + s->all_fragments[fragment + 1].first_pixel,
1604
                        stride, bounding_values);
1605
                }
1606

    
1607
                /* do not perform bottom edge filter for bottom row
1608
                 * fragments or if bottom fragment neighbor is also coded
1609
                 * in this frame (it will be filtered in the next row) */
1610
                if ((y < height - 1) &&
1611
                    (s->all_fragments[fragment].coding_method != MODE_COPY) &&
1612
                    (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
1613
                    s->dsp.vp3_v_loop_filter(
1614
                        plane_data + s->all_fragments[fragment + width].first_pixel,
1615
                        stride, bounding_values);
1616
                }
1617

    
1618
                fragment++;
1619
            }
1620
        }
1621
    }
1622
}
1623

    
1624
/*
1625
 * This function computes the first pixel addresses for each fragment.
1626
 * This function needs to be invoked after the first frame is allocated
1627
 * so that it has access to the plane strides.
1628
 */
1629
static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s)
1630
{
1631
#define Y_INITIAL(chroma_shift)  s->flipped_image ? 1  : s->fragment_height >> chroma_shift
1632
#define Y_FINISHED(chroma_shift) s->flipped_image ? y <= s->fragment_height >> chroma_shift : y > 0
1633

    
1634
    int i, x, y;
1635
    const int y_inc = s->flipped_image ? 1 : -1;
1636

    
1637
    /* figure out the first pixel addresses for each of the fragments */
1638
    /* Y plane */
1639
    i = 0;
1640
    for (y = Y_INITIAL(0); Y_FINISHED(0); y += y_inc) {
1641
        for (x = 0; x < s->fragment_width; x++) {
1642
            s->all_fragments[i++].first_pixel =
1643
                s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
1644
                    s->golden_frame.linesize[0] +
1645
                    x * FRAGMENT_PIXELS;
1646
        }
1647
    }
1648

    
1649
    /* U plane */
1650
    i = s->fragment_start[1];
1651
    for (y = Y_INITIAL(1); Y_FINISHED(1); y += y_inc) {
1652
        for (x = 0; x < s->fragment_width / 2; x++) {
1653
            s->all_fragments[i++].first_pixel =
1654
                s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
1655
                    s->golden_frame.linesize[1] +
1656
                    x * FRAGMENT_PIXELS;
1657
        }
1658
    }
1659

    
1660
    /* V plane */
1661
    i = s->fragment_start[2];
1662
    for (y = Y_INITIAL(1); Y_FINISHED(1); y += y_inc) {
1663
        for (x = 0; x < s->fragment_width / 2; x++) {
1664
            s->all_fragments[i++].first_pixel =
1665
                s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
1666
                    s->golden_frame.linesize[2] +
1667
                    x * FRAGMENT_PIXELS;
1668
        }
1669
    }
1670
}
1671

    
1672
/*
1673
 * This is the ffmpeg/libavcodec API init function.
1674
 */
1675
static av_cold int vp3_decode_init(AVCodecContext *avctx)
1676
{
1677
    Vp3DecodeContext *s = avctx->priv_data;
1678
    int i, inter, plane;
1679
    int c_width;
1680
    int c_height;
1681
    int y_superblock_count;
1682
    int c_superblock_count;
1683

    
1684
    if (avctx->codec_tag == MKTAG('V','P','3','0'))
1685
        s->version = 0;
1686
    else
1687
        s->version = 1;
1688

    
1689
    s->avctx = avctx;
1690
    s->width = FFALIGN(avctx->width, 16);
1691
    s->height = FFALIGN(avctx->height, 16);
1692
    avctx->pix_fmt = PIX_FMT_YUV420P;
1693
    avctx->chroma_sample_location = AVCHROMA_LOC_CENTER;
1694
    if(avctx->idct_algo==FF_IDCT_AUTO)
1695
        avctx->idct_algo=FF_IDCT_VP3;
1696
    dsputil_init(&s->dsp, avctx);
1697

    
1698
    ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
1699

    
1700
    /* initialize to an impossible value which will force a recalculation
1701
     * in the first frame decode */
1702
    for (i = 0; i < 3; i++)
1703
        s->qps[i] = -1;
1704

    
1705
    s->y_superblock_width = (s->width + 31) / 32;
1706
    s->y_superblock_height = (s->height + 31) / 32;
1707
    y_superblock_count = s->y_superblock_width * s->y_superblock_height;
1708

    
1709
    /* work out the dimensions for the C planes */
1710
    c_width = s->width / 2;
1711
    c_height = s->height / 2;
1712
    s->c_superblock_width = (c_width + 31) / 32;
1713
    s->c_superblock_height = (c_height + 31) / 32;
1714
    c_superblock_count = s->c_superblock_width * s->c_superblock_height;
1715

    
1716
    s->superblock_count = y_superblock_count + (c_superblock_count * 2);
1717
    s->u_superblock_start = y_superblock_count;
1718
    s->v_superblock_start = s->u_superblock_start + c_superblock_count;
1719
    s->superblock_coding = av_malloc(s->superblock_count);
1720

    
1721
    s->macroblock_width = (s->width + 15) / 16;
1722
    s->macroblock_height = (s->height + 15) / 16;
1723
    s->macroblock_count = s->macroblock_width * s->macroblock_height;
1724

    
1725
    s->fragment_width = s->width / FRAGMENT_PIXELS;
1726
    s->fragment_height = s->height / FRAGMENT_PIXELS;
1727

    
1728
    /* fragment count covers all 8x8 blocks for all 3 planes */
1729
    s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
1730
    s->fragment_start[1] = s->fragment_width * s->fragment_height;
1731
    s->fragment_start[2] = s->fragment_width * s->fragment_height * 5 / 4;
1732

    
1733
    s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
1734
    s->coeff_counts = av_malloc(s->fragment_count * sizeof(*s->coeff_counts));
1735
    s->coeffs = av_malloc(s->fragment_count * sizeof(Coeff) * 65);
1736
    s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
1737
    s->pixel_addresses_initialized = 0;
1738

    
1739
    if (!s->theora_tables)
1740
    {
1741
        for (i = 0; i < 64; i++) {
1742
            s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
1743
            s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
1744
            s->base_matrix[0][i] = vp31_intra_y_dequant[i];
1745
            s->base_matrix[1][i] = vp31_intra_c_dequant[i];
1746
            s->base_matrix[2][i] = vp31_inter_dequant[i];
1747
            s->filter_limit_values[i] = vp31_filter_limit_values[i];
1748
        }
1749

    
1750
        for(inter=0; inter<2; inter++){
1751
            for(plane=0; plane<3; plane++){
1752
                s->qr_count[inter][plane]= 1;
1753
                s->qr_size [inter][plane][0]= 63;
1754
                s->qr_base [inter][plane][0]=
1755
                s->qr_base [inter][plane][1]= 2*inter + (!!plane)*!inter;
1756
            }
1757
        }
1758

    
1759
        /* init VLC tables */
1760
        for (i = 0; i < 16; i++) {
1761

    
1762
            /* DC histograms */
1763
            init_vlc(&s->dc_vlc[i], 5, 32,
1764
                &dc_bias[i][0][1], 4, 2,
1765
                &dc_bias[i][0][0], 4, 2, 0);
1766

    
1767
            /* group 1 AC histograms */
1768
            init_vlc(&s->ac_vlc_1[i], 5, 32,
1769
                &ac_bias_0[i][0][1], 4, 2,
1770
                &ac_bias_0[i][0][0], 4, 2, 0);
1771

    
1772
            /* group 2 AC histograms */
1773
            init_vlc(&s->ac_vlc_2[i], 5, 32,
1774
                &ac_bias_1[i][0][1], 4, 2,
1775
                &ac_bias_1[i][0][0], 4, 2, 0);
1776

    
1777
            /* group 3 AC histograms */
1778
            init_vlc(&s->ac_vlc_3[i], 5, 32,
1779
                &ac_bias_2[i][0][1], 4, 2,
1780
                &ac_bias_2[i][0][0], 4, 2, 0);
1781

    
1782
            /* group 4 AC histograms */
1783
            init_vlc(&s->ac_vlc_4[i], 5, 32,
1784
                &ac_bias_3[i][0][1], 4, 2,
1785
                &ac_bias_3[i][0][0], 4, 2, 0);
1786
        }
1787
    } else {
1788
        for (i = 0; i < 16; i++) {
1789

    
1790
            /* DC histograms */
1791
            init_vlc(&s->dc_vlc[i], 5, 32,
1792
                &s->huffman_table[i][0][1], 4, 2,
1793
                &s->huffman_table[i][0][0], 4, 2, 0);
1794

    
1795
            /* group 1 AC histograms */
1796
            init_vlc(&s->ac_vlc_1[i], 5, 32,
1797
                &s->huffman_table[i+16][0][1], 4, 2,
1798
                &s->huffman_table[i+16][0][0], 4, 2, 0);
1799

    
1800
            /* group 2 AC histograms */
1801
            init_vlc(&s->ac_vlc_2[i], 5, 32,
1802
                &s->huffman_table[i+16*2][0][1], 4, 2,
1803
                &s->huffman_table[i+16*2][0][0], 4, 2, 0);
1804

    
1805
            /* group 3 AC histograms */
1806
            init_vlc(&s->ac_vlc_3[i], 5, 32,
1807
                &s->huffman_table[i+16*3][0][1], 4, 2,
1808
                &s->huffman_table[i+16*3][0][0], 4, 2, 0);
1809

    
1810
            /* group 4 AC histograms */
1811
            init_vlc(&s->ac_vlc_4[i], 5, 32,
1812
                &s->huffman_table[i+16*4][0][1], 4, 2,
1813
                &s->huffman_table[i+16*4][0][0], 4, 2, 0);
1814
        }
1815
    }
1816

    
1817
    init_vlc(&s->superblock_run_length_vlc, 6, 34,
1818
        &superblock_run_length_vlc_table[0][1], 4, 2,
1819
        &superblock_run_length_vlc_table[0][0], 4, 2, 0);
1820

    
1821
    init_vlc(&s->fragment_run_length_vlc, 5, 30,
1822
        &fragment_run_length_vlc_table[0][1], 4, 2,
1823
        &fragment_run_length_vlc_table[0][0], 4, 2, 0);
1824

    
1825
    init_vlc(&s->mode_code_vlc, 3, 8,
1826
        &mode_code_vlc_table[0][1], 2, 1,
1827
        &mode_code_vlc_table[0][0], 2, 1, 0);
1828

    
1829
    init_vlc(&s->motion_vector_vlc, 6, 63,
1830
        &motion_vector_vlc_table[0][1], 2, 1,
1831
        &motion_vector_vlc_table[0][0], 2, 1, 0);
1832

    
1833
    /* work out the block mapping tables */
1834
    s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
1835
    s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int));
1836
    s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int));
1837
    s->macroblock_coding = av_malloc(s->macroblock_count + 1);
1838
    init_block_mapping(s);
1839

    
1840
    for (i = 0; i < 3; i++) {
1841
        s->current_frame.data[i] = NULL;
1842
        s->last_frame.data[i] = NULL;
1843
        s->golden_frame.data[i] = NULL;
1844
    }
1845

    
1846
    return 0;
1847
}
1848

    
1849
/*
1850
 * This is the ffmpeg/libavcodec API frame decode function.
1851
 */
1852
static int vp3_decode_frame(AVCodecContext *avctx,
1853
                            void *data, int *data_size,
1854
                            AVPacket *avpkt)
1855
{
1856
    const uint8_t *buf = avpkt->data;
1857
    int buf_size = avpkt->size;
1858
    Vp3DecodeContext *s = avctx->priv_data;
1859
    GetBitContext gb;
1860
    static int counter = 0;
1861
    int i;
1862

    
1863
    init_get_bits(&gb, buf, buf_size * 8);
1864

    
1865
    if (s->theora && get_bits1(&gb))
1866
    {
1867
        av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
1868
        return -1;
1869
    }
1870

    
1871
    s->keyframe = !get_bits1(&gb);
1872
    if (!s->theora)
1873
        skip_bits(&gb, 1);
1874
    for (i = 0; i < 3; i++)
1875
        s->last_qps[i] = s->qps[i];
1876

    
1877
    s->nqps=0;
1878
    do{
1879
        s->qps[s->nqps++]= get_bits(&gb, 6);
1880
    } while(s->theora >= 0x030200 && s->nqps<3 && get_bits1(&gb));
1881
    for (i = s->nqps; i < 3; i++)
1882
        s->qps[i] = -1;
1883

    
1884
    if (s->avctx->debug & FF_DEBUG_PICT_INFO)
1885
        av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
1886
            s->keyframe?"key":"", counter, s->qps[0]);
1887
    counter++;
1888

    
1889
    if (s->qps[0] != s->last_qps[0])
1890
        init_loop_filter(s);
1891

    
1892
    for (i = 0; i < s->nqps; i++)
1893
        // reinit all dequantizers if the first one changed, because
1894
        // the DC of the first quantizer must be used for all matrices
1895
        if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0])
1896
            init_dequantizer(s, i);
1897

    
1898
    if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe)
1899
        return buf_size;
1900

    
1901
    if (s->keyframe) {
1902
        if (!s->theora)
1903
        {
1904
            skip_bits(&gb, 4); /* width code */
1905
            skip_bits(&gb, 4); /* height code */
1906
            if (s->version)
1907
            {
1908
                s->version = get_bits(&gb, 5);
1909
                if (counter == 1)
1910
                    av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
1911
            }
1912
        }
1913
        if (s->version || s->theora)
1914
        {
1915
                if (get_bits1(&gb))
1916
                    av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
1917
            skip_bits(&gb, 2); /* reserved? */
1918
        }
1919

    
1920
        if (s->last_frame.data[0] == s->golden_frame.data[0]) {
1921
            if (s->golden_frame.data[0])
1922
                avctx->release_buffer(avctx, &s->golden_frame);
1923
            s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
1924
        } else {
1925
            if (s->golden_frame.data[0])
1926
                avctx->release_buffer(avctx, &s->golden_frame);
1927
            if (s->last_frame.data[0])
1928
                avctx->release_buffer(avctx, &s->last_frame);
1929
        }
1930

    
1931
        s->golden_frame.reference = 3;
1932
        if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
1933
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1934
            return -1;
1935
        }
1936

    
1937
        /* golden frame is also the current frame */
1938
        s->current_frame= s->golden_frame;
1939

    
1940
        /* time to figure out pixel addresses? */
1941
        if (!s->pixel_addresses_initialized)
1942
        {
1943
            vp3_calculate_pixel_addresses(s);
1944
            s->pixel_addresses_initialized = 1;
1945
        }
1946
    } else {
1947
        /* allocate a new current frame */
1948
        s->current_frame.reference = 3;
1949
        if (!s->pixel_addresses_initialized) {
1950
            av_log(s->avctx, AV_LOG_ERROR, "vp3: first frame not a keyframe\n");
1951
            return -1;
1952
        }
1953
        if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
1954
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
1955
            return -1;
1956
        }
1957
    }
1958

    
1959
    s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
1960
    s->current_frame.qstride= 0;
1961

    
1962
    init_frame(s, &gb);
1963

    
1964
    if (unpack_superblocks(s, &gb)){
1965
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
1966
        return -1;
1967
    }
1968
    if (unpack_modes(s, &gb)){
1969
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
1970
        return -1;
1971
    }
1972
    if (unpack_vectors(s, &gb)){
1973
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
1974
        return -1;
1975
    }
1976
    if (unpack_block_qpis(s, &gb)){
1977
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n");
1978
        return -1;
1979
    }
1980
    if (unpack_dct_coeffs(s, &gb)){
1981
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
1982
        return -1;
1983
    }
1984

    
1985
    reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
1986
    if ((avctx->flags & CODEC_FLAG_GRAY) == 0) {
1987
        reverse_dc_prediction(s, s->fragment_start[1],
1988
            s->fragment_width / 2, s->fragment_height / 2);
1989
        reverse_dc_prediction(s, s->fragment_start[2],
1990
            s->fragment_width / 2, s->fragment_height / 2);
1991
    }
1992

    
1993
    for (i = 0; i < s->macroblock_height; i++)
1994
        render_slice(s, i);
1995

    
1996
    apply_loop_filter(s);
1997

    
1998
    *data_size=sizeof(AVFrame);
1999
    *(AVFrame*)data= s->current_frame;
2000

    
2001
    /* release the last frame, if it is allocated and if it is not the
2002
     * golden frame */
2003
    if ((s->last_frame.data[0]) &&
2004
        (s->last_frame.data[0] != s->golden_frame.data[0]))
2005
        avctx->release_buffer(avctx, &s->last_frame);
2006

    
2007
    /* shuffle frames (last = current) */
2008
    s->last_frame= s->current_frame;
2009
    s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
2010

    
2011
    return buf_size;
2012
}
2013

    
2014
/*
2015
 * This is the ffmpeg/libavcodec API module cleanup function.
2016
 */
2017
static av_cold int vp3_decode_end(AVCodecContext *avctx)
2018
{
2019
    Vp3DecodeContext *s = avctx->priv_data;
2020
    int i;
2021

    
2022
    av_free(s->superblock_coding);
2023
    av_free(s->all_fragments);
2024
    av_free(s->coeff_counts);
2025
    av_free(s->coeffs);
2026
    av_free(s->coded_fragment_list);
2027
    av_free(s->superblock_fragments);
2028
    av_free(s->superblock_macroblocks);
2029
    av_free(s->macroblock_fragments);
2030
    av_free(s->macroblock_coding);
2031

    
2032
    for (i = 0; i < 16; i++) {
2033
        free_vlc(&s->dc_vlc[i]);
2034
        free_vlc(&s->ac_vlc_1[i]);
2035
        free_vlc(&s->ac_vlc_2[i]);
2036
        free_vlc(&s->ac_vlc_3[i]);
2037
        free_vlc(&s->ac_vlc_4[i]);
2038
    }
2039

    
2040
    free_vlc(&s->superblock_run_length_vlc);
2041
    free_vlc(&s->fragment_run_length_vlc);
2042
    free_vlc(&s->mode_code_vlc);
2043
    free_vlc(&s->motion_vector_vlc);
2044

    
2045
    /* release all frames */
2046
    if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
2047
        avctx->release_buffer(avctx, &s->golden_frame);
2048
    if (s->last_frame.data[0])
2049
        avctx->release_buffer(avctx, &s->last_frame);
2050
    /* no need to release the current_frame since it will always be pointing
2051
     * to the same frame as either the golden or last frame */
2052

    
2053
    return 0;
2054
}
2055

    
2056
static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
2057
{
2058
    Vp3DecodeContext *s = avctx->priv_data;
2059

    
2060
    if (get_bits1(gb)) {
2061
        int token;
2062
        if (s->entries >= 32) { /* overflow */
2063
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2064
            return -1;
2065
        }
2066
        token = get_bits(gb, 5);
2067
        //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
2068
        s->huffman_table[s->hti][token][0] = s->hbits;
2069
        s->huffman_table[s->hti][token][1] = s->huff_code_size;
2070
        s->entries++;
2071
    }
2072
    else {
2073
        if (s->huff_code_size >= 32) {/* overflow */
2074
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2075
            return -1;
2076
        }
2077
        s->huff_code_size++;
2078
        s->hbits <<= 1;
2079
        if (read_huffman_tree(avctx, gb))
2080
            return -1;
2081
        s->hbits |= 1;
2082
        if (read_huffman_tree(avctx, gb))
2083
            return -1;
2084
        s->hbits >>= 1;
2085
        s->huff_code_size--;
2086
    }
2087
    return 0;
2088
}
2089

    
2090
#if CONFIG_THEORA_DECODER
2091
static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2092
{
2093
    Vp3DecodeContext *s = avctx->priv_data;
2094
    int visible_width, visible_height;
2095

    
2096
    s->theora = get_bits_long(gb, 24);
2097
    av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora);
2098

    
2099
    /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
2100
    /* but previous versions have the image flipped relative to vp3 */
2101
    if (s->theora < 0x030200)
2102
    {
2103
        s->flipped_image = 1;
2104
        av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
2105
    }
2106

    
2107
    visible_width  = s->width  = get_bits(gb, 16) << 4;
2108
    visible_height = s->height = get_bits(gb, 16) << 4;
2109

    
2110
    if(avcodec_check_dimensions(avctx, s->width, s->height)){
2111
        av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
2112
        s->width= s->height= 0;
2113
        return -1;
2114
    }
2115

    
2116
    if (s->theora >= 0x030400)
2117
    {
2118
        skip_bits(gb, 32); /* total number of superblocks in a frame */
2119
        // fixme, the next field is 36bits long
2120
        skip_bits(gb, 32); /* total number of blocks in a frame */
2121
        skip_bits(gb, 4); /* total number of blocks in a frame */
2122
        skip_bits(gb, 32); /* total number of macroblocks in a frame */
2123
    }
2124

    
2125
    if (s->theora >= 0x030200) {
2126
        visible_width  = get_bits_long(gb, 24);
2127
        visible_height = get_bits_long(gb, 24);
2128

    
2129
        skip_bits(gb, 8); /* offset x */
2130
        skip_bits(gb, 8); /* offset y */
2131
    }
2132

    
2133
    skip_bits(gb, 32); /* fps numerator */
2134
    skip_bits(gb, 32); /* fps denumerator */
2135
    skip_bits(gb, 24); /* aspect numerator */
2136
    skip_bits(gb, 24); /* aspect denumerator */
2137

    
2138
    if (s->theora < 0x030200)
2139
        skip_bits(gb, 5); /* keyframe frequency force */
2140
    skip_bits(gb, 8); /* colorspace */
2141
    if (s->theora >= 0x030400)
2142
        skip_bits(gb, 2); /* pixel format: 420,res,422,444 */
2143
    skip_bits(gb, 24); /* bitrate */
2144

    
2145
    skip_bits(gb, 6); /* quality hint */
2146

    
2147
    if (s->theora >= 0x030200)
2148
    {
2149
        skip_bits(gb, 5); /* keyframe frequency force */
2150

    
2151
        if (s->theora < 0x030400)
2152
            skip_bits(gb, 5); /* spare bits */
2153
    }
2154

    
2155
//    align_get_bits(gb);
2156

    
2157
    if (   visible_width  <= s->width  && visible_width  > s->width-16
2158
        && visible_height <= s->height && visible_height > s->height-16)
2159
        avcodec_set_dimensions(avctx, visible_width, visible_height);
2160
    else
2161
        avcodec_set_dimensions(avctx, s->width, s->height);
2162

    
2163
    return 0;
2164
}
2165

    
2166
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2167
{
2168
    Vp3DecodeContext *s = avctx->priv_data;
2169
    int i, n, matrices, inter, plane;
2170

    
2171
    if (s->theora >= 0x030200) {
2172
        n = get_bits(gb, 3);
2173
        /* loop filter limit values table */
2174
        for (i = 0; i < 64; i++) {
2175
            s->filter_limit_values[i] = get_bits(gb, n);
2176
            if (s->filter_limit_values[i] > 127) {
2177
                av_log(avctx, AV_LOG_ERROR, "filter limit value too large (%i > 127), clamping\n", s->filter_limit_values[i]);
2178
                s->filter_limit_values[i] = 127;
2179
            }
2180
        }
2181
    }
2182

    
2183
    if (s->theora >= 0x030200)
2184
        n = get_bits(gb, 4) + 1;
2185
    else
2186
        n = 16;
2187
    /* quality threshold table */
2188
    for (i = 0; i < 64; i++)
2189
        s->coded_ac_scale_factor[i] = get_bits(gb, n);
2190

    
2191
    if (s->theora >= 0x030200)
2192
        n = get_bits(gb, 4) + 1;
2193
    else
2194
        n = 16;
2195
    /* dc scale factor table */
2196
    for (i = 0; i < 64; i++)
2197
        s->coded_dc_scale_factor[i] = get_bits(gb, n);
2198

    
2199
    if (s->theora >= 0x030200)
2200
        matrices = get_bits(gb, 9) + 1;
2201
    else
2202
        matrices = 3;
2203

    
2204
    if(matrices > 384){
2205
        av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n");
2206
        return -1;
2207
    }
2208

    
2209
    for(n=0; n<matrices; n++){
2210
        for (i = 0; i < 64; i++)
2211
            s->base_matrix[n][i]= get_bits(gb, 8);
2212
    }
2213

    
2214
    for (inter = 0; inter <= 1; inter++) {
2215
        for (plane = 0; plane <= 2; plane++) {
2216
            int newqr= 1;
2217
            if (inter || plane > 0)
2218
                newqr = get_bits1(gb);
2219
            if (!newqr) {
2220
                int qtj, plj;
2221
                if(inter && get_bits1(gb)){
2222
                    qtj = 0;
2223
                    plj = plane;
2224
                }else{
2225
                    qtj= (3*inter + plane - 1) / 3;
2226
                    plj= (plane + 2) % 3;
2227
                }
2228
                s->qr_count[inter][plane]= s->qr_count[qtj][plj];
2229
                memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], sizeof(s->qr_size[0][0]));
2230
                memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], sizeof(s->qr_base[0][0]));
2231
            } else {
2232
                int qri= 0;
2233
                int qi = 0;
2234

    
2235
                for(;;){
2236
                    i= get_bits(gb, av_log2(matrices-1)+1);
2237
                    if(i>= matrices){
2238
                        av_log(avctx, AV_LOG_ERROR, "invalid base matrix index\n");
2239
                        return -1;
2240
                    }
2241
                    s->qr_base[inter][plane][qri]= i;
2242
                    if(qi >= 63)
2243
                        break;
2244
                    i = get_bits(gb, av_log2(63-qi)+1) + 1;
2245
                    s->qr_size[inter][plane][qri++]= i;
2246
                    qi += i;
2247
                }
2248

    
2249
                if (qi > 63) {
2250
                    av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2251
                    return -1;
2252
                }
2253
                s->qr_count[inter][plane]= qri;
2254
            }
2255
        }
2256
    }
2257

    
2258
    /* Huffman tables */
2259
    for (s->hti = 0; s->hti < 80; s->hti++) {
2260
        s->entries = 0;
2261
        s->huff_code_size = 1;
2262
        if (!get_bits1(gb)) {
2263
            s->hbits = 0;
2264
            if(read_huffman_tree(avctx, gb))
2265
                return -1;
2266
            s->hbits = 1;
2267
            if(read_huffman_tree(avctx, gb))
2268
                return -1;
2269
        }
2270
    }
2271

    
2272
    s->theora_tables = 1;
2273

    
2274
    return 0;
2275
}
2276

    
2277
static av_cold int theora_decode_init(AVCodecContext *avctx)
2278
{
2279
    Vp3DecodeContext *s = avctx->priv_data;
2280
    GetBitContext gb;
2281
    int ptype;
2282
    uint8_t *header_start[3];
2283
    int header_len[3];
2284
    int i;
2285

    
2286
    s->theora = 1;
2287

    
2288
    if (!avctx->extradata_size)
2289
    {
2290
        av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2291
        return -1;
2292
    }
2293

    
2294
    if (ff_split_xiph_headers(avctx->extradata, avctx->extradata_size,
2295
                              42, header_start, header_len) < 0) {
2296
        av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n");
2297
        return -1;
2298
    }
2299

    
2300
  for(i=0;i<3;i++) {
2301
    init_get_bits(&gb, header_start[i], header_len[i]);
2302

    
2303
    ptype = get_bits(&gb, 8);
2304

    
2305
     if (!(ptype & 0x80))
2306
     {
2307
        av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2308
//        return -1;
2309
     }
2310

    
2311
    // FIXME: Check for this as well.
2312
    skip_bits_long(&gb, 6*8); /* "theora" */
2313

    
2314
    switch(ptype)
2315
    {
2316
        case 0x80:
2317
            theora_decode_header(avctx, &gb);
2318
                break;
2319
        case 0x81:
2320
// FIXME: is this needed? it breaks sometimes
2321
//            theora_decode_comments(avctx, gb);
2322
            break;
2323
        case 0x82:
2324
            if (theora_decode_tables(avctx, &gb))
2325
                return -1;
2326
            break;
2327
        default:
2328
            av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
2329
            break;
2330
    }
2331
    if(ptype != 0x81 && 8*header_len[i] != get_bits_count(&gb))
2332
        av_log(avctx, AV_LOG_WARNING, "%d bits left in packet %X\n", 8*header_len[i] - get_bits_count(&gb), ptype);
2333
    if (s->theora < 0x030200)
2334
        break;
2335
  }
2336

    
2337
    vp3_decode_init(avctx);
2338
    return 0;
2339
}
2340

    
2341
AVCodec theora_decoder = {
2342
    "theora",
2343
    CODEC_TYPE_VIDEO,
2344
    CODEC_ID_THEORA,
2345
    sizeof(Vp3DecodeContext),
2346
    theora_decode_init,
2347
    NULL,
2348
    vp3_decode_end,
2349
    vp3_decode_frame,
2350
    CODEC_CAP_DR1,
2351
    NULL,
2352
    .long_name = NULL_IF_CONFIG_SMALL("Theora"),
2353
};
2354
#endif
2355

    
2356
AVCodec vp3_decoder = {
2357
    "vp3",
2358
    CODEC_TYPE_VIDEO,
2359
    CODEC_ID_VP3,
2360
    sizeof(Vp3DecodeContext),
2361
    vp3_decode_init,
2362
    NULL,
2363
    vp3_decode_end,
2364
    vp3_decode_frame,
2365
    CODEC_CAP_DR1,
2366
    NULL,
2367
    .long_name = NULL_IF_CONFIG_SMALL("On2 VP3"),
2368
};