Statistics
| Branch: | Revision:

ffmpeg / libavcodec / vp3.c @ e278056f

History | View | Annotate | Download (103 KB)

1
/*
2
 * Copyright (C) 2003-2004 the ffmpeg project
3
 *
4
 * This library is free software; you can redistribute it and/or
5
 * modify it under the terms of the GNU Lesser General Public
6
 * License as published by the Free Software Foundation; either
7
 * version 2 of the License, or (at your option) any later version.
8
 *
9
 * This library is distributed in the hope that it will be useful,
10
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12
 * Lesser General Public License for more details.
13
 *
14
 * You should have received a copy of the GNU Lesser General Public
15
 * License along with this library; if not, write to the Free Software
16
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
17
 *
18
 */
19

    
20
/**
21
 * @file vp3.c
22
 * On2 VP3 Video Decoder
23
 *
24
 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx)
25
 * For more information about the VP3 coding process, visit:
26
 *   http://multimedia.cx/
27
 *
28
 * Theora decoder by Alex Beregszaszi
29
 */
30

    
31
#include <stdio.h>
32
#include <stdlib.h>
33
#include <string.h>
34
#include <unistd.h>
35

    
36
#include "common.h"
37
#include "avcodec.h"
38
#include "dsputil.h"
39
#include "mpegvideo.h"
40

    
41
#include "vp3data.h"
42

    
43
#define FRAGMENT_PIXELS 8
44

    
45
/*
46
 * Debugging Variables
47
 *
48
 * Define one or more of the following compile-time variables to 1 to obtain
49
 * elaborate information about certain aspects of the decoding process.
50
 *
51
 * KEYFRAMES_ONLY: set this to 1 to only see keyframes (VP3 slideshow mode)
52
 * DEBUG_VP3: high-level decoding flow
53
 * DEBUG_INIT: initialization parameters
54
 * DEBUG_DEQUANTIZERS: display how the dequanization tables are built
55
 * DEBUG_BLOCK_CODING: unpacking the superblock/macroblock/fragment coding
56
 * DEBUG_MODES: unpacking the coding modes for individual fragments
57
 * DEBUG_VECTORS: display the motion vectors
58
 * DEBUG_TOKEN: display exhaustive information about each DCT token
59
 * DEBUG_VLC: display the VLCs as they are extracted from the stream
60
 * DEBUG_DC_PRED: display the process of reversing DC prediction
61
 * DEBUG_IDCT: show every detail of the IDCT process
62
 */
63

    
64
#define KEYFRAMES_ONLY 0
65

    
66
#define DEBUG_VP3 0
67
#define DEBUG_INIT 0
68
#define DEBUG_DEQUANTIZERS 0
69
#define DEBUG_BLOCK_CODING 0
70
#define DEBUG_MODES 0
71
#define DEBUG_VECTORS 0
72
#define DEBUG_TOKEN 0
73
#define DEBUG_VLC 0
74
#define DEBUG_DC_PRED 0
75
#define DEBUG_IDCT 0
76

    
77
#if DEBUG_VP3
78
#define debug_vp3(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
79
#else
80
static inline void debug_vp3(const char *format, ...) { }
81
#endif
82

    
83
#if DEBUG_INIT
84
#define debug_init(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
85
#else
86
static inline void debug_init(const char *format, ...) { }
87
#endif
88

    
89
#if DEBUG_DEQUANTIZERS
90
#define debug_dequantizers(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
91
#else
92
static inline void debug_dequantizers(const char *format, ...) { }
93
#endif
94

    
95
#if DEBUG_BLOCK_CODING
96
#define debug_block_coding(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
97
#else
98
static inline void debug_block_coding(const char *format, ...) { }
99
#endif
100

    
101
#if DEBUG_MODES
102
#define debug_modes(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
103
#else
104
static inline void debug_modes(const char *format, ...) { }
105
#endif
106

    
107
#if DEBUG_VECTORS
108
#define debug_vectors(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
109
#else
110
static inline void debug_vectors(const char *format, ...) { }
111
#endif
112

    
113
#if DEBUG_TOKEN
114
#define debug_token(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
115
#else
116
static inline void debug_token(const char *format, ...) { }
117
#endif
118

    
119
#if DEBUG_VLC
120
#define debug_vlc(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
121
#else
122
static inline void debug_vlc(const char *format, ...) { }
123
#endif
124

    
125
#if DEBUG_DC_PRED
126
#define debug_dc_pred(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
127
#else
128
static inline void debug_dc_pred(const char *format, ...) { }
129
#endif
130

    
131
#if DEBUG_IDCT
132
#define debug_idct(args...) av_log(NULL, AV_LOG_DEBUG, ## args)
133
#else
134
static inline void debug_idct(const char *format, ...) { }
135
#endif
136

    
137
typedef struct Coeff {
138
    struct Coeff *next;
139
    DCTELEM coeff;
140
    uint8_t index;
141
} Coeff;
142

    
143
//FIXME split things out into their own arrays
144
typedef struct Vp3Fragment {
145
    Coeff *next_coeff;
146
    /* address of first pixel taking into account which plane the fragment
147
     * lives on as well as the plane stride */
148
    int first_pixel;
149
    /* this is the macroblock that the fragment belongs to */
150
    uint16_t macroblock;
151
    uint8_t coding_method;
152
    uint8_t coeff_count;
153
    int8_t motion_x;
154
    int8_t motion_y;
155
} Vp3Fragment;
156

    
157
#define SB_NOT_CODED        0
158
#define SB_PARTIALLY_CODED  1
159
#define SB_FULLY_CODED      2
160

    
161
#define MODE_INTER_NO_MV      0
162
#define MODE_INTRA            1
163
#define MODE_INTER_PLUS_MV    2
164
#define MODE_INTER_LAST_MV    3
165
#define MODE_INTER_PRIOR_LAST 4
166
#define MODE_USING_GOLDEN     5
167
#define MODE_GOLDEN_MV        6
168
#define MODE_INTER_FOURMV     7
169
#define CODING_MODE_COUNT     8
170

    
171
/* special internal mode */
172
#define MODE_COPY             8
173

    
174
/* There are 6 preset schemes, plus a free-form scheme */
175
static int ModeAlphabet[7][CODING_MODE_COUNT] =
176
{
177
    /* this is the custom scheme */
178
    { 0, 0, 0, 0, 0, 0, 0, 0 },
179

    
180
    /* scheme 1: Last motion vector dominates */
181
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
182
         MODE_INTER_PLUS_MV,    MODE_INTER_NO_MV,
183
         MODE_INTRA,            MODE_USING_GOLDEN,
184
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
185

    
186
    /* scheme 2 */
187
    {    MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
188
         MODE_INTER_NO_MV,      MODE_INTER_PLUS_MV,
189
         MODE_INTRA,            MODE_USING_GOLDEN,
190
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
191

    
192
    /* scheme 3 */
193
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
194
         MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV,
195
         MODE_INTRA,            MODE_USING_GOLDEN,
196
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
197

    
198
    /* scheme 4 */
199
    {    MODE_INTER_LAST_MV,    MODE_INTER_PLUS_MV,
200
         MODE_INTER_NO_MV,      MODE_INTER_PRIOR_LAST,
201
         MODE_INTRA,            MODE_USING_GOLDEN,
202
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
203

    
204
    /* scheme 5: No motion vector dominates */
205
    {    MODE_INTER_NO_MV,      MODE_INTER_LAST_MV,
206
         MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV,
207
         MODE_INTRA,            MODE_USING_GOLDEN,
208
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
209

    
210
    /* scheme 6 */
211
    {    MODE_INTER_NO_MV,      MODE_USING_GOLDEN,
212
         MODE_INTER_LAST_MV,    MODE_INTER_PRIOR_LAST,
213
         MODE_INTER_PLUS_MV,    MODE_INTRA,
214
         MODE_GOLDEN_MV,        MODE_INTER_FOURMV },
215

    
216
};
217

    
218
#define MIN_DEQUANT_VAL 2
219

    
220
typedef struct Vp3DecodeContext {
221
    AVCodecContext *avctx;
222
    int theora, theora_tables;
223
    int version;
224
    int width, height;
225
    AVFrame golden_frame;
226
    AVFrame last_frame;
227
    AVFrame current_frame;
228
    int keyframe;
229
    DSPContext dsp;
230
    int flipped_image;
231

    
232
    int quality_index;
233
    int last_quality_index;
234

    
235
    int superblock_count;
236
    int superblock_width;
237
    int superblock_height;
238
    int y_superblock_width;
239
    int y_superblock_height;
240
    int c_superblock_width;
241
    int c_superblock_height;
242
    int u_superblock_start;
243
    int v_superblock_start;
244
    unsigned char *superblock_coding;
245

    
246
    int macroblock_count;
247
    int macroblock_width;
248
    int macroblock_height;
249

    
250
    int fragment_count;
251
    int fragment_width;
252
    int fragment_height;
253

    
254
    Vp3Fragment *all_fragments;
255
    Coeff *coeffs;
256
    Coeff *next_coeff;
257
    int u_fragment_start;
258
    int v_fragment_start;
259

    
260
    ScanTable scantable;
261

    
262
    /* tables */
263
    uint16_t coded_dc_scale_factor[64];
264
    uint32_t coded_ac_scale_factor[64];
265
    uint16_t coded_intra_y_dequant[64];
266
    uint16_t coded_intra_c_dequant[64];
267
    uint16_t coded_inter_dequant[64];
268

    
269
    /* this is a list of indices into the all_fragments array indicating
270
     * which of the fragments are coded */
271
    int *coded_fragment_list;
272
    int coded_fragment_list_index;
273
    int pixel_addresses_inited;
274

    
275
    VLC dc_vlc[16];
276
    VLC ac_vlc_1[16];
277
    VLC ac_vlc_2[16];
278
    VLC ac_vlc_3[16];
279
    VLC ac_vlc_4[16];
280

    
281
    VLC superblock_run_length_vlc;
282
    VLC fragment_run_length_vlc;
283
    VLC mode_code_vlc;
284
    VLC motion_vector_vlc;
285

    
286
    /* these arrays need to be on 16-byte boundaries since SSE2 operations
287
     * index into them */
288
    DECLARE_ALIGNED_16(int16_t, intra_y_dequant[64]);
289
    DECLARE_ALIGNED_16(int16_t, intra_c_dequant[64]);
290
    DECLARE_ALIGNED_16(int16_t, inter_dequant[64]);
291

    
292
    /* This table contains superblock_count * 16 entries. Each set of 16
293
     * numbers corresponds to the fragment indices 0..15 of the superblock.
294
     * An entry will be -1 to indicate that no entry corresponds to that
295
     * index. */
296
    int *superblock_fragments;
297

    
298
    /* This table contains superblock_count * 4 entries. Each set of 4
299
     * numbers corresponds to the macroblock indices 0..3 of the superblock.
300
     * An entry will be -1 to indicate that no entry corresponds to that
301
     * index. */
302
    int *superblock_macroblocks;
303

    
304
    /* This table contains macroblock_count * 6 entries. Each set of 6
305
     * numbers corresponds to the fragment indices 0..5 which comprise
306
     * the macroblock (4 Y fragments and 2 C fragments). */
307
    int *macroblock_fragments;
308
    /* This is an array that indicates how a particular macroblock
309
     * is coded. */
310
    unsigned char *macroblock_coding;
311

    
312
    int first_coded_y_fragment;
313
    int first_coded_c_fragment;
314
    int last_coded_y_fragment;
315
    int last_coded_c_fragment;
316

    
317
    uint8_t edge_emu_buffer[9*2048]; //FIXME dynamic alloc
318
    uint8_t qscale_table[2048]; //FIXME dynamic alloc (width+15)/16
319

    
320
    /* Huffman decode */
321
    int hti;
322
    unsigned int hbits;
323
    int entries;
324
    int huff_code_size;
325
    uint16_t huffman_table[80][32][2];
326

    
327
    uint32_t filter_limit_values[64];
328
    int bounding_values_array[256];
329
} Vp3DecodeContext;
330

    
331
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb);
332

    
333
/************************************************************************
334
 * VP3 specific functions
335
 ************************************************************************/
336

    
337
/*
338
 * This function sets up all of the various blocks mappings:
339
 * superblocks <-> fragments, macroblocks <-> fragments,
340
 * superblocks <-> macroblocks
341
 *
342
 * Returns 0 is successful; returns 1 if *anything* went wrong.
343
 */
344
static int init_block_mapping(Vp3DecodeContext *s)
345
{
346
    int i, j;
347
    signed int hilbert_walk_y[16];
348
    signed int hilbert_walk_c[16];
349
    signed int hilbert_walk_mb[4];
350

    
351
    int current_fragment = 0;
352
    int current_width = 0;
353
    int current_height = 0;
354
    int right_edge = 0;
355
    int bottom_edge = 0;
356
    int superblock_row_inc = 0;
357
    int *hilbert = NULL;
358
    int mapping_index = 0;
359

    
360
    int current_macroblock;
361
    int c_fragment;
362

    
363
    signed char travel_width[16] = {
364
         1,  1,  0, -1,
365
         0,  0,  1,  0,
366
         1,  0,  1,  0,
367
         0, -1,  0,  1
368
    };
369

    
370
    signed char travel_height[16] = {
371
         0,  0,  1,  0,
372
         1,  1,  0, -1,
373
         0,  1,  0, -1,
374
        -1,  0, -1,  0
375
    };
376

    
377
    signed char travel_width_mb[4] = {
378
         1,  0,  1,  0
379
    };
380

    
381
    signed char travel_height_mb[4] = {
382
         0,  1,  0, -1
383
    };
384

    
385
    debug_vp3("  vp3: initialize block mapping tables\n");
386

    
387
    /* figure out hilbert pattern per these frame dimensions */
388
    hilbert_walk_y[0]  = 1;
389
    hilbert_walk_y[1]  = 1;
390
    hilbert_walk_y[2]  = s->fragment_width;
391
    hilbert_walk_y[3]  = -1;
392
    hilbert_walk_y[4]  = s->fragment_width;
393
    hilbert_walk_y[5]  = s->fragment_width;
394
    hilbert_walk_y[6]  = 1;
395
    hilbert_walk_y[7]  = -s->fragment_width;
396
    hilbert_walk_y[8]  = 1;
397
    hilbert_walk_y[9]  = s->fragment_width;
398
    hilbert_walk_y[10]  = 1;
399
    hilbert_walk_y[11] = -s->fragment_width;
400
    hilbert_walk_y[12] = -s->fragment_width;
401
    hilbert_walk_y[13] = -1;
402
    hilbert_walk_y[14] = -s->fragment_width;
403
    hilbert_walk_y[15] = 1;
404

    
405
    hilbert_walk_c[0]  = 1;
406
    hilbert_walk_c[1]  = 1;
407
    hilbert_walk_c[2]  = s->fragment_width / 2;
408
    hilbert_walk_c[3]  = -1;
409
    hilbert_walk_c[4]  = s->fragment_width / 2;
410
    hilbert_walk_c[5]  = s->fragment_width / 2;
411
    hilbert_walk_c[6]  = 1;
412
    hilbert_walk_c[7]  = -s->fragment_width / 2;
413
    hilbert_walk_c[8]  = 1;
414
    hilbert_walk_c[9]  = s->fragment_width / 2;
415
    hilbert_walk_c[10]  = 1;
416
    hilbert_walk_c[11] = -s->fragment_width / 2;
417
    hilbert_walk_c[12] = -s->fragment_width / 2;
418
    hilbert_walk_c[13] = -1;
419
    hilbert_walk_c[14] = -s->fragment_width / 2;
420
    hilbert_walk_c[15] = 1;
421

    
422
    hilbert_walk_mb[0] = 1;
423
    hilbert_walk_mb[1] = s->macroblock_width;
424
    hilbert_walk_mb[2] = 1;
425
    hilbert_walk_mb[3] = -s->macroblock_width;
426

    
427
    /* iterate through each superblock (all planes) and map the fragments */
428
    for (i = 0; i < s->superblock_count; i++) {
429
        debug_init("    superblock %d (u starts @ %d, v starts @ %d)\n",
430
            i, s->u_superblock_start, s->v_superblock_start);
431

    
432
        /* time to re-assign the limits? */
433
        if (i == 0) {
434

    
435
            /* start of Y superblocks */
436
            right_edge = s->fragment_width;
437
            bottom_edge = s->fragment_height;
438
            current_width = -1;
439
            current_height = 0;
440
            superblock_row_inc = 3 * s->fragment_width -
441
                (s->y_superblock_width * 4 - s->fragment_width);
442
            hilbert = hilbert_walk_y;
443

    
444
            /* the first operation for this variable is to advance by 1 */
445
            current_fragment = -1;
446

    
447
        } else if (i == s->u_superblock_start) {
448

    
449
            /* start of U superblocks */
450
            right_edge = s->fragment_width / 2;
451
            bottom_edge = s->fragment_height / 2;
452
            current_width = -1;
453
            current_height = 0;
454
            superblock_row_inc = 3 * (s->fragment_width / 2) -
455
                (s->c_superblock_width * 4 - s->fragment_width / 2);
456
            hilbert = hilbert_walk_c;
457

    
458
            /* the first operation for this variable is to advance by 1 */
459
            current_fragment = s->u_fragment_start - 1;
460

    
461
        } else if (i == s->v_superblock_start) {
462

    
463
            /* start of V superblocks */
464
            right_edge = s->fragment_width / 2;
465
            bottom_edge = s->fragment_height / 2;
466
            current_width = -1;
467
            current_height = 0;
468
            superblock_row_inc = 3 * (s->fragment_width / 2) -
469
                (s->c_superblock_width * 4 - s->fragment_width / 2);
470
            hilbert = hilbert_walk_c;
471

    
472
            /* the first operation for this variable is to advance by 1 */
473
            current_fragment = s->v_fragment_start - 1;
474

    
475
        }
476

    
477
        if (current_width >= right_edge - 1) {
478
            /* reset width and move to next superblock row */
479
            current_width = -1;
480
            current_height += 4;
481

    
482
            /* fragment is now at the start of a new superblock row */
483
            current_fragment += superblock_row_inc;
484
        }
485

    
486
        /* iterate through all 16 fragments in a superblock */
487
        for (j = 0; j < 16; j++) {
488
            current_fragment += hilbert[j];
489
            current_width += travel_width[j];
490
            current_height += travel_height[j];
491

    
492
            /* check if the fragment is in bounds */
493
            if ((current_width < right_edge) &&
494
                (current_height < bottom_edge)) {
495
                s->superblock_fragments[mapping_index] = current_fragment;
496
                debug_init("    mapping fragment %d to superblock %d, position %d (%d/%d x %d/%d)\n",
497
                    s->superblock_fragments[mapping_index], i, j,
498
                    current_width, right_edge, current_height, bottom_edge);
499
            } else {
500
                s->superblock_fragments[mapping_index] = -1;
501
                debug_init("    superblock %d, position %d has no fragment (%d/%d x %d/%d)\n",
502
                    i, j,
503
                    current_width, right_edge, current_height, bottom_edge);
504
            }
505

    
506
            mapping_index++;
507
        }
508
    }
509

    
510
    /* initialize the superblock <-> macroblock mapping; iterate through
511
     * all of the Y plane superblocks to build this mapping */
512
    right_edge = s->macroblock_width;
513
    bottom_edge = s->macroblock_height;
514
    current_width = -1;
515
    current_height = 0;
516
    superblock_row_inc = s->macroblock_width -
517
        (s->y_superblock_width * 2 - s->macroblock_width);;
518
    hilbert = hilbert_walk_mb;
519
    mapping_index = 0;
520
    current_macroblock = -1;
521
    for (i = 0; i < s->u_superblock_start; i++) {
522

    
523
        if (current_width >= right_edge - 1) {
524
            /* reset width and move to next superblock row */
525
            current_width = -1;
526
            current_height += 2;
527

    
528
            /* macroblock is now at the start of a new superblock row */
529
            current_macroblock += superblock_row_inc;
530
        }
531

    
532
        /* iterate through each potential macroblock in the superblock */
533
        for (j = 0; j < 4; j++) {
534
            current_macroblock += hilbert_walk_mb[j];
535
            current_width += travel_width_mb[j];
536
            current_height += travel_height_mb[j];
537

    
538
            /* check if the macroblock is in bounds */
539
            if ((current_width < right_edge) &&
540
                (current_height < bottom_edge)) {
541
                s->superblock_macroblocks[mapping_index] = current_macroblock;
542
                debug_init("    mapping macroblock %d to superblock %d, position %d (%d/%d x %d/%d)\n",
543
                    s->superblock_macroblocks[mapping_index], i, j,
544
                    current_width, right_edge, current_height, bottom_edge);
545
            } else {
546
                s->superblock_macroblocks[mapping_index] = -1;
547
                debug_init("    superblock %d, position %d has no macroblock (%d/%d x %d/%d)\n",
548
                    i, j,
549
                    current_width, right_edge, current_height, bottom_edge);
550
            }
551

    
552
            mapping_index++;
553
        }
554
    }
555

    
556
    /* initialize the macroblock <-> fragment mapping */
557
    current_fragment = 0;
558
    current_macroblock = 0;
559
    mapping_index = 0;
560
    for (i = 0; i < s->fragment_height; i += 2) {
561

    
562
        for (j = 0; j < s->fragment_width; j += 2) {
563

    
564
            debug_init("    macroblock %d contains fragments: ", current_macroblock);
565
            s->all_fragments[current_fragment].macroblock = current_macroblock;
566
            s->macroblock_fragments[mapping_index++] = current_fragment;
567
            debug_init("%d ", current_fragment);
568

    
569
            if (j + 1 < s->fragment_width) {
570
                s->all_fragments[current_fragment + 1].macroblock = current_macroblock;
571
                s->macroblock_fragments[mapping_index++] = current_fragment + 1;
572
                debug_init("%d ", current_fragment + 1);
573
            } else
574
                s->macroblock_fragments[mapping_index++] = -1;
575

    
576
            if (i + 1 < s->fragment_height) {
577
                s->all_fragments[current_fragment + s->fragment_width].macroblock =
578
                    current_macroblock;
579
                s->macroblock_fragments[mapping_index++] =
580
                    current_fragment + s->fragment_width;
581
                debug_init("%d ", current_fragment + s->fragment_width);
582
            } else
583
                s->macroblock_fragments[mapping_index++] = -1;
584

    
585
            if ((j + 1 < s->fragment_width) && (i + 1 < s->fragment_height)) {
586
                s->all_fragments[current_fragment + s->fragment_width + 1].macroblock =
587
                    current_macroblock;
588
                s->macroblock_fragments[mapping_index++] =
589
                    current_fragment + s->fragment_width + 1;
590
                debug_init("%d ", current_fragment + s->fragment_width + 1);
591
            } else
592
                s->macroblock_fragments[mapping_index++] = -1;
593

    
594
            /* C planes */
595
            c_fragment = s->u_fragment_start +
596
                (i * s->fragment_width / 4) + (j / 2);
597
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
598
            s->macroblock_fragments[mapping_index++] = c_fragment;
599
            debug_init("%d ", c_fragment);
600

    
601
            c_fragment = s->v_fragment_start +
602
                (i * s->fragment_width / 4) + (j / 2);
603
            s->all_fragments[c_fragment].macroblock = s->macroblock_count;
604
            s->macroblock_fragments[mapping_index++] = c_fragment;
605
            debug_init("%d ", c_fragment);
606

    
607
            debug_init("\n");
608

    
609
            if (j + 2 <= s->fragment_width)
610
                current_fragment += 2;
611
            else
612
                current_fragment++;
613
            current_macroblock++;
614
        }
615

    
616
        current_fragment += s->fragment_width;
617
    }
618

    
619
    return 0;  /* successful path out */
620
}
621

    
622
/*
623
 * This function wipes out all of the fragment data.
624
 */
625
static void init_frame(Vp3DecodeContext *s, GetBitContext *gb)
626
{
627
    int i;
628

    
629
    /* zero out all of the fragment information */
630
    s->coded_fragment_list_index = 0;
631
    for (i = 0; i < s->fragment_count; i++) {
632
        s->all_fragments[i].coeff_count = 0;
633
        s->all_fragments[i].motion_x = 127;
634
        s->all_fragments[i].motion_y = 127;
635
        s->all_fragments[i].next_coeff= NULL;
636
        s->coeffs[i].index=
637
        s->coeffs[i].coeff=0;
638
        s->coeffs[i].next= NULL;
639
    }
640
}
641

    
642
/*
643
 * This function sets up the dequantization tables used for a particular
644
 * frame.
645
 */
646
static void init_dequantizer(Vp3DecodeContext *s)
647
{
648

    
649
    int ac_scale_factor = s->coded_ac_scale_factor[s->quality_index];
650
    int dc_scale_factor = s->coded_dc_scale_factor[s->quality_index];
651
    int i, j;
652

    
653
    debug_vp3("  vp3: initializing dequantization tables\n");
654

    
655
    /*
656
     * Scale dequantizers:
657
     *
658
     *   quantizer * sf
659
     *   --------------
660
     *        100
661
     *
662
     * where sf = dc_scale_factor for DC quantizer
663
     *         or ac_scale_factor for AC quantizer
664
     *
665
     * Then, saturate the result to a lower limit of MIN_DEQUANT_VAL.
666
     */
667
#define SCALER 4
668

    
669
    /* scale DC quantizers */
670
    s->intra_y_dequant[0] = s->coded_intra_y_dequant[0] * dc_scale_factor / 100;
671
    if (s->intra_y_dequant[0] < MIN_DEQUANT_VAL * 2)
672
        s->intra_y_dequant[0] = MIN_DEQUANT_VAL * 2;
673
    s->intra_y_dequant[0] *= SCALER;
674

    
675
    s->intra_c_dequant[0] = s->coded_intra_c_dequant[0] * dc_scale_factor / 100;
676
    if (s->intra_c_dequant[0] < MIN_DEQUANT_VAL * 2)
677
        s->intra_c_dequant[0] = MIN_DEQUANT_VAL * 2;
678
    s->intra_c_dequant[0] *= SCALER;
679

    
680
    s->inter_dequant[0] = s->coded_inter_dequant[0] * dc_scale_factor / 100;
681
    if (s->inter_dequant[0] < MIN_DEQUANT_VAL * 4)
682
        s->inter_dequant[0] = MIN_DEQUANT_VAL * 4;
683
    s->inter_dequant[0] *= SCALER;
684

    
685
    /* scale AC quantizers, zigzag at the same time in preparation for
686
     * the dequantization phase */
687
    for (i = 1; i < 64; i++) {
688
        int k= s->scantable.scantable[i];
689
        j = s->scantable.permutated[i];
690

    
691
        s->intra_y_dequant[j] = s->coded_intra_y_dequant[k] * ac_scale_factor / 100;
692
        if (s->intra_y_dequant[j] < MIN_DEQUANT_VAL)
693
            s->intra_y_dequant[j] = MIN_DEQUANT_VAL;
694
        s->intra_y_dequant[j] *= SCALER;
695

    
696
        s->intra_c_dequant[j] = s->coded_intra_c_dequant[k] * ac_scale_factor / 100;
697
        if (s->intra_c_dequant[j] < MIN_DEQUANT_VAL)
698
            s->intra_c_dequant[j] = MIN_DEQUANT_VAL;
699
        s->intra_c_dequant[j] *= SCALER;
700

    
701
        s->inter_dequant[j] = s->coded_inter_dequant[k] * ac_scale_factor / 100;
702
        if (s->inter_dequant[j] < MIN_DEQUANT_VAL * 2)
703
            s->inter_dequant[j] = MIN_DEQUANT_VAL * 2;
704
        s->inter_dequant[j] *= SCALER;
705
    }
706

    
707
    memset(s->qscale_table, (FFMAX(s->intra_y_dequant[1], s->intra_c_dequant[1])+8)/16, 512); //FIXME finetune
708

    
709
    /* print debug information as requested */
710
    debug_dequantizers("intra Y dequantizers:\n");
711
    for (i = 0; i < 8; i++) {
712
      for (j = i * 8; j < i * 8 + 8; j++) {
713
        debug_dequantizers(" %4d,", s->intra_y_dequant[j]);
714
      }
715
      debug_dequantizers("\n");
716
    }
717
    debug_dequantizers("\n");
718

    
719
    debug_dequantizers("intra C dequantizers:\n");
720
    for (i = 0; i < 8; i++) {
721
      for (j = i * 8; j < i * 8 + 8; j++) {
722
        debug_dequantizers(" %4d,", s->intra_c_dequant[j]);
723
      }
724
      debug_dequantizers("\n");
725
    }
726
    debug_dequantizers("\n");
727

    
728
    debug_dequantizers("interframe dequantizers:\n");
729
    for (i = 0; i < 8; i++) {
730
      for (j = i * 8; j < i * 8 + 8; j++) {
731
        debug_dequantizers(" %4d,", s->inter_dequant[j]);
732
      }
733
      debug_dequantizers("\n");
734
    }
735
    debug_dequantizers("\n");
736
}
737

    
738
/*
739
 * This function initializes the loop filter boundary limits if the frame's
740
 * quality index is different from the previous frame's.
741
 */
742
static void init_loop_filter(Vp3DecodeContext *s)
743
{
744
    int *bounding_values= s->bounding_values_array+127;
745
    int filter_limit;
746
    int x;
747

    
748
    filter_limit = s->filter_limit_values[s->quality_index];
749

    
750
    /* set up the bounding values */
751
    memset(s->bounding_values_array, 0, 256 * sizeof(int));
752
    for (x = 0; x < filter_limit; x++) {
753
        bounding_values[-x - filter_limit] = -filter_limit + x;
754
        bounding_values[-x] = -x;
755
        bounding_values[x] = x;
756
        bounding_values[x + filter_limit] = filter_limit - x;
757
    }
758
}
759

    
760
/*
761
 * This function unpacks all of the superblock/macroblock/fragment coding
762
 * information from the bitstream.
763
 */
764
static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb)
765
{
766
    int bit = 0;
767
    int current_superblock = 0;
768
    int current_run = 0;
769
    int decode_fully_flags = 0;
770
    int decode_partial_blocks = 0;
771
    int first_c_fragment_seen;
772

    
773
    int i, j;
774
    int current_fragment;
775

    
776
    debug_vp3("  vp3: unpacking superblock coding\n");
777

    
778
    if (s->keyframe) {
779

    
780
        debug_vp3("    keyframe-- all superblocks are fully coded\n");
781
        memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count);
782

    
783
    } else {
784

    
785
        /* unpack the list of partially-coded superblocks */
786
        bit = get_bits(gb, 1);
787
        /* toggle the bit because as soon as the first run length is
788
         * fetched the bit will be toggled again */
789
        bit ^= 1;
790
        while (current_superblock < s->superblock_count) {
791
            if (current_run-- == 0) {
792
                bit ^= 1;
793
                current_run = get_vlc2(gb,
794
                    s->superblock_run_length_vlc.table, 6, 2);
795
                if (current_run == 33)
796
                    current_run += get_bits(gb, 12);
797
                debug_block_coding("      setting superblocks %d..%d to %s\n",
798
                    current_superblock,
799
                    current_superblock + current_run - 1,
800
                    (bit) ? "partially coded" : "not coded");
801

    
802
                /* if any of the superblocks are not partially coded, flag
803
                 * a boolean to decode the list of fully-coded superblocks */
804
                if (bit == 0) {
805
                    decode_fully_flags = 1;
806
                } else {
807

    
808
                    /* make a note of the fact that there are partially coded
809
                     * superblocks */
810
                    decode_partial_blocks = 1;
811
                }
812
            }
813
            s->superblock_coding[current_superblock++] = bit;
814
        }
815

    
816
        /* unpack the list of fully coded superblocks if any of the blocks were
817
         * not marked as partially coded in the previous step */
818
        if (decode_fully_flags) {
819

    
820
            current_superblock = 0;
821
            current_run = 0;
822
            bit = get_bits(gb, 1);
823
            /* toggle the bit because as soon as the first run length is
824
             * fetched the bit will be toggled again */
825
            bit ^= 1;
826
            while (current_superblock < s->superblock_count) {
827

    
828
                /* skip any superblocks already marked as partially coded */
829
                if (s->superblock_coding[current_superblock] == SB_NOT_CODED) {
830

    
831
                    if (current_run-- == 0) {
832
                        bit ^= 1;
833
                        current_run = get_vlc2(gb,
834
                            s->superblock_run_length_vlc.table, 6, 2);
835
                        if (current_run == 33)
836
                            current_run += get_bits(gb, 12);
837
                    }
838

    
839
                    debug_block_coding("      setting superblock %d to %s\n",
840
                        current_superblock,
841
                        (bit) ? "fully coded" : "not coded");
842
                    s->superblock_coding[current_superblock] = 2*bit;
843
                }
844
                current_superblock++;
845
            }
846
        }
847

    
848
        /* if there were partial blocks, initialize bitstream for
849
         * unpacking fragment codings */
850
        if (decode_partial_blocks) {
851

    
852
            current_run = 0;
853
            bit = get_bits(gb, 1);
854
            /* toggle the bit because as soon as the first run length is
855
             * fetched the bit will be toggled again */
856
            bit ^= 1;
857
        }
858
    }
859

    
860
    /* figure out which fragments are coded; iterate through each
861
     * superblock (all planes) */
862
    s->coded_fragment_list_index = 0;
863
    s->next_coeff= s->coeffs + s->fragment_count;
864
    s->first_coded_y_fragment = s->first_coded_c_fragment = 0;
865
    s->last_coded_y_fragment = s->last_coded_c_fragment = -1;
866
    first_c_fragment_seen = 0;
867
    memset(s->macroblock_coding, MODE_COPY, s->macroblock_count);
868
    for (i = 0; i < s->superblock_count; i++) {
869

    
870
        /* iterate through all 16 fragments in a superblock */
871
        for (j = 0; j < 16; j++) {
872

    
873
            /* if the fragment is in bounds, check its coding status */
874
            current_fragment = s->superblock_fragments[i * 16 + j];
875
            if (current_fragment >= s->fragment_count) {
876
                av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_superblocks(): bad fragment number (%d >= %d)\n",
877
                    current_fragment, s->fragment_count);
878
                return 1;
879
            }
880
            if (current_fragment != -1) {
881
                if (s->superblock_coding[i] == SB_NOT_CODED) {
882

    
883
                    /* copy all the fragments from the prior frame */
884
                    s->all_fragments[current_fragment].coding_method =
885
                        MODE_COPY;
886

    
887
                } else if (s->superblock_coding[i] == SB_PARTIALLY_CODED) {
888

    
889
                    /* fragment may or may not be coded; this is the case
890
                     * that cares about the fragment coding runs */
891
                    if (current_run-- == 0) {
892
                        bit ^= 1;
893
                        current_run = get_vlc2(gb,
894
                            s->fragment_run_length_vlc.table, 5, 2);
895
                    }
896

    
897
                    if (bit) {
898
                        /* default mode; actual mode will be decoded in
899
                         * the next phase */
900
                        s->all_fragments[current_fragment].coding_method =
901
                            MODE_INTER_NO_MV;
902
                        s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
903
                        s->coded_fragment_list[s->coded_fragment_list_index] =
904
                            current_fragment;
905
                        if ((current_fragment >= s->u_fragment_start) &&
906
                            (s->last_coded_y_fragment == -1) &&
907
                            (!first_c_fragment_seen)) {
908
                            s->first_coded_c_fragment = s->coded_fragment_list_index;
909
                            s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
910
                            first_c_fragment_seen = 1;
911
                        }
912
                        s->coded_fragment_list_index++;
913
                        s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
914
                        debug_block_coding("      superblock %d is partially coded, fragment %d is coded\n",
915
                            i, current_fragment);
916
                    } else {
917
                        /* not coded; copy this fragment from the prior frame */
918
                        s->all_fragments[current_fragment].coding_method =
919
                            MODE_COPY;
920
                        debug_block_coding("      superblock %d is partially coded, fragment %d is not coded\n",
921
                            i, current_fragment);
922
                    }
923

    
924
                } else {
925

    
926
                    /* fragments are fully coded in this superblock; actual
927
                     * coding will be determined in next step */
928
                    s->all_fragments[current_fragment].coding_method =
929
                        MODE_INTER_NO_MV;
930
                    s->all_fragments[current_fragment].next_coeff= s->coeffs + current_fragment;
931
                    s->coded_fragment_list[s->coded_fragment_list_index] =
932
                        current_fragment;
933
                    if ((current_fragment >= s->u_fragment_start) &&
934
                        (s->last_coded_y_fragment == -1) &&
935
                        (!first_c_fragment_seen)) {
936
                        s->first_coded_c_fragment = s->coded_fragment_list_index;
937
                        s->last_coded_y_fragment = s->first_coded_c_fragment - 1;
938
                        first_c_fragment_seen = 1;
939
                    }
940
                    s->coded_fragment_list_index++;
941
                    s->macroblock_coding[s->all_fragments[current_fragment].macroblock] = MODE_INTER_NO_MV;
942
                    debug_block_coding("      superblock %d is fully coded, fragment %d is coded\n",
943
                        i, current_fragment);
944
                }
945
            }
946
        }
947
    }
948

    
949
    if (!first_c_fragment_seen)
950
        /* only Y fragments coded in this frame */
951
        s->last_coded_y_fragment = s->coded_fragment_list_index - 1;
952
    else
953
        /* end the list of coded C fragments */
954
        s->last_coded_c_fragment = s->coded_fragment_list_index - 1;
955

    
956
    debug_block_coding("    %d total coded fragments, y: %d -> %d, c: %d -> %d\n",
957
        s->coded_fragment_list_index,
958
        s->first_coded_y_fragment,
959
        s->last_coded_y_fragment,
960
        s->first_coded_c_fragment,
961
        s->last_coded_c_fragment);
962

    
963
    return 0;
964
}
965

    
966
/*
967
 * This function unpacks all the coding mode data for individual macroblocks
968
 * from the bitstream.
969
 */
970
static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb)
971
{
972
    int i, j, k;
973
    int scheme;
974
    int current_macroblock;
975
    int current_fragment;
976
    int coding_mode;
977

    
978
    debug_vp3("  vp3: unpacking encoding modes\n");
979

    
980
    if (s->keyframe) {
981
        debug_vp3("    keyframe-- all blocks are coded as INTRA\n");
982

    
983
        for (i = 0; i < s->fragment_count; i++)
984
            s->all_fragments[i].coding_method = MODE_INTRA;
985

    
986
    } else {
987

    
988
        /* fetch the mode coding scheme for this frame */
989
        scheme = get_bits(gb, 3);
990
        debug_modes("    using mode alphabet %d\n", scheme);
991

    
992
        /* is it a custom coding scheme? */
993
        if (scheme == 0) {
994
            debug_modes("    custom mode alphabet ahead:\n");
995
            for (i = 0; i < 8; i++)
996
                ModeAlphabet[scheme][get_bits(gb, 3)] = i;
997
        }
998

    
999
        for (i = 0; i < 8; i++)
1000
            debug_modes("      mode[%d][%d] = %d\n", scheme, i,
1001
                ModeAlphabet[scheme][i]);
1002

    
1003
        /* iterate through all of the macroblocks that contain 1 or more
1004
         * coded fragments */
1005
        for (i = 0; i < s->u_superblock_start; i++) {
1006

    
1007
            for (j = 0; j < 4; j++) {
1008
                current_macroblock = s->superblock_macroblocks[i * 4 + j];
1009
                if ((current_macroblock == -1) ||
1010
                    (s->macroblock_coding[current_macroblock] == MODE_COPY))
1011
                    continue;
1012
                if (current_macroblock >= s->macroblock_count) {
1013
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad macroblock number (%d >= %d)\n",
1014
                        current_macroblock, s->macroblock_count);
1015
                    return 1;
1016
                }
1017

    
1018
                /* mode 7 means get 3 bits for each coding mode */
1019
                if (scheme == 7)
1020
                    coding_mode = get_bits(gb, 3);
1021
                else
1022
                    coding_mode = ModeAlphabet[scheme]
1023
                        [get_vlc2(gb, s->mode_code_vlc.table, 3, 3)];
1024

    
1025
                s->macroblock_coding[current_macroblock] = coding_mode;
1026
                for (k = 0; k < 6; k++) {
1027
                    current_fragment =
1028
                        s->macroblock_fragments[current_macroblock * 6 + k];
1029
                    if (current_fragment == -1)
1030
                        continue;
1031
                    if (current_fragment >= s->fragment_count) {
1032
                        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_modes(): bad fragment number (%d >= %d)\n",
1033
                            current_fragment, s->fragment_count);
1034
                        return 1;
1035
                    }
1036
                    if (s->all_fragments[current_fragment].coding_method !=
1037
                        MODE_COPY)
1038
                        s->all_fragments[current_fragment].coding_method =
1039
                            coding_mode;
1040
                }
1041

    
1042
                debug_modes("    coding method for macroblock starting @ fragment %d = %d\n",
1043
                    s->macroblock_fragments[current_macroblock * 6], coding_mode);
1044
            }
1045
        }
1046
    }
1047

    
1048
    return 0;
1049
}
1050

    
1051
/*
1052
 * This function unpacks all the motion vectors for the individual
1053
 * macroblocks from the bitstream.
1054
 */
1055
static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb)
1056
{
1057
    int i, j, k;
1058
    int coding_mode;
1059
    int motion_x[6];
1060
    int motion_y[6];
1061
    int last_motion_x = 0;
1062
    int last_motion_y = 0;
1063
    int prior_last_motion_x = 0;
1064
    int prior_last_motion_y = 0;
1065
    int current_macroblock;
1066
    int current_fragment;
1067

    
1068
    debug_vp3("  vp3: unpacking motion vectors\n");
1069
    if (s->keyframe) {
1070

    
1071
        debug_vp3("    keyframe-- there are no motion vectors\n");
1072

    
1073
    } else {
1074

    
1075
        memset(motion_x, 0, 6 * sizeof(int));
1076
        memset(motion_y, 0, 6 * sizeof(int));
1077

    
1078
        /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme */
1079
        coding_mode = get_bits(gb, 1);
1080
        debug_vectors("    using %s scheme for unpacking motion vectors\n",
1081
            (coding_mode == 0) ? "VLC" : "fixed-length");
1082

    
1083
        /* iterate through all of the macroblocks that contain 1 or more
1084
         * coded fragments */
1085
        for (i = 0; i < s->u_superblock_start; i++) {
1086

    
1087
            for (j = 0; j < 4; j++) {
1088
                current_macroblock = s->superblock_macroblocks[i * 4 + j];
1089
                if ((current_macroblock == -1) ||
1090
                    (s->macroblock_coding[current_macroblock] == MODE_COPY))
1091
                    continue;
1092
                if (current_macroblock >= s->macroblock_count) {
1093
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad macroblock number (%d >= %d)\n",
1094
                        current_macroblock, s->macroblock_count);
1095
                    return 1;
1096
                }
1097

    
1098
                current_fragment = s->macroblock_fragments[current_macroblock * 6];
1099
                if (current_fragment >= s->fragment_count) {
1100
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d\n",
1101
                        current_fragment, s->fragment_count);
1102
                    return 1;
1103
                }
1104
                switch (s->macroblock_coding[current_macroblock]) {
1105

    
1106
                case MODE_INTER_PLUS_MV:
1107
                case MODE_GOLDEN_MV:
1108
                    /* all 6 fragments use the same motion vector */
1109
                    if (coding_mode == 0) {
1110
                        motion_x[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
1111
                        motion_y[0] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
1112
                    } else {
1113
                        motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)];
1114
                        motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)];
1115
                    }
1116

    
1117
                    for (k = 1; k < 6; k++) {
1118
                        motion_x[k] = motion_x[0];
1119
                        motion_y[k] = motion_y[0];
1120
                    }
1121

    
1122
                    /* vector maintenance, only on MODE_INTER_PLUS_MV */
1123
                    if (s->macroblock_coding[current_macroblock] ==
1124
                        MODE_INTER_PLUS_MV) {
1125
                        prior_last_motion_x = last_motion_x;
1126
                        prior_last_motion_y = last_motion_y;
1127
                        last_motion_x = motion_x[0];
1128
                        last_motion_y = motion_y[0];
1129
                    }
1130
                    break;
1131

    
1132
                case MODE_INTER_FOURMV:
1133
                    /* fetch 4 vectors from the bitstream, one for each
1134
                     * Y fragment, then average for the C fragment vectors */
1135
                    motion_x[4] = motion_y[4] = 0;
1136
                    for (k = 0; k < 4; k++) {
1137
                        if (coding_mode == 0) {
1138
                            motion_x[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
1139
                            motion_y[k] = motion_vector_table[get_vlc2(gb, s->motion_vector_vlc.table, 6, 2)];
1140
                        } else {
1141
                            motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)];
1142
                            motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)];
1143
                        }
1144
                        motion_x[4] += motion_x[k];
1145
                        motion_y[4] += motion_y[k];
1146
                    }
1147

    
1148
                    if (motion_x[4] >= 0)
1149
                        motion_x[4] = (motion_x[4] + 2) / 4;
1150
                    else
1151
                        motion_x[4] = (motion_x[4] - 2) / 4;
1152
                    motion_x[5] = motion_x[4];
1153

    
1154
                    if (motion_y[4] >= 0)
1155
                        motion_y[4] = (motion_y[4] + 2) / 4;
1156
                    else
1157
                        motion_y[4] = (motion_y[4] - 2) / 4;
1158
                    motion_y[5] = motion_y[4];
1159

    
1160
                    /* vector maintenance; vector[3] is treated as the
1161
                     * last vector in this case */
1162
                    prior_last_motion_x = last_motion_x;
1163
                    prior_last_motion_y = last_motion_y;
1164
                    last_motion_x = motion_x[3];
1165
                    last_motion_y = motion_y[3];
1166
                    break;
1167

    
1168
                case MODE_INTER_LAST_MV:
1169
                    /* all 6 fragments use the last motion vector */
1170
                    motion_x[0] = last_motion_x;
1171
                    motion_y[0] = last_motion_y;
1172
                    for (k = 1; k < 6; k++) {
1173
                        motion_x[k] = motion_x[0];
1174
                        motion_y[k] = motion_y[0];
1175
                    }
1176

    
1177
                    /* no vector maintenance (last vector remains the
1178
                     * last vector) */
1179
                    break;
1180

    
1181
                case MODE_INTER_PRIOR_LAST:
1182
                    /* all 6 fragments use the motion vector prior to the
1183
                     * last motion vector */
1184
                    motion_x[0] = prior_last_motion_x;
1185
                    motion_y[0] = prior_last_motion_y;
1186
                    for (k = 1; k < 6; k++) {
1187
                        motion_x[k] = motion_x[0];
1188
                        motion_y[k] = motion_y[0];
1189
                    }
1190

    
1191
                    /* vector maintenance */
1192
                    prior_last_motion_x = last_motion_x;
1193
                    prior_last_motion_y = last_motion_y;
1194
                    last_motion_x = motion_x[0];
1195
                    last_motion_y = motion_y[0];
1196
                    break;
1197

    
1198
                default:
1199
                    /* covers intra, inter without MV, golden without MV */
1200
                    memset(motion_x, 0, 6 * sizeof(int));
1201
                    memset(motion_y, 0, 6 * sizeof(int));
1202

    
1203
                    /* no vector maintenance */
1204
                    break;
1205
                }
1206

    
1207
                /* assign the motion vectors to the correct fragments */
1208
                debug_vectors("    vectors for macroblock starting @ fragment %d (coding method %d):\n",
1209
                    current_fragment,
1210
                    s->macroblock_coding[current_macroblock]);
1211
                for (k = 0; k < 6; k++) {
1212
                    current_fragment =
1213
                        s->macroblock_fragments[current_macroblock * 6 + k];
1214
                    if (current_fragment == -1)
1215
                        continue;
1216
                    if (current_fragment >= s->fragment_count) {
1217
                        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vectors(): bad fragment number (%d >= %d)\n",
1218
                            current_fragment, s->fragment_count);
1219
                        return 1;
1220
                    }
1221
                    s->all_fragments[current_fragment].motion_x = motion_x[k];
1222
                    s->all_fragments[current_fragment].motion_y = motion_y[k];
1223
                    debug_vectors("    vector %d: fragment %d = (%d, %d)\n",
1224
                        k, current_fragment, motion_x[k], motion_y[k]);
1225
                }
1226
            }
1227
        }
1228
    }
1229

    
1230
    return 0;
1231
}
1232

    
1233
/*
1234
 * This function is called by unpack_dct_coeffs() to extract the VLCs from
1235
 * the bitstream. The VLCs encode tokens which are used to unpack DCT
1236
 * data. This function unpacks all the VLCs for either the Y plane or both
1237
 * C planes, and is called for DC coefficients or different AC coefficient
1238
 * levels (since different coefficient types require different VLC tables.
1239
 *
1240
 * This function returns a residual eob run. E.g, if a particular token gave
1241
 * instructions to EOB the next 5 fragments and there were only 2 fragments
1242
 * left in the current fragment range, 3 would be returned so that it could
1243
 * be passed into the next call to this same function.
1244
 */
1245
static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb,
1246
                        VLC *table, int coeff_index,
1247
                        int first_fragment, int last_fragment,
1248
                        int eob_run)
1249
{
1250
    int i;
1251
    int token;
1252
    int zero_run = 0;
1253
    DCTELEM coeff = 0;
1254
    Vp3Fragment *fragment;
1255
    uint8_t *perm= s->scantable.permutated;
1256
    int bits_to_get;
1257

    
1258
    if ((first_fragment >= s->fragment_count) ||
1259
        (last_fragment >= s->fragment_count)) {
1260

    
1261
        av_log(s->avctx, AV_LOG_ERROR, "  vp3:unpack_vlcs(): bad fragment number (%d -> %d ?)\n",
1262
            first_fragment, last_fragment);
1263
        return 0;
1264
    }
1265

    
1266
    for (i = first_fragment; i <= last_fragment; i++) {
1267

    
1268
        fragment = &s->all_fragments[s->coded_fragment_list[i]];
1269
        if (fragment->coeff_count > coeff_index)
1270
            continue;
1271

    
1272
        if (!eob_run) {
1273
            /* decode a VLC into a token */
1274
            token = get_vlc2(gb, table->table, 5, 3);
1275
            debug_vlc(" token = %2d, ", token);
1276
            /* use the token to get a zero run, a coefficient, and an eob run */
1277
            if (token <= 6) {
1278
                eob_run = eob_run_base[token];
1279
                if (eob_run_get_bits[token])
1280
                    eob_run += get_bits(gb, eob_run_get_bits[token]);
1281
                coeff = zero_run = 0;
1282
            } else {
1283
                bits_to_get = coeff_get_bits[token];
1284
                if (!bits_to_get)
1285
                    coeff = coeff_tables[token][0];
1286
                else
1287
                    coeff = coeff_tables[token][get_bits(gb, bits_to_get)];
1288

    
1289
                zero_run = zero_run_base[token];
1290
                if (zero_run_get_bits[token])
1291
                    zero_run += get_bits(gb, zero_run_get_bits[token]);
1292
            }
1293
        }
1294

    
1295
        if (!eob_run) {
1296
            fragment->coeff_count += zero_run;
1297
            if (fragment->coeff_count < 64){
1298
                fragment->next_coeff->coeff= coeff;
1299
                fragment->next_coeff->index= perm[fragment->coeff_count++]; //FIXME perm here already?
1300
                fragment->next_coeff->next= s->next_coeff;
1301
                s->next_coeff->next=NULL;
1302
                fragment->next_coeff= s->next_coeff++;
1303
            }
1304
            debug_vlc(" fragment %d coeff = %d\n",
1305
                s->coded_fragment_list[i], fragment->next_coeff[coeff_index]);
1306
        } else {
1307
            fragment->coeff_count |= 128;
1308
            debug_vlc(" fragment %d eob with %d coefficients\n",
1309
                s->coded_fragment_list[i], fragment->coeff_count&127);
1310
            eob_run--;
1311
        }
1312
    }
1313

    
1314
    return eob_run;
1315
}
1316

    
1317
/*
1318
 * This function unpacks all of the DCT coefficient data from the
1319
 * bitstream.
1320
 */
1321
static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb)
1322
{
1323
    int i;
1324
    int dc_y_table;
1325
    int dc_c_table;
1326
    int ac_y_table;
1327
    int ac_c_table;
1328
    int residual_eob_run = 0;
1329

    
1330
    /* fetch the DC table indices */
1331
    dc_y_table = get_bits(gb, 4);
1332
    dc_c_table = get_bits(gb, 4);
1333

    
1334
    /* unpack the Y plane DC coefficients */
1335
    debug_vp3("  vp3: unpacking Y plane DC coefficients using table %d\n",
1336
        dc_y_table);
1337
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_y_table], 0,
1338
        s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1339

    
1340
    /* unpack the C plane DC coefficients */
1341
    debug_vp3("  vp3: unpacking C plane DC coefficients using table %d\n",
1342
        dc_c_table);
1343
    residual_eob_run = unpack_vlcs(s, gb, &s->dc_vlc[dc_c_table], 0,
1344
        s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1345

    
1346
    /* fetch the AC table indices */
1347
    ac_y_table = get_bits(gb, 4);
1348
    ac_c_table = get_bits(gb, 4);
1349

    
1350
    /* unpack the group 1 AC coefficients (coeffs 1-5) */
1351
    for (i = 1; i <= 5; i++) {
1352

    
1353
        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
1354
            i, ac_y_table);
1355
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_y_table], i,
1356
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1357

    
1358
        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
1359
            i, ac_c_table);
1360
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_1[ac_c_table], i,
1361
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1362
    }
1363

    
1364
    /* unpack the group 2 AC coefficients (coeffs 6-14) */
1365
    for (i = 6; i <= 14; i++) {
1366

    
1367
        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
1368
            i, ac_y_table);
1369
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_y_table], i,
1370
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1371

    
1372
        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
1373
            i, ac_c_table);
1374
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_2[ac_c_table], i,
1375
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1376
    }
1377

    
1378
    /* unpack the group 3 AC coefficients (coeffs 15-27) */
1379
    for (i = 15; i <= 27; i++) {
1380

    
1381
        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
1382
            i, ac_y_table);
1383
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_y_table], i,
1384
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1385

    
1386
        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
1387
            i, ac_c_table);
1388
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_3[ac_c_table], i,
1389
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1390
    }
1391

    
1392
    /* unpack the group 4 AC coefficients (coeffs 28-63) */
1393
    for (i = 28; i <= 63; i++) {
1394

    
1395
        debug_vp3("  vp3: unpacking level %d Y plane AC coefficients using table %d\n",
1396
            i, ac_y_table);
1397
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_y_table], i,
1398
            s->first_coded_y_fragment, s->last_coded_y_fragment, residual_eob_run);
1399

    
1400
        debug_vp3("  vp3: unpacking level %d C plane AC coefficients using table %d\n",
1401
            i, ac_c_table);
1402
        residual_eob_run = unpack_vlcs(s, gb, &s->ac_vlc_4[ac_c_table], i,
1403
            s->first_coded_c_fragment, s->last_coded_c_fragment, residual_eob_run);
1404
    }
1405

    
1406
    return 0;
1407
}
1408

    
1409
/*
1410
 * This function reverses the DC prediction for each coded fragment in
1411
 * the frame. Much of this function is adapted directly from the original
1412
 * VP3 source code.
1413
 */
1414
#define COMPATIBLE_FRAME(x) \
1415
  (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type)
1416
#define FRAME_CODED(x) (s->all_fragments[x].coding_method != MODE_COPY)
1417
#define DC_COEFF(u) (s->coeffs[u].index ? 0 : s->coeffs[u].coeff) //FIXME do somethin to simplify this
1418
static inline int iabs (int x) { return ((x < 0) ? -x : x); }
1419

    
1420
static void reverse_dc_prediction(Vp3DecodeContext *s,
1421
                                  int first_fragment,
1422
                                  int fragment_width,
1423
                                  int fragment_height)
1424
{
1425

    
1426
#define PUL 8
1427
#define PU 4
1428
#define PUR 2
1429
#define PL 1
1430

    
1431
    int x, y;
1432
    int i = first_fragment;
1433

    
1434
    /*
1435
     * Fragment prediction groups:
1436
     *
1437
     * 32222222226
1438
     * 10000000004
1439
     * 10000000004
1440
     * 10000000004
1441
     * 10000000004
1442
     *
1443
     * Note: Groups 5 and 7 do not exist as it would mean that the
1444
     * fragment's x coordinate is both 0 and (width - 1) at the same time.
1445
     */
1446
    int predictor_group;
1447
    short predicted_dc;
1448

    
1449
    /* validity flags for the left, up-left, up, and up-right fragments */
1450
    int fl, ful, fu, fur;
1451

    
1452
    /* DC values for the left, up-left, up, and up-right fragments */
1453
    int vl, vul, vu, vur;
1454

    
1455
    /* indices for the left, up-left, up, and up-right fragments */
1456
    int l, ul, u, ur;
1457

    
1458
    /*
1459
     * The 6 fields mean:
1460
     *   0: up-left multiplier
1461
     *   1: up multiplier
1462
     *   2: up-right multiplier
1463
     *   3: left multiplier
1464
     *   4: mask
1465
     *   5: right bit shift divisor (e.g., 7 means >>=7, a.k.a. div by 128)
1466
     */
1467
    int predictor_transform[16][6] = {
1468
        {  0,  0,  0,  0,   0,  0 },
1469
        {  0,  0,  0,  1,   0,  0 },        // PL
1470
        {  0,  0,  1,  0,   0,  0 },        // PUR
1471
        {  0,  0, 53, 75, 127,  7 },        // PUR|PL
1472
        {  0,  1,  0,  0,   0,  0 },        // PU
1473
        {  0,  1,  0,  1,   1,  1 },        // PU|PL
1474
        {  0,  1,  0,  0,   0,  0 },        // PU|PUR
1475
        {  0,  0, 53, 75, 127,  7 },        // PU|PUR|PL
1476
        {  1,  0,  0,  0,   0,  0 },        // PUL
1477
        {  0,  0,  0,  1,   0,  0 },        // PUL|PL
1478
        {  1,  0,  1,  0,   1,  1 },        // PUL|PUR
1479
        {  0,  0, 53, 75, 127,  7 },        // PUL|PUR|PL
1480
        {  0,  1,  0,  0,   0,  0 },        // PUL|PU
1481
        {-26, 29,  0, 29,  31,  5 },        // PUL|PU|PL
1482
        {  3, 10,  3,  0,  15,  4 },        // PUL|PU|PUR
1483
        {-26, 29,  0, 29,  31,  5 }         // PUL|PU|PUR|PL
1484
    };
1485

    
1486
    /* This table shows which types of blocks can use other blocks for
1487
     * prediction. For example, INTRA is the only mode in this table to
1488
     * have a frame number of 0. That means INTRA blocks can only predict
1489
     * from other INTRA blocks. There are 2 golden frame coding types;
1490
     * blocks encoding in these modes can only predict from other blocks
1491
     * that were encoded with these 1 of these 2 modes. */
1492
    unsigned char compatible_frame[8] = {
1493
        1,    /* MODE_INTER_NO_MV */
1494
        0,    /* MODE_INTRA */
1495
        1,    /* MODE_INTER_PLUS_MV */
1496
        1,    /* MODE_INTER_LAST_MV */
1497
        1,    /* MODE_INTER_PRIOR_MV */
1498
        2,    /* MODE_USING_GOLDEN */
1499
        2,    /* MODE_GOLDEN_MV */
1500
        1     /* MODE_INTER_FOUR_MV */
1501
    };
1502
    int current_frame_type;
1503

    
1504
    /* there is a last DC predictor for each of the 3 frame types */
1505
    short last_dc[3];
1506

    
1507
    int transform = 0;
1508

    
1509
    debug_vp3("  vp3: reversing DC prediction\n");
1510

    
1511
    vul = vu = vur = vl = 0;
1512
    last_dc[0] = last_dc[1] = last_dc[2] = 0;
1513

    
1514
    /* for each fragment row... */
1515
    for (y = 0; y < fragment_height; y++) {
1516

    
1517
        /* for each fragment in a row... */
1518
        for (x = 0; x < fragment_width; x++, i++) {
1519

    
1520
            /* reverse prediction if this block was coded */
1521
            if (s->all_fragments[i].coding_method != MODE_COPY) {
1522

    
1523
                current_frame_type =
1524
                    compatible_frame[s->all_fragments[i].coding_method];
1525
                predictor_group = (x == 0) + ((y == 0) << 1) +
1526
                    ((x + 1 == fragment_width) << 2);
1527
                debug_dc_pred(" frag %d: group %d, orig DC = %d, ",
1528
                    i, predictor_group, DC_COEFF(i));
1529

    
1530
                switch (predictor_group) {
1531

    
1532
                case 0:
1533
                    /* main body of fragments; consider all 4 possible
1534
                     * fragments for prediction */
1535

    
1536
                    /* calculate the indices of the predicting fragments */
1537
                    ul = i - fragment_width - 1;
1538
                    u = i - fragment_width;
1539
                    ur = i - fragment_width + 1;
1540
                    l = i - 1;
1541

    
1542
                    /* fetch the DC values for the predicting fragments */
1543
                    vul = DC_COEFF(ul);
1544
                    vu = DC_COEFF(u);
1545
                    vur = DC_COEFF(ur);
1546
                    vl = DC_COEFF(l);
1547

    
1548
                    /* figure out which fragments are valid */
1549
                    ful = FRAME_CODED(ul) && COMPATIBLE_FRAME(ul);
1550
                    fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);
1551
                    fur = FRAME_CODED(ur) && COMPATIBLE_FRAME(ur);
1552
                    fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);
1553

    
1554
                    /* decide which predictor transform to use */
1555
                    transform = (fl*PL) | (fu*PU) | (ful*PUL) | (fur*PUR);
1556

    
1557
                    break;
1558

    
1559
                case 1:
1560
                    /* left column of fragments, not including top corner;
1561
                     * only consider up and up-right fragments */
1562

    
1563
                    /* calculate the indices of the predicting fragments */
1564
                    u = i - fragment_width;
1565
                    ur = i - fragment_width + 1;
1566

    
1567
                    /* fetch the DC values for the predicting fragments */
1568
                    vu = DC_COEFF(u);
1569
                    vur = DC_COEFF(ur);
1570

    
1571
                    /* figure out which fragments are valid */
1572
                    fur = FRAME_CODED(ur) && COMPATIBLE_FRAME(ur);
1573
                    fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);
1574

    
1575
                    /* decide which predictor transform to use */
1576
                    transform = (fu*PU) | (fur*PUR);
1577

    
1578
                    break;
1579

    
1580
                case 2:
1581
                case 6:
1582
                    /* top row of fragments, not including top-left frag;
1583
                     * only consider the left fragment for prediction */
1584

    
1585
                    /* calculate the indices of the predicting fragments */
1586
                    l = i - 1;
1587

    
1588
                    /* fetch the DC values for the predicting fragments */
1589
                    vl = DC_COEFF(l);
1590

    
1591
                    /* figure out which fragments are valid */
1592
                    fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);
1593

    
1594
                    /* decide which predictor transform to use */
1595
                    transform = (fl*PL);
1596

    
1597
                    break;
1598

    
1599
                case 3:
1600
                    /* top-left fragment */
1601

    
1602
                    /* nothing to predict from in this case */
1603
                    transform = 0;
1604

    
1605
                    break;
1606

    
1607
                case 4:
1608
                    /* right column of fragments, not including top corner;
1609
                     * consider up-left, up, and left fragments for
1610
                     * prediction */
1611

    
1612
                    /* calculate the indices of the predicting fragments */
1613
                    ul = i - fragment_width - 1;
1614
                    u = i - fragment_width;
1615
                    l = i - 1;
1616

    
1617
                    /* fetch the DC values for the predicting fragments */
1618
                    vul = DC_COEFF(ul);
1619
                    vu = DC_COEFF(u);
1620
                    vl = DC_COEFF(l);
1621

    
1622
                    /* figure out which fragments are valid */
1623
                    ful = FRAME_CODED(ul) && COMPATIBLE_FRAME(ul);
1624
                    fu = FRAME_CODED(u) && COMPATIBLE_FRAME(u);
1625
                    fl = FRAME_CODED(l) && COMPATIBLE_FRAME(l);
1626

    
1627
                    /* decide which predictor transform to use */
1628
                    transform = (fl*PL) | (fu*PU) | (ful*PUL);
1629

    
1630
                    break;
1631

    
1632
                }
1633

    
1634
                debug_dc_pred("transform = %d, ", transform);
1635

    
1636
                if (transform == 0) {
1637

    
1638
                    /* if there were no fragments to predict from, use last
1639
                     * DC saved */
1640
                    predicted_dc = last_dc[current_frame_type];
1641
                    debug_dc_pred("from last DC (%d) = %d\n",
1642
                        current_frame_type, DC_COEFF(i));
1643

    
1644
                } else {
1645

    
1646
                    /* apply the appropriate predictor transform */
1647
                    predicted_dc =
1648
                        (predictor_transform[transform][0] * vul) +
1649
                        (predictor_transform[transform][1] * vu) +
1650
                        (predictor_transform[transform][2] * vur) +
1651
                        (predictor_transform[transform][3] * vl);
1652

    
1653
                    /* if there is a shift value in the transform, add
1654
                     * the sign bit before the shift */
1655
                    if (predictor_transform[transform][5] != 0) {
1656
                        predicted_dc += ((predicted_dc >> 15) &
1657
                            predictor_transform[transform][4]);
1658
                        predicted_dc >>= predictor_transform[transform][5];
1659
                    }
1660

    
1661
                    /* check for outranging on the [ul u l] and
1662
                     * [ul u ur l] predictors */
1663
                    if ((transform == 13) || (transform == 15)) {
1664
                        if (iabs(predicted_dc - vu) > 128)
1665
                            predicted_dc = vu;
1666
                        else if (iabs(predicted_dc - vl) > 128)
1667
                            predicted_dc = vl;
1668
                        else if (iabs(predicted_dc - vul) > 128)
1669
                            predicted_dc = vul;
1670
                    }
1671

    
1672
                    debug_dc_pred("from pred DC = %d\n",
1673
                    DC_COEFF(i));
1674
                }
1675

    
1676
                /* at long last, apply the predictor */
1677
                if(s->coeffs[i].index){
1678
                    *s->next_coeff= s->coeffs[i];
1679
                    s->coeffs[i].index=0;
1680
                    s->coeffs[i].coeff=0;
1681
                    s->coeffs[i].next= s->next_coeff++;
1682
                }
1683
                s->coeffs[i].coeff += predicted_dc;
1684
                /* save the DC */
1685
                last_dc[current_frame_type] = DC_COEFF(i);
1686
                if(DC_COEFF(i) && !(s->all_fragments[i].coeff_count&127)){
1687
                    s->all_fragments[i].coeff_count= 129;
1688
//                    s->all_fragments[i].next_coeff= s->next_coeff;
1689
                    s->coeffs[i].next= s->next_coeff;
1690
                    (s->next_coeff++)->next=NULL;
1691
                }
1692
            }
1693
        }
1694
    }
1695
}
1696

    
1697

    
1698
static void horizontal_filter(unsigned char *first_pixel, int stride,
1699
    int *bounding_values);
1700
static void vertical_filter(unsigned char *first_pixel, int stride,
1701
    int *bounding_values);
1702

    
1703
/*
1704
 * Perform the final rendering for a particular slice of data.
1705
 * The slice number ranges from 0..(macroblock_height - 1).
1706
 */
1707
static void render_slice(Vp3DecodeContext *s, int slice)
1708
{
1709
    int x, y;
1710
    int m, n;
1711
    int i;  /* indicates current fragment */
1712
    int16_t *dequantizer;
1713
    DECLARE_ALIGNED_16(DCTELEM, block[64]);
1714
    unsigned char *output_plane;
1715
    unsigned char *last_plane;
1716
    unsigned char *golden_plane;
1717
    int stride;
1718
    int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef;
1719
    int upper_motion_limit, lower_motion_limit;
1720
    int motion_halfpel_index;
1721
    uint8_t *motion_source;
1722
    int plane;
1723
    int plane_width;
1724
    int plane_height;
1725
    int slice_height;
1726
    int current_macroblock_entry = slice * s->macroblock_width * 6;
1727
    int fragment_width;
1728

    
1729
    if (slice >= s->macroblock_height)
1730
        return;
1731

    
1732
    for (plane = 0; plane < 3; plane++) {
1733

    
1734
        /* set up plane-specific parameters */
1735
        if (plane == 0) {
1736
            output_plane = s->current_frame.data[0];
1737
            last_plane = s->last_frame.data[0];
1738
            golden_plane = s->golden_frame.data[0];
1739
            stride = s->current_frame.linesize[0];
1740
            if (!s->flipped_image) stride = -stride;
1741
            upper_motion_limit = 7 * s->current_frame.linesize[0];
1742
            lower_motion_limit = s->height * s->current_frame.linesize[0] + s->width - 8;
1743
            y = slice * FRAGMENT_PIXELS * 2;
1744
            plane_width = s->width;
1745
            plane_height = s->height;
1746
            slice_height = y + FRAGMENT_PIXELS * 2;
1747
            i = s->macroblock_fragments[current_macroblock_entry + 0];
1748
        } else if (plane == 1) {
1749
            output_plane = s->current_frame.data[1];
1750
            last_plane = s->last_frame.data[1];
1751
            golden_plane = s->golden_frame.data[1];
1752
            stride = s->current_frame.linesize[1];
1753
            if (!s->flipped_image) stride = -stride;
1754
            upper_motion_limit = 7 * s->current_frame.linesize[1];
1755
            lower_motion_limit = (s->height / 2) * s->current_frame.linesize[1] + (s->width / 2) - 8;
1756
            y = slice * FRAGMENT_PIXELS;
1757
            plane_width = s->width / 2;
1758
            plane_height = s->height / 2;
1759
            slice_height = y + FRAGMENT_PIXELS;
1760
            i = s->macroblock_fragments[current_macroblock_entry + 4];
1761
        } else {
1762
            output_plane = s->current_frame.data[2];
1763
            last_plane = s->last_frame.data[2];
1764
            golden_plane = s->golden_frame.data[2];
1765
            stride = s->current_frame.linesize[2];
1766
            if (!s->flipped_image) stride = -stride;
1767
            upper_motion_limit = 7 * s->current_frame.linesize[2];
1768
            lower_motion_limit = (s->height / 2) * s->current_frame.linesize[2] + (s->width / 2) - 8;
1769
            y = slice * FRAGMENT_PIXELS;
1770
            plane_width = s->width / 2;
1771
            plane_height = s->height / 2;
1772
            slice_height = y + FRAGMENT_PIXELS;
1773
            i = s->macroblock_fragments[current_macroblock_entry + 5];
1774
        }
1775
        fragment_width = plane_width / FRAGMENT_PIXELS;
1776

    
1777
        if(ABS(stride) > 2048)
1778
            return; //various tables are fixed size
1779

    
1780
        /* for each fragment row in the slice (both of them)... */
1781
        for (; y < slice_height; y += 8) {
1782

    
1783
            /* for each fragment in a row... */
1784
            for (x = 0; x < plane_width; x += 8, i++) {
1785

    
1786
                if ((i < 0) || (i >= s->fragment_count)) {
1787
                    av_log(s->avctx, AV_LOG_ERROR, "  vp3:render_slice(): bad fragment number (%d)\n", i);
1788
                    return;
1789
                }
1790

    
1791
                /* transform if this block was coded */
1792
                if ((s->all_fragments[i].coding_method != MODE_COPY) &&
1793
                    !((s->avctx->flags & CODEC_FLAG_GRAY) && plane)) {
1794

    
1795
                    if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) ||
1796
                        (s->all_fragments[i].coding_method == MODE_GOLDEN_MV))
1797
                        motion_source= golden_plane;
1798
                    else
1799
                        motion_source= last_plane;
1800

    
1801
                    motion_source += s->all_fragments[i].first_pixel;
1802
                    motion_halfpel_index = 0;
1803

    
1804
                    /* sort out the motion vector if this fragment is coded
1805
                     * using a motion vector method */
1806
                    if ((s->all_fragments[i].coding_method > MODE_INTRA) &&
1807
                        (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) {
1808
                        int src_x, src_y;
1809
                        motion_x = s->all_fragments[i].motion_x;
1810
                        motion_y = s->all_fragments[i].motion_y;
1811
                        if(plane){
1812
                            motion_x= (motion_x>>1) | (motion_x&1);
1813
                            motion_y= (motion_y>>1) | (motion_y&1);
1814
                        }
1815

    
1816
                        src_x= (motion_x>>1) + x;
1817
                        src_y= (motion_y>>1) + y;
1818
                        if ((motion_x == 127) || (motion_y == 127))
1819
                            av_log(s->avctx, AV_LOG_ERROR, " help! got invalid motion vector! (%X, %X)\n", motion_x, motion_y);
1820

    
1821
                        motion_halfpel_index = motion_x & 0x01;
1822
                        motion_source += (motion_x >> 1);
1823

    
1824
                        motion_halfpel_index |= (motion_y & 0x01) << 1;
1825
                        motion_source += ((motion_y >> 1) * stride);
1826

    
1827
                        if(src_x<0 || src_y<0 || src_x + 9 >= plane_width || src_y + 9 >= plane_height){
1828
                            uint8_t *temp= s->edge_emu_buffer;
1829
                            if(stride<0) temp -= 9*stride;
1830
                            else temp += 9*stride;
1831

    
1832
                            ff_emulated_edge_mc(temp, motion_source, stride, 9, 9, src_x, src_y, plane_width, plane_height);
1833
                            motion_source= temp;
1834
                        }
1835
                    }
1836

    
1837

    
1838
                    /* first, take care of copying a block from either the
1839
                     * previous or the golden frame */
1840
                    if (s->all_fragments[i].coding_method != MODE_INTRA) {
1841
                        /* Note, it is possible to implement all MC cases with
1842
                           put_no_rnd_pixels_l2 which would look more like the
1843
                           VP3 source but this would be slower as
1844
                           put_no_rnd_pixels_tab is better optimzed */
1845
                        if(motion_halfpel_index != 3){
1846
                            s->dsp.put_no_rnd_pixels_tab[1][motion_halfpel_index](
1847
                                output_plane + s->all_fragments[i].first_pixel,
1848
                                motion_source, stride, 8);
1849
                        }else{
1850
                            int d= (motion_x ^ motion_y)>>31; // d is 0 if motion_x and _y have the same sign, else -1
1851
                            s->dsp.put_no_rnd_pixels_l2[1](
1852
                                output_plane + s->all_fragments[i].first_pixel,
1853
                                motion_source - d,
1854
                                motion_source + stride + 1 + d,
1855
                                stride, 8);
1856
                        }
1857
                        dequantizer = s->inter_dequant;
1858
                    }else{
1859
                        if (plane == 0)
1860
                            dequantizer = s->intra_y_dequant;
1861
                        else
1862
                            dequantizer = s->intra_c_dequant;
1863
                    }
1864

    
1865
                    /* dequantize the DCT coefficients */
1866
                    debug_idct("fragment %d, coding mode %d, DC = %d, dequant = %d:\n",
1867
                        i, s->all_fragments[i].coding_method,
1868
                        DC_COEFF(i), dequantizer[0]);
1869

    
1870
                    if(s->avctx->idct_algo==FF_IDCT_VP3){
1871
                        Coeff *coeff= s->coeffs + i;
1872
                        memset(block, 0, sizeof(block));
1873
                        while(coeff->next){
1874
                            block[coeff->index]= coeff->coeff * dequantizer[coeff->index];
1875
                            coeff= coeff->next;
1876
                        }
1877
                    }else{
1878
                        Coeff *coeff= s->coeffs + i;
1879
                        memset(block, 0, sizeof(block));
1880
                        while(coeff->next){
1881
                            block[coeff->index]= (coeff->coeff * dequantizer[coeff->index] + 2)>>2;
1882
                            coeff= coeff->next;
1883
                        }
1884
                    }
1885

    
1886
                    /* invert DCT and place (or add) in final output */
1887

    
1888
                    if (s->all_fragments[i].coding_method == MODE_INTRA) {
1889
                        if(s->avctx->idct_algo!=FF_IDCT_VP3)
1890
                            block[0] += 128<<3;
1891
                        s->dsp.idct_put(
1892
                            output_plane + s->all_fragments[i].first_pixel,
1893
                            stride,
1894
                            block);
1895
                    } else {
1896
                        s->dsp.idct_add(
1897
                            output_plane + s->all_fragments[i].first_pixel,
1898
                            stride,
1899
                            block);
1900
                    }
1901

    
1902
                    debug_idct("block after idct_%s():\n",
1903
                        (s->all_fragments[i].coding_method == MODE_INTRA)?
1904
                        "put" : "add");
1905
                    for (m = 0; m < 8; m++) {
1906
                        for (n = 0; n < 8; n++) {
1907
                            debug_idct(" %3d", *(output_plane +
1908
                                s->all_fragments[i].first_pixel + (m * stride + n)));
1909
                        }
1910
                        debug_idct("\n");
1911
                    }
1912
                    debug_idct("\n");
1913

    
1914
                } else {
1915

    
1916
                    /* copy directly from the previous frame */
1917
                    s->dsp.put_pixels_tab[1][0](
1918
                        output_plane + s->all_fragments[i].first_pixel,
1919
                        last_plane + s->all_fragments[i].first_pixel,
1920
                        stride, 8);
1921

    
1922
                }
1923
#if 0
1924
                /* perform the left edge filter if:
1925
                 *   - the fragment is not on the left column
1926
                 *   - the fragment is coded in this frame
1927
                 *   - the fragment is not coded in this frame but the left
1928
                 *     fragment is coded in this frame (this is done instead
1929
                 *     of a right edge filter when rendering the left fragment
1930
                 *     since this fragment is not available yet) */
1931
                if ((x > 0) &&
1932
                    ((s->all_fragments[i].coding_method != MODE_COPY) ||
1933
                     ((s->all_fragments[i].coding_method == MODE_COPY) &&
1934
                      (s->all_fragments[i - 1].coding_method != MODE_COPY)) )) {
1935
                    horizontal_filter(
1936
                        output_plane + s->all_fragments[i].first_pixel + 7*stride,
1937
                        -stride, bounding_values);
1938
                }
1939

1940
                /* perform the top edge filter if:
1941
                 *   - the fragment is not on the top row
1942
                 *   - the fragment is coded in this frame
1943
                 *   - the fragment is not coded in this frame but the above
1944
                 *     fragment is coded in this frame (this is done instead
1945
                 *     of a bottom edge filter when rendering the above
1946
                 *     fragment since this fragment is not available yet) */
1947
                if ((y > 0) &&
1948
                    ((s->all_fragments[i].coding_method != MODE_COPY) ||
1949
                     ((s->all_fragments[i].coding_method == MODE_COPY) &&
1950
                      (s->all_fragments[i - fragment_width].coding_method != MODE_COPY)) )) {
1951
                    vertical_filter(
1952
                        output_plane + s->all_fragments[i].first_pixel - stride,
1953
                        -stride, bounding_values);
1954
                }
1955
#endif
1956
            }
1957
        }
1958
    }
1959

    
1960
     /* this looks like a good place for slice dispatch... */
1961
     /* algorithm:
1962
      *   if (slice == s->macroblock_height - 1)
1963
      *     dispatch (both last slice & 2nd-to-last slice);
1964
      *   else if (slice > 0)
1965
      *     dispatch (slice - 1);
1966
      */
1967

    
1968
    emms_c();
1969
}
1970

    
1971
static void horizontal_filter(unsigned char *first_pixel, int stride,
1972
    int *bounding_values)
1973
{
1974
    unsigned char *end;
1975
    int filter_value;
1976

    
1977
    for (end= first_pixel + 8*stride; first_pixel < end; first_pixel += stride) {
1978
        filter_value =
1979
            (first_pixel[-2] - first_pixel[ 1])
1980
         +3*(first_pixel[ 0] - first_pixel[-1]);
1981
        filter_value = bounding_values[(filter_value + 4) >> 3];
1982
        first_pixel[-1] = clip_uint8(first_pixel[-1] + filter_value);
1983
        first_pixel[ 0] = clip_uint8(first_pixel[ 0] - filter_value);
1984
    }
1985
}
1986

    
1987
static void vertical_filter(unsigned char *first_pixel, int stride,
1988
    int *bounding_values)
1989
{
1990
    unsigned char *end;
1991
    int filter_value;
1992
    const int nstride= -stride;
1993

    
1994
    for (end= first_pixel + 8; first_pixel < end; first_pixel++) {
1995
        filter_value =
1996
            (first_pixel[2 * nstride] - first_pixel[ stride])
1997
         +3*(first_pixel[0          ] - first_pixel[nstride]);
1998
        filter_value = bounding_values[(filter_value + 4) >> 3];
1999
        first_pixel[nstride] = clip_uint8(first_pixel[nstride] + filter_value);
2000
        first_pixel[0] = clip_uint8(first_pixel[0] - filter_value);
2001
    }
2002
}
2003

    
2004
static void apply_loop_filter(Vp3DecodeContext *s)
2005
{
2006
    int x, y, plane;
2007
    int width, height;
2008
    int fragment;
2009
    int stride;
2010
    unsigned char *plane_data;
2011
    int *bounding_values= s->bounding_values_array+127;
2012

    
2013
#if 0
2014
    int bounding_values_array[256];
2015
    int filter_limit;
2016

2017
    /* find the right loop limit value */
2018
    for (x = 63; x >= 0; x--) {
2019
        if (vp31_ac_scale_factor[x] >= s->quality_index)
2020
            break;
2021
    }
2022
    filter_limit = vp31_filter_limit_values[s->quality_index];
2023

2024
    /* set up the bounding values */
2025
    memset(bounding_values_array, 0, 256 * sizeof(int));
2026
    for (x = 0; x < filter_limit; x++) {
2027
        bounding_values[-x - filter_limit] = -filter_limit + x;
2028
        bounding_values[-x] = -x;
2029
        bounding_values[x] = x;
2030
        bounding_values[x + filter_limit] = filter_limit - x;
2031
    }
2032
#endif
2033

    
2034
    for (plane = 0; plane < 3; plane++) {
2035

    
2036
        if (plane == 0) {
2037
            /* Y plane parameters */
2038
            fragment = 0;
2039
            width = s->fragment_width;
2040
            height = s->fragment_height;
2041
            stride = s->current_frame.linesize[0];
2042
            plane_data = s->current_frame.data[0];
2043
        } else if (plane == 1) {
2044
            /* U plane parameters */
2045
            fragment = s->u_fragment_start;
2046
            width = s->fragment_width / 2;
2047
            height = s->fragment_height / 2;
2048
            stride = s->current_frame.linesize[1];
2049
            plane_data = s->current_frame.data[1];
2050
        } else {
2051
            /* V plane parameters */
2052
            fragment = s->v_fragment_start;
2053
            width = s->fragment_width / 2;
2054
            height = s->fragment_height / 2;
2055
            stride = s->current_frame.linesize[2];
2056
            plane_data = s->current_frame.data[2];
2057
        }
2058

    
2059
        for (y = 0; y < height; y++) {
2060

    
2061
            for (x = 0; x < width; x++) {
2062
START_TIMER
2063
                /* do not perform left edge filter for left columns frags */
2064
                if ((x > 0) &&
2065
                    (s->all_fragments[fragment].coding_method != MODE_COPY)) {
2066
                    horizontal_filter(
2067
                        plane_data + s->all_fragments[fragment].first_pixel - 7*stride,
2068
                        stride, bounding_values);
2069
                }
2070

    
2071
                /* do not perform top edge filter for top row fragments */
2072
                if ((y > 0) &&
2073
                    (s->all_fragments[fragment].coding_method != MODE_COPY)) {
2074
                    vertical_filter(
2075
                        plane_data + s->all_fragments[fragment].first_pixel + stride,
2076
                        stride, bounding_values);
2077
                }
2078

    
2079
                /* do not perform right edge filter for right column
2080
                 * fragments or if right fragment neighbor is also coded
2081
                 * in this frame (it will be filtered in next iteration) */
2082
                if ((x < width - 1) &&
2083
                    (s->all_fragments[fragment].coding_method != MODE_COPY) &&
2084
                    (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) {
2085
                    horizontal_filter(
2086
                        plane_data + s->all_fragments[fragment + 1].first_pixel - 7*stride,
2087
                        stride, bounding_values);
2088
                }
2089

    
2090
                /* do not perform bottom edge filter for bottom row
2091
                 * fragments or if bottom fragment neighbor is also coded
2092
                 * in this frame (it will be filtered in the next row) */
2093
                if ((y < height - 1) &&
2094
                    (s->all_fragments[fragment].coding_method != MODE_COPY) &&
2095
                    (s->all_fragments[fragment + width].coding_method == MODE_COPY)) {
2096
                    vertical_filter(
2097
                        plane_data + s->all_fragments[fragment + width].first_pixel + stride,
2098
                        stride, bounding_values);
2099
                }
2100

    
2101
                fragment++;
2102
STOP_TIMER("loop filter")
2103
            }
2104
        }
2105
    }
2106
}
2107

    
2108
/*
2109
 * This function computes the first pixel addresses for each fragment.
2110
 * This function needs to be invoked after the first frame is allocated
2111
 * so that it has access to the plane strides.
2112
 */
2113
static void vp3_calculate_pixel_addresses(Vp3DecodeContext *s)
2114
{
2115

    
2116
    int i, x, y;
2117

    
2118
    /* figure out the first pixel addresses for each of the fragments */
2119
    /* Y plane */
2120
    i = 0;
2121
    for (y = s->fragment_height; y > 0; y--) {
2122
        for (x = 0; x < s->fragment_width; x++) {
2123
            s->all_fragments[i++].first_pixel =
2124
                s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
2125
                    s->golden_frame.linesize[0] +
2126
                    x * FRAGMENT_PIXELS;
2127
            debug_init("  fragment %d, first pixel @ %d\n",
2128
                i-1, s->all_fragments[i-1].first_pixel);
2129
        }
2130
    }
2131

    
2132
    /* U plane */
2133
    i = s->u_fragment_start;
2134
    for (y = s->fragment_height / 2; y > 0; y--) {
2135
        for (x = 0; x < s->fragment_width / 2; x++) {
2136
            s->all_fragments[i++].first_pixel =
2137
                s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
2138
                    s->golden_frame.linesize[1] +
2139
                    x * FRAGMENT_PIXELS;
2140
            debug_init("  fragment %d, first pixel @ %d\n",
2141
                i-1, s->all_fragments[i-1].first_pixel);
2142
        }
2143
    }
2144

    
2145
    /* V plane */
2146
    i = s->v_fragment_start;
2147
    for (y = s->fragment_height / 2; y > 0; y--) {
2148
        for (x = 0; x < s->fragment_width / 2; x++) {
2149
            s->all_fragments[i++].first_pixel =
2150
                s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
2151
                    s->golden_frame.linesize[2] +
2152
                    x * FRAGMENT_PIXELS;
2153
            debug_init("  fragment %d, first pixel @ %d\n",
2154
                i-1, s->all_fragments[i-1].first_pixel);
2155
        }
2156
    }
2157
}
2158

    
2159
/* FIXME: this should be merged with the above! */
2160
static void theora_calculate_pixel_addresses(Vp3DecodeContext *s)
2161
{
2162

    
2163
    int i, x, y;
2164

    
2165
    /* figure out the first pixel addresses for each of the fragments */
2166
    /* Y plane */
2167
    i = 0;
2168
    for (y = 1; y <= s->fragment_height; y++) {
2169
        for (x = 0; x < s->fragment_width; x++) {
2170
            s->all_fragments[i++].first_pixel =
2171
                s->golden_frame.linesize[0] * y * FRAGMENT_PIXELS -
2172
                    s->golden_frame.linesize[0] +
2173
                    x * FRAGMENT_PIXELS;
2174
            debug_init("  fragment %d, first pixel @ %d\n",
2175
                i-1, s->all_fragments[i-1].first_pixel);
2176
        }
2177
    }
2178

    
2179
    /* U plane */
2180
    i = s->u_fragment_start;
2181
    for (y = 1; y <= s->fragment_height / 2; y++) {
2182
        for (x = 0; x < s->fragment_width / 2; x++) {
2183
            s->all_fragments[i++].first_pixel =
2184
                s->golden_frame.linesize[1] * y * FRAGMENT_PIXELS -
2185
                    s->golden_frame.linesize[1] +
2186
                    x * FRAGMENT_PIXELS;
2187
            debug_init("  fragment %d, first pixel @ %d\n",
2188
                i-1, s->all_fragments[i-1].first_pixel);
2189
        }
2190
    }
2191

    
2192
    /* V plane */
2193
    i = s->v_fragment_start;
2194
    for (y = 1; y <= s->fragment_height / 2; y++) {
2195
        for (x = 0; x < s->fragment_width / 2; x++) {
2196
            s->all_fragments[i++].first_pixel =
2197
                s->golden_frame.linesize[2] * y * FRAGMENT_PIXELS -
2198
                    s->golden_frame.linesize[2] +
2199
                    x * FRAGMENT_PIXELS;
2200
            debug_init("  fragment %d, first pixel @ %d\n",
2201
                i-1, s->all_fragments[i-1].first_pixel);
2202
        }
2203
    }
2204
}
2205

    
2206
/*
2207
 * This is the ffmpeg/libavcodec API init function.
2208
 */
2209
static int vp3_decode_init(AVCodecContext *avctx)
2210
{
2211
    Vp3DecodeContext *s = avctx->priv_data;
2212
    int i;
2213
    int c_width;
2214
    int c_height;
2215
    int y_superblock_count;
2216
    int c_superblock_count;
2217

    
2218
    if (avctx->codec_tag == MKTAG('V','P','3','0'))
2219
        s->version = 0;
2220
    else
2221
        s->version = 1;
2222

    
2223
    s->avctx = avctx;
2224
    s->width = (avctx->width + 15) & 0xFFFFFFF0;
2225
    s->height = (avctx->height + 15) & 0xFFFFFFF0;
2226
    avctx->pix_fmt = PIX_FMT_YUV420P;
2227
    avctx->has_b_frames = 0;
2228
    if(avctx->idct_algo==FF_IDCT_AUTO)
2229
        avctx->idct_algo=FF_IDCT_VP3;
2230
    dsputil_init(&s->dsp, avctx);
2231

    
2232
    ff_init_scantable(s->dsp.idct_permutation, &s->scantable, ff_zigzag_direct);
2233

    
2234
    /* initialize to an impossible value which will force a recalculation
2235
     * in the first frame decode */
2236
    s->quality_index = -1;
2237

    
2238
    s->y_superblock_width = (s->width + 31) / 32;
2239
    s->y_superblock_height = (s->height + 31) / 32;
2240
    y_superblock_count = s->y_superblock_width * s->y_superblock_height;
2241

    
2242
    /* work out the dimensions for the C planes */
2243
    c_width = s->width / 2;
2244
    c_height = s->height / 2;
2245
    s->c_superblock_width = (c_width + 31) / 32;
2246
    s->c_superblock_height = (c_height + 31) / 32;
2247
    c_superblock_count = s->c_superblock_width * s->c_superblock_height;
2248

    
2249
    s->superblock_count = y_superblock_count + (c_superblock_count * 2);
2250
    s->u_superblock_start = y_superblock_count;
2251
    s->v_superblock_start = s->u_superblock_start + c_superblock_count;
2252
    s->superblock_coding = av_malloc(s->superblock_count);
2253

    
2254
    s->macroblock_width = (s->width + 15) / 16;
2255
    s->macroblock_height = (s->height + 15) / 16;
2256
    s->macroblock_count = s->macroblock_width * s->macroblock_height;
2257

    
2258
    s->fragment_width = s->width / FRAGMENT_PIXELS;
2259
    s->fragment_height = s->height / FRAGMENT_PIXELS;
2260

    
2261
    /* fragment count covers all 8x8 blocks for all 3 planes */
2262
    s->fragment_count = s->fragment_width * s->fragment_height * 3 / 2;
2263
    s->u_fragment_start = s->fragment_width * s->fragment_height;
2264
    s->v_fragment_start = s->fragment_width * s->fragment_height * 5 / 4;
2265

    
2266
    debug_init("  Y plane: %d x %d\n", s->width, s->height);
2267
    debug_init("  C plane: %d x %d\n", c_width, c_height);
2268
    debug_init("  Y superblocks: %d x %d, %d total\n",
2269
        s->y_superblock_width, s->y_superblock_height, y_superblock_count);
2270
    debug_init("  C superblocks: %d x %d, %d total\n",
2271
        s->c_superblock_width, s->c_superblock_height, c_superblock_count);
2272
    debug_init("  total superblocks = %d, U starts @ %d, V starts @ %d\n",
2273
        s->superblock_count, s->u_superblock_start, s->v_superblock_start);
2274
    debug_init("  macroblocks: %d x %d, %d total\n",
2275
        s->macroblock_width, s->macroblock_height, s->macroblock_count);
2276
    debug_init("  %d fragments, %d x %d, u starts @ %d, v starts @ %d\n",
2277
        s->fragment_count,
2278
        s->fragment_width,
2279
        s->fragment_height,
2280
        s->u_fragment_start,
2281
        s->v_fragment_start);
2282

    
2283
    s->all_fragments = av_malloc(s->fragment_count * sizeof(Vp3Fragment));
2284
    s->coeffs = av_malloc(s->fragment_count * sizeof(Coeff) * 65);
2285
    s->coded_fragment_list = av_malloc(s->fragment_count * sizeof(int));
2286
    s->pixel_addresses_inited = 0;
2287

    
2288
    if (!s->theora_tables)
2289
    {
2290
        for (i = 0; i < 64; i++)
2291
            s->coded_dc_scale_factor[i] = vp31_dc_scale_factor[i];
2292
        for (i = 0; i < 64; i++)
2293
            s->coded_ac_scale_factor[i] = vp31_ac_scale_factor[i];
2294
        for (i = 0; i < 64; i++)
2295
            s->coded_intra_y_dequant[i] = vp31_intra_y_dequant[i];
2296
        for (i = 0; i < 64; i++)
2297
            s->coded_intra_c_dequant[i] = vp31_intra_c_dequant[i];
2298
        for (i = 0; i < 64; i++)
2299
            s->coded_inter_dequant[i] = vp31_inter_dequant[i];
2300
        for (i = 0; i < 64; i++)
2301
            s->filter_limit_values[i] = vp31_filter_limit_values[i];
2302

    
2303
        /* init VLC tables */
2304
        for (i = 0; i < 16; i++) {
2305

    
2306
            /* DC histograms */
2307
            init_vlc(&s->dc_vlc[i], 5, 32,
2308
                &dc_bias[i][0][1], 4, 2,
2309
                &dc_bias[i][0][0], 4, 2, 0);
2310

    
2311
            /* group 1 AC histograms */
2312
            init_vlc(&s->ac_vlc_1[i], 5, 32,
2313
                &ac_bias_0[i][0][1], 4, 2,
2314
                &ac_bias_0[i][0][0], 4, 2, 0);
2315

    
2316
            /* group 2 AC histograms */
2317
            init_vlc(&s->ac_vlc_2[i], 5, 32,
2318
                &ac_bias_1[i][0][1], 4, 2,
2319
                &ac_bias_1[i][0][0], 4, 2, 0);
2320

    
2321
            /* group 3 AC histograms */
2322
            init_vlc(&s->ac_vlc_3[i], 5, 32,
2323
                &ac_bias_2[i][0][1], 4, 2,
2324
                &ac_bias_2[i][0][0], 4, 2, 0);
2325

    
2326
            /* group 4 AC histograms */
2327
            init_vlc(&s->ac_vlc_4[i], 5, 32,
2328
                &ac_bias_3[i][0][1], 4, 2,
2329
                &ac_bias_3[i][0][0], 4, 2, 0);
2330
        }
2331
    } else {
2332
        for (i = 0; i < 16; i++) {
2333

    
2334
            /* DC histograms */
2335
            init_vlc(&s->dc_vlc[i], 5, 32,
2336
                &s->huffman_table[i][0][1], 4, 2,
2337
                &s->huffman_table[i][0][0], 4, 2, 0);
2338

    
2339
            /* group 1 AC histograms */
2340
            init_vlc(&s->ac_vlc_1[i], 5, 32,
2341
                &s->huffman_table[i+16][0][1], 4, 2,
2342
                &s->huffman_table[i+16][0][0], 4, 2, 0);
2343

    
2344
            /* group 2 AC histograms */
2345
            init_vlc(&s->ac_vlc_2[i], 5, 32,
2346
                &s->huffman_table[i+16*2][0][1], 4, 2,
2347
                &s->huffman_table[i+16*2][0][0], 4, 2, 0);
2348

    
2349
            /* group 3 AC histograms */
2350
            init_vlc(&s->ac_vlc_3[i], 5, 32,
2351
                &s->huffman_table[i+16*3][0][1], 4, 2,
2352
                &s->huffman_table[i+16*3][0][0], 4, 2, 0);
2353

    
2354
            /* group 4 AC histograms */
2355
            init_vlc(&s->ac_vlc_4[i], 5, 32,
2356
                &s->huffman_table[i+16*4][0][1], 4, 2,
2357
                &s->huffman_table[i+16*4][0][0], 4, 2, 0);
2358
        }
2359
    }
2360

    
2361
    init_vlc(&s->superblock_run_length_vlc, 6, 34,
2362
        &superblock_run_length_vlc_table[0][1], 4, 2,
2363
        &superblock_run_length_vlc_table[0][0], 4, 2, 0);
2364

    
2365
    init_vlc(&s->fragment_run_length_vlc, 5, 30,
2366
        &fragment_run_length_vlc_table[0][1], 4, 2,
2367
        &fragment_run_length_vlc_table[0][0], 4, 2, 0);
2368

    
2369
    init_vlc(&s->mode_code_vlc, 3, 8,
2370
        &mode_code_vlc_table[0][1], 2, 1,
2371
        &mode_code_vlc_table[0][0], 2, 1, 0);
2372

    
2373
    init_vlc(&s->motion_vector_vlc, 6, 63,
2374
        &motion_vector_vlc_table[0][1], 2, 1,
2375
        &motion_vector_vlc_table[0][0], 2, 1, 0);
2376

    
2377
    /* work out the block mapping tables */
2378
    s->superblock_fragments = av_malloc(s->superblock_count * 16 * sizeof(int));
2379
    s->superblock_macroblocks = av_malloc(s->superblock_count * 4 * sizeof(int));
2380
    s->macroblock_fragments = av_malloc(s->macroblock_count * 6 * sizeof(int));
2381
    s->macroblock_coding = av_malloc(s->macroblock_count + 1);
2382
    init_block_mapping(s);
2383

    
2384
    for (i = 0; i < 3; i++) {
2385
        s->current_frame.data[i] = NULL;
2386
        s->last_frame.data[i] = NULL;
2387
        s->golden_frame.data[i] = NULL;
2388
    }
2389

    
2390
    return 0;
2391
}
2392

    
2393
/*
2394
 * This is the ffmpeg/libavcodec API frame decode function.
2395
 */
2396
static int vp3_decode_frame(AVCodecContext *avctx,
2397
                            void *data, int *data_size,
2398
                            uint8_t *buf, int buf_size)
2399
{
2400
    Vp3DecodeContext *s = avctx->priv_data;
2401
    GetBitContext gb;
2402
    static int counter = 0;
2403
    int i;
2404

    
2405
    init_get_bits(&gb, buf, buf_size * 8);
2406

    
2407
    if (s->theora && get_bits1(&gb))
2408
    {
2409
#if 1
2410
        av_log(avctx, AV_LOG_ERROR, "Header packet passed to frame decoder, skipping\n");
2411
        return -1;
2412
#else
2413
        int ptype = get_bits(&gb, 7);
2414

    
2415
        skip_bits(&gb, 6*8); /* "theora" */
2416

    
2417
        switch(ptype)
2418
        {
2419
            case 1:
2420
                theora_decode_comments(avctx, &gb);
2421
                break;
2422
            case 2:
2423
                theora_decode_tables(avctx, &gb);
2424
                    init_dequantizer(s);
2425
                break;
2426
            default:
2427
                av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype);
2428
        }
2429
        return buf_size;
2430
#endif
2431
    }
2432

    
2433
    s->keyframe = !get_bits1(&gb);
2434
    if (!s->theora)
2435
        skip_bits(&gb, 1);
2436
    s->last_quality_index = s->quality_index;
2437
    s->quality_index = get_bits(&gb, 6);
2438
    if (s->theora >= 0x030200)
2439
        skip_bits1(&gb);
2440

    
2441
    if (s->avctx->debug & FF_DEBUG_PICT_INFO)
2442
        av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n",
2443
            s->keyframe?"key":"", counter, s->quality_index);
2444
    counter++;
2445

    
2446
    if (s->quality_index != s->last_quality_index) {
2447
        init_dequantizer(s);
2448
        init_loop_filter(s);
2449
    }
2450

    
2451
    if (s->keyframe) {
2452
        if (!s->theora)
2453
        {
2454
            skip_bits(&gb, 4); /* width code */
2455
            skip_bits(&gb, 4); /* height code */
2456
            if (s->version)
2457
            {
2458
                s->version = get_bits(&gb, 5);
2459
                if (counter == 1)
2460
                    av_log(s->avctx, AV_LOG_DEBUG, "VP version: %d\n", s->version);
2461
            }
2462
        }
2463
        if (s->version || s->theora)
2464
        {
2465
                if (get_bits1(&gb))
2466
                    av_log(s->avctx, AV_LOG_ERROR, "Warning, unsupported keyframe coding type?!\n");
2467
            skip_bits(&gb, 2); /* reserved? */
2468
        }
2469

    
2470
        if (s->last_frame.data[0] == s->golden_frame.data[0]) {
2471
            if (s->golden_frame.data[0])
2472
                avctx->release_buffer(avctx, &s->golden_frame);
2473
            s->last_frame= s->golden_frame; /* ensure that we catch any access to this released frame */
2474
        } else {
2475
            if (s->golden_frame.data[0])
2476
                avctx->release_buffer(avctx, &s->golden_frame);
2477
            if (s->last_frame.data[0])
2478
                avctx->release_buffer(avctx, &s->last_frame);
2479
        }
2480

    
2481
        s->golden_frame.reference = 3;
2482
        if(avctx->get_buffer(avctx, &s->golden_frame) < 0) {
2483
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
2484
            return -1;
2485
        }
2486

    
2487
        /* golden frame is also the current frame */
2488
        memcpy(&s->current_frame, &s->golden_frame, sizeof(AVFrame));
2489

    
2490
        /* time to figure out pixel addresses? */
2491
        if (!s->pixel_addresses_inited)
2492
        {
2493
            if (!s->flipped_image)
2494
                vp3_calculate_pixel_addresses(s);
2495
            else
2496
                theora_calculate_pixel_addresses(s);
2497
        }
2498
    } else {
2499
        /* allocate a new current frame */
2500
        s->current_frame.reference = 3;
2501
        if(avctx->get_buffer(avctx, &s->current_frame) < 0) {
2502
            av_log(s->avctx, AV_LOG_ERROR, "vp3: get_buffer() failed\n");
2503
            return -1;
2504
        }
2505
    }
2506

    
2507
    s->current_frame.qscale_table= s->qscale_table; //FIXME allocate individual tables per AVFrame
2508
    s->current_frame.qstride= 0;
2509

    
2510
    {START_TIMER
2511
    init_frame(s, &gb);
2512
    STOP_TIMER("init_frame")}
2513

    
2514
#if KEYFRAMES_ONLY
2515
if (!s->keyframe) {
2516

    
2517
    memcpy(s->current_frame.data[0], s->golden_frame.data[0],
2518
        s->current_frame.linesize[0] * s->height);
2519
    memcpy(s->current_frame.data[1], s->golden_frame.data[1],
2520
        s->current_frame.linesize[1] * s->height / 2);
2521
    memcpy(s->current_frame.data[2], s->golden_frame.data[2],
2522
        s->current_frame.linesize[2] * s->height / 2);
2523

    
2524
} else {
2525
#endif
2526

    
2527
    {START_TIMER
2528
    if (unpack_superblocks(s, &gb)){
2529
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n");
2530
        return -1;
2531
    }
2532
    STOP_TIMER("unpack_superblocks")}
2533
    {START_TIMER
2534
    if (unpack_modes(s, &gb)){
2535
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n");
2536
        return -1;
2537
    }
2538
    STOP_TIMER("unpack_modes")}
2539
    {START_TIMER
2540
    if (unpack_vectors(s, &gb)){
2541
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n");
2542
        return -1;
2543
    }
2544
    STOP_TIMER("unpack_vectors")}
2545
    {START_TIMER
2546
    if (unpack_dct_coeffs(s, &gb)){
2547
        av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n");
2548
        return -1;
2549
    }
2550
    STOP_TIMER("unpack_dct_coeffs")}
2551
    {START_TIMER
2552

    
2553
    reverse_dc_prediction(s, 0, s->fragment_width, s->fragment_height);
2554
    if ((avctx->flags & CODEC_FLAG_GRAY) == 0) {
2555
        reverse_dc_prediction(s, s->u_fragment_start,
2556
            s->fragment_width / 2, s->fragment_height / 2);
2557
        reverse_dc_prediction(s, s->v_fragment_start,
2558
            s->fragment_width / 2, s->fragment_height / 2);
2559
    }
2560
    STOP_TIMER("reverse_dc_prediction")}
2561
    {START_TIMER
2562

    
2563
    for (i = 0; i < s->macroblock_height; i++)
2564
        render_slice(s, i);
2565
    STOP_TIMER("render_fragments")}
2566

    
2567
    {START_TIMER
2568
    apply_loop_filter(s);
2569
    STOP_TIMER("apply_loop_filter")}
2570
#if KEYFRAMES_ONLY
2571
}
2572
#endif
2573

    
2574
    *data_size=sizeof(AVFrame);
2575
    *(AVFrame*)data= s->current_frame;
2576

    
2577
    /* release the last frame, if it is allocated and if it is not the
2578
     * golden frame */
2579
    if ((s->last_frame.data[0]) &&
2580
        (s->last_frame.data[0] != s->golden_frame.data[0]))
2581
        avctx->release_buffer(avctx, &s->last_frame);
2582

    
2583
    /* shuffle frames (last = current) */
2584
    memcpy(&s->last_frame, &s->current_frame, sizeof(AVFrame));
2585
    s->current_frame.data[0]= NULL; /* ensure that we catch any access to this released frame */
2586

    
2587
    return buf_size;
2588
}
2589

    
2590
/*
2591
 * This is the ffmpeg/libavcodec API module cleanup function.
2592
 */
2593
static int vp3_decode_end(AVCodecContext *avctx)
2594
{
2595
    Vp3DecodeContext *s = avctx->priv_data;
2596

    
2597
    av_free(s->all_fragments);
2598
    av_free(s->coeffs);
2599
    av_free(s->coded_fragment_list);
2600
    av_free(s->superblock_fragments);
2601
    av_free(s->superblock_macroblocks);
2602
    av_free(s->macroblock_fragments);
2603
    av_free(s->macroblock_coding);
2604

    
2605
    /* release all frames */
2606
    if (s->golden_frame.data[0] && s->golden_frame.data[0] != s->last_frame.data[0])
2607
        avctx->release_buffer(avctx, &s->golden_frame);
2608
    if (s->last_frame.data[0])
2609
        avctx->release_buffer(avctx, &s->last_frame);
2610
    /* no need to release the current_frame since it will always be pointing
2611
     * to the same frame as either the golden or last frame */
2612

    
2613
    return 0;
2614
}
2615

    
2616
static int read_huffman_tree(AVCodecContext *avctx, GetBitContext *gb)
2617
{
2618
    Vp3DecodeContext *s = avctx->priv_data;
2619

    
2620
    if (get_bits(gb, 1)) {
2621
        int token;
2622
        if (s->entries >= 32) { /* overflow */
2623
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2624
            return -1;
2625
        }
2626
        token = get_bits(gb, 5);
2627
        //av_log(avctx, AV_LOG_DEBUG, "hti %d hbits %x token %d entry : %d size %d\n", s->hti, s->hbits, token, s->entries, s->huff_code_size);
2628
        s->huffman_table[s->hti][token][0] = s->hbits;
2629
        s->huffman_table[s->hti][token][1] = s->huff_code_size;
2630
        s->entries++;
2631
    }
2632
    else {
2633
        if (s->huff_code_size >= 32) {/* overflow */
2634
            av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n");
2635
            return -1;
2636
        }
2637
        s->huff_code_size++;
2638
        s->hbits <<= 1;
2639
        read_huffman_tree(avctx, gb);
2640
        s->hbits |= 1;
2641
        read_huffman_tree(avctx, gb);
2642
        s->hbits >>= 1;
2643
        s->huff_code_size--;
2644
    }
2645
    return 0;
2646
}
2647

    
2648
static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb)
2649
{
2650
    Vp3DecodeContext *s = avctx->priv_data;
2651

    
2652
    s->theora = get_bits_long(gb, 24);
2653
    av_log(avctx, AV_LOG_INFO, "Theora bitstream version %X\n", s->theora);
2654

    
2655
    /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 */
2656
    /* but previous versions have the image flipped relative to vp3 */
2657
    if (s->theora < 0x030200)
2658
    {
2659
        s->flipped_image = 1;
2660
        av_log(avctx, AV_LOG_DEBUG, "Old (<alpha3) Theora bitstream, flipped image\n");
2661
    }
2662

    
2663
    s->width = get_bits(gb, 16) << 4;
2664
    s->height = get_bits(gb, 16) << 4;
2665

    
2666
    if(avcodec_check_dimensions(avctx, s->width, s->height)){
2667
        av_log(avctx, AV_LOG_ERROR, "Invalid dimensions (%dx%d)\n", s->width, s->height);
2668
        s->width= s->height= 0;
2669
        return -1;
2670
    }
2671

    
2672
    if (s->theora >= 0x030400)
2673
    {
2674
        skip_bits(gb, 32); /* total number of superblocks in a frame */
2675
        // fixme, the next field is 36bits long
2676
        skip_bits(gb, 32); /* total number of blocks in a frame */
2677
        skip_bits(gb, 4); /* total number of blocks in a frame */
2678
        skip_bits(gb, 32); /* total number of macroblocks in a frame */
2679

    
2680
        skip_bits(gb, 24); /* frame width */
2681
        skip_bits(gb, 24); /* frame height */
2682
    }
2683
    else
2684
    {
2685
        skip_bits(gb, 24); /* frame width */
2686
        skip_bits(gb, 24); /* frame height */
2687
    }
2688

    
2689
    skip_bits(gb, 8); /* offset x */
2690
    skip_bits(gb, 8); /* offset y */
2691

    
2692
    skip_bits(gb, 32); /* fps numerator */
2693
    skip_bits(gb, 32); /* fps denumerator */
2694
    skip_bits(gb, 24); /* aspect numerator */
2695
    skip_bits(gb, 24); /* aspect denumerator */
2696

    
2697
    if (s->theora < 0x030200)
2698
        skip_bits(gb, 5); /* keyframe frequency force */
2699
    skip_bits(gb, 8); /* colorspace */
2700
    if (s->theora >= 0x030400)
2701
        skip_bits(gb, 2); /* pixel format: 420,res,422,444 */
2702
    skip_bits(gb, 24); /* bitrate */
2703

    
2704
    skip_bits(gb, 6); /* quality hint */
2705

    
2706
    if (s->theora >= 0x030200)
2707
    {
2708
        skip_bits(gb, 5); /* keyframe frequency force */
2709

    
2710
        if (s->theora < 0x030400)
2711
            skip_bits(gb, 5); /* spare bits */
2712
    }
2713

    
2714
//    align_get_bits(gb);
2715

    
2716
    avctx->width = s->width;
2717
    avctx->height = s->height;
2718

    
2719
    return 0;
2720
}
2721

    
2722
static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb)
2723
{
2724
    Vp3DecodeContext *s = avctx->priv_data;
2725
    int i, n, matrices;
2726

    
2727
    if (s->theora >= 0x030200) {
2728
        n = get_bits(gb, 3);
2729
        /* loop filter limit values table */
2730
        for (i = 0; i < 64; i++)
2731
            s->filter_limit_values[i] = get_bits(gb, n);
2732
    }
2733

    
2734
    if (s->theora >= 0x030200)
2735
        n = get_bits(gb, 4) + 1;
2736
    else
2737
        n = 16;
2738
    /* quality threshold table */
2739
    for (i = 0; i < 64; i++)
2740
        s->coded_ac_scale_factor[i] = get_bits(gb, n);
2741

    
2742
    if (s->theora >= 0x030200)
2743
        n = get_bits(gb, 4) + 1;
2744
    else
2745
        n = 16;
2746
    /* dc scale factor table */
2747
    for (i = 0; i < 64; i++)
2748
        s->coded_dc_scale_factor[i] = get_bits(gb, n);
2749

    
2750
    if (s->theora >= 0x030200)
2751
        matrices = get_bits(gb, 9) + 1;
2752
    else
2753
        matrices = 3;
2754
    if (matrices != 3) {
2755
        av_log(avctx,AV_LOG_ERROR, "unsupported matrices: %d\n", matrices);
2756
//        return -1;
2757
    }
2758
    /* y coeffs */
2759
    for (i = 0; i < 64; i++)
2760
        s->coded_intra_y_dequant[i] = get_bits(gb, 8);
2761

    
2762
    /* uv coeffs */
2763
    for (i = 0; i < 64; i++)
2764
        s->coded_intra_c_dequant[i] = get_bits(gb, 8);
2765

    
2766
    /* inter coeffs */
2767
    for (i = 0; i < 64; i++)
2768
        s->coded_inter_dequant[i] = get_bits(gb, 8);
2769

    
2770
    /* skip unknown matrices */
2771
    n = matrices - 3;
2772
    while(n--)
2773
        for (i = 0; i < 64; i++)
2774
            skip_bits(gb, 8);
2775

    
2776
    for (i = 0; i <= 1; i++) {
2777
        for (n = 0; n <= 2; n++) {
2778
            int newqr;
2779
            if (i > 0 || n > 0)
2780
                newqr = get_bits(gb, 1);
2781
            else
2782
                newqr = 1;
2783
            if (!newqr) {
2784
                if (i > 0)
2785
                    get_bits(gb, 1);
2786
            }
2787
            else {
2788
                int qi = 0;
2789
                skip_bits(gb, av_log2(matrices-1)+1);
2790
                while (qi < 63) {
2791
                    qi += get_bits(gb, av_log2(63-qi)+1) + 1;
2792
                    skip_bits(gb, av_log2(matrices-1)+1);
2793
                }
2794
                if (qi > 63) {
2795
                    av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi);
2796
                    return -1;
2797
                }
2798
            }
2799
        }
2800
    }
2801

    
2802
    /* Huffman tables */
2803
    for (s->hti = 0; s->hti < 80; s->hti++) {
2804
        s->entries = 0;
2805
        s->huff_code_size = 1;
2806
        if (!get_bits(gb, 1)) {
2807
            s->hbits = 0;
2808
            read_huffman_tree(avctx, gb);
2809
            s->hbits = 1;
2810
            read_huffman_tree(avctx, gb);
2811
        }
2812
    }
2813

    
2814
    s->theora_tables = 1;
2815

    
2816
    return 0;
2817
}
2818

    
2819
static int theora_decode_init(AVCodecContext *avctx)
2820
{
2821
    Vp3DecodeContext *s = avctx->priv_data;
2822
    GetBitContext gb;
2823
    int ptype;
2824
    uint8_t *p= avctx->extradata;
2825
    int op_bytes, i;
2826

    
2827
    s->theora = 1;
2828

    
2829
    if (!avctx->extradata_size)
2830
    {
2831
        av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n");
2832
        return -1;
2833
    }
2834

    
2835
  for(i=0;i<3;i++) {
2836
    op_bytes = *(p++)<<8;
2837
    op_bytes += *(p++);
2838

    
2839
    init_get_bits(&gb, p, op_bytes);
2840
    p += op_bytes;
2841

    
2842
    ptype = get_bits(&gb, 8);
2843
    debug_vp3("Theora headerpacket type: %x\n", ptype);
2844

    
2845
     if (!(ptype & 0x80))
2846
     {
2847
        av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n");
2848
//        return -1;
2849
     }
2850

    
2851
    // FIXME: check for this aswell
2852
    skip_bits(&gb, 6*8); /* "theora" */
2853

    
2854
    switch(ptype)
2855
    {
2856
        case 0x80:
2857
            theora_decode_header(avctx, &gb);
2858
                break;
2859
        case 0x81:
2860
// FIXME: is this needed? it breaks sometimes
2861
//            theora_decode_comments(avctx, gb);
2862
            break;
2863
        case 0x82:
2864
            theora_decode_tables(avctx, &gb);
2865
            break;
2866
        default:
2867
            av_log(avctx, AV_LOG_ERROR, "Unknown Theora config packet: %d\n", ptype&~0x80);
2868
            break;
2869
    }
2870
    if(8*op_bytes != get_bits_count(&gb))
2871
        av_log(avctx, AV_LOG_ERROR, "%d bits left in packet %X\n", 8*op_bytes - get_bits_count(&gb), ptype);
2872
  }
2873

    
2874
    vp3_decode_init(avctx);
2875
    return 0;
2876
}
2877

    
2878
AVCodec vp3_decoder = {
2879
    "vp3",
2880
    CODEC_TYPE_VIDEO,
2881
    CODEC_ID_VP3,
2882
    sizeof(Vp3DecodeContext),
2883
    vp3_decode_init,
2884
    NULL,
2885
    vp3_decode_end,
2886
    vp3_decode_frame,
2887
    0,
2888
    NULL
2889
};
2890

    
2891
#ifndef CONFIG_LIBTHEORA
2892
AVCodec theora_decoder = {
2893
    "theora",
2894
    CODEC_TYPE_VIDEO,
2895
    CODEC_ID_THEORA,
2896
    sizeof(Vp3DecodeContext),
2897
    theora_decode_init,
2898
    NULL,
2899
    vp3_decode_end,
2900
    vp3_decode_frame,
2901
    0,
2902
    NULL
2903
};
2904
#endif