Statistics
| Branch: | Revision:

ffmpeg / libswscale / swscale.c @ e28630fc

History | View | Annotate | Download (81.7 KB)

1
/*
2
 * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3
 *
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or modify
7
 * it under the terms of the GNU General Public License as published by
8
 * the Free Software Foundation; either version 2 of the License, or
9
 * (at your option) any later version.
10
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 * GNU General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU General Public License
17
 * along with FFmpeg; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19
 *
20
 * the C code (not assembly, mmx, ...) of this file can be used
21
 * under the LGPL license too
22
 */
23

    
24
/*
25
  supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09, PAL8
26
  supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
27
  {BGR,RGB}{1,4,8,15,16} support dithering
28
  
29
  unscaled special converters (YV12=I420=IYUV, Y800=Y8)
30
  YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
31
  x -> x
32
  YUV9 -> YV12
33
  YUV9/YV12 -> Y800
34
  Y800 -> YUV9/YV12
35
  BGR24 -> BGR32 & RGB24 -> RGB32
36
  BGR32 -> BGR24 & RGB32 -> RGB24
37
  BGR15 -> BGR16
38
*/
39

    
40
/* 
41
tested special converters (most are tested actually but i didnt write it down ...)
42
 YV12 -> BGR16
43
 YV12 -> YV12
44
 BGR15 -> BGR16
45
 BGR16 -> BGR16
46
 YVU9 -> YV12
47

48
untested special converters
49
  YV12/I420 -> BGR15/BGR24/BGR32 (its the yuv2rgb stuff, so it should be ok)
50
  YV12/I420 -> YV12/I420
51
  YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
52
  BGR24 -> BGR32 & RGB24 -> RGB32
53
  BGR32 -> BGR24 & RGB32 -> RGB24
54
  BGR24 -> YV12
55
*/
56

    
57
#include <inttypes.h>
58
#include <string.h>
59
#include <math.h>
60
#include <stdio.h>
61
#include <unistd.h>
62
#include "config.h"
63
#include <assert.h>
64
#ifdef HAVE_SYS_MMAN_H
65
#include <sys/mman.h>
66
#if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
67
#define MAP_ANONYMOUS MAP_ANON
68
#endif
69
#endif
70
#include "swscale.h"
71
#include "swscale_internal.h"
72
#include "x86_cpu.h"
73
#include "bswap.h"
74
#include "rgb2rgb.h"
75
#ifdef USE_FASTMEMCPY
76
#include "libvo/fastmemcpy.h"
77
#endif
78

    
79
#undef MOVNTQ
80
#undef PAVGB
81

    
82
//#undef HAVE_MMX2
83
//#define HAVE_3DNOW
84
//#undef HAVE_MMX
85
//#undef ARCH_X86
86
//#define WORDS_BIGENDIAN
87
#define DITHER1XBPP
88

    
89
#define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
90

    
91
#define RET 0xC3 //near return opcode for X86
92

    
93
#ifdef MP_DEBUG
94
#define ASSERT(x) assert(x);
95
#else
96
#define ASSERT(x) ;
97
#endif
98

    
99
#ifdef M_PI
100
#define PI M_PI
101
#else
102
#define PI 3.14159265358979323846
103
#endif
104

    
105
#define isSupportedIn(x)  ((x)==PIX_FMT_YUV420P || (x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422\
106
                        || (x)==PIX_FMT_RGB32|| (x)==PIX_FMT_BGR24|| (x)==PIX_FMT_BGR565|| (x)==PIX_FMT_BGR555\
107
                        || (x)==PIX_FMT_BGR32|| (x)==PIX_FMT_RGB24|| (x)==PIX_FMT_RGB565|| (x)==PIX_FMT_RGB555\
108
                        || (x)==PIX_FMT_GRAY8 || (x)==PIX_FMT_YUV410P\
109
                        || (x)==PIX_FMT_GRAY16BE || (x)==PIX_FMT_GRAY16LE\
110
                        || (x)==PIX_FMT_YUV444P || (x)==PIX_FMT_YUV422P || (x)==PIX_FMT_YUV411P\
111
                        || (x)==PIX_FMT_PAL8 || (x)==PIX_FMT_BGR8 || (x)==PIX_FMT_RGB8)
112
#define isSupportedOut(x) ((x)==PIX_FMT_YUV420P || (x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422\
113
                        || (x)==PIX_FMT_YUV444P || (x)==PIX_FMT_YUV422P || (x)==PIX_FMT_YUV411P\
114
                        || isRGB(x) || isBGR(x)\
115
                        || (x)==PIX_FMT_NV12 || (x)==PIX_FMT_NV21\
116
                        || (x)==PIX_FMT_GRAY16BE || (x)==PIX_FMT_GRAY16LE\
117
                        || (x)==PIX_FMT_GRAY8 || (x)==PIX_FMT_YUV410P)
118
#define isPacked(x)    ((x)==PIX_FMT_YUYV422 || (x)==PIX_FMT_UYVY422 ||isRGB(x) || isBGR(x))
119

    
120
#define RGB2YUV_SHIFT 16
121
#define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
122
#define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
123
#define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
124
#define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
125
#define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
126
#define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
127
#define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
128
#define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
129
#define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
130

    
131
extern const int32_t Inverse_Table_6_9[8][4];
132

    
133
/*
134
NOTES
135
Special versions: fast Y 1:1 scaling (no interpolation in y direction)
136

137
TODO
138
more intelligent missalignment avoidance for the horizontal scaler
139
write special vertical cubic upscale version
140
Optimize C code (yv12 / minmax)
141
add support for packed pixel yuv input & output
142
add support for Y8 output
143
optimize bgr24 & bgr32
144
add BGR4 output support
145
write special BGR->BGR scaler
146
*/
147

    
148
#if defined(ARCH_X86) && defined (CONFIG_GPL)
149
static uint64_t attribute_used __attribute__((aligned(8))) bF8=       0xF8F8F8F8F8F8F8F8LL;
150
static uint64_t attribute_used __attribute__((aligned(8))) bFC=       0xFCFCFCFCFCFCFCFCLL;
151
static uint64_t __attribute__((aligned(8))) w10=       0x0010001000100010LL;
152
static uint64_t attribute_used __attribute__((aligned(8))) w02=       0x0002000200020002LL;
153
static uint64_t attribute_used __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL;
154
static uint64_t attribute_used __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL;
155
static uint64_t attribute_used __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL;
156
static uint64_t attribute_used __attribute__((aligned(8))) bm01010101=0x00FF00FF00FF00FFLL;
157

    
158
static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
159
static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
160
static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
161
static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
162

    
163
static uint64_t __attribute__((aligned(8))) dither4[2]={
164
        0x0103010301030103LL,
165
        0x0200020002000200LL,};
166

    
167
static uint64_t __attribute__((aligned(8))) dither8[2]={
168
        0x0602060206020602LL,
169
        0x0004000400040004LL,};
170

    
171
static uint64_t __attribute__((aligned(8))) b16Mask=   0x001F001F001F001FLL;
172
static uint64_t attribute_used __attribute__((aligned(8))) g16Mask=   0x07E007E007E007E0LL;
173
static uint64_t attribute_used __attribute__((aligned(8))) r16Mask=   0xF800F800F800F800LL;
174
static uint64_t __attribute__((aligned(8))) b15Mask=   0x001F001F001F001FLL;
175
static uint64_t attribute_used __attribute__((aligned(8))) g15Mask=   0x03E003E003E003E0LL;
176
static uint64_t attribute_used __attribute__((aligned(8))) r15Mask=   0x7C007C007C007C00LL;
177

    
178
static uint64_t attribute_used __attribute__((aligned(8))) M24A=   0x00FF0000FF0000FFLL;
179
static uint64_t attribute_used __attribute__((aligned(8))) M24B=   0xFF0000FF0000FF00LL;
180
static uint64_t attribute_used __attribute__((aligned(8))) M24C=   0x0000FF0000FF0000LL;
181

    
182
#ifdef FAST_BGR2YV12
183
static const uint64_t bgr2YCoeff  attribute_used __attribute__((aligned(8))) = 0x000000210041000DULL;
184
static const uint64_t bgr2UCoeff  attribute_used __attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL;
185
static const uint64_t bgr2VCoeff  attribute_used __attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL;
186
#else
187
static const uint64_t bgr2YCoeff  attribute_used __attribute__((aligned(8))) = 0x000020E540830C8BULL;
188
static const uint64_t bgr2UCoeff  attribute_used __attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL;
189
static const uint64_t bgr2VCoeff  attribute_used __attribute__((aligned(8))) = 0x00003831D0E6F6EAULL;
190
#endif /* FAST_BGR2YV12 */
191
static const uint64_t bgr2YOffset attribute_used __attribute__((aligned(8))) = 0x1010101010101010ULL;
192
static const uint64_t bgr2UVOffset attribute_used __attribute__((aligned(8)))= 0x8080808080808080ULL;
193
static const uint64_t w1111       attribute_used __attribute__((aligned(8))) = 0x0001000100010001ULL;
194
#endif /* defined(ARCH_X86) */
195

    
196
// clipping helper table for C implementations:
197
static unsigned char clip_table[768];
198

    
199
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
200
                  
201
extern const uint8_t dither_2x2_4[2][8];
202
extern const uint8_t dither_2x2_8[2][8];
203
extern const uint8_t dither_8x8_32[8][8];
204
extern const uint8_t dither_8x8_73[8][8];
205
extern const uint8_t dither_8x8_220[8][8];
206

    
207
static const char * sws_context_to_name(void * ptr) {
208
    return "swscaler";
209
}
210

    
211
static AVClass sws_context_class = { "SWScaler", sws_context_to_name, NULL };
212

    
213
char *sws_format_name(enum PixelFormat format)
214
{
215
    switch (format) {
216
        case PIX_FMT_YUV420P:
217
            return "yuv420p";
218
        case PIX_FMT_YUYV422:
219
            return "yuyv422";
220
        case PIX_FMT_RGB24:
221
            return "rgb24";
222
        case PIX_FMT_BGR24:
223
            return "bgr24";
224
        case PIX_FMT_YUV422P:
225
            return "yuv422p";
226
        case PIX_FMT_YUV444P:
227
            return "yuv444p";
228
        case PIX_FMT_RGB32:
229
            return "rgb32";
230
        case PIX_FMT_YUV410P:
231
            return "yuv410p";
232
        case PIX_FMT_YUV411P:
233
            return "yuv411p";
234
        case PIX_FMT_RGB565:
235
            return "rgb565";
236
        case PIX_FMT_RGB555:
237
            return "rgb555";
238
        case PIX_FMT_GRAY16BE:
239
            return "gray16be";
240
        case PIX_FMT_GRAY16LE:
241
            return "gray16le";
242
        case PIX_FMT_GRAY8:
243
            return "gray8";
244
        case PIX_FMT_MONOWHITE:
245
            return "mono white";
246
        case PIX_FMT_MONOBLACK:
247
            return "mono black";
248
        case PIX_FMT_PAL8:
249
            return "Palette";
250
        case PIX_FMT_YUVJ420P:
251
            return "yuvj420p";
252
        case PIX_FMT_YUVJ422P:
253
            return "yuvj422p";
254
        case PIX_FMT_YUVJ444P:
255
            return "yuvj444p";
256
        case PIX_FMT_XVMC_MPEG2_MC:
257
            return "xvmc_mpeg2_mc";
258
        case PIX_FMT_XVMC_MPEG2_IDCT:
259
            return "xvmc_mpeg2_idct";
260
        case PIX_FMT_UYVY422:
261
            return "uyvy422";
262
        case PIX_FMT_UYYVYY411:
263
            return "uyyvyy411";
264
        case PIX_FMT_RGB32_1:
265
            return "rgb32x";
266
        case PIX_FMT_BGR32_1:
267
            return "bgr32x";
268
        case PIX_FMT_BGR32:
269
            return "bgr32";
270
        case PIX_FMT_BGR565:
271
            return "bgr565";
272
        case PIX_FMT_BGR555:
273
            return "bgr555";
274
        case PIX_FMT_BGR8:
275
            return "bgr8";
276
        case PIX_FMT_BGR4:
277
            return "bgr4";
278
        case PIX_FMT_BGR4_BYTE:
279
            return "bgr4 byte";
280
        case PIX_FMT_RGB8:
281
            return "rgb8";
282
        case PIX_FMT_RGB4:
283
            return "rgb4";
284
        case PIX_FMT_RGB4_BYTE:
285
            return "rgb4 byte";
286
        case PIX_FMT_NV12:
287
            return "nv12";
288
        case PIX_FMT_NV21:
289
            return "nv21";
290
        default:
291
            return "Unknown format";
292
    }
293
}
294

    
295
#if defined(ARCH_X86) && defined (CONFIG_GPL)
296
void in_asm_used_var_warning_killer()
297
{
298
 volatile int i= bF8+bFC+w10+
299
 bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+
300
 M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0]+bm01010101;
301
 if(i) i=0;
302
}
303
#endif
304

    
305
static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
306
                                    int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
307
                                    uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
308
{
309
        //FIXME Optimize (just quickly writen not opti..)
310
        int i;
311
        for(i=0; i<dstW; i++)
312
        {
313
                int val=1<<18;
314
                int j;
315
                for(j=0; j<lumFilterSize; j++)
316
                        val += lumSrc[j][i] * lumFilter[j];
317

    
318
                dest[i]= clip_uint8(val>>19);
319
        }
320

    
321
        if(uDest != NULL)
322
                for(i=0; i<chrDstW; i++)
323
                {
324
                        int u=1<<18;
325
                        int v=1<<18;
326
                        int j;
327
                        for(j=0; j<chrFilterSize; j++)
328
                        {
329
                                u += chrSrc[j][i] * chrFilter[j];
330
                                v += chrSrc[j][i + 2048] * chrFilter[j];
331
                        }
332

    
333
                        uDest[i]= clip_uint8(u>>19);
334
                        vDest[i]= clip_uint8(v>>19);
335
                }
336
}
337

    
338
static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
339
                                int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
340
                                uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
341
{
342
        //FIXME Optimize (just quickly writen not opti..)
343
        int i;
344
        for(i=0; i<dstW; i++)
345
        {
346
                int val=1<<18;
347
                int j;
348
                for(j=0; j<lumFilterSize; j++)
349
                        val += lumSrc[j][i] * lumFilter[j];
350

    
351
                dest[i]= clip_uint8(val>>19);
352
        }
353

    
354
        if(uDest == NULL)
355
                return;
356

    
357
        if(dstFormat == PIX_FMT_NV12)
358
                for(i=0; i<chrDstW; i++)
359
                {
360
                        int u=1<<18;
361
                        int v=1<<18;
362
                        int j;
363
                        for(j=0; j<chrFilterSize; j++)
364
                        {
365
                                u += chrSrc[j][i] * chrFilter[j];
366
                                v += chrSrc[j][i + 2048] * chrFilter[j];
367
                        }
368

    
369
                        uDest[2*i]= clip_uint8(u>>19);
370
                        uDest[2*i+1]= clip_uint8(v>>19);
371
                }
372
        else
373
                for(i=0; i<chrDstW; i++)
374
                {
375
                        int u=1<<18;
376
                        int v=1<<18;
377
                        int j;
378
                        for(j=0; j<chrFilterSize; j++)
379
                        {
380
                                u += chrSrc[j][i] * chrFilter[j];
381
                                v += chrSrc[j][i + 2048] * chrFilter[j];
382
                        }
383

    
384
                        uDest[2*i]= clip_uint8(v>>19);
385
                        uDest[2*i+1]= clip_uint8(u>>19);
386
                }
387
}
388

    
389
#define YSCALE_YUV_2_PACKEDX_C(type) \
390
                for(i=0; i<(dstW>>1); i++){\
391
                        int j;\
392
                        int Y1=1<<18;\
393
                        int Y2=1<<18;\
394
                        int U=1<<18;\
395
                        int V=1<<18;\
396
                        type attribute_unused *r, *b, *g;\
397
                        const int i2= 2*i;\
398
                        \
399
                        for(j=0; j<lumFilterSize; j++)\
400
                        {\
401
                                Y1 += lumSrc[j][i2] * lumFilter[j];\
402
                                Y2 += lumSrc[j][i2+1] * lumFilter[j];\
403
                        }\
404
                        for(j=0; j<chrFilterSize; j++)\
405
                        {\
406
                                U += chrSrc[j][i] * chrFilter[j];\
407
                                V += chrSrc[j][i+2048] * chrFilter[j];\
408
                        }\
409
                        Y1>>=19;\
410
                        Y2>>=19;\
411
                        U >>=19;\
412
                        V >>=19;\
413
                        if((Y1|Y2|U|V)&256)\
414
                        {\
415
                                if(Y1>255)   Y1=255;\
416
                                else if(Y1<0)Y1=0;\
417
                                if(Y2>255)   Y2=255;\
418
                                else if(Y2<0)Y2=0;\
419
                                if(U>255)    U=255;\
420
                                else if(U<0) U=0;\
421
                                if(V>255)    V=255;\
422
                                else if(V<0) V=0;\
423
                        }
424
                        
425
#define YSCALE_YUV_2_RGBX_C(type) \
426
                        YSCALE_YUV_2_PACKEDX_C(type)\
427
                        r = (type *)c->table_rV[V];\
428
                        g = (type *)(c->table_gU[U] + c->table_gV[V]);\
429
                        b = (type *)c->table_bU[U];\
430

    
431
#define YSCALE_YUV_2_PACKED2_C \
432
                for(i=0; i<(dstW>>1); i++){\
433
                        const int i2= 2*i;\
434
                        int Y1= (buf0[i2  ]*yalpha1+buf1[i2  ]*yalpha)>>19;\
435
                        int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19;\
436
                        int U= (uvbuf0[i     ]*uvalpha1+uvbuf1[i     ]*uvalpha)>>19;\
437
                        int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19;\
438

    
439
#define YSCALE_YUV_2_RGB2_C(type) \
440
                        YSCALE_YUV_2_PACKED2_C\
441
                        type *r, *b, *g;\
442
                        r = (type *)c->table_rV[V];\
443
                        g = (type *)(c->table_gU[U] + c->table_gV[V]);\
444
                        b = (type *)c->table_bU[U];\
445

    
446
#define YSCALE_YUV_2_PACKED1_C \
447
                for(i=0; i<(dstW>>1); i++){\
448
                        const int i2= 2*i;\
449
                        int Y1= buf0[i2  ]>>7;\
450
                        int Y2= buf0[i2+1]>>7;\
451
                        int U= (uvbuf1[i     ])>>7;\
452
                        int V= (uvbuf1[i+2048])>>7;\
453

    
454
#define YSCALE_YUV_2_RGB1_C(type) \
455
                        YSCALE_YUV_2_PACKED1_C\
456
                        type *r, *b, *g;\
457
                        r = (type *)c->table_rV[V];\
458
                        g = (type *)(c->table_gU[U] + c->table_gV[V]);\
459
                        b = (type *)c->table_bU[U];\
460

    
461
#define YSCALE_YUV_2_PACKED1B_C \
462
                for(i=0; i<(dstW>>1); i++){\
463
                        const int i2= 2*i;\
464
                        int Y1= buf0[i2  ]>>7;\
465
                        int Y2= buf0[i2+1]>>7;\
466
                        int U= (uvbuf0[i     ] + uvbuf1[i     ])>>8;\
467
                        int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\
468

    
469
#define YSCALE_YUV_2_RGB1B_C(type) \
470
                        YSCALE_YUV_2_PACKED1B_C\
471
                        type *r, *b, *g;\
472
                        r = (type *)c->table_rV[V];\
473
                        g = (type *)(c->table_gU[U] + c->table_gV[V]);\
474
                        b = (type *)c->table_bU[U];\
475

    
476
#define YSCALE_YUV_2_ANYRGB_C(func, func2)\
477
        switch(c->dstFormat)\
478
        {\
479
        case PIX_FMT_RGB32:\
480
        case PIX_FMT_BGR32:\
481
                func(uint32_t)\
482
                        ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
483
                        ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
484
                }                \
485
                break;\
486
        case PIX_FMT_RGB24:\
487
                func(uint8_t)\
488
                        ((uint8_t*)dest)[0]= r[Y1];\
489
                        ((uint8_t*)dest)[1]= g[Y1];\
490
                        ((uint8_t*)dest)[2]= b[Y1];\
491
                        ((uint8_t*)dest)[3]= r[Y2];\
492
                        ((uint8_t*)dest)[4]= g[Y2];\
493
                        ((uint8_t*)dest)[5]= b[Y2];\
494
                        dest+=6;\
495
                }\
496
                break;\
497
        case PIX_FMT_BGR24:\
498
                func(uint8_t)\
499
                        ((uint8_t*)dest)[0]= b[Y1];\
500
                        ((uint8_t*)dest)[1]= g[Y1];\
501
                        ((uint8_t*)dest)[2]= r[Y1];\
502
                        ((uint8_t*)dest)[3]= b[Y2];\
503
                        ((uint8_t*)dest)[4]= g[Y2];\
504
                        ((uint8_t*)dest)[5]= r[Y2];\
505
                        dest+=6;\
506
                }\
507
                break;\
508
        case PIX_FMT_RGB565:\
509
        case PIX_FMT_BGR565:\
510
                {\
511
                        const int dr1= dither_2x2_8[y&1    ][0];\
512
                        const int dg1= dither_2x2_4[y&1    ][0];\
513
                        const int db1= dither_2x2_8[(y&1)^1][0];\
514
                        const int dr2= dither_2x2_8[y&1    ][1];\
515
                        const int dg2= dither_2x2_4[y&1    ][1];\
516
                        const int db2= dither_2x2_8[(y&1)^1][1];\
517
                        func(uint16_t)\
518
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
519
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
520
                        }\
521
                }\
522
                break;\
523
        case PIX_FMT_RGB555:\
524
        case PIX_FMT_BGR555:\
525
                {\
526
                        const int dr1= dither_2x2_8[y&1    ][0];\
527
                        const int dg1= dither_2x2_8[y&1    ][1];\
528
                        const int db1= dither_2x2_8[(y&1)^1][0];\
529
                        const int dr2= dither_2x2_8[y&1    ][1];\
530
                        const int dg2= dither_2x2_8[y&1    ][0];\
531
                        const int db2= dither_2x2_8[(y&1)^1][1];\
532
                        func(uint16_t)\
533
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
534
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
535
                        }\
536
                }\
537
                break;\
538
        case PIX_FMT_RGB8:\
539
        case PIX_FMT_BGR8:\
540
                {\
541
                        const uint8_t * const d64= dither_8x8_73[y&7];\
542
                        const uint8_t * const d32= dither_8x8_32[y&7];\
543
                        func(uint8_t)\
544
                                ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
545
                                ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
546
                        }\
547
                }\
548
                break;\
549
        case PIX_FMT_RGB4:\
550
        case PIX_FMT_BGR4:\
551
                {\
552
                        const uint8_t * const d64= dither_8x8_73 [y&7];\
553
                        const uint8_t * const d128=dither_8x8_220[y&7];\
554
                        func(uint8_t)\
555
                                ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
556
                                                 + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
557
                        }\
558
                }\
559
                break;\
560
        case PIX_FMT_RGB4_BYTE:\
561
        case PIX_FMT_BGR4_BYTE:\
562
                {\
563
                        const uint8_t * const d64= dither_8x8_73 [y&7];\
564
                        const uint8_t * const d128=dither_8x8_220[y&7];\
565
                        func(uint8_t)\
566
                                ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
567
                                ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
568
                        }\
569
                }\
570
                break;\
571
        case PIX_FMT_MONOBLACK:\
572
                {\
573
                        const uint8_t * const d128=dither_8x8_220[y&7];\
574
                        uint8_t *g= c->table_gU[128] + c->table_gV[128];\
575
                        for(i=0; i<dstW-7; i+=8){\
576
                                int acc;\
577
                                acc =       g[((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19) + d128[0]];\
578
                                acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
579
                                acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
580
                                acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
581
                                acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
582
                                acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
583
                                acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
584
                                acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
585
                                ((uint8_t*)dest)[0]= acc;\
586
                                dest++;\
587
                        }\
588
\
589
/*\
590
((uint8_t*)dest)-= dstW>>4;\
591
{\
592
                        int acc=0;\
593
                        int left=0;\
594
                        static int top[1024];\
595
                        static int last_new[1024][1024];\
596
                        static int last_in3[1024][1024];\
597
                        static int drift[1024][1024];\
598
                        int topLeft=0;\
599
                        int shift=0;\
600
                        int count=0;\
601
                        const uint8_t * const d128=dither_8x8_220[y&7];\
602
                        int error_new=0;\
603
                        int error_in3=0;\
604
                        int f=0;\
605
                        \
606
                        for(i=dstW>>1; i<dstW; i++){\
607
                                int in= ((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19);\
608
                                int in2 = (76309 * (in - 16) + 32768) >> 16;\
609
                                int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
610
                                int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
611
                                        + (last_new[y][i] - in3)*f/256;\
612
                                int new= old> 128 ? 255 : 0;\
613
\
614
                                error_new+= FFABS(last_new[y][i] - new);\
615
                                error_in3+= FFABS(last_in3[y][i] - in3);\
616
                                f= error_new - error_in3*4;\
617
                                if(f<0) f=0;\
618
                                if(f>256) f=256;\
619
\
620
                                topLeft= top[i];\
621
                                left= top[i]= old - new;\
622
                                last_new[y][i]= new;\
623
                                last_in3[y][i]= in3;\
624
\
625
                                acc+= acc + (new&1);\
626
                                if((i&7)==6){\
627
                                        ((uint8_t*)dest)[0]= acc;\
628
                                        ((uint8_t*)dest)++;\
629
                                }\
630
                        }\
631
}\
632
*/\
633
                }\
634
                break;\
635
        case PIX_FMT_YUYV422:\
636
                func2\
637
                        ((uint8_t*)dest)[2*i2+0]= Y1;\
638
                        ((uint8_t*)dest)[2*i2+1]= U;\
639
                        ((uint8_t*)dest)[2*i2+2]= Y2;\
640
                        ((uint8_t*)dest)[2*i2+3]= V;\
641
                }                \
642
                break;\
643
        case PIX_FMT_UYVY422:\
644
                func2\
645
                        ((uint8_t*)dest)[2*i2+0]= U;\
646
                        ((uint8_t*)dest)[2*i2+1]= Y1;\
647
                        ((uint8_t*)dest)[2*i2+2]= V;\
648
                        ((uint8_t*)dest)[2*i2+3]= Y2;\
649
                }                \
650
                break;\
651
        }\
652

    
653

    
654
static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
655
                                    int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
656
                                    uint8_t *dest, int dstW, int y)
657
{
658
        int i;
659
        switch(c->dstFormat)
660
        {
661
        case PIX_FMT_BGR32:
662
        case PIX_FMT_RGB32:
663
                YSCALE_YUV_2_RGBX_C(uint32_t)
664
                        ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];
665
                        ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];
666
                }
667
                break;
668
        case PIX_FMT_RGB24:
669
                YSCALE_YUV_2_RGBX_C(uint8_t)
670
                        ((uint8_t*)dest)[0]= r[Y1];
671
                        ((uint8_t*)dest)[1]= g[Y1];
672
                        ((uint8_t*)dest)[2]= b[Y1];
673
                        ((uint8_t*)dest)[3]= r[Y2];
674
                        ((uint8_t*)dest)[4]= g[Y2];
675
                        ((uint8_t*)dest)[5]= b[Y2];
676
                        dest+=6;
677
                }
678
                break;
679
        case PIX_FMT_BGR24:
680
                YSCALE_YUV_2_RGBX_C(uint8_t)
681
                        ((uint8_t*)dest)[0]= b[Y1];
682
                        ((uint8_t*)dest)[1]= g[Y1];
683
                        ((uint8_t*)dest)[2]= r[Y1];
684
                        ((uint8_t*)dest)[3]= b[Y2];
685
                        ((uint8_t*)dest)[4]= g[Y2];
686
                        ((uint8_t*)dest)[5]= r[Y2];
687
                        dest+=6;
688
                }
689
                break;
690
        case PIX_FMT_RGB565:
691
        case PIX_FMT_BGR565:
692
                {
693
                        const int dr1= dither_2x2_8[y&1    ][0];
694
                        const int dg1= dither_2x2_4[y&1    ][0];
695
                        const int db1= dither_2x2_8[(y&1)^1][0];
696
                        const int dr2= dither_2x2_8[y&1    ][1];
697
                        const int dg2= dither_2x2_4[y&1    ][1];
698
                        const int db2= dither_2x2_8[(y&1)^1][1];
699
                        YSCALE_YUV_2_RGBX_C(uint16_t)
700
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
701
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
702
                        }
703
                }
704
                break;
705
        case PIX_FMT_RGB555:
706
        case PIX_FMT_BGR555:
707
                {
708
                        const int dr1= dither_2x2_8[y&1    ][0];
709
                        const int dg1= dither_2x2_8[y&1    ][1];
710
                        const int db1= dither_2x2_8[(y&1)^1][0];
711
                        const int dr2= dither_2x2_8[y&1    ][1];
712
                        const int dg2= dither_2x2_8[y&1    ][0];
713
                        const int db2= dither_2x2_8[(y&1)^1][1];
714
                        YSCALE_YUV_2_RGBX_C(uint16_t)
715
                                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
716
                                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
717
                        }
718
                }
719
                break;
720
        case PIX_FMT_RGB8:
721
        case PIX_FMT_BGR8:
722
                {
723
                        const uint8_t * const d64= dither_8x8_73[y&7];
724
                        const uint8_t * const d32= dither_8x8_32[y&7];
725
                        YSCALE_YUV_2_RGBX_C(uint8_t)
726
                                ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];
727
                                ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];
728
                        }
729
                }
730
                break;
731
        case PIX_FMT_RGB4:
732
        case PIX_FMT_BGR4:
733
                {
734
                        const uint8_t * const d64= dither_8x8_73 [y&7];
735
                        const uint8_t * const d128=dither_8x8_220[y&7];
736
                        YSCALE_YUV_2_RGBX_C(uint8_t)
737
                                ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]
738
                                                  +((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);
739
                        }
740
                }
741
                break;
742
        case PIX_FMT_RGB4_BYTE:
743
        case PIX_FMT_BGR4_BYTE:
744
                {
745
                        const uint8_t * const d64= dither_8x8_73 [y&7];
746
                        const uint8_t * const d128=dither_8x8_220[y&7];
747
                        YSCALE_YUV_2_RGBX_C(uint8_t)
748
                                ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];
749
                                ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];
750
                        }
751
                }
752
                break;
753
        case PIX_FMT_MONOBLACK:
754
                {
755
                        const uint8_t * const d128=dither_8x8_220[y&7];
756
                        uint8_t *g= c->table_gU[128] + c->table_gV[128];
757
                        int acc=0;
758
                        for(i=0; i<dstW-1; i+=2){
759
                                int j;
760
                                int Y1=1<<18;
761
                                int Y2=1<<18;
762

    
763
                                for(j=0; j<lumFilterSize; j++)
764
                                {
765
                                        Y1 += lumSrc[j][i] * lumFilter[j];
766
                                        Y2 += lumSrc[j][i+1] * lumFilter[j];
767
                                }
768
                                Y1>>=19;
769
                                Y2>>=19;
770
                                if((Y1|Y2)&256)
771
                                {
772
                                        if(Y1>255)   Y1=255;
773
                                        else if(Y1<0)Y1=0;
774
                                        if(Y2>255)   Y2=255;
775
                                        else if(Y2<0)Y2=0;
776
                                }
777
                                acc+= acc + g[Y1+d128[(i+0)&7]];
778
                                acc+= acc + g[Y2+d128[(i+1)&7]];
779
                                if((i&7)==6){
780
                                        ((uint8_t*)dest)[0]= acc;
781
                                        dest++;
782
                                }
783
                        }
784
                }
785
                break;
786
        case PIX_FMT_YUYV422:
787
                YSCALE_YUV_2_PACKEDX_C(void)
788
                        ((uint8_t*)dest)[2*i2+0]= Y1;
789
                        ((uint8_t*)dest)[2*i2+1]= U;
790
                        ((uint8_t*)dest)[2*i2+2]= Y2;
791
                        ((uint8_t*)dest)[2*i2+3]= V;
792
                }
793
                break;
794
        case PIX_FMT_UYVY422:
795
                YSCALE_YUV_2_PACKEDX_C(void)
796
                        ((uint8_t*)dest)[2*i2+0]= U;
797
                        ((uint8_t*)dest)[2*i2+1]= Y1;
798
                        ((uint8_t*)dest)[2*i2+2]= V;
799
                        ((uint8_t*)dest)[2*i2+3]= Y2;
800
                }
801
                break;
802
        }
803
}
804

    
805

    
806
//Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
807
//Plain C versions
808
#if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT) || !defined(CONFIG_GPL)
809
#define COMPILE_C
810
#endif
811

    
812
#ifdef ARCH_POWERPC
813
#if (defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
814
#define COMPILE_ALTIVEC
815
#endif //HAVE_ALTIVEC
816
#endif //ARCH_POWERPC
817

    
818
#if defined(ARCH_X86)
819

    
820
#if ((defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
821
#define COMPILE_MMX
822
#endif
823

    
824
#if (defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
825
#define COMPILE_MMX2
826
#endif
827

    
828
#if ((defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
829
#define COMPILE_3DNOW
830
#endif
831
#endif //ARCH_X86 || ARCH_X86_64
832

    
833
#undef HAVE_MMX
834
#undef HAVE_MMX2
835
#undef HAVE_3DNOW
836

    
837
#ifdef COMPILE_C
838
#undef HAVE_MMX
839
#undef HAVE_MMX2
840
#undef HAVE_3DNOW
841
#undef HAVE_ALTIVEC
842
#define RENAME(a) a ## _C
843
#include "swscale_template.c"
844
#endif
845

    
846
#ifdef ARCH_POWERPC
847
#ifdef COMPILE_ALTIVEC
848
#undef RENAME
849
#define HAVE_ALTIVEC
850
#define RENAME(a) a ## _altivec
851
#include "swscale_template.c"
852
#endif
853
#endif //ARCH_POWERPC
854

    
855
#if defined(ARCH_X86)
856

    
857
//X86 versions
858
/*
859
#undef RENAME
860
#undef HAVE_MMX
861
#undef HAVE_MMX2
862
#undef HAVE_3DNOW
863
#define ARCH_X86
864
#define RENAME(a) a ## _X86
865
#include "swscale_template.c"
866
*/
867
//MMX versions
868
#ifdef COMPILE_MMX
869
#undef RENAME
870
#define HAVE_MMX
871
#undef HAVE_MMX2
872
#undef HAVE_3DNOW
873
#define RENAME(a) a ## _MMX
874
#include "swscale_template.c"
875
#endif
876

    
877
//MMX2 versions
878
#ifdef COMPILE_MMX2
879
#undef RENAME
880
#define HAVE_MMX
881
#define HAVE_MMX2
882
#undef HAVE_3DNOW
883
#define RENAME(a) a ## _MMX2
884
#include "swscale_template.c"
885
#endif
886

    
887
//3DNOW versions
888
#ifdef COMPILE_3DNOW
889
#undef RENAME
890
#define HAVE_MMX
891
#undef HAVE_MMX2
892
#define HAVE_3DNOW
893
#define RENAME(a) a ## _3DNow
894
#include "swscale_template.c"
895
#endif
896

    
897
#endif //ARCH_X86 || ARCH_X86_64
898

    
899
// minor note: the HAVE_xyz is messed up after that line so don't use it
900

    
901
static double getSplineCoeff(double a, double b, double c, double d, double dist)
902
{
903
//        printf("%f %f %f %f %f\n", a,b,c,d,dist);
904
        if(dist<=1.0)         return ((d*dist + c)*dist + b)*dist +a;
905
        else                return getSplineCoeff(        0.0, 
906
                                                 b+ 2.0*c + 3.0*d,
907
                                                        c + 3.0*d,
908
                                                -b- 3.0*c - 6.0*d,
909
                                                dist-1.0);
910
}
911

    
912
static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
913
                              int srcW, int dstW, int filterAlign, int one, int flags,
914
                              SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
915
{
916
        int i;
917
        int filterSize;
918
        int filter2Size;
919
        int minFilterSize;
920
        double *filter=NULL;
921
        double *filter2=NULL;
922
#if defined(ARCH_X86)
923
        if(flags & SWS_CPU_CAPS_MMX)
924
                asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
925
#endif
926

    
927
        // Note the +1 is for the MMXscaler which reads over the end
928
        *filterPos = av_malloc((dstW+1)*sizeof(int16_t));
929

    
930
        if(FFABS(xInc - 0x10000) <10) // unscaled
931
        {
932
                int i;
933
                filterSize= 1;
934
                filter= av_malloc(dstW*sizeof(double)*filterSize);
935
                for(i=0; i<dstW*filterSize; i++) filter[i]=0;
936

    
937
                for(i=0; i<dstW; i++)
938
                {
939
                        filter[i*filterSize]=1;
940
                        (*filterPos)[i]=i;
941
                }
942

    
943
        }
944
        else if(flags&SWS_POINT) // lame looking point sampling mode
945
        {
946
                int i;
947
                int xDstInSrc;
948
                filterSize= 1;
949
                filter= av_malloc(dstW*sizeof(double)*filterSize);
950
                
951
                xDstInSrc= xInc/2 - 0x8000;
952
                for(i=0; i<dstW; i++)
953
                {
954
                        int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
955

    
956
                        (*filterPos)[i]= xx;
957
                        filter[i]= 1.0;
958
                        xDstInSrc+= xInc;
959
                }
960
        }
961
        else if((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
962
        {
963
                int i;
964
                int xDstInSrc;
965
                if     (flags&SWS_BICUBIC) filterSize= 4;
966
                else if(flags&SWS_X      ) filterSize= 4;
967
                else                           filterSize= 2; // SWS_BILINEAR / SWS_AREA 
968
                filter= av_malloc(dstW*sizeof(double)*filterSize);
969

    
970
                xDstInSrc= xInc/2 - 0x8000;
971
                for(i=0; i<dstW; i++)
972
                {
973
                        int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
974
                        int j;
975

    
976
                        (*filterPos)[i]= xx;
977
                                //Bilinear upscale / linear interpolate / Area averaging
978
                                for(j=0; j<filterSize; j++)
979
                                {
980
                                        double d= FFABS((xx<<16) - xDstInSrc)/(double)(1<<16);
981
                                        double coeff= 1.0 - d;
982
                                        if(coeff<0) coeff=0;
983
                                        filter[i*filterSize + j]= coeff;
984
                                        xx++;
985
                                }
986
                        xDstInSrc+= xInc;
987
                }
988
        }
989
        else
990
        {
991
                double xDstInSrc;
992
                double sizeFactor, filterSizeInSrc;
993
                const double xInc1= (double)xInc / (double)(1<<16);
994

    
995
                if     (flags&SWS_BICUBIC)        sizeFactor= 4.0;
996
                else if(flags&SWS_X)                sizeFactor= 8.0;
997
                else if(flags&SWS_AREA)                sizeFactor= 1.0; //downscale only, for upscale it is bilinear
998
                else if(flags&SWS_GAUSS)        sizeFactor= 8.0;   // infinite ;)
999
                else if(flags&SWS_LANCZOS)        sizeFactor= param[0] != SWS_PARAM_DEFAULT ? 2.0*param[0] : 6.0;
1000
                else if(flags&SWS_SINC)                sizeFactor= 20.0; // infinite ;)
1001
                else if(flags&SWS_SPLINE)        sizeFactor= 20.0;  // infinite ;)
1002
                else if(flags&SWS_BILINEAR)        sizeFactor= 2.0;
1003
                else {
1004
                        sizeFactor= 0.0; //GCC warning killer
1005
                        ASSERT(0)
1006
                }
1007
                
1008
                if(xInc1 <= 1.0)        filterSizeInSrc= sizeFactor; // upscale
1009
                else                        filterSizeInSrc= sizeFactor*srcW / (double)dstW;
1010

    
1011
                filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
1012
                if(filterSize > srcW-2) filterSize=srcW-2;
1013

    
1014
                filter= av_malloc(dstW*sizeof(double)*filterSize);
1015

    
1016
                xDstInSrc= xInc1 / 2.0 - 0.5;
1017
                for(i=0; i<dstW; i++)
1018
                {
1019
                        int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
1020
                        int j;
1021
                        (*filterPos)[i]= xx;
1022
                        for(j=0; j<filterSize; j++)
1023
                        {
1024
                                double d= FFABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
1025
                                double coeff;
1026
                                if(flags & SWS_BICUBIC)
1027
                                {
1028
                                        double B= param[0] != SWS_PARAM_DEFAULT ? param[0] : 0.0;
1029
                                        double C= param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6;
1030

    
1031
                                        if(d<1.0) 
1032
                                                coeff = (12-9*B-6*C)*d*d*d + (-18+12*B+6*C)*d*d + 6-2*B;
1033
                                        else if(d<2.0)
1034
                                                coeff = (-B-6*C)*d*d*d + (6*B+30*C)*d*d + (-12*B-48*C)*d +8*B+24*C;
1035
                                        else
1036
                                                coeff=0.0;
1037
                                }
1038
/*                                else if(flags & SWS_X)
1039
                                {
1040
                                        double p= param ? param*0.01 : 0.3;
1041
                                        coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1042
                                        coeff*= pow(2.0, - p*d*d);
1043
                                }*/
1044
                                else if(flags & SWS_X)
1045
                                {
1046
                                        double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
1047
                                        
1048
                                        if(d<1.0)
1049
                                                coeff = cos(d*PI);
1050
                                        else
1051
                                                coeff=-1.0;
1052
                                        if(coeff<0.0)         coeff= -pow(-coeff, A);
1053
                                        else                coeff=  pow( coeff, A);
1054
                                        coeff= coeff*0.5 + 0.5;
1055
                                }
1056
                                else if(flags & SWS_AREA)
1057
                                {
1058
                                        double srcPixelSize= 1.0/xInc1;
1059
                                        if(d + srcPixelSize/2 < 0.5) coeff= 1.0;
1060
                                        else if(d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
1061
                                        else coeff=0.0;
1062
                                }
1063
                                else if(flags & SWS_GAUSS)
1064
                                {
1065
                                        double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
1066
                                        coeff = pow(2.0, - p*d*d);
1067
                                }
1068
                                else if(flags & SWS_SINC)
1069
                                {
1070
                                        coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1071
                                }
1072
                                else if(flags & SWS_LANCZOS)
1073
                                {
1074
                                        double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0; 
1075
                                        coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
1076
                                        if(d>p) coeff=0;
1077
                                }
1078
                                else if(flags & SWS_BILINEAR)
1079
                                {
1080
                                        coeff= 1.0 - d;
1081
                                        if(coeff<0) coeff=0;
1082
                                }
1083
                                else if(flags & SWS_SPLINE)
1084
                                {
1085
                                        double p=-2.196152422706632;
1086
                                        coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
1087
                                }
1088
                                else {
1089
                                        coeff= 0.0; //GCC warning killer
1090
                                        ASSERT(0)
1091
                                }
1092

    
1093
                                filter[i*filterSize + j]= coeff;
1094
                                xx++;
1095
                        }
1096
                        xDstInSrc+= xInc1;
1097
                }
1098
        }
1099

    
1100
        /* apply src & dst Filter to filter -> filter2
1101
           av_free(filter);
1102
        */
1103
        ASSERT(filterSize>0)
1104
        filter2Size= filterSize;
1105
        if(srcFilter) filter2Size+= srcFilter->length - 1;
1106
        if(dstFilter) filter2Size+= dstFilter->length - 1;
1107
        ASSERT(filter2Size>0)
1108
        filter2= av_malloc(filter2Size*dstW*sizeof(double));
1109

    
1110
        for(i=0; i<dstW; i++)
1111
        {
1112
                int j;
1113
                SwsVector scaleFilter;
1114
                SwsVector *outVec;
1115

    
1116
                scaleFilter.coeff= filter + i*filterSize;
1117
                scaleFilter.length= filterSize;
1118

    
1119
                if(srcFilter) outVec= sws_getConvVec(srcFilter, &scaleFilter);
1120
                else              outVec= &scaleFilter;
1121

    
1122
                ASSERT(outVec->length == filter2Size)
1123
                //FIXME dstFilter
1124

    
1125
                for(j=0; j<outVec->length; j++)
1126
                {
1127
                        filter2[i*filter2Size + j]= outVec->coeff[j];
1128
                }
1129

    
1130
                (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
1131

    
1132
                if(outVec != &scaleFilter) sws_freeVec(outVec);
1133
        }
1134
        av_free(filter); filter=NULL;
1135

    
1136
        /* try to reduce the filter-size (step1 find size and shift left) */
1137
        // Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not)
1138
        minFilterSize= 0;
1139
        for(i=dstW-1; i>=0; i--)
1140
        {
1141
                int min= filter2Size;
1142
                int j;
1143
                double cutOff=0.0;
1144

    
1145
                /* get rid off near zero elements on the left by shifting left */
1146
                for(j=0; j<filter2Size; j++)
1147
                {
1148
                        int k;
1149
                        cutOff += FFABS(filter2[i*filter2Size]);
1150

    
1151
                        if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1152

    
1153
                        /* preserve Monotonicity because the core can't handle the filter otherwise */
1154
                        if(i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
1155

    
1156
                        // Move filter coeffs left
1157
                        for(k=1; k<filter2Size; k++)
1158
                                filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
1159
                        filter2[i*filter2Size + k - 1]= 0.0;
1160
                        (*filterPos)[i]++;
1161
                }
1162

    
1163
                cutOff=0.0;
1164
                /* count near zeros on the right */
1165
                for(j=filter2Size-1; j>0; j--)
1166
                {
1167
                        cutOff += FFABS(filter2[i*filter2Size + j]);
1168

    
1169
                        if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1170
                        min--;
1171
                }
1172

    
1173
                if(min>minFilterSize) minFilterSize= min;
1174
        }
1175

    
1176
        if (flags & SWS_CPU_CAPS_ALTIVEC) {
1177
          // we can handle the special case 4,
1178
          // so we don't want to go to the full 8
1179
          if (minFilterSize < 5)
1180
            filterAlign = 4;
1181

    
1182
          // we really don't want to waste our time
1183
          // doing useless computation, so fall-back on
1184
          // the scalar C code for very small filter.
1185
          // vectorizing is worth it only if you have
1186
          // decent-sized vector.
1187
          if (minFilterSize < 3)
1188
            filterAlign = 1;
1189
        }
1190

    
1191
        if (flags & SWS_CPU_CAPS_MMX) {
1192
                // special case for unscaled vertical filtering
1193
                if(minFilterSize == 1 && filterAlign == 2)
1194
                        filterAlign= 1;
1195
        }
1196

    
1197
        ASSERT(minFilterSize > 0)
1198
        filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
1199
        ASSERT(filterSize > 0)
1200
        filter= av_malloc(filterSize*dstW*sizeof(double));
1201
        if(filterSize >= MAX_FILTER_SIZE)
1202
                return -1;
1203
        *outFilterSize= filterSize;
1204

    
1205
        if(flags&SWS_PRINT_INFO)
1206
                av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
1207
        /* try to reduce the filter-size (step2 reduce it) */
1208
        for(i=0; i<dstW; i++)
1209
        {
1210
                int j;
1211

    
1212
                for(j=0; j<filterSize; j++)
1213
                {
1214
                        if(j>=filter2Size) filter[i*filterSize + j]= 0.0;
1215
                        else                   filter[i*filterSize + j]= filter2[i*filter2Size + j];
1216
                }
1217
        }
1218
        av_free(filter2); filter2=NULL;
1219
        
1220

    
1221
        //FIXME try to align filterpos if possible
1222

    
1223
        //fix borders
1224
        for(i=0; i<dstW; i++)
1225
        {
1226
                int j;
1227
                if((*filterPos)[i] < 0)
1228
                {
1229
                        // Move filter coeffs left to compensate for filterPos
1230
                        for(j=1; j<filterSize; j++)
1231
                        {
1232
                                int left= FFMAX(j + (*filterPos)[i], 0);
1233
                                filter[i*filterSize + left] += filter[i*filterSize + j];
1234
                                filter[i*filterSize + j]=0;
1235
                        }
1236
                        (*filterPos)[i]= 0;
1237
                }
1238

    
1239
                if((*filterPos)[i] + filterSize > srcW)
1240
                {
1241
                        int shift= (*filterPos)[i] + filterSize - srcW;
1242
                        // Move filter coeffs right to compensate for filterPos
1243
                        for(j=filterSize-2; j>=0; j--)
1244
                        {
1245
                                int right= FFMIN(j + shift, filterSize-1);
1246
                                filter[i*filterSize +right] += filter[i*filterSize +j];
1247
                                filter[i*filterSize +j]=0;
1248
                        }
1249
                        (*filterPos)[i]= srcW - filterSize;
1250
                }
1251
        }
1252

    
1253
        // Note the +1 is for the MMXscaler which reads over the end
1254
        /* align at 16 for AltiVec (needed by hScale_altivec_real) */
1255
        *outFilter= av_mallocz(*outFilterSize*(dstW+1)*sizeof(int16_t));
1256

    
1257
        /* Normalize & Store in outFilter */
1258
        for(i=0; i<dstW; i++)
1259
        {
1260
                int j;
1261
                double error=0;
1262
                double sum=0;
1263
                double scale= one;
1264

    
1265
                for(j=0; j<filterSize; j++)
1266
                {
1267
                        sum+= filter[i*filterSize + j];
1268
                }
1269
                scale/= sum;
1270
                for(j=0; j<*outFilterSize; j++)
1271
                {
1272
                        double v= filter[i*filterSize + j]*scale + error;
1273
                        int intV= floor(v + 0.5);
1274
                        (*outFilter)[i*(*outFilterSize) + j]= intV;
1275
                        error = v - intV;
1276
                }
1277
        }
1278
        
1279
        (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
1280
        for(i=0; i<*outFilterSize; i++)
1281
        {
1282
                int j= dstW*(*outFilterSize);
1283
                (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
1284
        }
1285

    
1286
        av_free(filter);
1287
        return 0;
1288
}
1289

    
1290
#ifdef COMPILE_MMX2
1291
static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
1292
{
1293
        uint8_t *fragmentA;
1294
        long imm8OfPShufW1A;
1295
        long imm8OfPShufW2A;
1296
        long fragmentLengthA;
1297
        uint8_t *fragmentB;
1298
        long imm8OfPShufW1B;
1299
        long imm8OfPShufW2B;
1300
        long fragmentLengthB;
1301
        int fragmentPos;
1302

    
1303
        int xpos, i;
1304

    
1305
        // create an optimized horizontal scaling routine
1306

    
1307
        //code fragment
1308

    
1309
        asm volatile(
1310
                "jmp 9f                                \n\t"
1311
        // Begin
1312
                "0:                                \n\t"
1313
                "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t" 
1314
                "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t" 
1315
                "movd 1(%%"REG_c", %%"REG_S"), %%mm1\n\t"
1316
                "punpcklbw %%mm7, %%mm1                \n\t"
1317
                "punpcklbw %%mm7, %%mm0                \n\t"
1318
                "pshufw $0xFF, %%mm1, %%mm1        \n\t"
1319
                "1:                                \n\t"
1320
                "pshufw $0xFF, %%mm0, %%mm0        \n\t"
1321
                "2:                                \n\t"
1322
                "psubw %%mm1, %%mm0                \n\t"
1323
                "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
1324
                "pmullw %%mm3, %%mm0                \n\t"
1325
                "psllw $7, %%mm1                \n\t"
1326
                "paddw %%mm1, %%mm0                \n\t"
1327

    
1328
                "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
1329

    
1330
                "add $8, %%"REG_a"                \n\t"
1331
        // End
1332
                "9:                                \n\t"
1333
//                "int $3\n\t"
1334
                "lea 0b, %0                        \n\t"
1335
                "lea 1b, %1                        \n\t"
1336
                "lea 2b, %2                        \n\t"
1337
                "dec %1                                \n\t"
1338
                "dec %2                                \n\t"
1339
                "sub %0, %1                        \n\t"
1340
                "sub %0, %2                        \n\t"
1341
                "lea 9b, %3                        \n\t"
1342
                "sub %0, %3                        \n\t"
1343

    
1344

    
1345
                :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
1346
                "=r" (fragmentLengthA)
1347
        );
1348

    
1349
        asm volatile(
1350
                "jmp 9f                                \n\t"
1351
        // Begin
1352
                "0:                                \n\t"
1353
                "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t" 
1354
                "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t" 
1355
                "punpcklbw %%mm7, %%mm0                \n\t"
1356
                "pshufw $0xFF, %%mm0, %%mm1        \n\t"
1357
                "1:                                \n\t"
1358
                "pshufw $0xFF, %%mm0, %%mm0        \n\t"
1359
                "2:                                \n\t"
1360
                "psubw %%mm1, %%mm0                \n\t"
1361
                "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
1362
                "pmullw %%mm3, %%mm0                \n\t"
1363
                "psllw $7, %%mm1                \n\t"
1364
                "paddw %%mm1, %%mm0                \n\t"
1365

    
1366
                "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
1367

    
1368
                "add $8, %%"REG_a"                \n\t"
1369
        // End
1370
                "9:                                \n\t"
1371
//                "int $3\n\t"
1372
                "lea 0b, %0                        \n\t"
1373
                "lea 1b, %1                        \n\t"
1374
                "lea 2b, %2                        \n\t"
1375
                "dec %1                                \n\t"
1376
                "dec %2                                \n\t"
1377
                "sub %0, %1                        \n\t"
1378
                "sub %0, %2                        \n\t"
1379
                "lea 9b, %3                        \n\t"
1380
                "sub %0, %3                        \n\t"
1381

    
1382

    
1383
                :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
1384
                "=r" (fragmentLengthB)
1385
        );
1386

    
1387
        xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
1388
        fragmentPos=0;
1389
        
1390
        for(i=0; i<dstW/numSplits; i++)
1391
        {
1392
                int xx=xpos>>16;
1393

    
1394
                if((i&3) == 0)
1395
                {
1396
                        int a=0;
1397
                        int b=((xpos+xInc)>>16) - xx;
1398
                        int c=((xpos+xInc*2)>>16) - xx;
1399
                        int d=((xpos+xInc*3)>>16) - xx;
1400

    
1401
                        filter[i  ] = (( xpos         & 0xFFFF) ^ 0xFFFF)>>9;
1402
                        filter[i+1] = (((xpos+xInc  ) & 0xFFFF) ^ 0xFFFF)>>9;
1403
                        filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
1404
                        filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
1405
                        filterPos[i/2]= xx;
1406

    
1407
                        if(d+1<4)
1408
                        {
1409
                                int maxShift= 3-(d+1);
1410
                                int shift=0;
1411

    
1412
                                memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
1413

    
1414
                                funnyCode[fragmentPos + imm8OfPShufW1B]=
1415
                                        (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
1416
                                funnyCode[fragmentPos + imm8OfPShufW2B]=
1417
                                        a | (b<<2) | (c<<4) | (d<<6);
1418

    
1419
                                if(i+3>=dstW) shift=maxShift; //avoid overread
1420
                                else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
1421

    
1422
                                if(shift && i>=shift)
1423
                                {
1424
                                        funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
1425
                                        funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
1426
                                        filterPos[i/2]-=shift;
1427
                                }
1428

    
1429
                                fragmentPos+= fragmentLengthB;
1430
                        }
1431
                        else
1432
                        {
1433
                                int maxShift= 3-d;
1434
                                int shift=0;
1435

    
1436
                                memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
1437

    
1438
                                funnyCode[fragmentPos + imm8OfPShufW1A]=
1439
                                funnyCode[fragmentPos + imm8OfPShufW2A]=
1440
                                        a | (b<<2) | (c<<4) | (d<<6);
1441

    
1442
                                if(i+4>=dstW) shift=maxShift; //avoid overread
1443
                                else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
1444

    
1445
                                if(shift && i>=shift)
1446
                                {
1447
                                        funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
1448
                                        funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
1449
                                        filterPos[i/2]-=shift;
1450
                                }
1451

    
1452
                                fragmentPos+= fragmentLengthA;
1453
                        }
1454

    
1455
                        funnyCode[fragmentPos]= RET;
1456
                }
1457
                xpos+=xInc;
1458
        }
1459
        filterPos[i/2]= xpos>>16; // needed to jump to the next part
1460
}
1461
#endif /* COMPILE_MMX2 */
1462

    
1463
static void globalInit(void){
1464
    // generating tables:
1465
    int i;
1466
    for(i=0; i<768; i++){
1467
        int c= clip_uint8(i-256);
1468
        clip_table[i]=c;
1469
    }
1470
}
1471

    
1472
static SwsFunc getSwsFunc(int flags){
1473
    
1474
#if defined(RUNTIME_CPUDETECT) && defined (CONFIG_GPL)
1475
#if defined(ARCH_X86)
1476
        // ordered per speed fasterst first
1477
        if(flags & SWS_CPU_CAPS_MMX2)
1478
                return swScale_MMX2;
1479
        else if(flags & SWS_CPU_CAPS_3DNOW)
1480
                return swScale_3DNow;
1481
        else if(flags & SWS_CPU_CAPS_MMX)
1482
                return swScale_MMX;
1483
        else
1484
                return swScale_C;
1485

    
1486
#else
1487
#ifdef ARCH_POWERPC
1488
        if(flags & SWS_CPU_CAPS_ALTIVEC)
1489
          return swScale_altivec;
1490
        else
1491
          return swScale_C;
1492
#endif
1493
        return swScale_C;
1494
#endif /* defined(ARCH_X86) */
1495
#else //RUNTIME_CPUDETECT
1496
#ifdef HAVE_MMX2
1497
        return swScale_MMX2;
1498
#elif defined (HAVE_3DNOW)
1499
        return swScale_3DNow;
1500
#elif defined (HAVE_MMX)
1501
        return swScale_MMX;
1502
#elif defined (HAVE_ALTIVEC)
1503
        return swScale_altivec;
1504
#else
1505
        return swScale_C;
1506
#endif
1507
#endif //!RUNTIME_CPUDETECT
1508
}
1509

    
1510
static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1511
             int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1512
        uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1513
        /* Copy Y plane */
1514
        if(dstStride[0]==srcStride[0] && srcStride[0] > 0)
1515
                memcpy(dst, src[0], srcSliceH*dstStride[0]);
1516
        else
1517
        {
1518
                int i;
1519
                uint8_t *srcPtr= src[0];
1520
                uint8_t *dstPtr= dst;
1521
                for(i=0; i<srcSliceH; i++)
1522
                {
1523
                        memcpy(dstPtr, srcPtr, c->srcW);
1524
                        srcPtr+= srcStride[0];
1525
                        dstPtr+= dstStride[0];
1526
                }
1527
        }
1528
        dst = dstParam[1] + dstStride[1]*srcSliceY/2;
1529
        if (c->dstFormat == PIX_FMT_NV12)
1530
                interleaveBytes( src[1],src[2],dst,c->srcW/2,srcSliceH/2,srcStride[1],srcStride[2],dstStride[0] );
1531
        else
1532
                interleaveBytes( src[2],src[1],dst,c->srcW/2,srcSliceH/2,srcStride[2],srcStride[1],dstStride[0] );
1533

    
1534
        return srcSliceH;
1535
}
1536

    
1537
static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1538
             int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1539
        uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1540

    
1541
        yv12toyuy2( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1542

    
1543
        return srcSliceH;
1544
}
1545

    
1546
static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1547
             int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1548
        uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1549

    
1550
        yv12touyvy( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1551

    
1552
        return srcSliceH;
1553
}
1554

    
1555
/* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
1556
static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1557
                           int srcSliceH, uint8_t* dst[], int dstStride[]){
1558
        const int srcFormat= c->srcFormat;
1559
        const int dstFormat= c->dstFormat;
1560
        const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
1561
        const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
1562
        const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
1563
        const int dstId= fmt_depth(dstFormat) >> 2;
1564
        void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
1565

    
1566
        /* BGR -> BGR */
1567
        if(   (isBGR(srcFormat) && isBGR(dstFormat))
1568
           || (isRGB(srcFormat) && isRGB(dstFormat))){
1569
                switch(srcId | (dstId<<4)){
1570
                case 0x34: conv= rgb16to15; break;
1571
                case 0x36: conv= rgb24to15; break;
1572
                case 0x38: conv= rgb32to15; break;
1573
                case 0x43: conv= rgb15to16; break;
1574
                case 0x46: conv= rgb24to16; break;
1575
                case 0x48: conv= rgb32to16; break;
1576
                case 0x63: conv= rgb15to24; break;
1577
                case 0x64: conv= rgb16to24; break;
1578
                case 0x68: conv= rgb32to24; break;
1579
                case 0x83: conv= rgb15to32; break;
1580
                case 0x84: conv= rgb16to32; break;
1581
                case 0x86: conv= rgb24to32; break;
1582
                default: av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n", 
1583
                                 sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
1584
                }
1585
        }else if(   (isBGR(srcFormat) && isRGB(dstFormat))
1586
                 || (isRGB(srcFormat) && isBGR(dstFormat))){
1587
                switch(srcId | (dstId<<4)){
1588
                case 0x33: conv= rgb15tobgr15; break;
1589
                case 0x34: conv= rgb16tobgr15; break;
1590
                case 0x36: conv= rgb24tobgr15; break;
1591
                case 0x38: conv= rgb32tobgr15; break;
1592
                case 0x43: conv= rgb15tobgr16; break;
1593
                case 0x44: conv= rgb16tobgr16; break;
1594
                case 0x46: conv= rgb24tobgr16; break;
1595
                case 0x48: conv= rgb32tobgr16; break;
1596
                case 0x63: conv= rgb15tobgr24; break;
1597
                case 0x64: conv= rgb16tobgr24; break;
1598
                case 0x66: conv= rgb24tobgr24; break;
1599
                case 0x68: conv= rgb32tobgr24; break;
1600
                case 0x83: conv= rgb15tobgr32; break;
1601
                case 0x84: conv= rgb16tobgr32; break;
1602
                case 0x86: conv= rgb24tobgr32; break;
1603
                case 0x88: conv= rgb32tobgr32; break;
1604
                default: av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n", 
1605
                                 sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
1606
                }
1607
        }else{
1608
                av_log(c, AV_LOG_ERROR, "swScaler: internal error %s -> %s converter\n", 
1609
                         sws_format_name(srcFormat), sws_format_name(dstFormat));
1610
        }
1611

    
1612
        if(dstStride[0]*srcBpp == srcStride[0]*dstBpp)
1613
                conv(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
1614
        else
1615
        {
1616
                int i;
1617
                uint8_t *srcPtr= src[0];
1618
                uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1619

    
1620
                for(i=0; i<srcSliceH; i++)
1621
                {
1622
                        conv(srcPtr, dstPtr, c->srcW*srcBpp);
1623
                        srcPtr+= srcStride[0];
1624
                        dstPtr+= dstStride[0];
1625
                }
1626
        }     
1627
        return srcSliceH;
1628
}
1629

    
1630
static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1631
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1632

    
1633
        rgb24toyv12(
1634
                src[0], 
1635
                dst[0]+ srcSliceY    *dstStride[0], 
1636
                dst[1]+(srcSliceY>>1)*dstStride[1], 
1637
                dst[2]+(srcSliceY>>1)*dstStride[2],
1638
                c->srcW, srcSliceH, 
1639
                dstStride[0], dstStride[1], srcStride[0]);
1640
        return srcSliceH;
1641
}
1642

    
1643
static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1644
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1645
        int i;
1646

    
1647
        /* copy Y */
1648
        if(srcStride[0]==dstStride[0] && srcStride[0] > 0) 
1649
                memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
1650
        else{
1651
                uint8_t *srcPtr= src[0];
1652
                uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1653

    
1654
                for(i=0; i<srcSliceH; i++)
1655
                {
1656
                        memcpy(dstPtr, srcPtr, c->srcW);
1657
                        srcPtr+= srcStride[0];
1658
                        dstPtr+= dstStride[0];
1659
                }
1660
        }
1661

    
1662
        if(c->dstFormat==PIX_FMT_YUV420P){
1663
                planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
1664
                planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
1665
        }else{
1666
                planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
1667
                planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
1668
        }
1669
        return srcSliceH;
1670
}
1671

    
1672
/* unscaled copy like stuff (assumes nearly identical formats) */
1673
static int simpleCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1674
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1675

    
1676
        if(isPacked(c->srcFormat))
1677
        {
1678
                if(dstStride[0]==srcStride[0] && srcStride[0] > 0)
1679
                        memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
1680
                else
1681
                {
1682
                        int i;
1683
                        uint8_t *srcPtr= src[0];
1684
                        uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1685
                        int length=0;
1686

    
1687
                        /* universal length finder */
1688
                        while(length+c->srcW <= FFABS(dstStride[0]) 
1689
                           && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
1690
                        ASSERT(length!=0);
1691

    
1692
                        for(i=0; i<srcSliceH; i++)
1693
                        {
1694
                                memcpy(dstPtr, srcPtr, length);
1695
                                srcPtr+= srcStride[0];
1696
                                dstPtr+= dstStride[0];
1697
                        }
1698
                }
1699
        }
1700
        else 
1701
        { /* Planar YUV or gray */
1702
                int plane;
1703
                for(plane=0; plane<3; plane++)
1704
                {
1705
                        int length= plane==0 ? c->srcW  : -((-c->srcW  )>>c->chrDstHSubSample);
1706
                        int y=      plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
1707
                        int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
1708

    
1709
                        if((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
1710
                        {
1711
                                if(!isGray(c->dstFormat))
1712
                                        memset(dst[plane], 128, dstStride[plane]*height);
1713
                        }
1714
                        else
1715
                        {
1716
                                if(dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
1717
                                        memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
1718
                                else
1719
                                {
1720
                                        int i;
1721
                                        uint8_t *srcPtr= src[plane];
1722
                                        uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
1723
                                        for(i=0; i<height; i++)
1724
                                        {
1725
                                                memcpy(dstPtr, srcPtr, length);
1726
                                                srcPtr+= srcStride[plane];
1727
                                                dstPtr+= dstStride[plane];
1728
                                        }
1729
                                }
1730
                        }
1731
                }
1732
        }
1733
        return srcSliceH;
1734
}
1735

    
1736
static int gray16togray(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1737
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1738

    
1739
        int length= c->srcW;
1740
        int y=      srcSliceY;
1741
        int height= srcSliceH;
1742
        int i, j;
1743
        uint8_t *srcPtr= src[0];
1744
        uint8_t *dstPtr= dst[0] + dstStride[0]*y;
1745

    
1746
        if(!isGray(c->dstFormat)){
1747
                int height= -((-srcSliceH)>>c->chrDstVSubSample);
1748
                memset(dst[1], 128, dstStride[1]*height);
1749
                memset(dst[2], 128, dstStride[2]*height);
1750
        }
1751
        if(c->srcFormat == PIX_FMT_GRAY16LE) srcPtr++;
1752
        for(i=0; i<height; i++)
1753
        {
1754
                for(j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
1755
                srcPtr+= srcStride[0];
1756
                dstPtr+= dstStride[0];
1757
        }
1758
        return srcSliceH;
1759
}
1760

    
1761
static int graytogray16(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1762
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1763

    
1764
        int length= c->srcW;
1765
        int y=      srcSliceY;
1766
        int height= srcSliceH;
1767
        int i, j;
1768
        uint8_t *srcPtr= src[0];
1769
        uint8_t *dstPtr= dst[0] + dstStride[0]*y;
1770
        for(i=0; i<height; i++)
1771
        {
1772
                for(j=0; j<length; j++)
1773
                {
1774
                        dstPtr[j<<1] = srcPtr[j];
1775
                        dstPtr[(j<<1)+1] = srcPtr[j];
1776
                }
1777
                srcPtr+= srcStride[0];
1778
                dstPtr+= dstStride[0];
1779
        }
1780
        return srcSliceH;
1781
}
1782

    
1783
static int gray16swap(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1784
             int srcSliceH, uint8_t* dst[], int dstStride[]){
1785

    
1786
        int length= c->srcW;
1787
        int y=      srcSliceY;
1788
        int height= srcSliceH;
1789
        int i, j;
1790
        uint16_t *srcPtr= src[0];
1791
        uint16_t *dstPtr= dst[0] + dstStride[0]*y/2;
1792
        for(i=0; i<height; i++)
1793
        {
1794
                for(j=0; j<length; j++) dstPtr[j] = bswap_16(srcPtr[j]);
1795
                srcPtr+= srcStride[0]/2;
1796
                dstPtr+= dstStride[0]/2;
1797
        }
1798
        return srcSliceH;
1799
}
1800

    
1801

    
1802
static void getSubSampleFactors(int *h, int *v, int format){
1803
        switch(format){
1804
        case PIX_FMT_UYVY422:
1805
        case PIX_FMT_YUYV422:
1806
                *h=1;
1807
                *v=0;
1808
                break;
1809
        case PIX_FMT_YUV420P:
1810
        case PIX_FMT_GRAY16BE:
1811
        case PIX_FMT_GRAY16LE:
1812
        case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
1813
        case PIX_FMT_NV12:
1814
        case PIX_FMT_NV21:
1815
                *h=1;
1816
                *v=1;
1817
                break;
1818
        case PIX_FMT_YUV410P:
1819
                *h=2;
1820
                *v=2;
1821
                break;
1822
        case PIX_FMT_YUV444P:
1823
                *h=0;
1824
                *v=0;
1825
                break;
1826
        case PIX_FMT_YUV422P:
1827
                *h=1;
1828
                *v=0;
1829
                break;
1830
        case PIX_FMT_YUV411P:
1831
                *h=2;
1832
                *v=0;
1833
                break;
1834
        default:
1835
                *h=0;
1836
                *v=0;
1837
                break;
1838
        }
1839
}
1840

    
1841
static uint16_t roundToInt16(int64_t f){
1842
        int r= (f + (1<<15))>>16;
1843
             if(r<-0x7FFF) return 0x8000;
1844
        else if(r> 0x7FFF) return 0x7FFF;
1845
        else               return r;
1846
}
1847

    
1848
/**
1849
 * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
1850
 * @param fullRange if 1 then the luma range is 0..255 if 0 its 16..235
1851
 * @return -1 if not supported
1852
 */
1853
int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
1854
        int64_t crv =  inv_table[0];
1855
        int64_t cbu =  inv_table[1];
1856
        int64_t cgu = -inv_table[2];
1857
        int64_t cgv = -inv_table[3];
1858
        int64_t cy  = 1<<16;
1859
        int64_t oy  = 0;
1860

    
1861
        if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1862
        memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
1863
        memcpy(c->dstColorspaceTable,     table, sizeof(int)*4);
1864

    
1865
        c->brightness= brightness;
1866
        c->contrast  = contrast;
1867
        c->saturation= saturation;
1868
        c->srcRange  = srcRange;
1869
        c->dstRange  = dstRange;
1870

    
1871
        c->uOffset=   0x0400040004000400LL;
1872
        c->vOffset=   0x0400040004000400LL;
1873

    
1874
        if(!srcRange){
1875
                cy= (cy*255) / 219;
1876
                oy= 16<<16;
1877
        }
1878

    
1879
        cy = (cy *contrast             )>>16;
1880
        crv= (crv*contrast * saturation)>>32;
1881
        cbu= (cbu*contrast * saturation)>>32;
1882
        cgu= (cgu*contrast * saturation)>>32;
1883
        cgv= (cgv*contrast * saturation)>>32;
1884

    
1885
        oy -= 256*brightness;
1886

    
1887
        c->yCoeff=    roundToInt16(cy *8192) * 0x0001000100010001ULL;
1888
        c->vrCoeff=   roundToInt16(crv*8192) * 0x0001000100010001ULL;
1889
        c->ubCoeff=   roundToInt16(cbu*8192) * 0x0001000100010001ULL;
1890
        c->vgCoeff=   roundToInt16(cgv*8192) * 0x0001000100010001ULL;
1891
        c->ugCoeff=   roundToInt16(cgu*8192) * 0x0001000100010001ULL;
1892
        c->yOffset=   roundToInt16(oy *   8) * 0x0001000100010001ULL;
1893

    
1894
        yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
1895
        //FIXME factorize
1896

    
1897
#ifdef COMPILE_ALTIVEC
1898
        if (c->flags & SWS_CPU_CAPS_ALTIVEC)
1899
            yuv2rgb_altivec_init_tables (c, inv_table, brightness, contrast, saturation);
1900
#endif        
1901
        return 0;
1902
}
1903

    
1904
/**
1905
 * @return -1 if not supported
1906
 */
1907
int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
1908
        if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1909

    
1910
        *inv_table = c->srcColorspaceTable;
1911
        *table     = c->dstColorspaceTable;
1912
        *srcRange  = c->srcRange;
1913
        *dstRange  = c->dstRange;
1914
        *brightness= c->brightness;
1915
        *contrast  = c->contrast;
1916
        *saturation= c->saturation;
1917
        
1918
        return 0;        
1919
}
1920

    
1921
static int handle_jpeg(int *format)
1922
{
1923
        switch (*format) {
1924
                case PIX_FMT_YUVJ420P:
1925
                        *format = PIX_FMT_YUV420P;
1926
                        return 1;
1927
                case PIX_FMT_YUVJ422P:
1928
                        *format = PIX_FMT_YUV422P;
1929
                        return 1;
1930
                case PIX_FMT_YUVJ444P:
1931
                        *format = PIX_FMT_YUV444P;
1932
                        return 1;
1933
                default:
1934
                        return 0;
1935
        }
1936
}
1937

    
1938
SwsContext *sws_getContext(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat, int flags,
1939
                         SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
1940

    
1941
        SwsContext *c;
1942
        int i;
1943
        int usesVFilter, usesHFilter;
1944
        int unscaled, needsDither;
1945
        int srcRange, dstRange;
1946
        SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
1947
#if defined(ARCH_X86)
1948
        if(flags & SWS_CPU_CAPS_MMX)
1949
                asm volatile("emms\n\t"::: "memory");
1950
#endif
1951

    
1952
#if !defined(RUNTIME_CPUDETECT) || !defined (CONFIG_GPL) //ensure that the flags match the compiled variant if cpudetect is off
1953
        flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC);
1954
#ifdef HAVE_MMX2
1955
        flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
1956
#elif defined (HAVE_3DNOW)
1957
        flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
1958
#elif defined (HAVE_MMX)
1959
        flags |= SWS_CPU_CAPS_MMX;
1960
#elif defined (HAVE_ALTIVEC)
1961
        flags |= SWS_CPU_CAPS_ALTIVEC;
1962
#endif
1963
#endif /* RUNTIME_CPUDETECT */
1964
        if(clip_table[512] != 255) globalInit();
1965
        if(rgb15to16 == NULL) sws_rgb2rgb_init(flags);
1966

    
1967
        unscaled = (srcW == dstW && srcH == dstH);
1968
        needsDither= (isBGR(dstFormat) || isRGB(dstFormat)) 
1969
                     && (fmt_depth(dstFormat))<24
1970
                     && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
1971

    
1972
        srcRange = handle_jpeg(&srcFormat);
1973
        dstRange = handle_jpeg(&dstFormat);
1974

    
1975
        if(!isSupportedIn(srcFormat)) 
1976
        {
1977
                av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input format\n", sws_format_name(srcFormat));
1978
                return NULL;
1979
        }
1980
        if(!isSupportedOut(dstFormat))
1981
        {
1982
                av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output format\n", sws_format_name(dstFormat));
1983
                return NULL;
1984
        }
1985

    
1986
        /* sanity check */
1987
        if(srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
1988
        {
1989
                 av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n", 
1990
                        srcW, srcH, dstW, dstH);
1991
                return NULL;
1992
        }
1993

    
1994
        if(!dstFilter) dstFilter= &dummyFilter;
1995
        if(!srcFilter) srcFilter= &dummyFilter;
1996

    
1997
        c= av_mallocz(sizeof(SwsContext));
1998

    
1999
        c->av_class = &sws_context_class;
2000
        c->srcW= srcW;
2001
        c->srcH= srcH;
2002
        c->dstW= dstW;
2003
        c->dstH= dstH;
2004
        c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
2005
        c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
2006
        c->flags= flags;
2007
        c->dstFormat= dstFormat;
2008
        c->srcFormat= srcFormat;
2009
        c->vRounder= 4* 0x0001000100010001ULL;
2010

    
2011
        usesHFilter= usesVFilter= 0;
2012
        if(dstFilter->lumV!=NULL && dstFilter->lumV->length>1) usesVFilter=1;
2013
        if(dstFilter->lumH!=NULL && dstFilter->lumH->length>1) usesHFilter=1;
2014
        if(dstFilter->chrV!=NULL && dstFilter->chrV->length>1) usesVFilter=1;
2015
        if(dstFilter->chrH!=NULL && dstFilter->chrH->length>1) usesHFilter=1;
2016
        if(srcFilter->lumV!=NULL && srcFilter->lumV->length>1) usesVFilter=1;
2017
        if(srcFilter->lumH!=NULL && srcFilter->lumH->length>1) usesHFilter=1;
2018
        if(srcFilter->chrV!=NULL && srcFilter->chrV->length>1) usesVFilter=1;
2019
        if(srcFilter->chrH!=NULL && srcFilter->chrH->length>1) usesHFilter=1;
2020

    
2021
        getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
2022
        getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
2023

    
2024
        // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
2025
        if((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
2026

    
2027
        // drop some chroma lines if the user wants it
2028
        c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
2029
        c->chrSrcVSubSample+= c->vChrDrop;
2030

    
2031
        // drop every 2. pixel for chroma calculation unless user wants full chroma
2032
        if((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)) 
2033
                c->chrSrcHSubSample=1;
2034

    
2035
        if(param){
2036
                c->param[0] = param[0];
2037
                c->param[1] = param[1];
2038
        }else{
2039
                c->param[0] =
2040
                c->param[1] = SWS_PARAM_DEFAULT;
2041
        }
2042

    
2043
        c->chrIntHSubSample= c->chrDstHSubSample;
2044
        c->chrIntVSubSample= c->chrSrcVSubSample;
2045

    
2046
        // note the -((-x)>>y) is so that we allways round toward +inf
2047
        c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
2048
        c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
2049
        c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
2050
        c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
2051

    
2052
        sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], srcRange, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16); 
2053

    
2054
        /* unscaled special Cases */
2055
        if(unscaled && !usesHFilter && !usesVFilter)
2056
        {
2057
                /* yv12_to_nv12 */
2058
                if(srcFormat == PIX_FMT_YUV420P && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
2059
                {
2060
                        c->swScale= PlanarToNV12Wrapper;
2061
                }
2062
#ifdef CONFIG_GPL
2063
                /* yuv2bgr */
2064
                if((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P) && (isBGR(dstFormat) || isRGB(dstFormat)))
2065
                {
2066
                        c->swScale= yuv2rgb_get_func_ptr(c);
2067
                }
2068
#endif
2069
                
2070
                if( srcFormat==PIX_FMT_YUV410P && dstFormat==PIX_FMT_YUV420P )
2071
                {
2072
                        c->swScale= yvu9toyv12Wrapper;
2073
                }
2074

    
2075
                /* bgr24toYV12 */
2076
                if(srcFormat==PIX_FMT_BGR24 && dstFormat==PIX_FMT_YUV420P)
2077
                        c->swScale= bgr24toyv12Wrapper;
2078
                
2079
                /* rgb/bgr -> rgb/bgr (no dither needed forms) */
2080
                if(   (isBGR(srcFormat) || isRGB(srcFormat))
2081
                   && (isBGR(dstFormat) || isRGB(dstFormat)) 
2082
                   && !needsDither)
2083
                        c->swScale= rgb2rgbWrapper;
2084

    
2085
                /* LQ converters if -sws 0 or -sws 4*/
2086
                if(c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
2087
                        /* rgb/bgr -> rgb/bgr (dither needed forms) */
2088
                        if(  (isBGR(srcFormat) || isRGB(srcFormat))
2089
                          && (isBGR(dstFormat) || isRGB(dstFormat)) 
2090
                          && needsDither)
2091
                                c->swScale= rgb2rgbWrapper;
2092

    
2093
                        /* yv12_to_yuy2 */
2094
                        if(srcFormat == PIX_FMT_YUV420P && 
2095
                            (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422))
2096
                        {
2097
                                if (dstFormat == PIX_FMT_YUYV422)
2098
                                    c->swScale= PlanarToYuy2Wrapper;
2099
                                else
2100
                                    c->swScale= PlanarToUyvyWrapper;
2101
                        }
2102
                }
2103

    
2104
#ifdef COMPILE_ALTIVEC
2105
                if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
2106
                    ((srcFormat == PIX_FMT_YUV420P && 
2107
                      (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422)))) {
2108
                  // unscaled YV12 -> packed YUV, we want speed
2109
                  if (dstFormat == PIX_FMT_YUYV422)
2110
                    c->swScale= yv12toyuy2_unscaled_altivec;
2111
                  else
2112
                    c->swScale= yv12touyvy_unscaled_altivec;
2113
                }
2114
#endif
2115

    
2116
                /* simple copy */
2117
                if(   srcFormat == dstFormat
2118
                   || (isPlanarYUV(srcFormat) && isGray(dstFormat))
2119
                   || (isPlanarYUV(dstFormat) && isGray(srcFormat))
2120
                  )
2121
                {
2122
                        c->swScale= simpleCopy;
2123
                }
2124

    
2125
                /* gray16{le,be} conversions */
2126
                if(isGray16(srcFormat) && (isPlanarYUV(dstFormat) || (dstFormat == PIX_FMT_GRAY8)))
2127
                {
2128
                        c->swScale= gray16togray;
2129
                }
2130
                if((isPlanarYUV(srcFormat) || (srcFormat == PIX_FMT_GRAY8)) && isGray16(dstFormat))
2131
                {
2132
                        c->swScale= graytogray16;
2133
                }
2134
                if(srcFormat != dstFormat && isGray16(srcFormat) && isGray16(dstFormat))
2135
                {
2136
                        c->swScale= gray16swap;
2137
                }                
2138

    
2139
                if(c->swScale){
2140
                        if(flags&SWS_PRINT_INFO)
2141
                                av_log(c, AV_LOG_INFO, "SwScaler: using unscaled %s -> %s special converter\n", 
2142
                                        sws_format_name(srcFormat), sws_format_name(dstFormat));
2143
                        return c;
2144
                }
2145
        }
2146

    
2147
        if(flags & SWS_CPU_CAPS_MMX2)
2148
        {
2149
                c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
2150
                if(!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
2151
                {
2152
                        if(flags&SWS_PRINT_INFO)
2153
                                av_log(c, AV_LOG_INFO, "SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
2154
                }
2155
                if(usesHFilter) c->canMMX2BeUsed=0;
2156
        }
2157
        else
2158
                c->canMMX2BeUsed=0;
2159

    
2160
        c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
2161
        c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
2162

    
2163
        // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
2164
        // but only for the FAST_BILINEAR mode otherwise do correct scaling
2165
        // n-2 is the last chrominance sample available
2166
        // this is not perfect, but noone shuld notice the difference, the more correct variant
2167
        // would be like the vertical one, but that would require some special code for the
2168
        // first and last pixel
2169
        if(flags&SWS_FAST_BILINEAR)
2170
        {
2171
                if(c->canMMX2BeUsed)
2172
                {
2173
                        c->lumXInc+= 20;
2174
                        c->chrXInc+= 20;
2175
                }
2176
                //we don't use the x86asm scaler if mmx is available
2177
                else if(flags & SWS_CPU_CAPS_MMX)
2178
                {
2179
                        c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
2180
                        c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
2181
                }
2182
        }
2183

    
2184
        /* precalculate horizontal scaler filter coefficients */
2185
        {
2186
                const int filterAlign=
2187
                  (flags & SWS_CPU_CAPS_MMX) ? 4 :
2188
                  (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2189
                  1;
2190

    
2191
                initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
2192
                                 srcW      ,       dstW, filterAlign, 1<<14,
2193
                                 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
2194
                                 srcFilter->lumH, dstFilter->lumH, c->param);
2195
                initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
2196
                                 c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
2197
                                 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2198
                                 srcFilter->chrH, dstFilter->chrH, c->param);
2199

    
2200
#define MAX_FUNNY_CODE_SIZE 10000
2201
#if defined(COMPILE_MMX2)
2202
// can't downscale !!!
2203
                if(c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
2204
                {
2205
#ifdef MAP_ANONYMOUS
2206
                        c->funnyYCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2207
                        c->funnyUVCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2208
#else
2209
                        c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
2210
                        c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
2211
#endif
2212

    
2213
                        c->lumMmx2Filter   = av_malloc((dstW        /8+8)*sizeof(int16_t));
2214
                        c->chrMmx2Filter   = av_malloc((c->chrDstW  /4+8)*sizeof(int16_t));
2215
                        c->lumMmx2FilterPos= av_malloc((dstW      /2/8+8)*sizeof(int32_t));
2216
                        c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
2217

    
2218
                        initMMX2HScaler(      dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
2219
                        initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
2220
                }
2221
#endif /* defined(COMPILE_MMX2) */
2222
        } // Init Horizontal stuff
2223

    
2224

    
2225

    
2226
        /* precalculate vertical scaler filter coefficients */
2227
        {
2228
                const int filterAlign=
2229
                  (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
2230
                  (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2231
                  1;
2232

    
2233
                initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
2234
                                srcH      ,        dstH, filterAlign, (1<<12)-4,
2235
                                (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
2236
                                srcFilter->lumV, dstFilter->lumV, c->param);
2237
                initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
2238
                                c->chrSrcH, c->chrDstH, filterAlign, (1<<12)-4,
2239
                                (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2240
                                srcFilter->chrV, dstFilter->chrV, c->param);
2241

    
2242
#ifdef HAVE_ALTIVEC
2243
                c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
2244
                c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
2245

    
2246
                for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
2247
                  int j;
2248
                  short *p = (short *)&c->vYCoeffsBank[i];
2249
                  for (j=0;j<8;j++)
2250
                    p[j] = c->vLumFilter[i];
2251
                }
2252

    
2253
                for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
2254
                  int j;
2255
                  short *p = (short *)&c->vCCoeffsBank[i];
2256
                  for (j=0;j<8;j++)
2257
                    p[j] = c->vChrFilter[i];
2258
                }
2259
#endif
2260
        }
2261

    
2262
        // Calculate Buffer Sizes so that they won't run out while handling these damn slices
2263
        c->vLumBufSize= c->vLumFilterSize;
2264
        c->vChrBufSize= c->vChrFilterSize;
2265
        for(i=0; i<dstH; i++)
2266
        {
2267
                int chrI= i*c->chrDstH / dstH;
2268
                int nextSlice= FFMAX(c->vLumFilterPos[i   ] + c->vLumFilterSize - 1,
2269
                                 ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
2270

    
2271
                nextSlice>>= c->chrSrcVSubSample;
2272
                nextSlice<<= c->chrSrcVSubSample;
2273
                if(c->vLumFilterPos[i   ] + c->vLumBufSize < nextSlice)
2274
                        c->vLumBufSize= nextSlice - c->vLumFilterPos[i   ];
2275
                if(c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
2276
                        c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
2277
        }
2278

    
2279
        // allocate pixbufs (we use dynamic allocation because otherwise we would need to
2280
        c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
2281
        c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
2282
        //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
2283
        /* align at 16 bytes for AltiVec */
2284
        for(i=0; i<c->vLumBufSize; i++)
2285
                c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_mallocz(4000);
2286
        for(i=0; i<c->vChrBufSize; i++)
2287
                c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc(8000);
2288

    
2289
        //try to avoid drawing green stuff between the right end and the stride end
2290
        for(i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000);
2291

    
2292
        ASSERT(c->chrDstH <= dstH)
2293

    
2294
        if(flags&SWS_PRINT_INFO)
2295
        {
2296
#ifdef DITHER1XBPP
2297
                char *dither= " dithered";
2298
#else
2299
                char *dither= "";
2300
#endif
2301
                if(flags&SWS_FAST_BILINEAR)
2302
                        av_log(c, AV_LOG_INFO, "SwScaler: FAST_BILINEAR scaler, ");
2303
                else if(flags&SWS_BILINEAR)
2304
                        av_log(c, AV_LOG_INFO, "SwScaler: BILINEAR scaler, ");
2305
                else if(flags&SWS_BICUBIC)
2306
                        av_log(c, AV_LOG_INFO, "SwScaler: BICUBIC scaler, ");
2307
                else if(flags&SWS_X)
2308
                        av_log(c, AV_LOG_INFO, "SwScaler: Experimental scaler, ");
2309
                else if(flags&SWS_POINT)
2310
                        av_log(c, AV_LOG_INFO, "SwScaler: Nearest Neighbor / POINT scaler, ");
2311
                else if(flags&SWS_AREA)
2312
                        av_log(c, AV_LOG_INFO, "SwScaler: Area Averageing scaler, ");
2313
                else if(flags&SWS_BICUBLIN)
2314
                        av_log(c, AV_LOG_INFO, "SwScaler: luma BICUBIC / chroma BILINEAR scaler, ");
2315
                else if(flags&SWS_GAUSS)
2316
                        av_log(c, AV_LOG_INFO, "SwScaler: Gaussian scaler, ");
2317
                else if(flags&SWS_SINC)
2318
                        av_log(c, AV_LOG_INFO, "SwScaler: Sinc scaler, ");
2319
                else if(flags&SWS_LANCZOS)
2320
                        av_log(c, AV_LOG_INFO, "SwScaler: Lanczos scaler, ");
2321
                else if(flags&SWS_SPLINE)
2322
                        av_log(c, AV_LOG_INFO, "SwScaler: Bicubic spline scaler, ");
2323
                else
2324
                        av_log(c, AV_LOG_INFO, "SwScaler: ehh flags invalid?! ");
2325

    
2326
                if(dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
2327
                        av_log(c, AV_LOG_INFO, "from %s to%s %s ", 
2328
                                sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
2329
                else
2330
                        av_log(c, AV_LOG_INFO, "from %s to %s ", 
2331
                                sws_format_name(srcFormat), sws_format_name(dstFormat));
2332

    
2333
                if(flags & SWS_CPU_CAPS_MMX2)
2334
                        av_log(c, AV_LOG_INFO, "using MMX2\n");
2335
                else if(flags & SWS_CPU_CAPS_3DNOW)
2336
                        av_log(c, AV_LOG_INFO, "using 3DNOW\n");
2337
                else if(flags & SWS_CPU_CAPS_MMX)
2338
                        av_log(c, AV_LOG_INFO, "using MMX\n");
2339
                else if(flags & SWS_CPU_CAPS_ALTIVEC)
2340
                        av_log(c, AV_LOG_INFO, "using AltiVec\n");
2341
                else 
2342
                        av_log(c, AV_LOG_INFO, "using C\n");
2343
        }
2344

    
2345
        if(flags & SWS_PRINT_INFO)
2346
        {
2347
                if(flags & SWS_CPU_CAPS_MMX)
2348
                {
2349
                        if(c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
2350
                                av_log(c, AV_LOG_VERBOSE, "SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
2351
                        else
2352
                        {
2353
                                if(c->hLumFilterSize==4)
2354
                                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
2355
                                else if(c->hLumFilterSize==8)
2356
                                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
2357
                                else
2358
                                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
2359

    
2360
                                if(c->hChrFilterSize==4)
2361
                                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
2362
                                else if(c->hChrFilterSize==8)
2363
                                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
2364
                                else
2365
                                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
2366
                        }
2367
                }
2368
                else
2369
                {
2370
#if defined(ARCH_X86)
2371
                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using X86-Asm scaler for horizontal scaling\n");
2372
#else
2373
                        if(flags & SWS_FAST_BILINEAR)
2374
                                av_log(c, AV_LOG_VERBOSE, "SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
2375
                        else
2376
                                av_log(c, AV_LOG_VERBOSE, "SwScaler: using C scaler for horizontal scaling\n");
2377
#endif
2378
                }
2379
                if(isPlanarYUV(dstFormat))
2380
                {
2381
                        if(c->vLumFilterSize==1)
2382
                                av_log(c, AV_LOG_VERBOSE, "SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2383
                        else
2384
                                av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2385
                }
2386
                else
2387
                {
2388
                        if(c->vLumFilterSize==1 && c->vChrFilterSize==2)
2389
                                av_log(c, AV_LOG_VERBOSE, "SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
2390
                                       "SwScaler:       2-tap scaler for vertical chrominance scaling (BGR)\n",(flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2391
                        else if(c->vLumFilterSize==2 && c->vChrFilterSize==2)
2392
                                av_log(c, AV_LOG_VERBOSE, "SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2393
                        else
2394
                                av_log(c, AV_LOG_VERBOSE, "SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2395
                }
2396

    
2397
                if(dstFormat==PIX_FMT_BGR24)
2398
                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR24 Converter\n",
2399
                                (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
2400
                else if(dstFormat==PIX_FMT_RGB32)
2401
                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2402
                else if(dstFormat==PIX_FMT_BGR565)
2403
                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2404
                else if(dstFormat==PIX_FMT_BGR555)
2405
                        av_log(c, AV_LOG_VERBOSE, "SwScaler: using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2406

    
2407
                av_log(c, AV_LOG_VERBOSE, "SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
2408
        }
2409
        if(flags & SWS_PRINT_INFO)
2410
        {
2411
                av_log(c, AV_LOG_DEBUG, "SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2412
                        c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
2413
                av_log(c, AV_LOG_DEBUG, "SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2414
                        c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
2415
        }
2416

    
2417
        c->swScale= getSwsFunc(flags);
2418
        return c;
2419
}
2420

    
2421
/**
2422
 * swscale warper, so we don't need to export the SwsContext.
2423
 * assumes planar YUV to be in YUV order instead of YVU
2424
 */
2425
int sws_scale(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2426
                           int srcSliceH, uint8_t* dst[], int dstStride[]){
2427
        if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
2428
            av_log(c, AV_LOG_ERROR, "swScaler: slices start in the middle!\n");
2429
            return 0;
2430
        }
2431
        if (c->sliceDir == 0) {
2432
            if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
2433
        }
2434

    
2435
        // copy strides, so they can safely be modified
2436
        if (c->sliceDir == 1) {
2437
            // slices go from top to bottom
2438
            int srcStride2[3]= {srcStride[0], srcStride[1], srcStride[2]};
2439
            int dstStride2[3]= {dstStride[0], dstStride[1], dstStride[2]};
2440
            return c->swScale(c, src, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
2441
        } else {
2442
            // slices go from bottom to top => we flip the image internally
2443
            uint8_t* src2[3]= {src[0] + (srcSliceH-1)*srcStride[0],
2444
                               src[1] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1],
2445
                               src[2] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2]
2446
            };
2447
            uint8_t* dst2[3]= {dst[0] + (c->dstH-1)*dstStride[0],
2448
                               dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
2449
                               dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2]};
2450
            int srcStride2[3]= {-srcStride[0], -srcStride[1], -srcStride[2]};
2451
            int dstStride2[3]= {-dstStride[0], -dstStride[1], -dstStride[2]};
2452
            
2453
            return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
2454
        }
2455
}
2456

    
2457
/**
2458
 * swscale warper, so we don't need to export the SwsContext
2459
 */
2460
int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2461
                           int srcSliceH, uint8_t* dst[], int dstStride[]){
2462
        return sws_scale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
2463
}
2464

    
2465
SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur, 
2466
                                float lumaSharpen, float chromaSharpen,
2467
                                float chromaHShift, float chromaVShift,
2468
                                int verbose)
2469
{
2470
        SwsFilter *filter= av_malloc(sizeof(SwsFilter));
2471

    
2472
        if(lumaGBlur!=0.0){
2473
                filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
2474
                filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
2475
        }else{
2476
                filter->lumH= sws_getIdentityVec();
2477
                filter->lumV= sws_getIdentityVec();
2478
        }
2479

    
2480
        if(chromaGBlur!=0.0){
2481
                filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
2482
                filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
2483
        }else{
2484
                filter->chrH= sws_getIdentityVec();
2485
                filter->chrV= sws_getIdentityVec();
2486
        }
2487

    
2488
        if(chromaSharpen!=0.0){
2489
                SwsVector *id= sws_getIdentityVec();
2490
                sws_scaleVec(filter->chrH, -chromaSharpen);
2491
                sws_scaleVec(filter->chrV, -chromaSharpen);
2492
                sws_addVec(filter->chrH, id);
2493
                sws_addVec(filter->chrV, id);
2494
                sws_freeVec(id);
2495
        }
2496

    
2497
        if(lumaSharpen!=0.0){
2498
                SwsVector *id= sws_getIdentityVec();
2499
                sws_scaleVec(filter->lumH, -lumaSharpen);
2500
                sws_scaleVec(filter->lumV, -lumaSharpen);
2501
                sws_addVec(filter->lumH, id);
2502
                sws_addVec(filter->lumV, id);
2503
                sws_freeVec(id);
2504
        }
2505

    
2506
        if(chromaHShift != 0.0)
2507
                sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
2508

    
2509
        if(chromaVShift != 0.0)
2510
                sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
2511

    
2512
        sws_normalizeVec(filter->chrH, 1.0);
2513
        sws_normalizeVec(filter->chrV, 1.0);
2514
        sws_normalizeVec(filter->lumH, 1.0);
2515
        sws_normalizeVec(filter->lumV, 1.0);
2516

    
2517
        if(verbose) sws_printVec(filter->chrH);
2518
        if(verbose) sws_printVec(filter->lumH);
2519

    
2520
        return filter;
2521
}
2522

    
2523
/**
2524
 * returns a normalized gaussian curve used to filter stuff
2525
 * quality=3 is high quality, lowwer is lowwer quality
2526
 */
2527
SwsVector *sws_getGaussianVec(double variance, double quality){
2528
        const int length= (int)(variance*quality + 0.5) | 1;
2529
        int i;
2530
        double *coeff= av_malloc(length*sizeof(double));
2531
        double middle= (length-1)*0.5;
2532
        SwsVector *vec= av_malloc(sizeof(SwsVector));
2533

    
2534
        vec->coeff= coeff;
2535
        vec->length= length;
2536

    
2537
        for(i=0; i<length; i++)
2538
        {
2539
                double dist= i-middle;
2540
                coeff[i]= exp( -dist*dist/(2*variance*variance) ) / sqrt(2*variance*PI);
2541
        }
2542

    
2543
        sws_normalizeVec(vec, 1.0);
2544

    
2545
        return vec;
2546
}
2547

    
2548
SwsVector *sws_getConstVec(double c, int length){
2549
        int i;
2550
        double *coeff= av_malloc(length*sizeof(double));
2551
        SwsVector *vec= av_malloc(sizeof(SwsVector));
2552

    
2553
        vec->coeff= coeff;
2554
        vec->length= length;
2555

    
2556
        for(i=0; i<length; i++)
2557
                coeff[i]= c;
2558

    
2559
        return vec;
2560
}
2561

    
2562

    
2563
SwsVector *sws_getIdentityVec(void){
2564
        return sws_getConstVec(1.0, 1);
2565
}
2566

    
2567
double sws_dcVec(SwsVector *a){
2568
        int i;
2569
        double sum=0;
2570

    
2571
        for(i=0; i<a->length; i++)
2572
                sum+= a->coeff[i];
2573

    
2574
        return sum;
2575
}
2576

    
2577
void sws_scaleVec(SwsVector *a, double scalar){
2578
        int i;
2579

    
2580
        for(i=0; i<a->length; i++)
2581
                a->coeff[i]*= scalar;
2582
}
2583

    
2584
void sws_normalizeVec(SwsVector *a, double height){
2585
        sws_scaleVec(a, height/sws_dcVec(a));
2586
}
2587

    
2588
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
2589
        int length= a->length + b->length - 1;
2590
        double *coeff= av_malloc(length*sizeof(double));
2591
        int i, j;
2592
        SwsVector *vec= av_malloc(sizeof(SwsVector));
2593

    
2594
        vec->coeff= coeff;
2595
        vec->length= length;
2596

    
2597
        for(i=0; i<length; i++) coeff[i]= 0.0;
2598

    
2599
        for(i=0; i<a->length; i++)
2600
        {
2601
                for(j=0; j<b->length; j++)
2602
                {
2603
                        coeff[i+j]+= a->coeff[i]*b->coeff[j];
2604
                }
2605
        }
2606

    
2607
        return vec;
2608
}
2609

    
2610
static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
2611
        int length= FFMAX(a->length, b->length);
2612
        double *coeff= av_malloc(length*sizeof(double));
2613
        int i;
2614
        SwsVector *vec= av_malloc(sizeof(SwsVector));
2615

    
2616
        vec->coeff= coeff;
2617
        vec->length= length;
2618

    
2619
        for(i=0; i<length; i++) coeff[i]= 0.0;
2620

    
2621
        for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2622
        for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
2623

    
2624
        return vec;
2625
}
2626

    
2627
static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
2628
        int length= FFMAX(a->length, b->length);
2629
        double *coeff= av_malloc(length*sizeof(double));
2630
        int i;
2631
        SwsVector *vec= av_malloc(sizeof(SwsVector));
2632

    
2633
        vec->coeff= coeff;
2634
        vec->length= length;
2635

    
2636
        for(i=0; i<length; i++) coeff[i]= 0.0;
2637

    
2638
        for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2639
        for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
2640

    
2641
        return vec;
2642
}
2643

    
2644
/* shift left / or right if "shift" is negative */
2645
static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
2646
        int length= a->length + FFABS(shift)*2;
2647
        double *coeff= av_malloc(length*sizeof(double));
2648
        int i;
2649
        SwsVector *vec= av_malloc(sizeof(SwsVector));
2650

    
2651
        vec->coeff= coeff;
2652
        vec->length= length;
2653

    
2654
        for(i=0; i<length; i++) coeff[i]= 0.0;
2655

    
2656
        for(i=0; i<a->length; i++)
2657
        {
2658
                coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
2659
        }
2660

    
2661
        return vec;
2662
}
2663

    
2664
void sws_shiftVec(SwsVector *a, int shift){
2665
        SwsVector *shifted= sws_getShiftedVec(a, shift);
2666
        av_free(a->coeff);
2667
        a->coeff= shifted->coeff;
2668
        a->length= shifted->length;
2669
        av_free(shifted);
2670
}
2671

    
2672
void sws_addVec(SwsVector *a, SwsVector *b){
2673
        SwsVector *sum= sws_sumVec(a, b);
2674
        av_free(a->coeff);
2675
        a->coeff= sum->coeff;
2676
        a->length= sum->length;
2677
        av_free(sum);
2678
}
2679

    
2680
void sws_subVec(SwsVector *a, SwsVector *b){
2681
        SwsVector *diff= sws_diffVec(a, b);
2682
        av_free(a->coeff);
2683
        a->coeff= diff->coeff;
2684
        a->length= diff->length;
2685
        av_free(diff);
2686
}
2687

    
2688
void sws_convVec(SwsVector *a, SwsVector *b){
2689
        SwsVector *conv= sws_getConvVec(a, b);
2690
        av_free(a->coeff);  
2691
        a->coeff= conv->coeff;
2692
        a->length= conv->length;
2693
        av_free(conv);
2694
}
2695

    
2696
SwsVector *sws_cloneVec(SwsVector *a){
2697
        double *coeff= av_malloc(a->length*sizeof(double));
2698
        int i;
2699
        SwsVector *vec= av_malloc(sizeof(SwsVector));
2700

    
2701
        vec->coeff= coeff;
2702
        vec->length= a->length;
2703

    
2704
        for(i=0; i<a->length; i++) coeff[i]= a->coeff[i];
2705

    
2706
        return vec;
2707
}
2708

    
2709
void sws_printVec(SwsVector *a){
2710
        int i;
2711
        double max=0;
2712
        double min=0;
2713
        double range;
2714

    
2715
        for(i=0; i<a->length; i++)
2716
                if(a->coeff[i]>max) max= a->coeff[i];
2717

    
2718
        for(i=0; i<a->length; i++)
2719
                if(a->coeff[i]<min) min= a->coeff[i];
2720

    
2721
        range= max - min;
2722

    
2723
        for(i=0; i<a->length; i++)
2724
        {
2725
                int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
2726
                av_log(NULL, AV_LOG_DEBUG, "%1.3f ", a->coeff[i]);
2727
                for(;x>0; x--) av_log(NULL, AV_LOG_DEBUG, " ");
2728
                av_log(NULL, AV_LOG_DEBUG, "|\n");
2729
        }
2730
}
2731

    
2732
void sws_freeVec(SwsVector *a){
2733
        if(!a) return;
2734
        av_free(a->coeff);
2735
        a->coeff=NULL;
2736
        a->length=0;
2737
        av_free(a);
2738
}
2739

    
2740
void sws_freeFilter(SwsFilter *filter){
2741
        if(!filter) return;
2742

    
2743
        if(filter->lumH) sws_freeVec(filter->lumH);
2744
        if(filter->lumV) sws_freeVec(filter->lumV);
2745
        if(filter->chrH) sws_freeVec(filter->chrH);
2746
        if(filter->chrV) sws_freeVec(filter->chrV);
2747
        av_free(filter);
2748
}
2749

    
2750

    
2751
void sws_freeContext(SwsContext *c){
2752
        int i;
2753
        if(!c) return;
2754

    
2755
        if(c->lumPixBuf)
2756
        {
2757
                for(i=0; i<c->vLumBufSize; i++)
2758
                {
2759
                        av_free(c->lumPixBuf[i]);
2760
                        c->lumPixBuf[i]=NULL;
2761
                }
2762
                av_free(c->lumPixBuf);
2763
                c->lumPixBuf=NULL;
2764
        }
2765

    
2766
        if(c->chrPixBuf)
2767
        {
2768
                for(i=0; i<c->vChrBufSize; i++)
2769
                {
2770
                        av_free(c->chrPixBuf[i]);
2771
                        c->chrPixBuf[i]=NULL;
2772
                }
2773
                av_free(c->chrPixBuf);
2774
                c->chrPixBuf=NULL;
2775
        }
2776

    
2777
        av_free(c->vLumFilter);
2778
        c->vLumFilter = NULL;
2779
        av_free(c->vChrFilter);
2780
        c->vChrFilter = NULL;
2781
        av_free(c->hLumFilter);
2782
        c->hLumFilter = NULL;
2783
        av_free(c->hChrFilter);
2784
        c->hChrFilter = NULL;
2785
#ifdef HAVE_ALTIVEC
2786
        av_free(c->vYCoeffsBank);
2787
        c->vYCoeffsBank = NULL;
2788
        av_free(c->vCCoeffsBank);
2789
        c->vCCoeffsBank = NULL;
2790
#endif
2791

    
2792
        av_free(c->vLumFilterPos);
2793
        c->vLumFilterPos = NULL;
2794
        av_free(c->vChrFilterPos);
2795
        c->vChrFilterPos = NULL;
2796
        av_free(c->hLumFilterPos);
2797
        c->hLumFilterPos = NULL;
2798
        av_free(c->hChrFilterPos);
2799
        c->hChrFilterPos = NULL;
2800

    
2801
#if defined(ARCH_X86) && defined(CONFIG_GPL)
2802
#ifdef MAP_ANONYMOUS
2803
        if(c->funnyYCode) munmap(c->funnyYCode, MAX_FUNNY_CODE_SIZE);
2804
        if(c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
2805
#else
2806
        av_free(c->funnyYCode);
2807
        av_free(c->funnyUVCode);
2808
#endif
2809
        c->funnyYCode=NULL;
2810
        c->funnyUVCode=NULL;
2811
#endif /* defined(ARCH_X86) */
2812

    
2813
        av_free(c->lumMmx2Filter);
2814
        c->lumMmx2Filter=NULL;
2815
        av_free(c->chrMmx2Filter);
2816
        c->chrMmx2Filter=NULL;
2817
        av_free(c->lumMmx2FilterPos);
2818
        c->lumMmx2FilterPos=NULL;
2819
        av_free(c->chrMmx2FilterPos);
2820
        c->chrMmx2FilterPos=NULL;
2821
        av_free(c->yuvTable);
2822
        c->yuvTable=NULL;
2823

    
2824
        av_free(c);
2825
}
2826

    
2827
/**
2828
 * Checks if context is valid or reallocs a new one instead.
2829
 * If context is NULL, just calls sws_getContext() to get a new one.
2830
 * Otherwise, checks if the parameters are the same already saved in context.
2831
 * If that is the case, returns the current context.
2832
 * Otherwise, frees context and gets a new one.
2833
 *
2834
 * Be warned that srcFilter, dstFilter are not checked, they are
2835
 * asumed to remain valid.
2836
 */
2837
struct SwsContext *sws_getCachedContext(struct SwsContext *context,
2838
                        int srcW, int srcH, int srcFormat,
2839
                        int dstW, int dstH, int dstFormat, int flags,
2840
                        SwsFilter *srcFilter, SwsFilter *dstFilter, double *param)
2841
{
2842
    if (context != NULL) {
2843
        if ((context->srcW != srcW) || (context->srcH != srcH) ||
2844
            (context->srcFormat != srcFormat) ||
2845
            (context->dstW != dstW) || (context->dstH != dstH) ||
2846
            (context->dstFormat != dstFormat) || (context->flags != flags) ||
2847
            (context->param != param))
2848
        {
2849
            sws_freeContext(context);
2850
            context = NULL;
2851
        }
2852
    }
2853
    if (context == NULL) {
2854
        return sws_getContext(srcW, srcH, srcFormat,
2855
                        dstW, dstH, dstFormat, flags,
2856
                        srcFilter, dstFilter, param);
2857
    }
2858
    return context;
2859
}
2860