Statistics
| Branch: | Revision:

ffmpeg / libswscale / swscale.c @ e40b183d

History | View | Annotate | Download (97.8 KB)

1
/*
2
 * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3
 *
4
 * This file is part of FFmpeg.
5
 *
6
 * FFmpeg is free software; you can redistribute it and/or modify
7
 * it under the terms of the GNU General Public License as published by
8
 * the Free Software Foundation; either version 2 of the License, or
9
 * (at your option) any later version.
10
 *
11
 * FFmpeg is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 * GNU General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU General Public License
17
 * along with FFmpeg; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19
 *
20
 * the C code (not assembly, mmx, ...) of this file can be used
21
 * under the LGPL license too
22
 */
23

    
24
/*
25
  supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09, PAL8
26
  supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
27
  {BGR,RGB}{1,4,8,15,16} support dithering
28

29
  unscaled special converters (YV12=I420=IYUV, Y800=Y8)
30
  YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
31
  x -> x
32
  YUV9 -> YV12
33
  YUV9/YV12 -> Y800
34
  Y800 -> YUV9/YV12
35
  BGR24 -> BGR32 & RGB24 -> RGB32
36
  BGR32 -> BGR24 & RGB32 -> RGB24
37
  BGR15 -> BGR16
38
*/
39

    
40
/*
41
tested special converters (most are tested actually, but I did not write it down ...)
42
 YV12 -> BGR16
43
 YV12 -> YV12
44
 BGR15 -> BGR16
45
 BGR16 -> BGR16
46
 YVU9 -> YV12
47

48
untested special converters
49
  YV12/I420 -> BGR15/BGR24/BGR32 (it is the yuv2rgb stuff, so it should be ok)
50
  YV12/I420 -> YV12/I420
51
  YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
52
  BGR24 -> BGR32 & RGB24 -> RGB32
53
  BGR32 -> BGR24 & RGB32 -> RGB24
54
  BGR24 -> YV12
55
*/
56

    
57
#include <inttypes.h>
58
#include <string.h>
59
#include <math.h>
60
#include <stdio.h>
61
#include <unistd.h>
62
#include "config.h"
63
#include <assert.h>
64
#ifdef HAVE_SYS_MMAN_H
65
#include <sys/mman.h>
66
#if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
67
#define MAP_ANONYMOUS MAP_ANON
68
#endif
69
#endif
70
#include "swscale.h"
71
#include "swscale_internal.h"
72
#include "rgb2rgb.h"
73
#include "libavutil/x86_cpu.h"
74
#include "libavutil/bswap.h"
75

    
76
#undef MOVNTQ
77
#undef PAVGB
78

    
79
//#undef HAVE_MMX2
80
//#define HAVE_3DNOW
81
//#undef HAVE_MMX
82
//#undef ARCH_X86
83
//#define WORDS_BIGENDIAN
84
#define DITHER1XBPP
85

    
86
#define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
87

    
88
#define RET 0xC3 //near return opcode for X86
89

    
90
#ifdef M_PI
91
#define PI M_PI
92
#else
93
#define PI 3.14159265358979323846
94
#endif
95

    
96
#define isSupportedIn(x)    (       \
97
           (x)==PIX_FMT_YUV420P     \
98
        || (x)==PIX_FMT_YUVA420P    \
99
        || (x)==PIX_FMT_YUYV422     \
100
        || (x)==PIX_FMT_UYVY422     \
101
        || (x)==PIX_FMT_RGB32       \
102
        || (x)==PIX_FMT_BGR24       \
103
        || (x)==PIX_FMT_BGR565      \
104
        || (x)==PIX_FMT_BGR555      \
105
        || (x)==PIX_FMT_BGR32       \
106
        || (x)==PIX_FMT_RGB24       \
107
        || (x)==PIX_FMT_RGB565      \
108
        || (x)==PIX_FMT_RGB555      \
109
        || (x)==PIX_FMT_GRAY8       \
110
        || (x)==PIX_FMT_YUV410P     \
111
        || (x)==PIX_FMT_GRAY16BE    \
112
        || (x)==PIX_FMT_GRAY16LE    \
113
        || (x)==PIX_FMT_YUV444P     \
114
        || (x)==PIX_FMT_YUV422P     \
115
        || (x)==PIX_FMT_YUV411P     \
116
        || (x)==PIX_FMT_PAL8        \
117
        || (x)==PIX_FMT_BGR8        \
118
        || (x)==PIX_FMT_RGB8        \
119
        || (x)==PIX_FMT_BGR4_BYTE   \
120
        || (x)==PIX_FMT_RGB4_BYTE   \
121
        || (x)==PIX_FMT_YUV440P     \
122
    )
123
#define isSupportedOut(x)   (       \
124
           (x)==PIX_FMT_YUV420P     \
125
        || (x)==PIX_FMT_YUYV422     \
126
        || (x)==PIX_FMT_UYVY422     \
127
        || (x)==PIX_FMT_YUV444P     \
128
        || (x)==PIX_FMT_YUV422P     \
129
        || (x)==PIX_FMT_YUV411P     \
130
        || isRGB(x)                 \
131
        || isBGR(x)                 \
132
        || (x)==PIX_FMT_NV12        \
133
        || (x)==PIX_FMT_NV21        \
134
        || (x)==PIX_FMT_GRAY16BE    \
135
        || (x)==PIX_FMT_GRAY16LE    \
136
        || (x)==PIX_FMT_GRAY8       \
137
        || (x)==PIX_FMT_YUV410P     \
138
    )
139
#define isPacked(x)         (       \
140
           (x)==PIX_FMT_PAL8        \
141
        || (x)==PIX_FMT_YUYV422     \
142
        || (x)==PIX_FMT_UYVY422     \
143
        || isRGB(x)                 \
144
        || isBGR(x)                 \
145
    )
146

    
147
#define RGB2YUV_SHIFT 16
148
#define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
149
#define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
150
#define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
151
#define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
152
#define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
153
#define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
154
#define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
155
#define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
156
#define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
157

    
158
extern const int32_t Inverse_Table_6_9[8][4];
159

    
160
/*
161
NOTES
162
Special versions: fast Y 1:1 scaling (no interpolation in y direction)
163

164
TODO
165
more intelligent misalignment avoidance for the horizontal scaler
166
write special vertical cubic upscale version
167
Optimize C code (yv12 / minmax)
168
add support for packed pixel yuv input & output
169
add support for Y8 output
170
optimize bgr24 & bgr32
171
add BGR4 output support
172
write special BGR->BGR scaler
173
*/
174

    
175
#if defined(ARCH_X86) && defined (CONFIG_GPL)
176
DECLARE_ASM_CONST(8, uint64_t, bF8)=       0xF8F8F8F8F8F8F8F8LL;
177
DECLARE_ASM_CONST(8, uint64_t, bFC)=       0xFCFCFCFCFCFCFCFCLL;
178
DECLARE_ASM_CONST(8, uint64_t, w10)=       0x0010001000100010LL;
179
DECLARE_ASM_CONST(8, uint64_t, w02)=       0x0002000200020002LL;
180
DECLARE_ASM_CONST(8, uint64_t, bm00001111)=0x00000000FFFFFFFFLL;
181
DECLARE_ASM_CONST(8, uint64_t, bm00000111)=0x0000000000FFFFFFLL;
182
DECLARE_ASM_CONST(8, uint64_t, bm11111000)=0xFFFFFFFFFF000000LL;
183
DECLARE_ASM_CONST(8, uint64_t, bm01010101)=0x00FF00FF00FF00FFLL;
184

    
185
static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
186
static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
187
static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
188
static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
189

    
190
const DECLARE_ALIGNED(8, uint64_t, ff_dither4[2]) = {
191
        0x0103010301030103LL,
192
        0x0200020002000200LL,};
193

    
194
const DECLARE_ALIGNED(8, uint64_t, ff_dither8[2]) = {
195
        0x0602060206020602LL,
196
        0x0004000400040004LL,};
197

    
198
DECLARE_ASM_CONST(8, uint64_t, b16Mask)=   0x001F001F001F001FLL;
199
DECLARE_ASM_CONST(8, uint64_t, g16Mask)=   0x07E007E007E007E0LL;
200
DECLARE_ASM_CONST(8, uint64_t, r16Mask)=   0xF800F800F800F800LL;
201
DECLARE_ASM_CONST(8, uint64_t, b15Mask)=   0x001F001F001F001FLL;
202
DECLARE_ASM_CONST(8, uint64_t, g15Mask)=   0x03E003E003E003E0LL;
203
DECLARE_ASM_CONST(8, uint64_t, r15Mask)=   0x7C007C007C007C00LL;
204

    
205
DECLARE_ALIGNED(8, const uint64_t, ff_M24A)         = 0x00FF0000FF0000FFLL;
206
DECLARE_ALIGNED(8, const uint64_t, ff_M24B)         = 0xFF0000FF0000FF00LL;
207
DECLARE_ALIGNED(8, const uint64_t, ff_M24C)         = 0x0000FF0000FF0000LL;
208

    
209
#ifdef FAST_BGR2YV12
210
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff)   = 0x000000210041000DULL;
211
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff)   = 0x0000FFEEFFDC0038ULL;
212
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff)   = 0x00000038FFD2FFF8ULL;
213
#else
214
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff)   = 0x000020E540830C8BULL;
215
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff)   = 0x0000ED0FDAC23831ULL;
216
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff)   = 0x00003831D0E6F6EAULL;
217
#endif /* FAST_BGR2YV12 */
218
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YOffset)  = 0x1010101010101010ULL;
219
DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UVOffset) = 0x8080808080808080ULL;
220
DECLARE_ALIGNED(8, const uint64_t, ff_w1111)        = 0x0001000100010001ULL;
221
#endif /* defined(ARCH_X86) */
222

    
223
// clipping helper table for C implementations:
224
static unsigned char clip_table[768];
225

    
226
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
227

    
228
extern const uint8_t dither_2x2_4[2][8];
229
extern const uint8_t dither_2x2_8[2][8];
230
extern const uint8_t dither_8x8_32[8][8];
231
extern const uint8_t dither_8x8_73[8][8];
232
extern const uint8_t dither_8x8_220[8][8];
233

    
234
const char *sws_format_name(enum PixelFormat format)
235
{
236
    switch (format) {
237
        case PIX_FMT_YUV420P:
238
            return "yuv420p";
239
        case PIX_FMT_YUVA420P:
240
            return "yuva420p";
241
        case PIX_FMT_YUYV422:
242
            return "yuyv422";
243
        case PIX_FMT_RGB24:
244
            return "rgb24";
245
        case PIX_FMT_BGR24:
246
            return "bgr24";
247
        case PIX_FMT_YUV422P:
248
            return "yuv422p";
249
        case PIX_FMT_YUV444P:
250
            return "yuv444p";
251
        case PIX_FMT_RGB32:
252
            return "rgb32";
253
        case PIX_FMT_YUV410P:
254
            return "yuv410p";
255
        case PIX_FMT_YUV411P:
256
            return "yuv411p";
257
        case PIX_FMT_RGB565:
258
            return "rgb565";
259
        case PIX_FMT_RGB555:
260
            return "rgb555";
261
        case PIX_FMT_GRAY16BE:
262
            return "gray16be";
263
        case PIX_FMT_GRAY16LE:
264
            return "gray16le";
265
        case PIX_FMT_GRAY8:
266
            return "gray8";
267
        case PIX_FMT_MONOWHITE:
268
            return "mono white";
269
        case PIX_FMT_MONOBLACK:
270
            return "mono black";
271
        case PIX_FMT_PAL8:
272
            return "Palette";
273
        case PIX_FMT_YUVJ420P:
274
            return "yuvj420p";
275
        case PIX_FMT_YUVJ422P:
276
            return "yuvj422p";
277
        case PIX_FMT_YUVJ444P:
278
            return "yuvj444p";
279
        case PIX_FMT_XVMC_MPEG2_MC:
280
            return "xvmc_mpeg2_mc";
281
        case PIX_FMT_XVMC_MPEG2_IDCT:
282
            return "xvmc_mpeg2_idct";
283
        case PIX_FMT_UYVY422:
284
            return "uyvy422";
285
        case PIX_FMT_UYYVYY411:
286
            return "uyyvyy411";
287
        case PIX_FMT_RGB32_1:
288
            return "rgb32x";
289
        case PIX_FMT_BGR32_1:
290
            return "bgr32x";
291
        case PIX_FMT_BGR32:
292
            return "bgr32";
293
        case PIX_FMT_BGR565:
294
            return "bgr565";
295
        case PIX_FMT_BGR555:
296
            return "bgr555";
297
        case PIX_FMT_BGR8:
298
            return "bgr8";
299
        case PIX_FMT_BGR4:
300
            return "bgr4";
301
        case PIX_FMT_BGR4_BYTE:
302
            return "bgr4 byte";
303
        case PIX_FMT_RGB8:
304
            return "rgb8";
305
        case PIX_FMT_RGB4:
306
            return "rgb4";
307
        case PIX_FMT_RGB4_BYTE:
308
            return "rgb4 byte";
309
        case PIX_FMT_NV12:
310
            return "nv12";
311
        case PIX_FMT_NV21:
312
            return "nv21";
313
        case PIX_FMT_YUV440P:
314
            return "yuv440p";
315
        default:
316
            return "Unknown format";
317
    }
318
}
319

    
320
static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
321
                               int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
322
                               uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
323
{
324
    //FIXME Optimize (just quickly writen not opti..)
325
    int i;
326
    for (i=0; i<dstW; i++)
327
    {
328
        int val=1<<18;
329
        int j;
330
        for (j=0; j<lumFilterSize; j++)
331
            val += lumSrc[j][i] * lumFilter[j];
332

    
333
        dest[i]= av_clip_uint8(val>>19);
334
    }
335

    
336
    if (uDest)
337
        for (i=0; i<chrDstW; i++)
338
        {
339
            int u=1<<18;
340
            int v=1<<18;
341
            int j;
342
            for (j=0; j<chrFilterSize; j++)
343
            {
344
                u += chrSrc[j][i] * chrFilter[j];
345
                v += chrSrc[j][i + VOFW] * chrFilter[j];
346
            }
347

    
348
            uDest[i]= av_clip_uint8(u>>19);
349
            vDest[i]= av_clip_uint8(v>>19);
350
        }
351
}
352

    
353
static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
354
                                int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
355
                                uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
356
{
357
    //FIXME Optimize (just quickly writen not opti..)
358
    int i;
359
    for (i=0; i<dstW; i++)
360
    {
361
        int val=1<<18;
362
        int j;
363
        for (j=0; j<lumFilterSize; j++)
364
            val += lumSrc[j][i] * lumFilter[j];
365

    
366
        dest[i]= av_clip_uint8(val>>19);
367
    }
368

    
369
    if (!uDest)
370
        return;
371

    
372
    if (dstFormat == PIX_FMT_NV12)
373
        for (i=0; i<chrDstW; i++)
374
        {
375
            int u=1<<18;
376
            int v=1<<18;
377
            int j;
378
            for (j=0; j<chrFilterSize; j++)
379
            {
380
                u += chrSrc[j][i] * chrFilter[j];
381
                v += chrSrc[j][i + VOFW] * chrFilter[j];
382
            }
383

    
384
            uDest[2*i]= av_clip_uint8(u>>19);
385
            uDest[2*i+1]= av_clip_uint8(v>>19);
386
        }
387
    else
388
        for (i=0; i<chrDstW; i++)
389
        {
390
            int u=1<<18;
391
            int v=1<<18;
392
            int j;
393
            for (j=0; j<chrFilterSize; j++)
394
            {
395
                u += chrSrc[j][i] * chrFilter[j];
396
                v += chrSrc[j][i + VOFW] * chrFilter[j];
397
            }
398

    
399
            uDest[2*i]= av_clip_uint8(v>>19);
400
            uDest[2*i+1]= av_clip_uint8(u>>19);
401
        }
402
}
403

    
404
#define YSCALE_YUV_2_PACKEDX_C(type) \
405
    for (i=0; i<(dstW>>1); i++){\
406
        int j;\
407
        int Y1 = 1<<18;\
408
        int Y2 = 1<<18;\
409
        int U  = 1<<18;\
410
        int V  = 1<<18;\
411
        type av_unused *r, *b, *g;\
412
        const int i2= 2*i;\
413
        \
414
        for (j=0; j<lumFilterSize; j++)\
415
        {\
416
            Y1 += lumSrc[j][i2] * lumFilter[j];\
417
            Y2 += lumSrc[j][i2+1] * lumFilter[j];\
418
        }\
419
        for (j=0; j<chrFilterSize; j++)\
420
        {\
421
            U += chrSrc[j][i] * chrFilter[j];\
422
            V += chrSrc[j][i+VOFW] * chrFilter[j];\
423
        }\
424
        Y1>>=19;\
425
        Y2>>=19;\
426
        U >>=19;\
427
        V >>=19;\
428
        if ((Y1|Y2|U|V)&256)\
429
        {\
430
            if (Y1>255)   Y1=255; \
431
            else if (Y1<0)Y1=0;   \
432
            if (Y2>255)   Y2=255; \
433
            else if (Y2<0)Y2=0;   \
434
            if (U>255)    U=255;  \
435
            else if (U<0) U=0;    \
436
            if (V>255)    V=255;  \
437
            else if (V<0) V=0;    \
438
        }
439

    
440
#define YSCALE_YUV_2_RGBX_C(type) \
441
    YSCALE_YUV_2_PACKEDX_C(type)  \
442
    r = (type *)c->table_rV[V];   \
443
    g = (type *)(c->table_gU[U] + c->table_gV[V]); \
444
    b = (type *)c->table_bU[U];   \
445

    
446
#define YSCALE_YUV_2_PACKED2_C   \
447
    for (i=0; i<(dstW>>1); i++){ \
448
        const int i2= 2*i;       \
449
        int Y1= (buf0[i2  ]*yalpha1+buf1[i2  ]*yalpha)>>19;           \
450
        int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19;           \
451
        int U= (uvbuf0[i     ]*uvalpha1+uvbuf1[i     ]*uvalpha)>>19;  \
452
        int V= (uvbuf0[i+VOFW]*uvalpha1+uvbuf1[i+VOFW]*uvalpha)>>19;  \
453

    
454
#define YSCALE_YUV_2_RGB2_C(type) \
455
    YSCALE_YUV_2_PACKED2_C\
456
    type *r, *b, *g;\
457
    r = (type *)c->table_rV[V];\
458
    g = (type *)(c->table_gU[U] + c->table_gV[V]);\
459
    b = (type *)c->table_bU[U];\
460

    
461
#define YSCALE_YUV_2_PACKED1_C \
462
    for (i=0; i<(dstW>>1); i++){\
463
        const int i2= 2*i;\
464
        int Y1= buf0[i2  ]>>7;\
465
        int Y2= buf0[i2+1]>>7;\
466
        int U= (uvbuf1[i     ])>>7;\
467
        int V= (uvbuf1[i+VOFW])>>7;\
468

    
469
#define YSCALE_YUV_2_RGB1_C(type) \
470
    YSCALE_YUV_2_PACKED1_C\
471
    type *r, *b, *g;\
472
    r = (type *)c->table_rV[V];\
473
    g = (type *)(c->table_gU[U] + c->table_gV[V]);\
474
    b = (type *)c->table_bU[U];\
475

    
476
#define YSCALE_YUV_2_PACKED1B_C \
477
    for (i=0; i<(dstW>>1); i++){\
478
        const int i2= 2*i;\
479
        int Y1= buf0[i2  ]>>7;\
480
        int Y2= buf0[i2+1]>>7;\
481
        int U= (uvbuf0[i     ] + uvbuf1[i     ])>>8;\
482
        int V= (uvbuf0[i+VOFW] + uvbuf1[i+VOFW])>>8;\
483

    
484
#define YSCALE_YUV_2_RGB1B_C(type) \
485
    YSCALE_YUV_2_PACKED1B_C\
486
    type *r, *b, *g;\
487
    r = (type *)c->table_rV[V];\
488
    g = (type *)(c->table_gU[U] + c->table_gV[V]);\
489
    b = (type *)c->table_bU[U];\
490

    
491
#define YSCALE_YUV_2_ANYRGB_C(func, func2)\
492
    switch(c->dstFormat)\
493
    {\
494
    case PIX_FMT_RGB32:\
495
    case PIX_FMT_BGR32:\
496
        func(uint32_t)\
497
            ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
498
            ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
499
        }                \
500
        break;\
501
    case PIX_FMT_RGB24:\
502
        func(uint8_t)\
503
            ((uint8_t*)dest)[0]= r[Y1];\
504
            ((uint8_t*)dest)[1]= g[Y1];\
505
            ((uint8_t*)dest)[2]= b[Y1];\
506
            ((uint8_t*)dest)[3]= r[Y2];\
507
            ((uint8_t*)dest)[4]= g[Y2];\
508
            ((uint8_t*)dest)[5]= b[Y2];\
509
            dest+=6;\
510
        }\
511
        break;\
512
    case PIX_FMT_BGR24:\
513
        func(uint8_t)\
514
            ((uint8_t*)dest)[0]= b[Y1];\
515
            ((uint8_t*)dest)[1]= g[Y1];\
516
            ((uint8_t*)dest)[2]= r[Y1];\
517
            ((uint8_t*)dest)[3]= b[Y2];\
518
            ((uint8_t*)dest)[4]= g[Y2];\
519
            ((uint8_t*)dest)[5]= r[Y2];\
520
            dest+=6;\
521
        }\
522
        break;\
523
    case PIX_FMT_RGB565:\
524
    case PIX_FMT_BGR565:\
525
        {\
526
            const int dr1= dither_2x2_8[y&1    ][0];\
527
            const int dg1= dither_2x2_4[y&1    ][0];\
528
            const int db1= dither_2x2_8[(y&1)^1][0];\
529
            const int dr2= dither_2x2_8[y&1    ][1];\
530
            const int dg2= dither_2x2_4[y&1    ][1];\
531
            const int db2= dither_2x2_8[(y&1)^1][1];\
532
            func(uint16_t)\
533
                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
534
                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
535
            }\
536
        }\
537
        break;\
538
    case PIX_FMT_RGB555:\
539
    case PIX_FMT_BGR555:\
540
        {\
541
            const int dr1= dither_2x2_8[y&1    ][0];\
542
            const int dg1= dither_2x2_8[y&1    ][1];\
543
            const int db1= dither_2x2_8[(y&1)^1][0];\
544
            const int dr2= dither_2x2_8[y&1    ][1];\
545
            const int dg2= dither_2x2_8[y&1    ][0];\
546
            const int db2= dither_2x2_8[(y&1)^1][1];\
547
            func(uint16_t)\
548
                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
549
                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
550
            }\
551
        }\
552
        break;\
553
    case PIX_FMT_RGB8:\
554
    case PIX_FMT_BGR8:\
555
        {\
556
            const uint8_t * const d64= dither_8x8_73[y&7];\
557
            const uint8_t * const d32= dither_8x8_32[y&7];\
558
            func(uint8_t)\
559
                ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
560
                ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
561
            }\
562
        }\
563
        break;\
564
    case PIX_FMT_RGB4:\
565
    case PIX_FMT_BGR4:\
566
        {\
567
            const uint8_t * const d64= dither_8x8_73 [y&7];\
568
            const uint8_t * const d128=dither_8x8_220[y&7];\
569
            func(uint8_t)\
570
                ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
571
                                 + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
572
            }\
573
        }\
574
        break;\
575
    case PIX_FMT_RGB4_BYTE:\
576
    case PIX_FMT_BGR4_BYTE:\
577
        {\
578
            const uint8_t * const d64= dither_8x8_73 [y&7];\
579
            const uint8_t * const d128=dither_8x8_220[y&7];\
580
            func(uint8_t)\
581
                ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
582
                ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
583
            }\
584
        }\
585
        break;\
586
    case PIX_FMT_MONOBLACK:\
587
        {\
588
            const uint8_t * const d128=dither_8x8_220[y&7];\
589
            uint8_t *g= c->table_gU[128] + c->table_gV[128];\
590
            for (i=0; i<dstW-7; i+=8){\
591
                int acc;\
592
                acc =       g[((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19) + d128[0]];\
593
                acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
594
                acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
595
                acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
596
                acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
597
                acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
598
                acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
599
                acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
600
                ((uint8_t*)dest)[0]= acc;\
601
                dest++;\
602
            }\
603
\
604
/*\
605
((uint8_t*)dest)-= dstW>>4;\
606
{\
607
            int acc=0;\
608
            int left=0;\
609
            static int top[1024];\
610
            static int last_new[1024][1024];\
611
            static int last_in3[1024][1024];\
612
            static int drift[1024][1024];\
613
            int topLeft=0;\
614
            int shift=0;\
615
            int count=0;\
616
            const uint8_t * const d128=dither_8x8_220[y&7];\
617
            int error_new=0;\
618
            int error_in3=0;\
619
            int f=0;\
620
            \
621
            for (i=dstW>>1; i<dstW; i++){\
622
                int in= ((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19);\
623
                int in2 = (76309 * (in - 16) + 32768) >> 16;\
624
                int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
625
                int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
626
                         + (last_new[y][i] - in3)*f/256;\
627
                int new= old> 128 ? 255 : 0;\
628
\
629
                error_new+= FFABS(last_new[y][i] - new);\
630
                error_in3+= FFABS(last_in3[y][i] - in3);\
631
                f= error_new - error_in3*4;\
632
                if (f<0) f=0;\
633
                if (f>256) f=256;\
634
\
635
                topLeft= top[i];\
636
                left= top[i]= old - new;\
637
                last_new[y][i]= new;\
638
                last_in3[y][i]= in3;\
639
\
640
                acc+= acc + (new&1);\
641
                if ((i&7)==6){\
642
                    ((uint8_t*)dest)[0]= acc;\
643
                    ((uint8_t*)dest)++;\
644
                }\
645
            }\
646
}\
647
*/\
648
        }\
649
        break;\
650
    case PIX_FMT_YUYV422:\
651
        func2\
652
            ((uint8_t*)dest)[2*i2+0]= Y1;\
653
            ((uint8_t*)dest)[2*i2+1]= U;\
654
            ((uint8_t*)dest)[2*i2+2]= Y2;\
655
            ((uint8_t*)dest)[2*i2+3]= V;\
656
        }                \
657
        break;\
658
    case PIX_FMT_UYVY422:\
659
        func2\
660
            ((uint8_t*)dest)[2*i2+0]= U;\
661
            ((uint8_t*)dest)[2*i2+1]= Y1;\
662
            ((uint8_t*)dest)[2*i2+2]= V;\
663
            ((uint8_t*)dest)[2*i2+3]= Y2;\
664
        }                \
665
        break;\
666
    }\
667

    
668

    
669
static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
670
                                  int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
671
                                  uint8_t *dest, int dstW, int y)
672
{
673
    int i;
674
    switch(c->dstFormat)
675
    {
676
    case PIX_FMT_BGR32:
677
    case PIX_FMT_RGB32:
678
        YSCALE_YUV_2_RGBX_C(uint32_t)
679
            ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];
680
            ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];
681
        }
682
        break;
683
    case PIX_FMT_RGB24:
684
        YSCALE_YUV_2_RGBX_C(uint8_t)
685
            ((uint8_t*)dest)[0]= r[Y1];
686
            ((uint8_t*)dest)[1]= g[Y1];
687
            ((uint8_t*)dest)[2]= b[Y1];
688
            ((uint8_t*)dest)[3]= r[Y2];
689
            ((uint8_t*)dest)[4]= g[Y2];
690
            ((uint8_t*)dest)[5]= b[Y2];
691
            dest+=6;
692
        }
693
        break;
694
    case PIX_FMT_BGR24:
695
        YSCALE_YUV_2_RGBX_C(uint8_t)
696
            ((uint8_t*)dest)[0]= b[Y1];
697
            ((uint8_t*)dest)[1]= g[Y1];
698
            ((uint8_t*)dest)[2]= r[Y1];
699
            ((uint8_t*)dest)[3]= b[Y2];
700
            ((uint8_t*)dest)[4]= g[Y2];
701
            ((uint8_t*)dest)[5]= r[Y2];
702
            dest+=6;
703
        }
704
        break;
705
    case PIX_FMT_RGB565:
706
    case PIX_FMT_BGR565:
707
        {
708
            const int dr1= dither_2x2_8[y&1    ][0];
709
            const int dg1= dither_2x2_4[y&1    ][0];
710
            const int db1= dither_2x2_8[(y&1)^1][0];
711
            const int dr2= dither_2x2_8[y&1    ][1];
712
            const int dg2= dither_2x2_4[y&1    ][1];
713
            const int db2= dither_2x2_8[(y&1)^1][1];
714
            YSCALE_YUV_2_RGBX_C(uint16_t)
715
                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
716
                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
717
            }
718
        }
719
        break;
720
    case PIX_FMT_RGB555:
721
    case PIX_FMT_BGR555:
722
        {
723
            const int dr1= dither_2x2_8[y&1    ][0];
724
            const int dg1= dither_2x2_8[y&1    ][1];
725
            const int db1= dither_2x2_8[(y&1)^1][0];
726
            const int dr2= dither_2x2_8[y&1    ][1];
727
            const int dg2= dither_2x2_8[y&1    ][0];
728
            const int db2= dither_2x2_8[(y&1)^1][1];
729
            YSCALE_YUV_2_RGBX_C(uint16_t)
730
                ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
731
                ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
732
            }
733
        }
734
        break;
735
    case PIX_FMT_RGB8:
736
    case PIX_FMT_BGR8:
737
        {
738
            const uint8_t * const d64= dither_8x8_73[y&7];
739
            const uint8_t * const d32= dither_8x8_32[y&7];
740
            YSCALE_YUV_2_RGBX_C(uint8_t)
741
                ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];
742
                ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];
743
            }
744
        }
745
        break;
746
    case PIX_FMT_RGB4:
747
    case PIX_FMT_BGR4:
748
        {
749
            const uint8_t * const d64= dither_8x8_73 [y&7];
750
            const uint8_t * const d128=dither_8x8_220[y&7];
751
            YSCALE_YUV_2_RGBX_C(uint8_t)
752
                ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]
753
                                  +((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);
754
            }
755
        }
756
        break;
757
    case PIX_FMT_RGB4_BYTE:
758
    case PIX_FMT_BGR4_BYTE:
759
        {
760
            const uint8_t * const d64= dither_8x8_73 [y&7];
761
            const uint8_t * const d128=dither_8x8_220[y&7];
762
            YSCALE_YUV_2_RGBX_C(uint8_t)
763
                ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];
764
                ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];
765
            }
766
        }
767
        break;
768
    case PIX_FMT_MONOBLACK:
769
        {
770
            const uint8_t * const d128=dither_8x8_220[y&7];
771
            uint8_t *g= c->table_gU[128] + c->table_gV[128];
772
            int acc=0;
773
            for (i=0; i<dstW-1; i+=2){
774
                int j;
775
                int Y1=1<<18;
776
                int Y2=1<<18;
777

    
778
                for (j=0; j<lumFilterSize; j++)
779
                {
780
                    Y1 += lumSrc[j][i] * lumFilter[j];
781
                    Y2 += lumSrc[j][i+1] * lumFilter[j];
782
                }
783
                Y1>>=19;
784
                Y2>>=19;
785
                if ((Y1|Y2)&256)
786
                {
787
                    if (Y1>255)   Y1=255;
788
                    else if (Y1<0)Y1=0;
789
                    if (Y2>255)   Y2=255;
790
                    else if (Y2<0)Y2=0;
791
                }
792
                acc+= acc + g[Y1+d128[(i+0)&7]];
793
                acc+= acc + g[Y2+d128[(i+1)&7]];
794
                if ((i&7)==6){
795
                    ((uint8_t*)dest)[0]= acc;
796
                    dest++;
797
                }
798
            }
799
        }
800
        break;
801
    case PIX_FMT_YUYV422:
802
        YSCALE_YUV_2_PACKEDX_C(void)
803
            ((uint8_t*)dest)[2*i2+0]= Y1;
804
            ((uint8_t*)dest)[2*i2+1]= U;
805
            ((uint8_t*)dest)[2*i2+2]= Y2;
806
            ((uint8_t*)dest)[2*i2+3]= V;
807
        }
808
        break;
809
    case PIX_FMT_UYVY422:
810
        YSCALE_YUV_2_PACKEDX_C(void)
811
            ((uint8_t*)dest)[2*i2+0]= U;
812
            ((uint8_t*)dest)[2*i2+1]= Y1;
813
            ((uint8_t*)dest)[2*i2+2]= V;
814
            ((uint8_t*)dest)[2*i2+3]= Y2;
815
        }
816
        break;
817
    }
818
}
819

    
820

    
821
//Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
822
//Plain C versions
823
#if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT) || !defined(CONFIG_GPL)
824
#define COMPILE_C
825
#endif
826

    
827
#ifdef ARCH_POWERPC
828
#if (defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
829
#define COMPILE_ALTIVEC
830
#endif //HAVE_ALTIVEC
831
#endif //ARCH_POWERPC
832

    
833
#if defined(ARCH_X86)
834

    
835
#if ((defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
836
#define COMPILE_MMX
837
#endif
838

    
839
#if (defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
840
#define COMPILE_MMX2
841
#endif
842

    
843
#if ((defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)) && defined (CONFIG_GPL)
844
#define COMPILE_3DNOW
845
#endif
846
#endif //ARCH_X86 || ARCH_X86_64
847

    
848
#undef HAVE_MMX
849
#undef HAVE_MMX2
850
#undef HAVE_3DNOW
851

    
852
#ifdef COMPILE_C
853
#undef HAVE_MMX
854
#undef HAVE_MMX2
855
#undef HAVE_3DNOW
856
#undef HAVE_ALTIVEC
857
#define RENAME(a) a ## _C
858
#include "swscale_template.c"
859
#endif
860

    
861
#ifdef COMPILE_ALTIVEC
862
#undef RENAME
863
#define HAVE_ALTIVEC
864
#define RENAME(a) a ## _altivec
865
#include "swscale_template.c"
866
#endif
867

    
868
#if defined(ARCH_X86)
869

    
870
//X86 versions
871
/*
872
#undef RENAME
873
#undef HAVE_MMX
874
#undef HAVE_MMX2
875
#undef HAVE_3DNOW
876
#define ARCH_X86
877
#define RENAME(a) a ## _X86
878
#include "swscale_template.c"
879
*/
880
//MMX versions
881
#ifdef COMPILE_MMX
882
#undef RENAME
883
#define HAVE_MMX
884
#undef HAVE_MMX2
885
#undef HAVE_3DNOW
886
#define RENAME(a) a ## _MMX
887
#include "swscale_template.c"
888
#endif
889

    
890
//MMX2 versions
891
#ifdef COMPILE_MMX2
892
#undef RENAME
893
#define HAVE_MMX
894
#define HAVE_MMX2
895
#undef HAVE_3DNOW
896
#define RENAME(a) a ## _MMX2
897
#include "swscale_template.c"
898
#endif
899

    
900
//3DNOW versions
901
#ifdef COMPILE_3DNOW
902
#undef RENAME
903
#define HAVE_MMX
904
#undef HAVE_MMX2
905
#define HAVE_3DNOW
906
#define RENAME(a) a ## _3DNow
907
#include "swscale_template.c"
908
#endif
909

    
910
#endif //ARCH_X86 || ARCH_X86_64
911

    
912
// minor note: the HAVE_xyz is messed up after that line so don't use it
913

    
914
static double getSplineCoeff(double a, double b, double c, double d, double dist)
915
{
916
//    printf("%f %f %f %f %f\n", a,b,c,d,dist);
917
    if (dist<=1.0)      return ((d*dist + c)*dist + b)*dist +a;
918
    else                return getSplineCoeff(        0.0,
919
                                             b+ 2.0*c + 3.0*d,
920
                                                    c + 3.0*d,
921
                                            -b- 3.0*c - 6.0*d,
922
                                            dist-1.0);
923
}
924

    
925
static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
926
                             int srcW, int dstW, int filterAlign, int one, int flags,
927
                             SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
928
{
929
    int i;
930
    int filterSize;
931
    int filter2Size;
932
    int minFilterSize;
933
    double *filter=NULL;
934
    double *filter2=NULL;
935
#if defined(ARCH_X86)
936
    if (flags & SWS_CPU_CAPS_MMX)
937
        asm volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
938
#endif
939

    
940
    // Note the +1 is for the MMXscaler which reads over the end
941
    *filterPos = av_malloc((dstW+1)*sizeof(int16_t));
942

    
943
    if (FFABS(xInc - 0x10000) <10) // unscaled
944
    {
945
        int i;
946
        filterSize= 1;
947
        filter= av_malloc(dstW*sizeof(double)*filterSize);
948
        for (i=0; i<dstW*filterSize; i++) filter[i]=0;
949

    
950
        for (i=0; i<dstW; i++)
951
        {
952
            filter[i*filterSize]=1;
953
            (*filterPos)[i]=i;
954
        }
955

    
956
    }
957
    else if (flags&SWS_POINT) // lame looking point sampling mode
958
    {
959
        int i;
960
        int xDstInSrc;
961
        filterSize= 1;
962
        filter= av_malloc(dstW*sizeof(double)*filterSize);
963

    
964
        xDstInSrc= xInc/2 - 0x8000;
965
        for (i=0; i<dstW; i++)
966
        {
967
            int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
968

    
969
            (*filterPos)[i]= xx;
970
            filter[i]= 1.0;
971
            xDstInSrc+= xInc;
972
        }
973
    }
974
    else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
975
    {
976
        int i;
977
        int xDstInSrc;
978
        if      (flags&SWS_BICUBIC) filterSize= 4;
979
        else if (flags&SWS_X      ) filterSize= 4;
980
        else                        filterSize= 2; // SWS_BILINEAR / SWS_AREA
981
        filter= av_malloc(dstW*sizeof(double)*filterSize);
982

    
983
        xDstInSrc= xInc/2 - 0x8000;
984
        for (i=0; i<dstW; i++)
985
        {
986
            int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
987
            int j;
988

    
989
            (*filterPos)[i]= xx;
990
                //Bilinear upscale / linear interpolate / Area averaging
991
                for (j=0; j<filterSize; j++)
992
                {
993
                    double d= FFABS((xx<<16) - xDstInSrc)/(double)(1<<16);
994
                    double coeff= 1.0 - d;
995
                    if (coeff<0) coeff=0;
996
                    filter[i*filterSize + j]= coeff;
997
                    xx++;
998
                }
999
            xDstInSrc+= xInc;
1000
        }
1001
    }
1002
    else
1003
    {
1004
        double xDstInSrc;
1005
        double sizeFactor, filterSizeInSrc;
1006
        const double xInc1= (double)xInc / (double)(1<<16);
1007

    
1008
        if      (flags&SWS_BICUBIC)      sizeFactor=  4.0;
1009
        else if (flags&SWS_X)            sizeFactor=  8.0;
1010
        else if (flags&SWS_AREA)         sizeFactor=  1.0; //downscale only, for upscale it is bilinear
1011
        else if (flags&SWS_GAUSS)        sizeFactor=  8.0;   // infinite ;)
1012
        else if (flags&SWS_LANCZOS)      sizeFactor= param[0] != SWS_PARAM_DEFAULT ? 2.0*param[0] : 6.0;
1013
        else if (flags&SWS_SINC)         sizeFactor= 20.0; // infinite ;)
1014
        else if (flags&SWS_SPLINE)       sizeFactor= 20.0;  // infinite ;)
1015
        else if (flags&SWS_BILINEAR)     sizeFactor=  2.0;
1016
        else {
1017
            sizeFactor= 0.0; //GCC warning killer
1018
            assert(0);
1019
        }
1020

    
1021
        if (xInc1 <= 1.0)       filterSizeInSrc= sizeFactor; // upscale
1022
        else                    filterSizeInSrc= sizeFactor*srcW / (double)dstW;
1023

    
1024
        filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
1025
        if (filterSize > srcW-2) filterSize=srcW-2;
1026

    
1027
        filter= av_malloc(dstW*sizeof(double)*filterSize);
1028

    
1029
        xDstInSrc= xInc1 / 2.0 - 0.5;
1030
        for (i=0; i<dstW; i++)
1031
        {
1032
            int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
1033
            int j;
1034
            (*filterPos)[i]= xx;
1035
            for (j=0; j<filterSize; j++)
1036
            {
1037
                double d= FFABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
1038
                double coeff;
1039
                if (flags & SWS_BICUBIC)
1040
                {
1041
                    double B= param[0] != SWS_PARAM_DEFAULT ? param[0] : 0.0;
1042
                    double C= param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6;
1043

    
1044
                    if (d<1.0)
1045
                        coeff = (12-9*B-6*C)*d*d*d + (-18+12*B+6*C)*d*d + 6-2*B;
1046
                    else if (d<2.0)
1047
                        coeff = (-B-6*C)*d*d*d + (6*B+30*C)*d*d + (-12*B-48*C)*d +8*B+24*C;
1048
                    else
1049
                        coeff=0.0;
1050
                }
1051
/*                else if (flags & SWS_X)
1052
                {
1053
                    double p= param ? param*0.01 : 0.3;
1054
                    coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1055
                    coeff*= pow(2.0, - p*d*d);
1056
                }*/
1057
                else if (flags & SWS_X)
1058
                {
1059
                    double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
1060

    
1061
                    if (d<1.0)
1062
                        coeff = cos(d*PI);
1063
                    else
1064
                        coeff=-1.0;
1065
                    if (coeff<0.0)      coeff= -pow(-coeff, A);
1066
                    else                coeff=  pow( coeff, A);
1067
                    coeff= coeff*0.5 + 0.5;
1068
                }
1069
                else if (flags & SWS_AREA)
1070
                {
1071
                    double srcPixelSize= 1.0/xInc1;
1072
                    if      (d + srcPixelSize/2 < 0.5) coeff= 1.0;
1073
                    else if (d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
1074
                    else coeff=0.0;
1075
                }
1076
                else if (flags & SWS_GAUSS)
1077
                {
1078
                    double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
1079
                    coeff = pow(2.0, - p*d*d);
1080
                }
1081
                else if (flags & SWS_SINC)
1082
                {
1083
                    coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1084
                }
1085
                else if (flags & SWS_LANCZOS)
1086
                {
1087
                    double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
1088
                    coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
1089
                    if (d>p) coeff=0;
1090
                }
1091
                else if (flags & SWS_BILINEAR)
1092
                {
1093
                    coeff= 1.0 - d;
1094
                    if (coeff<0) coeff=0;
1095
                }
1096
                else if (flags & SWS_SPLINE)
1097
                {
1098
                    double p=-2.196152422706632;
1099
                    coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
1100
                }
1101
                else {
1102
                    coeff= 0.0; //GCC warning killer
1103
                    assert(0);
1104
                }
1105

    
1106
                filter[i*filterSize + j]= coeff;
1107
                xx++;
1108
            }
1109
            xDstInSrc+= xInc1;
1110
        }
1111
    }
1112

    
1113
    /* apply src & dst Filter to filter -> filter2
1114
       av_free(filter);
1115
    */
1116
    assert(filterSize>0);
1117
    filter2Size= filterSize;
1118
    if (srcFilter) filter2Size+= srcFilter->length - 1;
1119
    if (dstFilter) filter2Size+= dstFilter->length - 1;
1120
    assert(filter2Size>0);
1121
    filter2= av_malloc(filter2Size*dstW*sizeof(double));
1122

    
1123
    for (i=0; i<dstW; i++)
1124
    {
1125
        int j;
1126
        SwsVector scaleFilter;
1127
        SwsVector *outVec;
1128

    
1129
        scaleFilter.coeff= filter + i*filterSize;
1130
        scaleFilter.length= filterSize;
1131

    
1132
        if (srcFilter) outVec= sws_getConvVec(srcFilter, &scaleFilter);
1133
        else           outVec= &scaleFilter;
1134

    
1135
        assert(outVec->length == filter2Size);
1136
        //FIXME dstFilter
1137

    
1138
        for (j=0; j<outVec->length; j++)
1139
        {
1140
            filter2[i*filter2Size + j]= outVec->coeff[j];
1141
        }
1142

    
1143
        (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
1144

    
1145
        if (outVec != &scaleFilter) sws_freeVec(outVec);
1146
    }
1147
    av_free(filter); filter=NULL;
1148

    
1149
    /* try to reduce the filter-size (step1 find size and shift left) */
1150
    // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
1151
    minFilterSize= 0;
1152
    for (i=dstW-1; i>=0; i--)
1153
    {
1154
        int min= filter2Size;
1155
        int j;
1156
        double cutOff=0.0;
1157

    
1158
        /* get rid off near zero elements on the left by shifting left */
1159
        for (j=0; j<filter2Size; j++)
1160
        {
1161
            int k;
1162
            cutOff += FFABS(filter2[i*filter2Size]);
1163

    
1164
            if (cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1165

    
1166
            /* preserve monotonicity because the core can't handle the filter otherwise */
1167
            if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
1168

    
1169
            // Move filter coeffs left
1170
            for (k=1; k<filter2Size; k++)
1171
                filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
1172
            filter2[i*filter2Size + k - 1]= 0.0;
1173
            (*filterPos)[i]++;
1174
        }
1175

    
1176
        cutOff=0.0;
1177
        /* count near zeros on the right */
1178
        for (j=filter2Size-1; j>0; j--)
1179
        {
1180
            cutOff += FFABS(filter2[i*filter2Size + j]);
1181

    
1182
            if (cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1183
            min--;
1184
        }
1185

    
1186
        if (min>minFilterSize) minFilterSize= min;
1187
    }
1188

    
1189
    if (flags & SWS_CPU_CAPS_ALTIVEC) {
1190
        // we can handle the special case 4,
1191
        // so we don't want to go to the full 8
1192
        if (minFilterSize < 5)
1193
            filterAlign = 4;
1194

    
1195
        // we really don't want to waste our time
1196
        // doing useless computation, so fall-back on
1197
        // the scalar C code for very small filter.
1198
        // vectorizing is worth it only if you have
1199
        // decent-sized vector.
1200
        if (minFilterSize < 3)
1201
            filterAlign = 1;
1202
    }
1203

    
1204
    if (flags & SWS_CPU_CAPS_MMX) {
1205
        // special case for unscaled vertical filtering
1206
        if (minFilterSize == 1 && filterAlign == 2)
1207
            filterAlign= 1;
1208
    }
1209

    
1210
    assert(minFilterSize > 0);
1211
    filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
1212
    assert(filterSize > 0);
1213
    filter= av_malloc(filterSize*dstW*sizeof(double));
1214
    if (filterSize >= MAX_FILTER_SIZE)
1215
        return -1;
1216
    *outFilterSize= filterSize;
1217

    
1218
    if (flags&SWS_PRINT_INFO)
1219
        av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
1220
    /* try to reduce the filter-size (step2 reduce it) */
1221
    for (i=0; i<dstW; i++)
1222
    {
1223
        int j;
1224

    
1225
        for (j=0; j<filterSize; j++)
1226
        {
1227
            if (j>=filter2Size) filter[i*filterSize + j]= 0.0;
1228
            else               filter[i*filterSize + j]= filter2[i*filter2Size + j];
1229
        }
1230
    }
1231
    av_free(filter2); filter2=NULL;
1232

    
1233

    
1234
    //FIXME try to align filterpos if possible
1235

    
1236
    //fix borders
1237
    for (i=0; i<dstW; i++)
1238
    {
1239
        int j;
1240
        if ((*filterPos)[i] < 0)
1241
        {
1242
            // Move filter coeffs left to compensate for filterPos
1243
            for (j=1; j<filterSize; j++)
1244
            {
1245
                int left= FFMAX(j + (*filterPos)[i], 0);
1246
                filter[i*filterSize + left] += filter[i*filterSize + j];
1247
                filter[i*filterSize + j]=0;
1248
            }
1249
            (*filterPos)[i]= 0;
1250
        }
1251

    
1252
        if ((*filterPos)[i] + filterSize > srcW)
1253
        {
1254
            int shift= (*filterPos)[i] + filterSize - srcW;
1255
            // Move filter coeffs right to compensate for filterPos
1256
            for (j=filterSize-2; j>=0; j--)
1257
            {
1258
                int right= FFMIN(j + shift, filterSize-1);
1259
                filter[i*filterSize +right] += filter[i*filterSize +j];
1260
                filter[i*filterSize +j]=0;
1261
            }
1262
            (*filterPos)[i]= srcW - filterSize;
1263
        }
1264
    }
1265

    
1266
    // Note the +1 is for the MMXscaler which reads over the end
1267
    /* align at 16 for AltiVec (needed by hScale_altivec_real) */
1268
    *outFilter= av_mallocz(*outFilterSize*(dstW+1)*sizeof(int16_t));
1269

    
1270
    /* Normalize & Store in outFilter */
1271
    for (i=0; i<dstW; i++)
1272
    {
1273
        int j;
1274
        double error=0;
1275
        double sum=0;
1276
        double scale= one;
1277

    
1278
        for (j=0; j<filterSize; j++)
1279
        {
1280
            sum+= filter[i*filterSize + j];
1281
        }
1282
        scale/= sum;
1283
        for (j=0; j<*outFilterSize; j++)
1284
        {
1285
            double v= filter[i*filterSize + j]*scale + error;
1286
            int intV= floor(v + 0.5);
1287
            (*outFilter)[i*(*outFilterSize) + j]= intV;
1288
            error = v - intV;
1289
        }
1290
    }
1291

    
1292
    (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
1293
    for (i=0; i<*outFilterSize; i++)
1294
    {
1295
        int j= dstW*(*outFilterSize);
1296
        (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
1297
    }
1298

    
1299
    av_free(filter);
1300
    return 0;
1301
}
1302

    
1303
#ifdef COMPILE_MMX2
1304
static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
1305
{
1306
    uint8_t *fragmentA;
1307
    long imm8OfPShufW1A;
1308
    long imm8OfPShufW2A;
1309
    long fragmentLengthA;
1310
    uint8_t *fragmentB;
1311
    long imm8OfPShufW1B;
1312
    long imm8OfPShufW2B;
1313
    long fragmentLengthB;
1314
    int fragmentPos;
1315

    
1316
    int xpos, i;
1317

    
1318
    // create an optimized horizontal scaling routine
1319

    
1320
    //code fragment
1321

    
1322
    asm volatile(
1323
        "jmp                         9f                 \n\t"
1324
    // Begin
1325
        "0:                                             \n\t"
1326
        "movq    (%%"REG_d", %%"REG_a"), %%mm3          \n\t"
1327
        "movd    (%%"REG_c", %%"REG_S"), %%mm0          \n\t"
1328
        "movd   1(%%"REG_c", %%"REG_S"), %%mm1          \n\t"
1329
        "punpcklbw                %%mm7, %%mm1          \n\t"
1330
        "punpcklbw                %%mm7, %%mm0          \n\t"
1331
        "pshufw                   $0xFF, %%mm1, %%mm1   \n\t"
1332
        "1:                                             \n\t"
1333
        "pshufw                   $0xFF, %%mm0, %%mm0   \n\t"
1334
        "2:                                             \n\t"
1335
        "psubw                    %%mm1, %%mm0          \n\t"
1336
        "movl   8(%%"REG_b", %%"REG_a"), %%esi          \n\t"
1337
        "pmullw                   %%mm3, %%mm0          \n\t"
1338
        "psllw                       $7, %%mm1          \n\t"
1339
        "paddw                    %%mm1, %%mm0          \n\t"
1340

    
1341
        "movq                     %%mm0, (%%"REG_D", %%"REG_a") \n\t"
1342

    
1343
        "add                         $8, %%"REG_a"      \n\t"
1344
    // End
1345
        "9:                                             \n\t"
1346
//        "int $3                                         \n\t"
1347
        "lea                 " LOCAL_MANGLE(0b) ", %0   \n\t"
1348
        "lea                 " LOCAL_MANGLE(1b) ", %1   \n\t"
1349
        "lea                 " LOCAL_MANGLE(2b) ", %2   \n\t"
1350
        "dec                         %1                 \n\t"
1351
        "dec                         %2                 \n\t"
1352
        "sub                         %0, %1             \n\t"
1353
        "sub                         %0, %2             \n\t"
1354
        "lea                 " LOCAL_MANGLE(9b) ", %3   \n\t"
1355
        "sub                         %0, %3             \n\t"
1356

    
1357

    
1358
        :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
1359
        "=r" (fragmentLengthA)
1360
    );
1361

    
1362
    asm volatile(
1363
        "jmp                         9f                 \n\t"
1364
    // Begin
1365
        "0:                                             \n\t"
1366
        "movq    (%%"REG_d", %%"REG_a"), %%mm3          \n\t"
1367
        "movd    (%%"REG_c", %%"REG_S"), %%mm0          \n\t"
1368
        "punpcklbw                %%mm7, %%mm0          \n\t"
1369
        "pshufw                   $0xFF, %%mm0, %%mm1   \n\t"
1370
        "1:                                             \n\t"
1371
        "pshufw                   $0xFF, %%mm0, %%mm0   \n\t"
1372
        "2:                                             \n\t"
1373
        "psubw                    %%mm1, %%mm0          \n\t"
1374
        "movl   8(%%"REG_b", %%"REG_a"), %%esi          \n\t"
1375
        "pmullw                   %%mm3, %%mm0          \n\t"
1376
        "psllw                       $7, %%mm1          \n\t"
1377
        "paddw                    %%mm1, %%mm0          \n\t"
1378

    
1379
        "movq                     %%mm0, (%%"REG_D", %%"REG_a") \n\t"
1380

    
1381
        "add                         $8, %%"REG_a"      \n\t"
1382
    // End
1383
        "9:                                             \n\t"
1384
//        "int                       $3                   \n\t"
1385
        "lea                 " LOCAL_MANGLE(0b) ", %0   \n\t"
1386
        "lea                 " LOCAL_MANGLE(1b) ", %1   \n\t"
1387
        "lea                 " LOCAL_MANGLE(2b) ", %2   \n\t"
1388
        "dec                         %1                 \n\t"
1389
        "dec                         %2                 \n\t"
1390
        "sub                         %0, %1             \n\t"
1391
        "sub                         %0, %2             \n\t"
1392
        "lea                 " LOCAL_MANGLE(9b) ", %3   \n\t"
1393
        "sub                         %0, %3             \n\t"
1394

    
1395

    
1396
        :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
1397
        "=r" (fragmentLengthB)
1398
    );
1399

    
1400
    xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
1401
    fragmentPos=0;
1402

    
1403
    for (i=0; i<dstW/numSplits; i++)
1404
    {
1405
        int xx=xpos>>16;
1406

    
1407
        if ((i&3) == 0)
1408
        {
1409
            int a=0;
1410
            int b=((xpos+xInc)>>16) - xx;
1411
            int c=((xpos+xInc*2)>>16) - xx;
1412
            int d=((xpos+xInc*3)>>16) - xx;
1413

    
1414
            filter[i  ] = (( xpos         & 0xFFFF) ^ 0xFFFF)>>9;
1415
            filter[i+1] = (((xpos+xInc  ) & 0xFFFF) ^ 0xFFFF)>>9;
1416
            filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
1417
            filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
1418
            filterPos[i/2]= xx;
1419

    
1420
            if (d+1<4)
1421
            {
1422
                int maxShift= 3-(d+1);
1423
                int shift=0;
1424

    
1425
                memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
1426

    
1427
                funnyCode[fragmentPos + imm8OfPShufW1B]=
1428
                    (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
1429
                funnyCode[fragmentPos + imm8OfPShufW2B]=
1430
                    a | (b<<2) | (c<<4) | (d<<6);
1431

    
1432
                if (i+3>=dstW) shift=maxShift; //avoid overread
1433
                else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
1434

    
1435
                if (shift && i>=shift)
1436
                {
1437
                    funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
1438
                    funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
1439
                    filterPos[i/2]-=shift;
1440
                }
1441

    
1442
                fragmentPos+= fragmentLengthB;
1443
            }
1444
            else
1445
            {
1446
                int maxShift= 3-d;
1447
                int shift=0;
1448

    
1449
                memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
1450

    
1451
                funnyCode[fragmentPos + imm8OfPShufW1A]=
1452
                funnyCode[fragmentPos + imm8OfPShufW2A]=
1453
                    a | (b<<2) | (c<<4) | (d<<6);
1454

    
1455
                if (i+4>=dstW) shift=maxShift; //avoid overread
1456
                else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
1457

    
1458
                if (shift && i>=shift)
1459
                {
1460
                    funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
1461
                    funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
1462
                    filterPos[i/2]-=shift;
1463
                }
1464

    
1465
                fragmentPos+= fragmentLengthA;
1466
            }
1467

    
1468
            funnyCode[fragmentPos]= RET;
1469
        }
1470
        xpos+=xInc;
1471
    }
1472
    filterPos[i/2]= xpos>>16; // needed to jump to the next part
1473
}
1474
#endif /* COMPILE_MMX2 */
1475

    
1476
static void globalInit(void){
1477
    // generating tables:
1478
    int i;
1479
    for (i=0; i<768; i++){
1480
        int c= av_clip_uint8(i-256);
1481
        clip_table[i]=c;
1482
    }
1483
}
1484

    
1485
static SwsFunc getSwsFunc(int flags){
1486

    
1487
#if defined(RUNTIME_CPUDETECT) && defined (CONFIG_GPL)
1488
#if defined(ARCH_X86)
1489
    // ordered per speed fastest first
1490
    if (flags & SWS_CPU_CAPS_MMX2)
1491
        return swScale_MMX2;
1492
    else if (flags & SWS_CPU_CAPS_3DNOW)
1493
        return swScale_3DNow;
1494
    else if (flags & SWS_CPU_CAPS_MMX)
1495
        return swScale_MMX;
1496
    else
1497
        return swScale_C;
1498

    
1499
#else
1500
#ifdef ARCH_POWERPC
1501
    if (flags & SWS_CPU_CAPS_ALTIVEC)
1502
        return swScale_altivec;
1503
    else
1504
        return swScale_C;
1505
#endif
1506
    return swScale_C;
1507
#endif /* defined(ARCH_X86) */
1508
#else //RUNTIME_CPUDETECT
1509
#ifdef HAVE_MMX2
1510
    return swScale_MMX2;
1511
#elif defined (HAVE_3DNOW)
1512
    return swScale_3DNow;
1513
#elif defined (HAVE_MMX)
1514
    return swScale_MMX;
1515
#elif defined (HAVE_ALTIVEC)
1516
    return swScale_altivec;
1517
#else
1518
    return swScale_C;
1519
#endif
1520
#endif //!RUNTIME_CPUDETECT
1521
}
1522

    
1523
static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1524
                               int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1525
    uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1526
    /* Copy Y plane */
1527
    if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
1528
        memcpy(dst, src[0], srcSliceH*dstStride[0]);
1529
    else
1530
    {
1531
        int i;
1532
        uint8_t *srcPtr= src[0];
1533
        uint8_t *dstPtr= dst;
1534
        for (i=0; i<srcSliceH; i++)
1535
        {
1536
            memcpy(dstPtr, srcPtr, c->srcW);
1537
            srcPtr+= srcStride[0];
1538
            dstPtr+= dstStride[0];
1539
        }
1540
    }
1541
    dst = dstParam[1] + dstStride[1]*srcSliceY/2;
1542
    if (c->dstFormat == PIX_FMT_NV12)
1543
        interleaveBytes(src[1], src[2], dst, c->srcW/2, srcSliceH/2, srcStride[1], srcStride[2], dstStride[0]);
1544
    else
1545
        interleaveBytes(src[2], src[1], dst, c->srcW/2, srcSliceH/2, srcStride[2], srcStride[1], dstStride[0]);
1546

    
1547
    return srcSliceH;
1548
}
1549

    
1550
static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1551
                               int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1552
    uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1553

    
1554
    yv12toyuy2(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
1555

    
1556
    return srcSliceH;
1557
}
1558

    
1559
static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1560
                               int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1561
    uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1562

    
1563
    yv12touyvy(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
1564

    
1565
    return srcSliceH;
1566
}
1567

    
1568
/* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
1569
static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1570
                          int srcSliceH, uint8_t* dst[], int dstStride[]){
1571
    const int srcFormat= c->srcFormat;
1572
    const int dstFormat= c->dstFormat;
1573
    const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
1574
    const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
1575
    const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
1576
    const int dstId= fmt_depth(dstFormat) >> 2;
1577
    void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
1578

    
1579
    /* BGR -> BGR */
1580
    if (  (isBGR(srcFormat) && isBGR(dstFormat))
1581
       || (isRGB(srcFormat) && isRGB(dstFormat))){
1582
        switch(srcId | (dstId<<4)){
1583
        case 0x34: conv= rgb16to15; break;
1584
        case 0x36: conv= rgb24to15; break;
1585
        case 0x38: conv= rgb32to15; break;
1586
        case 0x43: conv= rgb15to16; break;
1587
        case 0x46: conv= rgb24to16; break;
1588
        case 0x48: conv= rgb32to16; break;
1589
        case 0x63: conv= rgb15to24; break;
1590
        case 0x64: conv= rgb16to24; break;
1591
        case 0x68: conv= rgb32to24; break;
1592
        case 0x83: conv= rgb15to32; break;
1593
        case 0x84: conv= rgb16to32; break;
1594
        case 0x86: conv= rgb24to32; break;
1595
        default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
1596
                        sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
1597
        }
1598
    }else if (  (isBGR(srcFormat) && isRGB(dstFormat))
1599
             || (isRGB(srcFormat) && isBGR(dstFormat))){
1600
        switch(srcId | (dstId<<4)){
1601
        case 0x33: conv= rgb15tobgr15; break;
1602
        case 0x34: conv= rgb16tobgr15; break;
1603
        case 0x36: conv= rgb24tobgr15; break;
1604
        case 0x38: conv= rgb32tobgr15; break;
1605
        case 0x43: conv= rgb15tobgr16; break;
1606
        case 0x44: conv= rgb16tobgr16; break;
1607
        case 0x46: conv= rgb24tobgr16; break;
1608
        case 0x48: conv= rgb32tobgr16; break;
1609
        case 0x63: conv= rgb15tobgr24; break;
1610
        case 0x64: conv= rgb16tobgr24; break;
1611
        case 0x66: conv= rgb24tobgr24; break;
1612
        case 0x68: conv= rgb32tobgr24; break;
1613
        case 0x83: conv= rgb15tobgr32; break;
1614
        case 0x84: conv= rgb16tobgr32; break;
1615
        case 0x86: conv= rgb24tobgr32; break;
1616
        case 0x88: conv= rgb32tobgr32; break;
1617
        default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
1618
                        sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
1619
        }
1620
    }else{
1621
        av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
1622
               sws_format_name(srcFormat), sws_format_name(dstFormat));
1623
    }
1624

    
1625
    if(conv)
1626
    {
1627
        if (dstStride[0]*srcBpp == srcStride[0]*dstBpp && srcStride[0] > 0)
1628
            conv(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
1629
        else
1630
        {
1631
            int i;
1632
            uint8_t *srcPtr= src[0];
1633
            uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1634

    
1635
            for (i=0; i<srcSliceH; i++)
1636
            {
1637
                conv(srcPtr, dstPtr, c->srcW*srcBpp);
1638
                srcPtr+= srcStride[0];
1639
                dstPtr+= dstStride[0];
1640
            }
1641
        }
1642
    }
1643
    return srcSliceH;
1644
}
1645

    
1646
static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1647
                              int srcSliceH, uint8_t* dst[], int dstStride[]){
1648

    
1649
    rgb24toyv12(
1650
        src[0],
1651
        dst[0]+ srcSliceY    *dstStride[0],
1652
        dst[1]+(srcSliceY>>1)*dstStride[1],
1653
        dst[2]+(srcSliceY>>1)*dstStride[2],
1654
        c->srcW, srcSliceH,
1655
        dstStride[0], dstStride[1], srcStride[0]);
1656
    return srcSliceH;
1657
}
1658

    
1659
static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1660
                             int srcSliceH, uint8_t* dst[], int dstStride[]){
1661
    int i;
1662

    
1663
    /* copy Y */
1664
    if (srcStride[0]==dstStride[0] && srcStride[0] > 0)
1665
        memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
1666
    else{
1667
        uint8_t *srcPtr= src[0];
1668
        uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1669

    
1670
        for (i=0; i<srcSliceH; i++)
1671
        {
1672
            memcpy(dstPtr, srcPtr, c->srcW);
1673
            srcPtr+= srcStride[0];
1674
            dstPtr+= dstStride[0];
1675
        }
1676
    }
1677

    
1678
    if (c->dstFormat==PIX_FMT_YUV420P){
1679
        planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
1680
        planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
1681
    }else{
1682
        planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
1683
        planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
1684
    }
1685
    return srcSliceH;
1686
}
1687

    
1688
/* unscaled copy like stuff (assumes nearly identical formats) */
1689
static int packedCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1690
                      int srcSliceH, uint8_t* dst[], int dstStride[])
1691
{
1692
    if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
1693
        memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
1694
    else
1695
    {
1696
        int i;
1697
        uint8_t *srcPtr= src[0];
1698
        uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1699
        int length=0;
1700

    
1701
        /* universal length finder */
1702
        while(length+c->srcW <= FFABS(dstStride[0])
1703
           && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
1704
        assert(length!=0);
1705

    
1706
        for (i=0; i<srcSliceH; i++)
1707
        {
1708
            memcpy(dstPtr, srcPtr, length);
1709
            srcPtr+= srcStride[0];
1710
            dstPtr+= dstStride[0];
1711
        }
1712
    }
1713
    return srcSliceH;
1714
}
1715

    
1716
static int planarCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1717
                      int srcSliceH, uint8_t* dst[], int dstStride[])
1718
{
1719
    int plane;
1720
    for (plane=0; plane<3; plane++)
1721
    {
1722
        int length= plane==0 ? c->srcW  : -((-c->srcW  )>>c->chrDstHSubSample);
1723
        int y=      plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
1724
        int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
1725

    
1726
        if ((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
1727
        {
1728
            if (!isGray(c->dstFormat))
1729
                memset(dst[plane], 128, dstStride[plane]*height);
1730
        }
1731
        else
1732
        {
1733
            if (dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
1734
                memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
1735
            else
1736
            {
1737
                int i;
1738
                uint8_t *srcPtr= src[plane];
1739
                uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
1740
                for (i=0; i<height; i++)
1741
                {
1742
                    memcpy(dstPtr, srcPtr, length);
1743
                    srcPtr+= srcStride[plane];
1744
                    dstPtr+= dstStride[plane];
1745
                }
1746
            }
1747
        }
1748
    }
1749
    return srcSliceH;
1750
}
1751

    
1752
static int gray16togray(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1753
                        int srcSliceH, uint8_t* dst[], int dstStride[]){
1754

    
1755
    int length= c->srcW;
1756
    int y=      srcSliceY;
1757
    int height= srcSliceH;
1758
    int i, j;
1759
    uint8_t *srcPtr= src[0];
1760
    uint8_t *dstPtr= dst[0] + dstStride[0]*y;
1761

    
1762
    if (!isGray(c->dstFormat)){
1763
        int height= -((-srcSliceH)>>c->chrDstVSubSample);
1764
        memset(dst[1], 128, dstStride[1]*height);
1765
        memset(dst[2], 128, dstStride[2]*height);
1766
    }
1767
    if (c->srcFormat == PIX_FMT_GRAY16LE) srcPtr++;
1768
    for (i=0; i<height; i++)
1769
    {
1770
        for (j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
1771
        srcPtr+= srcStride[0];
1772
        dstPtr+= dstStride[0];
1773
    }
1774
    return srcSliceH;
1775
}
1776

    
1777
static int graytogray16(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1778
                        int srcSliceH, uint8_t* dst[], int dstStride[]){
1779

    
1780
    int length= c->srcW;
1781
    int y=      srcSliceY;
1782
    int height= srcSliceH;
1783
    int i, j;
1784
    uint8_t *srcPtr= src[0];
1785
    uint8_t *dstPtr= dst[0] + dstStride[0]*y;
1786
    for (i=0; i<height; i++)
1787
    {
1788
        for (j=0; j<length; j++)
1789
        {
1790
            dstPtr[j<<1] = srcPtr[j];
1791
            dstPtr[(j<<1)+1] = srcPtr[j];
1792
        }
1793
        srcPtr+= srcStride[0];
1794
        dstPtr+= dstStride[0];
1795
    }
1796
    return srcSliceH;
1797
}
1798

    
1799
static int gray16swap(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1800
                      int srcSliceH, uint8_t* dst[], int dstStride[]){
1801

    
1802
    int length= c->srcW;
1803
    int y=      srcSliceY;
1804
    int height= srcSliceH;
1805
    int i, j;
1806
    uint16_t *srcPtr= (uint16_t*)src[0];
1807
    uint16_t *dstPtr= (uint16_t*)(dst[0] + dstStride[0]*y/2);
1808
    for (i=0; i<height; i++)
1809
    {
1810
        for (j=0; j<length; j++) dstPtr[j] = bswap_16(srcPtr[j]);
1811
        srcPtr+= srcStride[0]/2;
1812
        dstPtr+= dstStride[0]/2;
1813
    }
1814
    return srcSliceH;
1815
}
1816

    
1817

    
1818
static void getSubSampleFactors(int *h, int *v, int format){
1819
    switch(format){
1820
    case PIX_FMT_UYVY422:
1821
    case PIX_FMT_YUYV422:
1822
        *h=1;
1823
        *v=0;
1824
        break;
1825
    case PIX_FMT_YUV420P:
1826
    case PIX_FMT_YUVA420P:
1827
    case PIX_FMT_GRAY16BE:
1828
    case PIX_FMT_GRAY16LE:
1829
    case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
1830
    case PIX_FMT_NV12:
1831
    case PIX_FMT_NV21:
1832
        *h=1;
1833
        *v=1;
1834
        break;
1835
    case PIX_FMT_YUV440P:
1836
        *h=0;
1837
        *v=1;
1838
        break;
1839
    case PIX_FMT_YUV410P:
1840
        *h=2;
1841
        *v=2;
1842
        break;
1843
    case PIX_FMT_YUV444P:
1844
        *h=0;
1845
        *v=0;
1846
        break;
1847
    case PIX_FMT_YUV422P:
1848
        *h=1;
1849
        *v=0;
1850
        break;
1851
    case PIX_FMT_YUV411P:
1852
        *h=2;
1853
        *v=0;
1854
        break;
1855
    default:
1856
        *h=0;
1857
        *v=0;
1858
        break;
1859
    }
1860
}
1861

    
1862
static uint16_t roundToInt16(int64_t f){
1863
    int r= (f + (1<<15))>>16;
1864
         if (r<-0x7FFF) return 0x8000;
1865
    else if (r> 0x7FFF) return 0x7FFF;
1866
    else                return r;
1867
}
1868

    
1869
/**
1870
 * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
1871
 * @param fullRange if 1 then the luma range is 0..255 if 0 it is 16..235
1872
 * @return -1 if not supported
1873
 */
1874
int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
1875
    int64_t crv =  inv_table[0];
1876
    int64_t cbu =  inv_table[1];
1877
    int64_t cgu = -inv_table[2];
1878
    int64_t cgv = -inv_table[3];
1879
    int64_t cy  = 1<<16;
1880
    int64_t oy  = 0;
1881

    
1882
    if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1883
    memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
1884
    memcpy(c->dstColorspaceTable,     table, sizeof(int)*4);
1885

    
1886
    c->brightness= brightness;
1887
    c->contrast  = contrast;
1888
    c->saturation= saturation;
1889
    c->srcRange  = srcRange;
1890
    c->dstRange  = dstRange;
1891

    
1892
    c->uOffset=   0x0400040004000400LL;
1893
    c->vOffset=   0x0400040004000400LL;
1894

    
1895
    if (!srcRange){
1896
        cy= (cy*255) / 219;
1897
        oy= 16<<16;
1898
    }else{
1899
        crv= (crv*224) / 255;
1900
        cbu= (cbu*224) / 255;
1901
        cgu= (cgu*224) / 255;
1902
        cgv= (cgv*224) / 255;
1903
    }
1904

    
1905
    cy = (cy *contrast             )>>16;
1906
    crv= (crv*contrast * saturation)>>32;
1907
    cbu= (cbu*contrast * saturation)>>32;
1908
    cgu= (cgu*contrast * saturation)>>32;
1909
    cgv= (cgv*contrast * saturation)>>32;
1910

    
1911
    oy -= 256*brightness;
1912

    
1913
    c->yCoeff=    roundToInt16(cy *8192) * 0x0001000100010001ULL;
1914
    c->vrCoeff=   roundToInt16(crv*8192) * 0x0001000100010001ULL;
1915
    c->ubCoeff=   roundToInt16(cbu*8192) * 0x0001000100010001ULL;
1916
    c->vgCoeff=   roundToInt16(cgv*8192) * 0x0001000100010001ULL;
1917
    c->ugCoeff=   roundToInt16(cgu*8192) * 0x0001000100010001ULL;
1918
    c->yOffset=   roundToInt16(oy *   8) * 0x0001000100010001ULL;
1919

    
1920
    yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
1921
    //FIXME factorize
1922

    
1923
#ifdef COMPILE_ALTIVEC
1924
    if (c->flags & SWS_CPU_CAPS_ALTIVEC)
1925
        yuv2rgb_altivec_init_tables (c, inv_table, brightness, contrast, saturation);
1926
#endif
1927
    return 0;
1928
}
1929

    
1930
/**
1931
 * @return -1 if not supported
1932
 */
1933
int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
1934
    if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1935

    
1936
    *inv_table = c->srcColorspaceTable;
1937
    *table     = c->dstColorspaceTable;
1938
    *srcRange  = c->srcRange;
1939
    *dstRange  = c->dstRange;
1940
    *brightness= c->brightness;
1941
    *contrast  = c->contrast;
1942
    *saturation= c->saturation;
1943

    
1944
    return 0;
1945
}
1946

    
1947
static int handle_jpeg(int *format)
1948
{
1949
    switch (*format) {
1950
        case PIX_FMT_YUVJ420P:
1951
            *format = PIX_FMT_YUV420P;
1952
            return 1;
1953
        case PIX_FMT_YUVJ422P:
1954
            *format = PIX_FMT_YUV422P;
1955
            return 1;
1956
        case PIX_FMT_YUVJ444P:
1957
            *format = PIX_FMT_YUV444P;
1958
            return 1;
1959
        case PIX_FMT_YUVJ440P:
1960
            *format = PIX_FMT_YUV440P;
1961
            return 1;
1962
        default:
1963
            return 0;
1964
    }
1965
}
1966

    
1967
SwsContext *sws_getContext(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat, int flags,
1968
                           SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
1969

    
1970
    SwsContext *c;
1971
    int i;
1972
    int usesVFilter, usesHFilter;
1973
    int unscaled, needsDither;
1974
    int srcRange, dstRange;
1975
    SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
1976
#if defined(ARCH_X86)
1977
    if (flags & SWS_CPU_CAPS_MMX)
1978
        asm volatile("emms\n\t"::: "memory");
1979
#endif
1980

    
1981
#if !defined(RUNTIME_CPUDETECT) || !defined (CONFIG_GPL) //ensure that the flags match the compiled variant if cpudetect is off
1982
    flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
1983
#ifdef HAVE_MMX2
1984
    flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
1985
#elif defined (HAVE_3DNOW)
1986
    flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
1987
#elif defined (HAVE_MMX)
1988
    flags |= SWS_CPU_CAPS_MMX;
1989
#elif defined (HAVE_ALTIVEC)
1990
    flags |= SWS_CPU_CAPS_ALTIVEC;
1991
#elif defined (ARCH_BFIN)
1992
    flags |= SWS_CPU_CAPS_BFIN;
1993
#endif
1994
#endif /* RUNTIME_CPUDETECT */
1995
    if (clip_table[512] != 255) globalInit();
1996
    if (!rgb15to16) sws_rgb2rgb_init(flags);
1997

    
1998
    unscaled = (srcW == dstW && srcH == dstH);
1999
    needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
2000
        && (fmt_depth(dstFormat))<24
2001
        && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
2002

    
2003
    srcRange = handle_jpeg(&srcFormat);
2004
    dstRange = handle_jpeg(&dstFormat);
2005

    
2006
    if (!isSupportedIn(srcFormat))
2007
    {
2008
        av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
2009
        return NULL;
2010
    }
2011
    if (!isSupportedOut(dstFormat))
2012
    {
2013
        av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
2014
        return NULL;
2015
    }
2016

    
2017
    /* sanity check */
2018
    if (srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
2019
    {
2020
        av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
2021
               srcW, srcH, dstW, dstH);
2022
        return NULL;
2023
    }
2024
    if(srcW > VOFW || dstW > VOFW){
2025
        av_log(NULL, AV_LOG_ERROR, "swScaler: Compile time max width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
2026
        return NULL;
2027
    }
2028

    
2029
    if (!dstFilter) dstFilter= &dummyFilter;
2030
    if (!srcFilter) srcFilter= &dummyFilter;
2031

    
2032
    c= av_mallocz(sizeof(SwsContext));
2033

    
2034
    c->av_class = &sws_context_class;
2035
    c->srcW= srcW;
2036
    c->srcH= srcH;
2037
    c->dstW= dstW;
2038
    c->dstH= dstH;
2039
    c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
2040
    c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
2041
    c->flags= flags;
2042
    c->dstFormat= dstFormat;
2043
    c->srcFormat= srcFormat;
2044
    c->vRounder= 4* 0x0001000100010001ULL;
2045

    
2046
    usesHFilter= usesVFilter= 0;
2047
    if (dstFilter->lumV && dstFilter->lumV->length>1) usesVFilter=1;
2048
    if (dstFilter->lumH && dstFilter->lumH->length>1) usesHFilter=1;
2049
    if (dstFilter->chrV && dstFilter->chrV->length>1) usesVFilter=1;
2050
    if (dstFilter->chrH && dstFilter->chrH->length>1) usesHFilter=1;
2051
    if (srcFilter->lumV && srcFilter->lumV->length>1) usesVFilter=1;
2052
    if (srcFilter->lumH && srcFilter->lumH->length>1) usesHFilter=1;
2053
    if (srcFilter->chrV && srcFilter->chrV->length>1) usesVFilter=1;
2054
    if (srcFilter->chrH && srcFilter->chrH->length>1) usesHFilter=1;
2055

    
2056
    getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
2057
    getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
2058

    
2059
    // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
2060
    if ((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
2061

    
2062
    // drop some chroma lines if the user wants it
2063
    c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
2064
    c->chrSrcVSubSample+= c->vChrDrop;
2065

    
2066
    // drop every 2. pixel for chroma calculation unless user wants full chroma
2067
    if ((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)
2068
      && srcFormat!=PIX_FMT_RGB8      && srcFormat!=PIX_FMT_BGR8
2069
      && srcFormat!=PIX_FMT_RGB4      && srcFormat!=PIX_FMT_BGR4
2070
      && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE)
2071
        c->chrSrcHSubSample=1;
2072

    
2073
    if (param){
2074
        c->param[0] = param[0];
2075
        c->param[1] = param[1];
2076
    }else{
2077
        c->param[0] =
2078
        c->param[1] = SWS_PARAM_DEFAULT;
2079
    }
2080

    
2081
    c->chrIntHSubSample= c->chrDstHSubSample;
2082
    c->chrIntVSubSample= c->chrSrcVSubSample;
2083

    
2084
    // Note the -((-x)>>y) is so that we always round toward +inf.
2085
    c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
2086
    c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
2087
    c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
2088
    c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
2089

    
2090
    sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], srcRange, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
2091

    
2092
    /* unscaled special Cases */
2093
    if (unscaled && !usesHFilter && !usesVFilter)
2094
    {
2095
        /* yv12_to_nv12 */
2096
        if (srcFormat == PIX_FMT_YUV420P && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
2097
        {
2098
            c->swScale= PlanarToNV12Wrapper;
2099
        }
2100
#ifdef CONFIG_GPL
2101
        /* yuv2bgr */
2102
        if ((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P) && (isBGR(dstFormat) || isRGB(dstFormat)))
2103
        {
2104
            c->swScale= yuv2rgb_get_func_ptr(c);
2105
        }
2106
#endif
2107

    
2108
        if (srcFormat==PIX_FMT_YUV410P && dstFormat==PIX_FMT_YUV420P)
2109
        {
2110
            c->swScale= yvu9toyv12Wrapper;
2111
        }
2112

    
2113
        /* bgr24toYV12 */
2114
        if (srcFormat==PIX_FMT_BGR24 && dstFormat==PIX_FMT_YUV420P)
2115
            c->swScale= bgr24toyv12Wrapper;
2116

    
2117
        /* rgb/bgr -> rgb/bgr (no dither needed forms) */
2118
        if (  (isBGR(srcFormat) || isRGB(srcFormat))
2119
           && (isBGR(dstFormat) || isRGB(dstFormat))
2120
           && srcFormat != PIX_FMT_BGR8      && dstFormat != PIX_FMT_BGR8
2121
           && srcFormat != PIX_FMT_RGB8      && dstFormat != PIX_FMT_RGB8
2122
           && srcFormat != PIX_FMT_BGR4      && dstFormat != PIX_FMT_BGR4
2123
           && srcFormat != PIX_FMT_RGB4      && dstFormat != PIX_FMT_RGB4
2124
           && srcFormat != PIX_FMT_BGR4_BYTE && dstFormat != PIX_FMT_BGR4_BYTE
2125
           && srcFormat != PIX_FMT_RGB4_BYTE && dstFormat != PIX_FMT_RGB4_BYTE
2126
           && srcFormat != PIX_FMT_MONOBLACK && dstFormat != PIX_FMT_MONOBLACK
2127
           && !needsDither)
2128
             c->swScale= rgb2rgbWrapper;
2129

    
2130
        /* LQ converters if -sws 0 or -sws 4*/
2131
        if (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
2132
            /* rgb/bgr -> rgb/bgr (dither needed forms) */
2133
            if ( (isBGR(srcFormat) || isRGB(srcFormat))
2134
              && (isBGR(dstFormat) || isRGB(dstFormat))
2135
              && needsDither)
2136
                c->swScale= rgb2rgbWrapper;
2137

    
2138
            /* yv12_to_yuy2 */
2139
            if (srcFormat == PIX_FMT_YUV420P &&
2140
                (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422))
2141
            {
2142
                if (dstFormat == PIX_FMT_YUYV422)
2143
                    c->swScale= PlanarToYuy2Wrapper;
2144
                else
2145
                    c->swScale= PlanarToUyvyWrapper;
2146
            }
2147
        }
2148

    
2149
#ifdef COMPILE_ALTIVEC
2150
        if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
2151
            ((srcFormat == PIX_FMT_YUV420P &&
2152
             (dstFormat == PIX_FMT_YUYV422 || dstFormat == PIX_FMT_UYVY422)))) {
2153
          // unscaled YV12 -> packed YUV, we want speed
2154
          if (dstFormat == PIX_FMT_YUYV422)
2155
              c->swScale= yv12toyuy2_unscaled_altivec;
2156
          else
2157
              c->swScale= yv12touyvy_unscaled_altivec;
2158
        }
2159
#endif
2160

    
2161
        /* simple copy */
2162
        if (  srcFormat == dstFormat
2163
            || (isPlanarYUV(srcFormat) && isGray(dstFormat))
2164
            || (isPlanarYUV(dstFormat) && isGray(srcFormat)))
2165
        {
2166
            if (isPacked(c->srcFormat))
2167
                c->swScale= packedCopy;
2168
            else /* Planar YUV or gray */
2169
                c->swScale= planarCopy;
2170
        }
2171

    
2172
        /* gray16{le,be} conversions */
2173
        if (isGray16(srcFormat) && (isPlanarYUV(dstFormat) || (dstFormat == PIX_FMT_GRAY8)))
2174
        {
2175
            c->swScale= gray16togray;
2176
        }
2177
        if ((isPlanarYUV(srcFormat) || (srcFormat == PIX_FMT_GRAY8)) && isGray16(dstFormat))
2178
        {
2179
            c->swScale= graytogray16;
2180
        }
2181
        if (srcFormat != dstFormat && isGray16(srcFormat) && isGray16(dstFormat))
2182
        {
2183
            c->swScale= gray16swap;
2184
        }
2185

    
2186
#ifdef ARCH_BFIN
2187
        if (flags & SWS_CPU_CAPS_BFIN)
2188
            ff_bfin_get_unscaled_swscale (c);
2189
#endif
2190

    
2191
        if (c->swScale){
2192
            if (flags&SWS_PRINT_INFO)
2193
                av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
2194
                                sws_format_name(srcFormat), sws_format_name(dstFormat));
2195
            return c;
2196
        }
2197
    }
2198

    
2199
    if (flags & SWS_CPU_CAPS_MMX2)
2200
    {
2201
        c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
2202
        if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
2203
        {
2204
            if (flags&SWS_PRINT_INFO)
2205
                av_log(c, AV_LOG_INFO, "output Width is not a multiple of 32 -> no MMX2 scaler\n");
2206
        }
2207
        if (usesHFilter) c->canMMX2BeUsed=0;
2208
    }
2209
    else
2210
        c->canMMX2BeUsed=0;
2211

    
2212
    c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
2213
    c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
2214

    
2215
    // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
2216
    // but only for the FAST_BILINEAR mode otherwise do correct scaling
2217
    // n-2 is the last chrominance sample available
2218
    // this is not perfect, but no one should notice the difference, the more correct variant
2219
    // would be like the vertical one, but that would require some special code for the
2220
    // first and last pixel
2221
    if (flags&SWS_FAST_BILINEAR)
2222
    {
2223
        if (c->canMMX2BeUsed)
2224
        {
2225
            c->lumXInc+= 20;
2226
            c->chrXInc+= 20;
2227
        }
2228
        //we don't use the x86asm scaler if mmx is available
2229
        else if (flags & SWS_CPU_CAPS_MMX)
2230
        {
2231
            c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
2232
            c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
2233
        }
2234
    }
2235

    
2236
    /* precalculate horizontal scaler filter coefficients */
2237
    {
2238
        const int filterAlign=
2239
            (flags & SWS_CPU_CAPS_MMX) ? 4 :
2240
            (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2241
            1;
2242

    
2243
        initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
2244
                   srcW      ,       dstW, filterAlign, 1<<14,
2245
                   (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
2246
                   srcFilter->lumH, dstFilter->lumH, c->param);
2247
        initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
2248
                   c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
2249
                   (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2250
                   srcFilter->chrH, dstFilter->chrH, c->param);
2251

    
2252
#define MAX_FUNNY_CODE_SIZE 10000
2253
#if defined(COMPILE_MMX2)
2254
// can't downscale !!!
2255
        if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
2256
        {
2257
#ifdef MAP_ANONYMOUS
2258
            c->funnyYCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2259
            c->funnyUVCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2260
#else
2261
            c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
2262
            c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
2263
#endif
2264

    
2265
            c->lumMmx2Filter   = av_malloc((dstW        /8+8)*sizeof(int16_t));
2266
            c->chrMmx2Filter   = av_malloc((c->chrDstW  /4+8)*sizeof(int16_t));
2267
            c->lumMmx2FilterPos= av_malloc((dstW      /2/8+8)*sizeof(int32_t));
2268
            c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
2269

    
2270
            initMMX2HScaler(      dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
2271
            initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
2272
        }
2273
#endif /* defined(COMPILE_MMX2) */
2274
    } // Init Horizontal stuff
2275

    
2276

    
2277

    
2278
    /* precalculate vertical scaler filter coefficients */
2279
    {
2280
        const int filterAlign=
2281
            (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
2282
            (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2283
            1;
2284

    
2285
        initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
2286
                   srcH      ,        dstH, filterAlign, (1<<12)-4,
2287
                   (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
2288
                   srcFilter->lumV, dstFilter->lumV, c->param);
2289
        initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
2290
                   c->chrSrcH, c->chrDstH, filterAlign, (1<<12)-4,
2291
                   (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2292
                   srcFilter->chrV, dstFilter->chrV, c->param);
2293

    
2294
#ifdef HAVE_ALTIVEC
2295
        c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
2296
        c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
2297

    
2298
        for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
2299
            int j;
2300
            short *p = (short *)&c->vYCoeffsBank[i];
2301
            for (j=0;j<8;j++)
2302
                p[j] = c->vLumFilter[i];
2303
        }
2304

    
2305
        for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
2306
            int j;
2307
            short *p = (short *)&c->vCCoeffsBank[i];
2308
            for (j=0;j<8;j++)
2309
                p[j] = c->vChrFilter[i];
2310
        }
2311
#endif
2312
    }
2313

    
2314
    // Calculate Buffer Sizes so that they won't run out while handling these damn slices
2315
    c->vLumBufSize= c->vLumFilterSize;
2316
    c->vChrBufSize= c->vChrFilterSize;
2317
    for (i=0; i<dstH; i++)
2318
    {
2319
        int chrI= i*c->chrDstH / dstH;
2320
        int nextSlice= FFMAX(c->vLumFilterPos[i   ] + c->vLumFilterSize - 1,
2321
                           ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
2322

    
2323
        nextSlice>>= c->chrSrcVSubSample;
2324
        nextSlice<<= c->chrSrcVSubSample;
2325
        if (c->vLumFilterPos[i   ] + c->vLumBufSize < nextSlice)
2326
            c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
2327
        if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
2328
            c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
2329
    }
2330

    
2331
    // allocate pixbufs (we use dynamic allocation because otherwise we would need to
2332
    c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
2333
    c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
2334
    //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
2335
    /* align at 16 bytes for AltiVec */
2336
    for (i=0; i<c->vLumBufSize; i++)
2337
        c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_mallocz(VOF+1);
2338
    for (i=0; i<c->vChrBufSize; i++)
2339
        c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc((VOF+1)*2);
2340

    
2341
    //try to avoid drawing green stuff between the right end and the stride end
2342
    for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, (VOF+1)*2);
2343

    
2344
    assert(2*VOFW == VOF);
2345

    
2346
    assert(c->chrDstH <= dstH);
2347

    
2348
    if (flags&SWS_PRINT_INFO)
2349
    {
2350
#ifdef DITHER1XBPP
2351
        const char *dither= " dithered";
2352
#else
2353
        const char *dither= "";
2354
#endif
2355
        if (flags&SWS_FAST_BILINEAR)
2356
            av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
2357
        else if (flags&SWS_BILINEAR)
2358
            av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
2359
        else if (flags&SWS_BICUBIC)
2360
            av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
2361
        else if (flags&SWS_X)
2362
            av_log(c, AV_LOG_INFO, "Experimental scaler, ");
2363
        else if (flags&SWS_POINT)
2364
            av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
2365
        else if (flags&SWS_AREA)
2366
            av_log(c, AV_LOG_INFO, "Area Averageing scaler, ");
2367
        else if (flags&SWS_BICUBLIN)
2368
            av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
2369
        else if (flags&SWS_GAUSS)
2370
            av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
2371
        else if (flags&SWS_SINC)
2372
            av_log(c, AV_LOG_INFO, "Sinc scaler, ");
2373
        else if (flags&SWS_LANCZOS)
2374
            av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
2375
        else if (flags&SWS_SPLINE)
2376
            av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
2377
        else
2378
            av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
2379

    
2380
        if (dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
2381
            av_log(c, AV_LOG_INFO, "from %s to%s %s ",
2382
                   sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
2383
        else
2384
            av_log(c, AV_LOG_INFO, "from %s to %s ",
2385
                   sws_format_name(srcFormat), sws_format_name(dstFormat));
2386

    
2387
        if (flags & SWS_CPU_CAPS_MMX2)
2388
            av_log(c, AV_LOG_INFO, "using MMX2\n");
2389
        else if (flags & SWS_CPU_CAPS_3DNOW)
2390
            av_log(c, AV_LOG_INFO, "using 3DNOW\n");
2391
        else if (flags & SWS_CPU_CAPS_MMX)
2392
            av_log(c, AV_LOG_INFO, "using MMX\n");
2393
        else if (flags & SWS_CPU_CAPS_ALTIVEC)
2394
            av_log(c, AV_LOG_INFO, "using AltiVec\n");
2395
        else
2396
            av_log(c, AV_LOG_INFO, "using C\n");
2397
    }
2398

    
2399
    if (flags & SWS_PRINT_INFO)
2400
    {
2401
        if (flags & SWS_CPU_CAPS_MMX)
2402
        {
2403
            if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
2404
                av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
2405
            else
2406
            {
2407
                if (c->hLumFilterSize==4)
2408
                    av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
2409
                else if (c->hLumFilterSize==8)
2410
                    av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
2411
                else
2412
                    av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
2413

    
2414
                if (c->hChrFilterSize==4)
2415
                    av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
2416
                else if (c->hChrFilterSize==8)
2417
                    av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
2418
                else
2419
                    av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
2420
            }
2421
        }
2422
        else
2423
        {
2424
#if defined(ARCH_X86)
2425
            av_log(c, AV_LOG_VERBOSE, "using X86-Asm scaler for horizontal scaling\n");
2426
#else
2427
            if (flags & SWS_FAST_BILINEAR)
2428
                av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
2429
            else
2430
                av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
2431
#endif
2432
        }
2433
        if (isPlanarYUV(dstFormat))
2434
        {
2435
            if (c->vLumFilterSize==1)
2436
                av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2437
            else
2438
                av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2439
        }
2440
        else
2441
        {
2442
            if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
2443
                av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
2444
                       "      2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2445
            else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
2446
                av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2447
            else
2448
                av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2449
        }
2450

    
2451
        if (dstFormat==PIX_FMT_BGR24)
2452
            av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 Converter\n",
2453
                   (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
2454
        else if (dstFormat==PIX_FMT_RGB32)
2455
            av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2456
        else if (dstFormat==PIX_FMT_BGR565)
2457
            av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2458
        else if (dstFormat==PIX_FMT_BGR555)
2459
            av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2460

    
2461
        av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
2462
    }
2463
    if (flags & SWS_PRINT_INFO)
2464
    {
2465
        av_log(c, AV_LOG_DEBUG, "Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2466
               c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
2467
        av_log(c, AV_LOG_DEBUG, "Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2468
               c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
2469
    }
2470

    
2471
    c->swScale= getSwsFunc(flags);
2472
    return c;
2473
}
2474

    
2475
/**
2476
 * swscale wrapper, so we don't need to export the SwsContext.
2477
 * assumes planar YUV to be in YUV order instead of YVU
2478
 */
2479
int sws_scale(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2480
              int srcSliceH, uint8_t* dst[], int dstStride[]){
2481
    int i;
2482
    uint8_t* src2[4]= {src[0], src[1], src[2]};
2483
    uint32_t pal[256];
2484
    if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
2485
        av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n");
2486
        return 0;
2487
    }
2488
    if (c->sliceDir == 0) {
2489
        if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
2490
    }
2491

    
2492
    if (c->srcFormat == PIX_FMT_PAL8){
2493
        for (i=0; i<256; i++){
2494
            int p= ((uint32_t*)(src[1]))[i];
2495
            int r= (p>>16)&0xFF;
2496
            int g= (p>> 8)&0xFF;
2497
            int b=  p     &0xFF;
2498
            int y= av_clip_uint8(((RY*r + GY*g + BY*b)>>RGB2YUV_SHIFT) + 16 );
2499
            int u= av_clip_uint8(((RU*r + GU*g + BU*b)>>RGB2YUV_SHIFT) + 128);
2500
            int v= av_clip_uint8(((RV*r + GV*g + BV*b)>>RGB2YUV_SHIFT) + 128);
2501
            pal[i]= y + (u<<8) + (v<<16);
2502
        }
2503
        src2[1]= (uint8_t*)pal;
2504
    }
2505

    
2506
    // copy strides, so they can safely be modified
2507
    if (c->sliceDir == 1) {
2508
        // slices go from top to bottom
2509
        int srcStride2[4]= {srcStride[0], srcStride[1], srcStride[2]};
2510
        int dstStride2[4]= {dstStride[0], dstStride[1], dstStride[2]};
2511
        return c->swScale(c, src2, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
2512
    } else {
2513
        // slices go from bottom to top => we flip the image internally
2514
        uint8_t* dst2[4]= {dst[0] + (c->dstH-1)*dstStride[0],
2515
                           dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
2516
                           dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2]};
2517
        int srcStride2[4]= {-srcStride[0], -srcStride[1], -srcStride[2]};
2518
        int dstStride2[4]= {-dstStride[0], -dstStride[1], -dstStride[2]};
2519

    
2520
        src2[0] += (srcSliceH-1)*srcStride[0];
2521
        if (c->srcFormat != PIX_FMT_PAL8)
2522
            src2[1] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1];
2523
        src2[2] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2];
2524

    
2525
        return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
2526
    }
2527
}
2528

    
2529
/**
2530
 * swscale wrapper, so we don't need to export the SwsContext
2531
 */
2532
int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2533
                      int srcSliceH, uint8_t* dst[], int dstStride[]){
2534
    return sws_scale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
2535
}
2536

    
2537
SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
2538
                                float lumaSharpen, float chromaSharpen,
2539
                                float chromaHShift, float chromaVShift,
2540
                                int verbose)
2541
{
2542
    SwsFilter *filter= av_malloc(sizeof(SwsFilter));
2543

    
2544
    if (lumaGBlur!=0.0){
2545
        filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
2546
        filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
2547
    }else{
2548
        filter->lumH= sws_getIdentityVec();
2549
        filter->lumV= sws_getIdentityVec();
2550
    }
2551

    
2552
    if (chromaGBlur!=0.0){
2553
        filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
2554
        filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
2555
    }else{
2556
        filter->chrH= sws_getIdentityVec();
2557
        filter->chrV= sws_getIdentityVec();
2558
    }
2559

    
2560
    if (chromaSharpen!=0.0){
2561
        SwsVector *id= sws_getIdentityVec();
2562
        sws_scaleVec(filter->chrH, -chromaSharpen);
2563
        sws_scaleVec(filter->chrV, -chromaSharpen);
2564
        sws_addVec(filter->chrH, id);
2565
        sws_addVec(filter->chrV, id);
2566
        sws_freeVec(id);
2567
    }
2568

    
2569
    if (lumaSharpen!=0.0){
2570
        SwsVector *id= sws_getIdentityVec();
2571
        sws_scaleVec(filter->lumH, -lumaSharpen);
2572
        sws_scaleVec(filter->lumV, -lumaSharpen);
2573
        sws_addVec(filter->lumH, id);
2574
        sws_addVec(filter->lumV, id);
2575
        sws_freeVec(id);
2576
    }
2577

    
2578
    if (chromaHShift != 0.0)
2579
        sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
2580

    
2581
    if (chromaVShift != 0.0)
2582
        sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
2583

    
2584
    sws_normalizeVec(filter->chrH, 1.0);
2585
    sws_normalizeVec(filter->chrV, 1.0);
2586
    sws_normalizeVec(filter->lumH, 1.0);
2587
    sws_normalizeVec(filter->lumV, 1.0);
2588

    
2589
    if (verbose) sws_printVec(filter->chrH);
2590
    if (verbose) sws_printVec(filter->lumH);
2591

    
2592
    return filter;
2593
}
2594

    
2595
/**
2596
 * returns a normalized gaussian curve used to filter stuff
2597
 * quality=3 is high quality, lowwer is lowwer quality
2598
 */
2599
SwsVector *sws_getGaussianVec(double variance, double quality){
2600
    const int length= (int)(variance*quality + 0.5) | 1;
2601
    int i;
2602
    double *coeff= av_malloc(length*sizeof(double));
2603
    double middle= (length-1)*0.5;
2604
    SwsVector *vec= av_malloc(sizeof(SwsVector));
2605

    
2606
    vec->coeff= coeff;
2607
    vec->length= length;
2608

    
2609
    for (i=0; i<length; i++)
2610
    {
2611
        double dist= i-middle;
2612
        coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*PI);
2613
    }
2614

    
2615
    sws_normalizeVec(vec, 1.0);
2616

    
2617
    return vec;
2618
}
2619

    
2620
SwsVector *sws_getConstVec(double c, int length){
2621
    int i;
2622
    double *coeff= av_malloc(length*sizeof(double));
2623
    SwsVector *vec= av_malloc(sizeof(SwsVector));
2624

    
2625
    vec->coeff= coeff;
2626
    vec->length= length;
2627

    
2628
    for (i=0; i<length; i++)
2629
        coeff[i]= c;
2630

    
2631
    return vec;
2632
}
2633

    
2634

    
2635
SwsVector *sws_getIdentityVec(void){
2636
    return sws_getConstVec(1.0, 1);
2637
}
2638

    
2639
double sws_dcVec(SwsVector *a){
2640
    int i;
2641
    double sum=0;
2642

    
2643
    for (i=0; i<a->length; i++)
2644
        sum+= a->coeff[i];
2645

    
2646
    return sum;
2647
}
2648

    
2649
void sws_scaleVec(SwsVector *a, double scalar){
2650
    int i;
2651

    
2652
    for (i=0; i<a->length; i++)
2653
        a->coeff[i]*= scalar;
2654
}
2655

    
2656
void sws_normalizeVec(SwsVector *a, double height){
2657
    sws_scaleVec(a, height/sws_dcVec(a));
2658
}
2659

    
2660
static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
2661
    int length= a->length + b->length - 1;
2662
    double *coeff= av_malloc(length*sizeof(double));
2663
    int i, j;
2664
    SwsVector *vec= av_malloc(sizeof(SwsVector));
2665

    
2666
    vec->coeff= coeff;
2667
    vec->length= length;
2668

    
2669
    for (i=0; i<length; i++) coeff[i]= 0.0;
2670

    
2671
    for (i=0; i<a->length; i++)
2672
    {
2673
        for (j=0; j<b->length; j++)
2674
        {
2675
            coeff[i+j]+= a->coeff[i]*b->coeff[j];
2676
        }
2677
    }
2678

    
2679
    return vec;
2680
}
2681

    
2682
static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
2683
    int length= FFMAX(a->length, b->length);
2684
    double *coeff= av_malloc(length*sizeof(double));
2685
    int i;
2686
    SwsVector *vec= av_malloc(sizeof(SwsVector));
2687

    
2688
    vec->coeff= coeff;
2689
    vec->length= length;
2690

    
2691
    for (i=0; i<length; i++) coeff[i]= 0.0;
2692

    
2693
    for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2694
    for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
2695

    
2696
    return vec;
2697
}
2698

    
2699
static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
2700
    int length= FFMAX(a->length, b->length);
2701
    double *coeff= av_malloc(length*sizeof(double));
2702
    int i;
2703
    SwsVector *vec= av_malloc(sizeof(SwsVector));
2704

    
2705
    vec->coeff= coeff;
2706
    vec->length= length;
2707

    
2708
    for (i=0; i<length; i++) coeff[i]= 0.0;
2709

    
2710
    for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2711
    for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
2712

    
2713
    return vec;
2714
}
2715

    
2716
/* shift left / or right if "shift" is negative */
2717
static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
2718
    int length= a->length + FFABS(shift)*2;
2719
    double *coeff= av_malloc(length*sizeof(double));
2720
    int i;
2721
    SwsVector *vec= av_malloc(sizeof(SwsVector));
2722

    
2723
    vec->coeff= coeff;
2724
    vec->length= length;
2725

    
2726
    for (i=0; i<length; i++) coeff[i]= 0.0;
2727

    
2728
    for (i=0; i<a->length; i++)
2729
    {
2730
        coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
2731
    }
2732

    
2733
    return vec;
2734
}
2735

    
2736
void sws_shiftVec(SwsVector *a, int shift){
2737
    SwsVector *shifted= sws_getShiftedVec(a, shift);
2738
    av_free(a->coeff);
2739
    a->coeff= shifted->coeff;
2740
    a->length= shifted->length;
2741
    av_free(shifted);
2742
}
2743

    
2744
void sws_addVec(SwsVector *a, SwsVector *b){
2745
    SwsVector *sum= sws_sumVec(a, b);
2746
    av_free(a->coeff);
2747
    a->coeff= sum->coeff;
2748
    a->length= sum->length;
2749
    av_free(sum);
2750
}
2751

    
2752
void sws_subVec(SwsVector *a, SwsVector *b){
2753
    SwsVector *diff= sws_diffVec(a, b);
2754
    av_free(a->coeff);
2755
    a->coeff= diff->coeff;
2756
    a->length= diff->length;
2757
    av_free(diff);
2758
}
2759

    
2760
void sws_convVec(SwsVector *a, SwsVector *b){
2761
    SwsVector *conv= sws_getConvVec(a, b);
2762
    av_free(a->coeff);
2763
    a->coeff= conv->coeff;
2764
    a->length= conv->length;
2765
    av_free(conv);
2766
}
2767

    
2768
SwsVector *sws_cloneVec(SwsVector *a){
2769
    double *coeff= av_malloc(a->length*sizeof(double));
2770
    int i;
2771
    SwsVector *vec= av_malloc(sizeof(SwsVector));
2772

    
2773
    vec->coeff= coeff;
2774
    vec->length= a->length;
2775

    
2776
    for (i=0; i<a->length; i++) coeff[i]= a->coeff[i];
2777

    
2778
    return vec;
2779
}
2780

    
2781
void sws_printVec(SwsVector *a){
2782
    int i;
2783
    double max=0;
2784
    double min=0;
2785
    double range;
2786

    
2787
    for (i=0; i<a->length; i++)
2788
        if (a->coeff[i]>max) max= a->coeff[i];
2789

    
2790
    for (i=0; i<a->length; i++)
2791
        if (a->coeff[i]<min) min= a->coeff[i];
2792

    
2793
    range= max - min;
2794

    
2795
    for (i=0; i<a->length; i++)
2796
    {
2797
        int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
2798
        av_log(NULL, AV_LOG_DEBUG, "%1.3f ", a->coeff[i]);
2799
        for (;x>0; x--) av_log(NULL, AV_LOG_DEBUG, " ");
2800
        av_log(NULL, AV_LOG_DEBUG, "|\n");
2801
    }
2802
}
2803

    
2804
void sws_freeVec(SwsVector *a){
2805
    if (!a) return;
2806
    av_free(a->coeff);
2807
    a->coeff=NULL;
2808
    a->length=0;
2809
    av_free(a);
2810
}
2811

    
2812
void sws_freeFilter(SwsFilter *filter){
2813
    if (!filter) return;
2814

    
2815
    if (filter->lumH) sws_freeVec(filter->lumH);
2816
    if (filter->lumV) sws_freeVec(filter->lumV);
2817
    if (filter->chrH) sws_freeVec(filter->chrH);
2818
    if (filter->chrV) sws_freeVec(filter->chrV);
2819
    av_free(filter);
2820
}
2821

    
2822

    
2823
void sws_freeContext(SwsContext *c){
2824
    int i;
2825
    if (!c) return;
2826

    
2827
    if (c->lumPixBuf)
2828
    {
2829
        for (i=0; i<c->vLumBufSize; i++)
2830
        {
2831
            av_free(c->lumPixBuf[i]);
2832
            c->lumPixBuf[i]=NULL;
2833
        }
2834
        av_free(c->lumPixBuf);
2835
        c->lumPixBuf=NULL;
2836
    }
2837

    
2838
    if (c->chrPixBuf)
2839
    {
2840
        for (i=0; i<c->vChrBufSize; i++)
2841
        {
2842
            av_free(c->chrPixBuf[i]);
2843
            c->chrPixBuf[i]=NULL;
2844
        }
2845
        av_free(c->chrPixBuf);
2846
        c->chrPixBuf=NULL;
2847
    }
2848

    
2849
    av_free(c->vLumFilter);
2850
    c->vLumFilter = NULL;
2851
    av_free(c->vChrFilter);
2852
    c->vChrFilter = NULL;
2853
    av_free(c->hLumFilter);
2854
    c->hLumFilter = NULL;
2855
    av_free(c->hChrFilter);
2856
    c->hChrFilter = NULL;
2857
#ifdef HAVE_ALTIVEC
2858
    av_free(c->vYCoeffsBank);
2859
    c->vYCoeffsBank = NULL;
2860
    av_free(c->vCCoeffsBank);
2861
    c->vCCoeffsBank = NULL;
2862
#endif
2863

    
2864
    av_free(c->vLumFilterPos);
2865
    c->vLumFilterPos = NULL;
2866
    av_free(c->vChrFilterPos);
2867
    c->vChrFilterPos = NULL;
2868
    av_free(c->hLumFilterPos);
2869
    c->hLumFilterPos = NULL;
2870
    av_free(c->hChrFilterPos);
2871
    c->hChrFilterPos = NULL;
2872

    
2873
#if defined(ARCH_X86) && defined(CONFIG_GPL)
2874
#ifdef MAP_ANONYMOUS
2875
    if (c->funnyYCode) munmap(c->funnyYCode, MAX_FUNNY_CODE_SIZE);
2876
    if (c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
2877
#else
2878
    av_free(c->funnyYCode);
2879
    av_free(c->funnyUVCode);
2880
#endif
2881
    c->funnyYCode=NULL;
2882
    c->funnyUVCode=NULL;
2883
#endif /* defined(ARCH_X86) */
2884

    
2885
    av_free(c->lumMmx2Filter);
2886
    c->lumMmx2Filter=NULL;
2887
    av_free(c->chrMmx2Filter);
2888
    c->chrMmx2Filter=NULL;
2889
    av_free(c->lumMmx2FilterPos);
2890
    c->lumMmx2FilterPos=NULL;
2891
    av_free(c->chrMmx2FilterPos);
2892
    c->chrMmx2FilterPos=NULL;
2893
    av_free(c->yuvTable);
2894
    c->yuvTable=NULL;
2895

    
2896
    av_free(c);
2897
}
2898

    
2899
/**
2900
 * Checks if context is valid or reallocs a new one instead.
2901
 * If context is NULL, just calls sws_getContext() to get a new one.
2902
 * Otherwise, checks if the parameters are the same already saved in context.
2903
 * If that is the case, returns the current context.
2904
 * Otherwise, frees context and gets a new one.
2905
 *
2906
 * Be warned that srcFilter, dstFilter are not checked, they are
2907
 * asumed to remain valid.
2908
 */
2909
struct SwsContext *sws_getCachedContext(struct SwsContext *context,
2910
                                        int srcW, int srcH, int srcFormat,
2911
                                        int dstW, int dstH, int dstFormat, int flags,
2912
                                        SwsFilter *srcFilter, SwsFilter *dstFilter, double *param)
2913
{
2914
    static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
2915

    
2916
    if (!param)
2917
        param = default_param;
2918

    
2919
    if (context) {
2920
        if (context->srcW != srcW || context->srcH != srcH ||
2921
            context->srcFormat != srcFormat ||
2922
            context->dstW != dstW || context->dstH != dstH ||
2923
            context->dstFormat != dstFormat || context->flags != flags ||
2924
            context->param[0] != param[0] || context->param[1] != param[1])
2925
        {
2926
            sws_freeContext(context);
2927
            context = NULL;
2928
        }
2929
    }
2930
    if (!context) {
2931
        return sws_getContext(srcW, srcH, srcFormat,
2932
                              dstW, dstH, dstFormat, flags,
2933
                              srcFilter, dstFilter, param);
2934
    }
2935
    return context;
2936
}
2937