Statistics
| Branch: | Revision:

ffmpeg / libavcodec / adpcm.c @ e67fe90c

History | View | Annotate | Download (59.3 KB)

1
/*
2
 * ADPCM codecs
3
 * Copyright (c) 2001-2003 The ffmpeg Project
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
#include "avcodec.h"
22
#include "bitstream.h"
23
#include "bytestream.h"
24

    
25
/**
26
 * @file adpcm.c
27
 * ADPCM codecs.
28
 * First version by Francois Revol (revol@free.fr)
29
 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
30
 *   by Mike Melanson (melanson@pcisys.net)
31
 * CD-ROM XA ADPCM codec by BERO
32
 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
33
 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
34
 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
35
 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
36
 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
37
 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
38
 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
39
 *
40
 * Features and limitations:
41
 *
42
 * Reference documents:
43
 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
44
 * http://www.geocities.com/SiliconValley/8682/aud3.txt
45
 * http://openquicktime.sourceforge.net/plugins.htm
46
 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
47
 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
48
 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
49
 *
50
 * CD-ROM XA:
51
 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
52
 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
53
 * readstr http://www.geocities.co.jp/Playtown/2004/
54
 */
55

    
56
#define BLKSIZE 1024
57

    
58
/* step_table[] and index_table[] are from the ADPCM reference source */
59
/* This is the index table: */
60
static const int index_table[16] = {
61
    -1, -1, -1, -1, 2, 4, 6, 8,
62
    -1, -1, -1, -1, 2, 4, 6, 8,
63
};
64

    
65
/**
66
 * This is the step table. Note that many programs use slight deviations from
67
 * this table, but such deviations are negligible:
68
 */
69
static const int step_table[89] = {
70
    7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
71
    19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
72
    50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
73
    130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
74
    337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
75
    876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
76
    2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
77
    5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
78
    15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
79
};
80

    
81
/* These are for MS-ADPCM */
82
/* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
83
static const int AdaptationTable[] = {
84
        230, 230, 230, 230, 307, 409, 512, 614,
85
        768, 614, 512, 409, 307, 230, 230, 230
86
};
87

    
88
static const int AdaptCoeff1[] = {
89
        256, 512, 0, 192, 240, 460, 392
90
};
91

    
92
static const int AdaptCoeff2[] = {
93
        0, -256, 0, 64, 0, -208, -232
94
};
95

    
96
/* These are for CD-ROM XA ADPCM */
97
static const int xa_adpcm_table[5][2] = {
98
   {   0,   0 },
99
   {  60,   0 },
100
   { 115, -52 },
101
   {  98, -55 },
102
   { 122, -60 }
103
};
104

    
105
static const int ea_adpcm_table[] = {
106
    0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
107
    3, 4, 7, 8, 10, 11, 0, -1, -3, -4
108
};
109

    
110
static const int ct_adpcm_table[8] = {
111
    0x00E6, 0x00E6, 0x00E6, 0x00E6,
112
    0x0133, 0x0199, 0x0200, 0x0266
113
};
114

    
115
// padded to zero where table size is less then 16
116
static const int swf_index_tables[4][16] = {
117
    /*2*/ { -1, 2 },
118
    /*3*/ { -1, -1, 2, 4 },
119
    /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
120
    /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
121
};
122

    
123
static const int yamaha_indexscale[] = {
124
    230, 230, 230, 230, 307, 409, 512, 614,
125
    230, 230, 230, 230, 307, 409, 512, 614
126
};
127

    
128
static const int yamaha_difflookup[] = {
129
    1, 3, 5, 7, 9, 11, 13, 15,
130
    -1, -3, -5, -7, -9, -11, -13, -15
131
};
132

    
133
/* end of tables */
134

    
135
typedef struct ADPCMChannelStatus {
136
    int predictor;
137
    short int step_index;
138
    int step;
139
    /* for encoding */
140
    int prev_sample;
141

    
142
    /* MS version */
143
    short sample1;
144
    short sample2;
145
    int coeff1;
146
    int coeff2;
147
    int idelta;
148
} ADPCMChannelStatus;
149

    
150
typedef struct ADPCMContext {
151
    ADPCMChannelStatus status[6];
152
} ADPCMContext;
153

    
154
/* XXX: implement encoding */
155

    
156
#ifdef CONFIG_ENCODERS
157
static int adpcm_encode_init(AVCodecContext *avctx)
158
{
159
    if (avctx->channels > 2)
160
        return -1; /* only stereo or mono =) */
161
    switch(avctx->codec->id) {
162
    case CODEC_ID_ADPCM_IMA_WAV:
163
        avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
164
                                                             /* and we have 4 bytes per channel overhead */
165
        avctx->block_align = BLKSIZE;
166
        /* seems frame_size isn't taken into account... have to buffer the samples :-( */
167
        break;
168
    case CODEC_ID_ADPCM_IMA_QT:
169
        avctx->frame_size = 64;
170
        avctx->block_align = 34 * avctx->channels;
171
        break;
172
    case CODEC_ID_ADPCM_MS:
173
        avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
174
                                                             /* and we have 7 bytes per channel overhead */
175
        avctx->block_align = BLKSIZE;
176
        break;
177
    case CODEC_ID_ADPCM_YAMAHA:
178
        avctx->frame_size = BLKSIZE * avctx->channels;
179
        avctx->block_align = BLKSIZE;
180
        break;
181
    case CODEC_ID_ADPCM_SWF:
182
        if (avctx->sample_rate != 11025 &&
183
            avctx->sample_rate != 22050 &&
184
            avctx->sample_rate != 44100) {
185
            av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
186
            return -1;
187
        }
188
        avctx->frame_size = 512 * (avctx->sample_rate / 11025);
189
        break;
190
    default:
191
        return -1;
192
        break;
193
    }
194

    
195
    avctx->coded_frame= avcodec_alloc_frame();
196
    avctx->coded_frame->key_frame= 1;
197

    
198
    return 0;
199
}
200

    
201
static int adpcm_encode_close(AVCodecContext *avctx)
202
{
203
    av_freep(&avctx->coded_frame);
204

    
205
    return 0;
206
}
207

    
208

    
209
static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
210
{
211
    int delta = sample - c->prev_sample;
212
    int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
213
    c->prev_sample += ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
214
    c->prev_sample = av_clip_int16(c->prev_sample);
215
    c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
216
    return nibble;
217
}
218

    
219
static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
220
{
221
    int predictor, nibble, bias;
222

    
223
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
224

    
225
    nibble= sample - predictor;
226
    if(nibble>=0) bias= c->idelta/2;
227
    else          bias=-c->idelta/2;
228

    
229
    nibble= (nibble + bias) / c->idelta;
230
    nibble= av_clip(nibble, -8, 7)&0x0F;
231

    
232
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
233

    
234
    c->sample2 = c->sample1;
235
    c->sample1 = av_clip_int16(predictor);
236

    
237
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
238
    if (c->idelta < 16) c->idelta = 16;
239

    
240
    return nibble;
241
}
242

    
243
static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
244
{
245
    int nibble, delta;
246

    
247
    if(!c->step) {
248
        c->predictor = 0;
249
        c->step = 127;
250
    }
251

    
252
    delta = sample - c->predictor;
253

    
254
    nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
255

    
256
    c->predictor += ((c->step * yamaha_difflookup[nibble]) / 8);
257
    c->predictor = av_clip_int16(c->predictor);
258
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
259
    c->step = av_clip(c->step, 127, 24567);
260

    
261
    return nibble;
262
}
263

    
264
typedef struct TrellisPath {
265
    int nibble;
266
    int prev;
267
} TrellisPath;
268

    
269
typedef struct TrellisNode {
270
    uint32_t ssd;
271
    int path;
272
    int sample1;
273
    int sample2;
274
    int step;
275
} TrellisNode;
276

    
277
static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
278
                                   uint8_t *dst, ADPCMChannelStatus *c, int n)
279
{
280
#define FREEZE_INTERVAL 128
281
    //FIXME 6% faster if frontier is a compile-time constant
282
    const int frontier = 1 << avctx->trellis;
283
    const int stride = avctx->channels;
284
    const int version = avctx->codec->id;
285
    const int max_paths = frontier*FREEZE_INTERVAL;
286
    TrellisPath paths[max_paths], *p;
287
    TrellisNode node_buf[2][frontier];
288
    TrellisNode *nodep_buf[2][frontier];
289
    TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd
290
    TrellisNode **nodes_next = nodep_buf[1];
291
    int pathn = 0, froze = -1, i, j, k;
292

    
293
    assert(!(max_paths&(max_paths-1)));
294

    
295
    memset(nodep_buf, 0, sizeof(nodep_buf));
296
    nodes[0] = &node_buf[1][0];
297
    nodes[0]->ssd = 0;
298
    nodes[0]->path = 0;
299
    nodes[0]->step = c->step_index;
300
    nodes[0]->sample1 = c->sample1;
301
    nodes[0]->sample2 = c->sample2;
302
    if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_IMA_QT) || (version == CODEC_ID_ADPCM_SWF))
303
        nodes[0]->sample1 = c->prev_sample;
304
    if(version == CODEC_ID_ADPCM_MS)
305
        nodes[0]->step = c->idelta;
306
    if(version == CODEC_ID_ADPCM_YAMAHA) {
307
        if(c->step == 0) {
308
            nodes[0]->step = 127;
309
            nodes[0]->sample1 = 0;
310
        } else {
311
            nodes[0]->step = c->step;
312
            nodes[0]->sample1 = c->predictor;
313
        }
314
    }
315

    
316
    for(i=0; i<n; i++) {
317
        TrellisNode *t = node_buf[i&1];
318
        TrellisNode **u;
319
        int sample = samples[i*stride];
320
        memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
321
        for(j=0; j<frontier && nodes[j]; j++) {
322
            // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
323
            const int range = (j < frontier/2) ? 1 : 0;
324
            const int step = nodes[j]->step;
325
            int nidx;
326
            if(version == CODEC_ID_ADPCM_MS) {
327
                const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 256;
328
                const int div = (sample - predictor) / step;
329
                const int nmin = av_clip(div-range, -8, 6);
330
                const int nmax = av_clip(div+range, -7, 7);
331
                for(nidx=nmin; nidx<=nmax; nidx++) {
332
                    const int nibble = nidx & 0xf;
333
                    int dec_sample = predictor + nidx * step;
334
#define STORE_NODE(NAME, STEP_INDEX)\
335
                    int d;\
336
                    uint32_t ssd;\
337
                    dec_sample = av_clip_int16(dec_sample);\
338
                    d = sample - dec_sample;\
339
                    ssd = nodes[j]->ssd + d*d;\
340
                    if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
341
                        continue;\
342
                    /* Collapse any two states with the same previous sample value. \
343
                     * One could also distinguish states by step and by 2nd to last
344
                     * sample, but the effects of that are negligible. */\
345
                    for(k=0; k<frontier && nodes_next[k]; k++) {\
346
                        if(dec_sample == nodes_next[k]->sample1) {\
347
                            assert(ssd >= nodes_next[k]->ssd);\
348
                            goto next_##NAME;\
349
                        }\
350
                    }\
351
                    for(k=0; k<frontier; k++) {\
352
                        if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
353
                            TrellisNode *u = nodes_next[frontier-1];\
354
                            if(!u) {\
355
                                assert(pathn < max_paths);\
356
                                u = t++;\
357
                                u->path = pathn++;\
358
                            }\
359
                            u->ssd = ssd;\
360
                            u->step = STEP_INDEX;\
361
                            u->sample2 = nodes[j]->sample1;\
362
                            u->sample1 = dec_sample;\
363
                            paths[u->path].nibble = nibble;\
364
                            paths[u->path].prev = nodes[j]->path;\
365
                            memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
366
                            nodes_next[k] = u;\
367
                            break;\
368
                        }\
369
                    }\
370
                    next_##NAME:;
371
                    STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
372
                }
373
            } else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_IMA_QT)|| (version == CODEC_ID_ADPCM_SWF)) {
374
#define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
375
                const int predictor = nodes[j]->sample1;\
376
                const int div = (sample - predictor) * 4 / STEP_TABLE;\
377
                int nmin = av_clip(div-range, -7, 6);\
378
                int nmax = av_clip(div+range, -6, 7);\
379
                if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
380
                if(nmax<0) nmax--;\
381
                for(nidx=nmin; nidx<=nmax; nidx++) {\
382
                    const int nibble = nidx<0 ? 7-nidx : nidx;\
383
                    int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
384
                    STORE_NODE(NAME, STEP_INDEX);\
385
                }
386
                LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88));
387
            } else { //CODEC_ID_ADPCM_YAMAHA
388
                LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
389
#undef LOOP_NODES
390
#undef STORE_NODE
391
            }
392
        }
393

    
394
        u = nodes;
395
        nodes = nodes_next;
396
        nodes_next = u;
397

    
398
        // prevent overflow
399
        if(nodes[0]->ssd > (1<<28)) {
400
            for(j=1; j<frontier && nodes[j]; j++)
401
                nodes[j]->ssd -= nodes[0]->ssd;
402
            nodes[0]->ssd = 0;
403
        }
404

    
405
        // merge old paths to save memory
406
        if(i == froze + FREEZE_INTERVAL) {
407
            p = &paths[nodes[0]->path];
408
            for(k=i; k>froze; k--) {
409
                dst[k] = p->nibble;
410
                p = &paths[p->prev];
411
            }
412
            froze = i;
413
            pathn = 0;
414
            // other nodes might use paths that don't coincide with the frozen one.
415
            // checking which nodes do so is too slow, so just kill them all.
416
            // this also slightly improves quality, but I don't know why.
417
            memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
418
        }
419
    }
420

    
421
    p = &paths[nodes[0]->path];
422
    for(i=n-1; i>froze; i--) {
423
        dst[i] = p->nibble;
424
        p = &paths[p->prev];
425
    }
426

    
427
    c->predictor = nodes[0]->sample1;
428
    c->sample1 = nodes[0]->sample1;
429
    c->sample2 = nodes[0]->sample2;
430
    c->step_index = nodes[0]->step;
431
    c->step = nodes[0]->step;
432
    c->idelta = nodes[0]->step;
433
}
434

    
435
static int adpcm_encode_frame(AVCodecContext *avctx,
436
                            unsigned char *frame, int buf_size, void *data)
437
{
438
    int n, i, st;
439
    short *samples;
440
    unsigned char *dst;
441
    ADPCMContext *c = avctx->priv_data;
442

    
443
    dst = frame;
444
    samples = (short *)data;
445
    st= avctx->channels == 2;
446
/*    n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
447

    
448
    switch(avctx->codec->id) {
449
    case CODEC_ID_ADPCM_IMA_WAV:
450
        n = avctx->frame_size / 8;
451
            c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
452
/*            c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
453
            bytestream_put_le16(&dst, c->status[0].prev_sample);
454
            *dst++ = (unsigned char)c->status[0].step_index;
455
            *dst++ = 0; /* unknown */
456
            samples++;
457
            if (avctx->channels == 2) {
458
                c->status[1].prev_sample = (signed short)samples[0];
459
/*                c->status[1].step_index = 0; */
460
                bytestream_put_le16(&dst, c->status[1].prev_sample);
461
                *dst++ = (unsigned char)c->status[1].step_index;
462
                *dst++ = 0;
463
                samples++;
464
            }
465

    
466
            /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
467
            if(avctx->trellis > 0) {
468
                uint8_t buf[2][n*8];
469
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8);
470
                if(avctx->channels == 2)
471
                    adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8);
472
                for(i=0; i<n; i++) {
473
                    *dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4);
474
                    *dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4);
475
                    *dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4);
476
                    *dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4);
477
                    if (avctx->channels == 2) {
478
                        *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4);
479
                        *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4);
480
                        *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4);
481
                        *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4);
482
                    }
483
                }
484
            } else
485
            for (; n>0; n--) {
486
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]);
487
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4;
488
                dst++;
489
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]);
490
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4;
491
                dst++;
492
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]);
493
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4;
494
                dst++;
495
                *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]);
496
                *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4;
497
                dst++;
498
                /* right channel */
499
                if (avctx->channels == 2) {
500
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
501
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
502
                    dst++;
503
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
504
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
505
                    dst++;
506
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
507
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
508
                    dst++;
509
                    *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
510
                    *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
511
                    dst++;
512
                }
513
                samples += 8 * avctx->channels;
514
            }
515
        break;
516
    case CODEC_ID_ADPCM_IMA_QT:
517
    {
518
        int ch, i;
519
        PutBitContext pb;
520
        init_put_bits(&pb, dst, buf_size*8);
521

    
522
        for(ch=0; ch<avctx->channels; ch++){
523
            put_bits(&pb, 9, (c->status[ch].prev_sample + 0x10000) >> 7);
524
            put_bits(&pb, 7, c->status[ch].step_index);
525
            if(avctx->trellis > 0) {
526
                uint8_t buf[64];
527
                adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64);
528
                for(i=0; i<64; i++)
529
                    put_bits(&pb, 4, buf[i^1]);
530
                c->status[ch].prev_sample = c->status[ch].predictor & ~0x7F;
531
            } else {
532
                for (i=0; i<64; i+=2){
533
                    int t1, t2;
534
                    t1 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+0)+ch]);
535
                    t2 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+1)+ch]);
536
                    put_bits(&pb, 4, t2);
537
                    put_bits(&pb, 4, t1);
538
                }
539
                c->status[ch].prev_sample &= ~0x7F;
540
            }
541
        }
542

    
543
        dst += put_bits_count(&pb)>>3;
544
        break;
545
    }
546
    case CODEC_ID_ADPCM_SWF:
547
    {
548
        int i;
549
        PutBitContext pb;
550
        init_put_bits(&pb, dst, buf_size*8);
551

    
552
        n = avctx->frame_size-1;
553

    
554
        //Store AdpcmCodeSize
555
        put_bits(&pb, 2, 2);                //Set 4bits flash adpcm format
556

    
557
        //Init the encoder state
558
        for(i=0; i<avctx->channels; i++){
559
            c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits
560
            put_bits(&pb, 16, samples[i] & 0xFFFF);
561
            put_bits(&pb, 6, c->status[i].step_index);
562
            c->status[i].prev_sample = (signed short)samples[i];
563
        }
564

    
565
        if(avctx->trellis > 0) {
566
            uint8_t buf[2][n];
567
            adpcm_compress_trellis(avctx, samples+2, buf[0], &c->status[0], n);
568
            if (avctx->channels == 2)
569
                adpcm_compress_trellis(avctx, samples+3, buf[1], &c->status[1], n);
570
            for(i=0; i<n; i++) {
571
                put_bits(&pb, 4, buf[0][i]);
572
                if (avctx->channels == 2)
573
                    put_bits(&pb, 4, buf[1][i]);
574
            }
575
        } else {
576
            for (i=1; i<avctx->frame_size; i++) {
577
                put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i]));
578
                if (avctx->channels == 2)
579
                    put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1]));
580
            }
581
        }
582
        flush_put_bits(&pb);
583
        dst += put_bits_count(&pb)>>3;
584
        break;
585
    }
586
    case CODEC_ID_ADPCM_MS:
587
        for(i=0; i<avctx->channels; i++){
588
            int predictor=0;
589

    
590
            *dst++ = predictor;
591
            c->status[i].coeff1 = AdaptCoeff1[predictor];
592
            c->status[i].coeff2 = AdaptCoeff2[predictor];
593
        }
594
        for(i=0; i<avctx->channels; i++){
595
            if (c->status[i].idelta < 16)
596
                c->status[i].idelta = 16;
597

    
598
            bytestream_put_le16(&dst, c->status[i].idelta);
599
        }
600
        for(i=0; i<avctx->channels; i++){
601
            c->status[i].sample1= *samples++;
602

    
603
            bytestream_put_le16(&dst, c->status[i].sample1);
604
        }
605
        for(i=0; i<avctx->channels; i++){
606
            c->status[i].sample2= *samples++;
607

    
608
            bytestream_put_le16(&dst, c->status[i].sample2);
609
        }
610

    
611
        if(avctx->trellis > 0) {
612
            int n = avctx->block_align - 7*avctx->channels;
613
            uint8_t buf[2][n];
614
            if(avctx->channels == 1) {
615
                n *= 2;
616
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
617
                for(i=0; i<n; i+=2)
618
                    *dst++ = (buf[0][i] << 4) | buf[0][i+1];
619
            } else {
620
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
621
                adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
622
                for(i=0; i<n; i++)
623
                    *dst++ = (buf[0][i] << 4) | buf[1][i];
624
            }
625
        } else
626
        for(i=7*avctx->channels; i<avctx->block_align; i++) {
627
            int nibble;
628
            nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
629
            nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
630
            *dst++ = nibble;
631
        }
632
        break;
633
    case CODEC_ID_ADPCM_YAMAHA:
634
        n = avctx->frame_size / 2;
635
        if(avctx->trellis > 0) {
636
            uint8_t buf[2][n*2];
637
            n *= 2;
638
            if(avctx->channels == 1) {
639
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
640
                for(i=0; i<n; i+=2)
641
                    *dst++ = buf[0][i] | (buf[0][i+1] << 4);
642
            } else {
643
                adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
644
                adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
645
                for(i=0; i<n; i++)
646
                    *dst++ = buf[0][i] | (buf[1][i] << 4);
647
            }
648
        } else
649
        for (; n>0; n--) {
650
            for(i = 0; i < avctx->channels; i++) {
651
                int nibble;
652
                nibble  = adpcm_yamaha_compress_sample(&c->status[i], samples[i]);
653
                nibble |= adpcm_yamaha_compress_sample(&c->status[i], samples[i+avctx->channels]) << 4;
654
                *dst++ = nibble;
655
            }
656
            samples += 2 * avctx->channels;
657
        }
658
        break;
659
    default:
660
        return -1;
661
    }
662
    return dst - frame;
663
}
664
#endif //CONFIG_ENCODERS
665

    
666
static av_cold int adpcm_decode_init(AVCodecContext * avctx)
667
{
668
    ADPCMContext *c = avctx->priv_data;
669
    unsigned int max_channels = 2;
670

    
671
    switch(avctx->codec->id) {
672
    case CODEC_ID_ADPCM_EA_R1:
673
    case CODEC_ID_ADPCM_EA_R2:
674
    case CODEC_ID_ADPCM_EA_R3:
675
        max_channels = 6;
676
        break;
677
    }
678
    if(avctx->channels > max_channels){
679
        return -1;
680
    }
681

    
682
    switch(avctx->codec->id) {
683
    case CODEC_ID_ADPCM_CT:
684
        c->status[0].step = c->status[1].step = 511;
685
        break;
686
    case CODEC_ID_ADPCM_IMA_WS:
687
        if (avctx->extradata && avctx->extradata_size == 2 * 4) {
688
            c->status[0].predictor = AV_RL32(avctx->extradata);
689
            c->status[1].predictor = AV_RL32(avctx->extradata + 4);
690
        }
691
        break;
692
    default:
693
        break;
694
    }
695
    return 0;
696
}
697

    
698
static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
699
{
700
    int step_index;
701
    int predictor;
702
    int sign, delta, diff, step;
703

    
704
    step = step_table[c->step_index];
705
    step_index = c->step_index + index_table[(unsigned)nibble];
706
    if (step_index < 0) step_index = 0;
707
    else if (step_index > 88) step_index = 88;
708

    
709
    sign = nibble & 8;
710
    delta = nibble & 7;
711
    /* perform direct multiplication instead of series of jumps proposed by
712
     * the reference ADPCM implementation since modern CPUs can do the mults
713
     * quickly enough */
714
    diff = ((2 * delta + 1) * step) >> shift;
715
    predictor = c->predictor;
716
    if (sign) predictor -= diff;
717
    else predictor += diff;
718

    
719
    c->predictor = av_clip_int16(predictor);
720
    c->step_index = step_index;
721

    
722
    return (short)c->predictor;
723
}
724

    
725
static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
726
{
727
    int predictor;
728

    
729
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
730
    predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
731

    
732
    c->sample2 = c->sample1;
733
    c->sample1 = av_clip_int16(predictor);
734
    c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
735
    if (c->idelta < 16) c->idelta = 16;
736

    
737
    return c->sample1;
738
}
739

    
740
static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
741
{
742
    int sign, delta, diff;
743
    int new_step;
744

    
745
    sign = nibble & 8;
746
    delta = nibble & 7;
747
    /* perform direct multiplication instead of series of jumps proposed by
748
     * the reference ADPCM implementation since modern CPUs can do the mults
749
     * quickly enough */
750
    diff = ((2 * delta + 1) * c->step) >> 3;
751
    /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
752
    c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
753
    c->predictor = av_clip_int16(c->predictor);
754
    /* calculate new step and clamp it to range 511..32767 */
755
    new_step = (ct_adpcm_table[nibble & 7] * c->step) >> 8;
756
    c->step = av_clip(new_step, 511, 32767);
757

    
758
    return (short)c->predictor;
759
}
760

    
761
static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
762
{
763
    int sign, delta, diff;
764

    
765
    sign = nibble & (1<<(size-1));
766
    delta = nibble & ((1<<(size-1))-1);
767
    diff = delta << (7 + c->step + shift);
768

    
769
    /* clamp result */
770
    c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
771

    
772
    /* calculate new step */
773
    if (delta >= (2*size - 3) && c->step < 3)
774
        c->step++;
775
    else if (delta == 0 && c->step > 0)
776
        c->step--;
777

    
778
    return (short) c->predictor;
779
}
780

    
781
static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
782
{
783
    if(!c->step) {
784
        c->predictor = 0;
785
        c->step = 127;
786
    }
787

    
788
    c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
789
    c->predictor = av_clip_int16(c->predictor);
790
    c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
791
    c->step = av_clip(c->step, 127, 24567);
792
    return c->predictor;
793
}
794

    
795
static void xa_decode(short *out, const unsigned char *in,
796
    ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
797
{
798
    int i, j;
799
    int shift,filter,f0,f1;
800
    int s_1,s_2;
801
    int d,s,t;
802

    
803
    for(i=0;i<4;i++) {
804

    
805
        shift  = 12 - (in[4+i*2] & 15);
806
        filter = in[4+i*2] >> 4;
807
        f0 = xa_adpcm_table[filter][0];
808
        f1 = xa_adpcm_table[filter][1];
809

    
810
        s_1 = left->sample1;
811
        s_2 = left->sample2;
812

    
813
        for(j=0;j<28;j++) {
814
            d = in[16+i+j*4];
815

    
816
            t = (signed char)(d<<4)>>4;
817
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
818
            s_2 = s_1;
819
            s_1 = av_clip_int16(s);
820
            *out = s_1;
821
            out += inc;
822
        }
823

    
824
        if (inc==2) { /* stereo */
825
            left->sample1 = s_1;
826
            left->sample2 = s_2;
827
            s_1 = right->sample1;
828
            s_2 = right->sample2;
829
            out = out + 1 - 28*2;
830
        }
831

    
832
        shift  = 12 - (in[5+i*2] & 15);
833
        filter = in[5+i*2] >> 4;
834

    
835
        f0 = xa_adpcm_table[filter][0];
836
        f1 = xa_adpcm_table[filter][1];
837

    
838
        for(j=0;j<28;j++) {
839
            d = in[16+i+j*4];
840

    
841
            t = (signed char)d >> 4;
842
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
843
            s_2 = s_1;
844
            s_1 = av_clip_int16(s);
845
            *out = s_1;
846
            out += inc;
847
        }
848

    
849
        if (inc==2) { /* stereo */
850
            right->sample1 = s_1;
851
            right->sample2 = s_2;
852
            out -= 1;
853
        } else {
854
            left->sample1 = s_1;
855
            left->sample2 = s_2;
856
        }
857
    }
858
}
859

    
860

    
861
/* DK3 ADPCM support macro */
862
#define DK3_GET_NEXT_NIBBLE() \
863
    if (decode_top_nibble_next) \
864
    { \
865
        nibble = last_byte >> 4; \
866
        decode_top_nibble_next = 0; \
867
    } \
868
    else \
869
    { \
870
        last_byte = *src++; \
871
        if (src >= buf + buf_size) break; \
872
        nibble = last_byte & 0x0F; \
873
        decode_top_nibble_next = 1; \
874
    }
875

    
876
static int adpcm_decode_frame(AVCodecContext *avctx,
877
                            void *data, int *data_size,
878
                            const uint8_t *buf, int buf_size)
879
{
880
    ADPCMContext *c = avctx->priv_data;
881
    ADPCMChannelStatus *cs;
882
    int n, m, channel, i;
883
    int block_predictor[2];
884
    short *samples;
885
    short *samples_end;
886
    const uint8_t *src;
887
    int st; /* stereo */
888

    
889
    /* DK3 ADPCM accounting variables */
890
    unsigned char last_byte = 0;
891
    unsigned char nibble;
892
    int decode_top_nibble_next = 0;
893
    int diff_channel;
894

    
895
    /* EA ADPCM state variables */
896
    uint32_t samples_in_chunk;
897
    int32_t previous_left_sample, previous_right_sample;
898
    int32_t current_left_sample, current_right_sample;
899
    int32_t next_left_sample, next_right_sample;
900
    int32_t coeff1l, coeff2l, coeff1r, coeff2r;
901
    uint8_t shift_left, shift_right;
902
    int count1, count2;
903
    int coeff[2][2], shift[2];//used in EA MAXIS ADPCM
904

    
905
    if (!buf_size)
906
        return 0;
907

    
908
    //should protect all 4bit ADPCM variants
909
    //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
910
    //
911
    if(*data_size/4 < buf_size + 8)
912
        return -1;
913

    
914
    samples = data;
915
    samples_end= samples + *data_size/2;
916
    *data_size= 0;
917
    src = buf;
918

    
919
    st = avctx->channels == 2 ? 1 : 0;
920

    
921
    switch(avctx->codec->id) {
922
    case CODEC_ID_ADPCM_IMA_QT:
923
        n = buf_size - 2*avctx->channels;
924
        for (channel = 0; channel < avctx->channels; channel++) {
925
        cs = &(c->status[channel]);
926
        /* (pppppp) (piiiiiii) */
927

    
928
        /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
929
        cs->predictor = (*src++) << 8;
930
        cs->predictor |= (*src & 0x80);
931
        cs->predictor &= 0xFF80;
932

    
933
        /* sign extension */
934
        if(cs->predictor & 0x8000)
935
            cs->predictor -= 0x10000;
936

    
937
        cs->predictor = av_clip_int16(cs->predictor);
938

    
939
        cs->step_index = (*src++) & 0x7F;
940

    
941
        if (cs->step_index > 88){
942
            av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
943
            cs->step_index = 88;
944
        }
945

    
946
        cs->step = step_table[cs->step_index];
947

    
948
        samples = (short*)data + channel;
949

    
950
        for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
951
            *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
952
            samples += avctx->channels;
953
            *samples = adpcm_ima_expand_nibble(cs, src[0] >> 4  , 3);
954
            samples += avctx->channels;
955
            src ++;
956
        }
957
        }
958
        if (st)
959
            samples--;
960
        break;
961
    case CODEC_ID_ADPCM_IMA_WAV:
962
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
963
            buf_size = avctx->block_align;
964

    
965
//        samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
966

    
967
        for(i=0; i<avctx->channels; i++){
968
            cs = &(c->status[i]);
969
            cs->predictor = *samples++ = (int16_t)(src[0] + (src[1]<<8));
970
            src+=2;
971

    
972
            cs->step_index = *src++;
973
            if (cs->step_index > 88){
974
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
975
                cs->step_index = 88;
976
            }
977
            if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
978
        }
979

    
980
        while(src < buf + buf_size){
981
            for(m=0; m<4; m++){
982
                for(i=0; i<=st; i++)
983
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
984
                for(i=0; i<=st; i++)
985
                    *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4  , 3);
986
                src++;
987
            }
988
            src += 4*st;
989
        }
990
        break;
991
    case CODEC_ID_ADPCM_4XM:
992
        cs = &(c->status[0]);
993
        c->status[0].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
994
        if(st){
995
            c->status[1].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
996
        }
997
        c->status[0].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
998
        if(st){
999
            c->status[1].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
1000
        }
1001
        if (cs->step_index < 0) cs->step_index = 0;
1002
        if (cs->step_index > 88) cs->step_index = 88;
1003

    
1004
        m= (buf_size - (src - buf))>>st;
1005
        for(i=0; i<m; i++) {
1006
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
1007
            if (st)
1008
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
1009
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
1010
            if (st)
1011
                *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
1012
        }
1013

    
1014
        src += m<<st;
1015

    
1016
        break;
1017
    case CODEC_ID_ADPCM_MS:
1018
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1019
            buf_size = avctx->block_align;
1020
        n = buf_size - 7 * avctx->channels;
1021
        if (n < 0)
1022
            return -1;
1023
        block_predictor[0] = av_clip(*src++, 0, 7);
1024
        block_predictor[1] = 0;
1025
        if (st)
1026
            block_predictor[1] = av_clip(*src++, 0, 7);
1027
        c->status[0].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1028
        src+=2;
1029
        if (st){
1030
            c->status[1].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1031
            src+=2;
1032
        }
1033
        c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
1034
        c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
1035
        c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
1036
        c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
1037

    
1038
        c->status[0].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1039
        src+=2;
1040
        if (st) c->status[1].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1041
        if (st) src+=2;
1042
        c->status[0].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1043
        src+=2;
1044
        if (st) c->status[1].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
1045
        if (st) src+=2;
1046

    
1047
        *samples++ = c->status[0].sample1;
1048
        if (st) *samples++ = c->status[1].sample1;
1049
        *samples++ = c->status[0].sample2;
1050
        if (st) *samples++ = c->status[1].sample2;
1051
        for(;n>0;n--) {
1052
            *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4  );
1053
            *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
1054
            src ++;
1055
        }
1056
        break;
1057
    case CODEC_ID_ADPCM_IMA_DK4:
1058
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1059
            buf_size = avctx->block_align;
1060

    
1061
        c->status[0].predictor = (int16_t)(src[0] | (src[1] << 8));
1062
        c->status[0].step_index = src[2];
1063
        src += 4;
1064
        *samples++ = c->status[0].predictor;
1065
        if (st) {
1066
            c->status[1].predictor = (int16_t)(src[0] | (src[1] << 8));
1067
            c->status[1].step_index = src[2];
1068
            src += 4;
1069
            *samples++ = c->status[1].predictor;
1070
        }
1071
        while (src < buf + buf_size) {
1072

    
1073
            /* take care of the top nibble (always left or mono channel) */
1074
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1075
                src[0] >> 4, 3);
1076

    
1077
            /* take care of the bottom nibble, which is right sample for
1078
             * stereo, or another mono sample */
1079
            if (st)
1080
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1081
                    src[0] & 0x0F, 3);
1082
            else
1083
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1084
                    src[0] & 0x0F, 3);
1085

    
1086
            src++;
1087
        }
1088
        break;
1089
    case CODEC_ID_ADPCM_IMA_DK3:
1090
        if (avctx->block_align != 0 && buf_size > avctx->block_align)
1091
            buf_size = avctx->block_align;
1092

    
1093
        if(buf_size + 16 > (samples_end - samples)*3/8)
1094
            return -1;
1095

    
1096
        c->status[0].predictor = (int16_t)(src[10] | (src[11] << 8));
1097
        c->status[1].predictor = (int16_t)(src[12] | (src[13] << 8));
1098
        c->status[0].step_index = src[14];
1099
        c->status[1].step_index = src[15];
1100
        /* sign extend the predictors */
1101
        src += 16;
1102
        diff_channel = c->status[1].predictor;
1103

    
1104
        /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1105
         * the buffer is consumed */
1106
        while (1) {
1107

    
1108
            /* for this algorithm, c->status[0] is the sum channel and
1109
             * c->status[1] is the diff channel */
1110

    
1111
            /* process the first predictor of the sum channel */
1112
            DK3_GET_NEXT_NIBBLE();
1113
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1114

    
1115
            /* process the diff channel predictor */
1116
            DK3_GET_NEXT_NIBBLE();
1117
            adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1118

    
1119
            /* process the first pair of stereo PCM samples */
1120
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1121
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1122
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1123

    
1124
            /* process the second predictor of the sum channel */
1125
            DK3_GET_NEXT_NIBBLE();
1126
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1127

    
1128
            /* process the second pair of stereo PCM samples */
1129
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1130
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1131
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1132
        }
1133
        break;
1134
    case CODEC_ID_ADPCM_IMA_WS:
1135
        /* no per-block initialization; just start decoding the data */
1136
        while (src < buf + buf_size) {
1137

    
1138
            if (st) {
1139
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1140
                    src[0] >> 4  , 3);
1141
                *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1142
                    src[0] & 0x0F, 3);
1143
            } else {
1144
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1145
                    src[0] >> 4  , 3);
1146
                *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1147
                    src[0] & 0x0F, 3);
1148
            }
1149

    
1150
            src++;
1151
        }
1152
        break;
1153
    case CODEC_ID_ADPCM_XA:
1154
        while (buf_size >= 128) {
1155
            xa_decode(samples, src, &c->status[0], &c->status[1],
1156
                avctx->channels);
1157
            src += 128;
1158
            samples += 28 * 8;
1159
            buf_size -= 128;
1160
        }
1161
        break;
1162
    case CODEC_ID_ADPCM_IMA_EA_EACS:
1163
        samples_in_chunk = bytestream_get_le32(&src) >> (1-st);
1164

    
1165
        if (samples_in_chunk > buf_size-4-(8<<st)) {
1166
            src += buf_size - 4;
1167
            break;
1168
        }
1169

    
1170
        for (i=0; i<=st; i++)
1171
            c->status[i].step_index = bytestream_get_le32(&src);
1172
        for (i=0; i<=st; i++)
1173
            c->status[i].predictor  = bytestream_get_le32(&src);
1174

    
1175
        for (; samples_in_chunk; samples_in_chunk--, src++) {
1176
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],  *src>>4,   3);
1177
            *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
1178
        }
1179
        break;
1180
    case CODEC_ID_ADPCM_IMA_EA_SEAD:
1181
        for (; src < buf+buf_size; src++) {
1182
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
1183
            *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
1184
        }
1185
        break;
1186
    case CODEC_ID_ADPCM_EA:
1187
        samples_in_chunk = AV_RL32(src);
1188
        if (samples_in_chunk >= ((buf_size - 12) * 2)) {
1189
            src += buf_size;
1190
            break;
1191
        }
1192
        src += 4;
1193
        current_left_sample = (int16_t)AV_RL16(src);
1194
        src += 2;
1195
        previous_left_sample = (int16_t)AV_RL16(src);
1196
        src += 2;
1197
        current_right_sample = (int16_t)AV_RL16(src);
1198
        src += 2;
1199
        previous_right_sample = (int16_t)AV_RL16(src);
1200
        src += 2;
1201

    
1202
        for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
1203
            coeff1l = ea_adpcm_table[ *src >> 4       ];
1204
            coeff2l = ea_adpcm_table[(*src >> 4  ) + 4];
1205
            coeff1r = ea_adpcm_table[*src & 0x0F];
1206
            coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
1207
            src++;
1208

    
1209
            shift_left  = (*src >> 4  ) + 8;
1210
            shift_right = (*src & 0x0F) + 8;
1211
            src++;
1212

    
1213
            for (count2 = 0; count2 < 28; count2++) {
1214
                next_left_sample  = (int32_t)((*src & 0xF0) << 24) >> shift_left;
1215
                next_right_sample = (int32_t)((*src & 0x0F) << 28) >> shift_right;
1216
                src++;
1217

    
1218
                next_left_sample = (next_left_sample +
1219
                    (current_left_sample * coeff1l) +
1220
                    (previous_left_sample * coeff2l) + 0x80) >> 8;
1221
                next_right_sample = (next_right_sample +
1222
                    (current_right_sample * coeff1r) +
1223
                    (previous_right_sample * coeff2r) + 0x80) >> 8;
1224

    
1225
                previous_left_sample = current_left_sample;
1226
                current_left_sample = av_clip_int16(next_left_sample);
1227
                previous_right_sample = current_right_sample;
1228
                current_right_sample = av_clip_int16(next_right_sample);
1229
                *samples++ = (unsigned short)current_left_sample;
1230
                *samples++ = (unsigned short)current_right_sample;
1231
            }
1232
        }
1233
        break;
1234
    case CODEC_ID_ADPCM_EA_MAXIS_XA:
1235
        for(channel = 0; channel < avctx->channels; channel++) {
1236
            for (i=0; i<2; i++)
1237
                coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
1238
            shift[channel] = (*src & 0x0F) + 8;
1239
            src++;
1240
        }
1241
        for (count1 = 0; count1 < (buf_size - avctx->channels) / avctx->channels; count1++) {
1242
            for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1243
                for(channel = 0; channel < avctx->channels; channel++) {
1244
                    int32_t sample = (int32_t)(((*(src+channel) >> i) & 0x0F) << 0x1C) >> shift[channel];
1245
                    sample = (sample +
1246
                             c->status[channel].sample1 * coeff[channel][0] +
1247
                             c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1248
                    c->status[channel].sample2 = c->status[channel].sample1;
1249
                    c->status[channel].sample1 = av_clip_int16(sample);
1250
                    *samples++ = c->status[channel].sample1;
1251
                }
1252
            }
1253
            src+=avctx->channels;
1254
        }
1255
        break;
1256
    case CODEC_ID_ADPCM_EA_R1:
1257
    case CODEC_ID_ADPCM_EA_R2:
1258
    case CODEC_ID_ADPCM_EA_R3: {
1259
        /* channel numbering
1260
           2chan: 0=fl, 1=fr
1261
           4chan: 0=fl, 1=rl, 2=fr, 3=rr
1262
           6chan: 0=fl, 1=c,  2=fr, 3=rl,  4=rr, 5=sub */
1263
        const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
1264
        int32_t previous_sample, current_sample, next_sample;
1265
        int32_t coeff1, coeff2;
1266
        uint8_t shift;
1267
        unsigned int channel;
1268
        uint16_t *samplesC;
1269
        const uint8_t *srcC;
1270

    
1271
        samples_in_chunk = (big_endian ? bytestream_get_be32(&src)
1272
                                       : bytestream_get_le32(&src)) / 28;
1273
        if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) ||
1274
            28*samples_in_chunk*avctx->channels > samples_end-samples) {
1275
            src += buf_size - 4;
1276
            break;
1277
        }
1278

    
1279
        for (channel=0; channel<avctx->channels; channel++) {
1280
            srcC = src + (big_endian ? bytestream_get_be32(&src)
1281
                                     : bytestream_get_le32(&src))
1282
                       + (avctx->channels-channel-1) * 4;
1283
            samplesC = samples + channel;
1284

    
1285
            if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
1286
                current_sample  = (int16_t)bytestream_get_le16(&srcC);
1287
                previous_sample = (int16_t)bytestream_get_le16(&srcC);
1288
            } else {
1289
                current_sample  = c->status[channel].predictor;
1290
                previous_sample = c->status[channel].prev_sample;
1291
            }
1292

    
1293
            for (count1=0; count1<samples_in_chunk; count1++) {
1294
                if (*srcC == 0xEE) {  /* only seen in R2 and R3 */
1295
                    srcC++;
1296
                    current_sample  = (int16_t)bytestream_get_be16(&srcC);
1297
                    previous_sample = (int16_t)bytestream_get_be16(&srcC);
1298

    
1299
                    for (count2=0; count2<28; count2++) {
1300
                        *samplesC = (int16_t)bytestream_get_be16(&srcC);
1301
                        samplesC += avctx->channels;
1302
                    }
1303
                } else {
1304
                    coeff1 = ea_adpcm_table[ *srcC>>4     ];
1305
                    coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
1306
                    shift = (*srcC++ & 0x0F) + 8;
1307

    
1308
                    for (count2=0; count2<28; count2++) {
1309
                        if (count2 & 1)
1310
                            next_sample = (int32_t)((*srcC++ & 0x0F) << 28) >> shift;
1311
                        else
1312
                            next_sample = (int32_t)((*srcC   & 0xF0) << 24) >> shift;
1313

    
1314
                        next_sample += (current_sample  * coeff1) +
1315
                                       (previous_sample * coeff2);
1316
                        next_sample = av_clip_int16(next_sample >> 8);
1317

    
1318
                        previous_sample = current_sample;
1319
                        current_sample  = next_sample;
1320
                        *samplesC = current_sample;
1321
                        samplesC += avctx->channels;
1322
                    }
1323
                }
1324
            }
1325

    
1326
            if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
1327
                c->status[channel].predictor   = current_sample;
1328
                c->status[channel].prev_sample = previous_sample;
1329
            }
1330
        }
1331

    
1332
        src = src + buf_size - (4 + 4*avctx->channels);
1333
        samples += 28 * samples_in_chunk * avctx->channels;
1334
        break;
1335
    }
1336
    case CODEC_ID_ADPCM_EA_XAS:
1337
        if (samples_end-samples < 32*4*avctx->channels
1338
            || buf_size < (4+15)*4*avctx->channels) {
1339
            src += buf_size;
1340
            break;
1341
        }
1342
        for (channel=0; channel<avctx->channels; channel++) {
1343
            int coeff[2][4], shift[4];
1344
            short *s2, *s = &samples[channel];
1345
            for (n=0; n<4; n++, s+=32*avctx->channels) {
1346
                for (i=0; i<2; i++)
1347
                    coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
1348
                shift[n] = (src[2]&0x0F) + 8;
1349
                for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
1350
                    s2[0] = (src[0]&0xF0) + (src[1]<<8);
1351
            }
1352

    
1353
            for (m=2; m<32; m+=2) {
1354
                s = &samples[m*avctx->channels + channel];
1355
                for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
1356
                    for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
1357
                        int level = (int32_t)((*src & (0xF0>>i)) << (24+i)) >> shift[n];
1358
                        int pred  = s2[-1*avctx->channels] * coeff[0][n]
1359
                                  + s2[-2*avctx->channels] * coeff[1][n];
1360
                        s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
1361
                    }
1362
                }
1363
            }
1364
        }
1365
        samples += 32*4*avctx->channels;
1366
        break;
1367
    case CODEC_ID_ADPCM_IMA_AMV:
1368
    case CODEC_ID_ADPCM_IMA_SMJPEG:
1369
        c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1370
        c->status[0].step_index = bytestream_get_le16(&src);
1371

    
1372
        if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1373
            src+=4;
1374

    
1375
        while (src < buf + buf_size) {
1376
            char hi, lo;
1377
            lo = *src & 0x0F;
1378
            hi = *src >> 4;
1379

    
1380
            if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1381
                FFSWAP(char, hi, lo);
1382

    
1383
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1384
                lo, 3);
1385
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1386
                hi, 3);
1387
            src++;
1388
        }
1389
        break;
1390
    case CODEC_ID_ADPCM_CT:
1391
        while (src < buf + buf_size) {
1392
            if (st) {
1393
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1394
                    src[0] >> 4);
1395
                *samples++ = adpcm_ct_expand_nibble(&c->status[1],
1396
                    src[0] & 0x0F);
1397
            } else {
1398
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1399
                    src[0] >> 4);
1400
                *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1401
                    src[0] & 0x0F);
1402
            }
1403
            src++;
1404
        }
1405
        break;
1406
    case CODEC_ID_ADPCM_SBPRO_4:
1407
    case CODEC_ID_ADPCM_SBPRO_3:
1408
    case CODEC_ID_ADPCM_SBPRO_2:
1409
        if (!c->status[0].step_index) {
1410
            /* the first byte is a raw sample */
1411
            *samples++ = 128 * (*src++ - 0x80);
1412
            if (st)
1413
              *samples++ = 128 * (*src++ - 0x80);
1414
            c->status[0].step_index = 1;
1415
        }
1416
        if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1417
            while (src < buf + buf_size) {
1418
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1419
                    src[0] >> 4, 4, 0);
1420
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1421
                    src[0] & 0x0F, 4, 0);
1422
                src++;
1423
            }
1424
        } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1425
            while (src < buf + buf_size && samples + 2 < samples_end) {
1426
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1427
                     src[0] >> 5        , 3, 0);
1428
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1429
                    (src[0] >> 2) & 0x07, 3, 0);
1430
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1431
                    src[0] & 0x03, 2, 0);
1432
                src++;
1433
            }
1434
        } else {
1435
            while (src < buf + buf_size && samples + 3 < samples_end) {
1436
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1437
                     src[0] >> 6        , 2, 2);
1438
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1439
                    (src[0] >> 4) & 0x03, 2, 2);
1440
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1441
                    (src[0] >> 2) & 0x03, 2, 2);
1442
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1443
                    src[0] & 0x03, 2, 2);
1444
                src++;
1445
            }
1446
        }
1447
        break;
1448
    case CODEC_ID_ADPCM_SWF:
1449
    {
1450
        GetBitContext gb;
1451
        const int *table;
1452
        int k0, signmask, nb_bits, count;
1453
        int size = buf_size*8;
1454

    
1455
        init_get_bits(&gb, buf, size);
1456

    
1457
        //read bits & initial values
1458
        nb_bits = get_bits(&gb, 2)+2;
1459
        //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1460
        table = swf_index_tables[nb_bits-2];
1461
        k0 = 1 << (nb_bits-2);
1462
        signmask = 1 << (nb_bits-1);
1463

    
1464
        while (get_bits_count(&gb) <= size - 22*avctx->channels) {
1465
            for (i = 0; i < avctx->channels; i++) {
1466
                *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1467
                c->status[i].step_index = get_bits(&gb, 6);
1468
            }
1469

    
1470
            for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
1471
                int i;
1472

    
1473
                for (i = 0; i < avctx->channels; i++) {
1474
                    // similar to IMA adpcm
1475
                    int delta = get_bits(&gb, nb_bits);
1476
                    int step = step_table[c->status[i].step_index];
1477
                    long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1478
                    int k = k0;
1479

    
1480
                    do {
1481
                        if (delta & k)
1482
                            vpdiff += step;
1483
                        step >>= 1;
1484
                        k >>= 1;
1485
                    } while(k);
1486
                    vpdiff += step;
1487

    
1488
                    if (delta & signmask)
1489
                        c->status[i].predictor -= vpdiff;
1490
                    else
1491
                        c->status[i].predictor += vpdiff;
1492

    
1493
                    c->status[i].step_index += table[delta & (~signmask)];
1494

    
1495
                    c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
1496
                    c->status[i].predictor = av_clip_int16(c->status[i].predictor);
1497

    
1498
                    *samples++ = c->status[i].predictor;
1499
                    if (samples >= samples_end) {
1500
                        av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1501
                        return -1;
1502
                    }
1503
                }
1504
            }
1505
        }
1506
        src += buf_size;
1507
        break;
1508
    }
1509
    case CODEC_ID_ADPCM_YAMAHA:
1510
        while (src < buf + buf_size) {
1511
            if (st) {
1512
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1513
                        src[0] & 0x0F);
1514
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1515
                        src[0] >> 4  );
1516
            } else {
1517
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1518
                        src[0] & 0x0F);
1519
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1520
                        src[0] >> 4  );
1521
            }
1522
            src++;
1523
        }
1524
        break;
1525
    case CODEC_ID_ADPCM_THP:
1526
    {
1527
        int table[2][16];
1528
        unsigned int samplecnt;
1529
        int prev[2][2];
1530
        int ch;
1531

    
1532
        if (buf_size < 80) {
1533
            av_log(avctx, AV_LOG_ERROR, "frame too small\n");
1534
            return -1;
1535
        }
1536

    
1537
        src+=4;
1538
        samplecnt = bytestream_get_be32(&src);
1539

    
1540
        for (i = 0; i < 32; i++)
1541
            table[0][i] = (int16_t)bytestream_get_be16(&src);
1542

    
1543
        /* Initialize the previous sample.  */
1544
        for (i = 0; i < 4; i++)
1545
            prev[0][i] = (int16_t)bytestream_get_be16(&src);
1546

    
1547
        if (samplecnt >= (samples_end - samples) /  (st + 1)) {
1548
            av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1549
            return -1;
1550
        }
1551

    
1552
        for (ch = 0; ch <= st; ch++) {
1553
            samples = (unsigned short *) data + ch;
1554

    
1555
            /* Read in every sample for this channel.  */
1556
            for (i = 0; i < samplecnt / 14; i++) {
1557
                int index = (*src >> 4) & 7;
1558
                unsigned int exp = 28 - (*src++ & 15);
1559
                int factor1 = table[ch][index * 2];
1560
                int factor2 = table[ch][index * 2 + 1];
1561

    
1562
                /* Decode 14 samples.  */
1563
                for (n = 0; n < 14; n++) {
1564
                    int32_t sampledat;
1565
                    if(n&1) sampledat=  *src++    <<28;
1566
                    else    sampledat= (*src&0xF0)<<24;
1567

    
1568
                    sampledat = ((prev[ch][0]*factor1
1569
                                + prev[ch][1]*factor2) >> 11) + (sampledat>>exp);
1570
                    *samples = av_clip_int16(sampledat);
1571
                    prev[ch][1] = prev[ch][0];
1572
                    prev[ch][0] = *samples++;
1573

    
1574
                    /* In case of stereo, skip one sample, this sample
1575
                       is for the other channel.  */
1576
                    samples += st;
1577
                }
1578
            }
1579
        }
1580

    
1581
        /* In the previous loop, in case stereo is used, samples is
1582
           increased exactly one time too often.  */
1583
        samples -= st;
1584
        break;
1585
    }
1586

    
1587
    default:
1588
        return -1;
1589
    }
1590
    *data_size = (uint8_t *)samples - (uint8_t *)data;
1591
    return src - buf;
1592
}
1593

    
1594

    
1595

    
1596
#ifdef CONFIG_ENCODERS
1597
#define ADPCM_ENCODER(id,name)                  \
1598
AVCodec name ## _encoder = {                    \
1599
    #name,                                      \
1600
    CODEC_TYPE_AUDIO,                           \
1601
    id,                                         \
1602
    sizeof(ADPCMContext),                       \
1603
    adpcm_encode_init,                          \
1604
    adpcm_encode_frame,                         \
1605
    adpcm_encode_close,                         \
1606
    NULL,                                       \
1607
};
1608
#else
1609
#define ADPCM_ENCODER(id,name)
1610
#endif
1611

    
1612
#ifdef CONFIG_DECODERS
1613
#define ADPCM_DECODER(id,name)                  \
1614
AVCodec name ## _decoder = {                    \
1615
    #name,                                      \
1616
    CODEC_TYPE_AUDIO,                           \
1617
    id,                                         \
1618
    sizeof(ADPCMContext),                       \
1619
    adpcm_decode_init,                          \
1620
    NULL,                                       \
1621
    NULL,                                       \
1622
    adpcm_decode_frame,                         \
1623
};
1624
#else
1625
#define ADPCM_DECODER(id,name)
1626
#endif
1627

    
1628
#define ADPCM_CODEC(id, name)                   \
1629
ADPCM_ENCODER(id,name) ADPCM_DECODER(id,name)
1630

    
1631
ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm);
1632
ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct);
1633
ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea);
1634
ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa);
1635
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1);
1636
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2);
1637
ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3);
1638
ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas);
1639
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv);
1640
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3);
1641
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4);
1642
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs);
1643
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead);
1644
ADPCM_CODEC  (CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt);
1645
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg);
1646
ADPCM_CODEC  (CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav);
1647
ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws);
1648
ADPCM_CODEC  (CODEC_ID_ADPCM_MS, adpcm_ms);
1649
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2);
1650
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3);
1651
ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4);
1652
ADPCM_CODEC  (CODEC_ID_ADPCM_SWF, adpcm_swf);
1653
ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp);
1654
ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa);
1655
ADPCM_CODEC  (CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha);