Statistics
| Branch: | Revision:

ffmpeg / libavcodec / mdct.c @ e8dd7b0c

History | View | Annotate | Download (5.77 KB)

1
/*
2
 * MDCT/IMDCT transforms
3
 * Copyright (c) 2002 Fabrice Bellard.
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
#include "dsputil.h"
22

    
23
/**
24
 * @file mdct.c
25
 * MDCT/IMDCT transforms.
26
 */
27

    
28
// Generate a Kaiser-Bessel Derived Window.
29
#define BESSEL_I0_ITER 50 // default: 50 iterations of Bessel I0 approximation
30
void ff_kbd_window_init(float *window, float alpha, int n)
31
{
32
   int i, j;
33
   double sum = 0.0, bessel, tmp;
34
   double local_window[n];
35
   double alpha2 = (alpha * M_PI / n) * (alpha * M_PI / n);
36

    
37
   for (i = 0; i < n; i++) {
38
       tmp = i * (n - i) * alpha2;
39
       bessel = 1.0;
40
       for (j = BESSEL_I0_ITER; j > 0; j--)
41
           bessel = bessel * tmp / (j * j) + 1;
42
       sum += bessel;
43
       local_window[i] = sum;
44
   }
45

    
46
   sum++;
47
   for (i = 0; i < n; i++)
48
       window[i] = sqrt(local_window[i] / sum);
49
}
50

    
51
// Generate a sine window.
52
void ff_sine_window_init(float *window, int n) {
53
    int i;
54
    for(i = 0; i < n; i++)
55
        window[i] = sin((i + 0.5) / (2 * n) * M_PI);
56
}
57

    
58
/**
59
 * init MDCT or IMDCT computation.
60
 */
61
int ff_mdct_init(MDCTContext *s, int nbits, int inverse)
62
{
63
    int n, n4, i;
64
    double alpha;
65

    
66
    memset(s, 0, sizeof(*s));
67
    n = 1 << nbits;
68
    s->nbits = nbits;
69
    s->n = n;
70
    n4 = n >> 2;
71
    s->tcos = av_malloc(n4 * sizeof(FFTSample));
72
    if (!s->tcos)
73
        goto fail;
74
    s->tsin = av_malloc(n4 * sizeof(FFTSample));
75
    if (!s->tsin)
76
        goto fail;
77

    
78
    for(i=0;i<n4;i++) {
79
        alpha = 2 * M_PI * (i + 1.0 / 8.0) / n;
80
        s->tcos[i] = -cos(alpha);
81
        s->tsin[i] = -sin(alpha);
82
    }
83
    if (ff_fft_init(&s->fft, s->nbits - 2, inverse) < 0)
84
        goto fail;
85
    return 0;
86
 fail:
87
    av_freep(&s->tcos);
88
    av_freep(&s->tsin);
89
    return -1;
90
}
91

    
92
/* complex multiplication: p = a * b */
93
#define CMUL(pre, pim, are, aim, bre, bim) \
94
{\
95
    FFTSample _are = (are);\
96
    FFTSample _aim = (aim);\
97
    FFTSample _bre = (bre);\
98
    FFTSample _bim = (bim);\
99
    (pre) = _are * _bre - _aim * _bim;\
100
    (pim) = _are * _bim + _aim * _bre;\
101
}
102

    
103
/**
104
 * Compute the middle half of the inverse MDCT of size N = 2^nbits,
105
 * thus excluding the parts that can be derived by symmetry
106
 * @param output N/2 samples
107
 * @param input N/2 samples
108
 */
109
void ff_imdct_half(MDCTContext *s, FFTSample *output, const FFTSample *input)
110
{
111
    int k, n8, n4, n2, n, j;
112
    const uint16_t *revtab = s->fft.revtab;
113
    const FFTSample *tcos = s->tcos;
114
    const FFTSample *tsin = s->tsin;
115
    const FFTSample *in1, *in2;
116
    FFTComplex *z = (FFTComplex *)output;
117

    
118
    n = 1 << s->nbits;
119
    n2 = n >> 1;
120
    n4 = n >> 2;
121
    n8 = n >> 3;
122

    
123
    /* pre rotation */
124
    in1 = input;
125
    in2 = input + n2 - 1;
126
    for(k = 0; k < n4; k++) {
127
        j=revtab[k];
128
        CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]);
129
        in1 += 2;
130
        in2 -= 2;
131
    }
132
    ff_fft_calc(&s->fft, z);
133

    
134
    /* post rotation + reordering */
135
    output += n4;
136
    for(k = 0; k < n8; k++) {
137
        FFTSample r0, i0, r1, i1;
138
        CMUL(r0, i1, z[n8-k-1].im, z[n8-k-1].re, tsin[n8-k-1], tcos[n8-k-1]);
139
        CMUL(r1, i0, z[n8+k  ].im, z[n8+k  ].re, tsin[n8+k  ], tcos[n8+k  ]);
140
        z[n8-k-1].re = r0;
141
        z[n8-k-1].im = i0;
142
        z[n8+k  ].re = r1;
143
        z[n8+k  ].im = i1;
144
    }
145
}
146

    
147
/**
148
 * Compute inverse MDCT of size N = 2^nbits
149
 * @param output N samples
150
 * @param input N/2 samples
151
 * @param tmp N/2 samples
152
 */
153
void ff_imdct_calc(MDCTContext *s, FFTSample *output,
154
                   const FFTSample *input, FFTSample *tmp)
155
{
156
    int k;
157
    int n = 1 << s->nbits;
158
    int n2 = n >> 1;
159
    int n4 = n >> 2;
160

    
161
    ff_imdct_half(s, output+n4, input);
162

    
163
    for(k = 0; k < n4; k++) {
164
        output[k] = -output[n2-k-1];
165
        output[n-k-1] = output[n2+k];
166
    }
167
}
168

    
169
/**
170
 * Compute MDCT of size N = 2^nbits
171
 * @param input N samples
172
 * @param out N/2 samples
173
 * @param tmp temporary storage of N/2 samples
174
 */
175
void ff_mdct_calc(MDCTContext *s, FFTSample *out,
176
                  const FFTSample *input, FFTSample *tmp)
177
{
178
    int i, j, n, n8, n4, n2, n3;
179
    FFTSample re, im, re1, im1;
180
    const uint16_t *revtab = s->fft.revtab;
181
    const FFTSample *tcos = s->tcos;
182
    const FFTSample *tsin = s->tsin;
183
    FFTComplex *x = (FFTComplex *)out;
184

    
185
    n = 1 << s->nbits;
186
    n2 = n >> 1;
187
    n4 = n >> 2;
188
    n8 = n >> 3;
189
    n3 = 3 * n4;
190

    
191
    /* pre rotation */
192
    for(i=0;i<n8;i++) {
193
        re = -input[2*i+3*n4] - input[n3-1-2*i];
194
        im = -input[n4+2*i] + input[n4-1-2*i];
195
        j = revtab[i];
196
        CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]);
197

    
198
        re = input[2*i] - input[n2-1-2*i];
199
        im = -(input[n2+2*i] + input[n-1-2*i]);
200
        j = revtab[n8 + i];
201
        CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]);
202
    }
203

    
204
    ff_fft_calc(&s->fft, x);
205

    
206
    /* post rotation */
207
    for(i=0;i<n8;i++) {
208
        FFTSample r0, i0, r1, i1;
209
        CMUL(i1, r0, x[n8-i-1].re, x[n8-i-1].im, -tsin[n8-i-1], -tcos[n8-i-1]);
210
        CMUL(i0, r1, x[n8+i  ].re, x[n8+i  ].im, -tsin[n8+i  ], -tcos[n8+i  ]);
211
        x[n8-i-1].re = r0;
212
        x[n8-i-1].im = i0;
213
        x[n8+i  ].re = r1;
214
        x[n8+i  ].im = i1;
215
    }
216
}
217

    
218
void ff_mdct_end(MDCTContext *s)
219
{
220
    av_freep(&s->tcos);
221
    av_freep(&s->tsin);
222
    ff_fft_end(&s->fft);
223
}