Statistics
| Branch: | Revision:

ffmpeg / libavcodec / lsp.c @ f2b7ce8a

History | View | Annotate | Download (5.11 KB)

1
/*
2
 * LSP routines for ACELP-based codecs
3
 *
4
 * Copyright (c) 2007 Reynaldo H. Verdejo Pinochet (QCELP decoder)
5
 * Copyright (c) 2008 Vladimir Voroshilov
6
 *
7
 * This file is part of FFmpeg.
8
 *
9
 * FFmpeg is free software; you can redistribute it and/or
10
 * modify it under the terms of the GNU Lesser General Public
11
 * License as published by the Free Software Foundation; either
12
 * version 2.1 of the License, or (at your option) any later version.
13
 *
14
 * FFmpeg is distributed in the hope that it will be useful,
15
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17
 * Lesser General Public License for more details.
18
 *
19
 * You should have received a copy of the GNU Lesser General Public
20
 * License along with FFmpeg; if not, write to the Free Software
21
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22
 */
23

    
24
#include <inttypes.h>
25

    
26
#include "avcodec.h"
27
#define FRAC_BITS 14
28
#include "mathops.h"
29
#include "lsp.h"
30
#include "celp_math.h"
31

    
32
void ff_acelp_reorder_lsf(int16_t* lsfq, int lsfq_min_distance, int lsfq_min, int lsfq_max, int lp_order)
33
{
34
    int i, j;
35

    
36
    /* sort lsfq in ascending order. float bubble agorithm,
37
       O(n) if data already sorted, O(n^2) - otherwise */
38
    for(i=0; i<lp_order-1; i++)
39
        for(j=i; j>=0 && lsfq[j] > lsfq[j+1]; j--)
40
            FFSWAP(int16_t, lsfq[j], lsfq[j+1]);
41

    
42
    for(i=0; i<lp_order; i++)
43
    {
44
        lsfq[i] = FFMAX(lsfq[i], lsfq_min);
45
        lsfq_min = lsfq[i] + lsfq_min_distance;
46
    }
47
    lsfq[lp_order-1] = FFMIN(lsfq[lp_order-1], lsfq_max);//Is warning required ?
48
}
49

    
50
void ff_set_min_dist_lsf(float *lsf, double min_spacing, int size)
51
{
52
    int i;
53
    float prev = 0.0;
54
    for (i = 0; i < size; i++)
55
        prev = lsf[i] = FFMAX(lsf[i], prev + min_spacing);
56
}
57

    
58
void ff_acelp_lsf2lsp(int16_t *lsp, const int16_t *lsf, int lp_order)
59
{
60
    int i;
61

    
62
    /* Convert LSF to LSP, lsp=cos(lsf) */
63
    for(i=0; i<lp_order; i++)
64
        // 20861 = 2.0 / PI in (0.15)
65
        lsp[i] = ff_cos(lsf[i] * 20861 >> 15); // divide by PI and (0,13) -> (0,14)
66
}
67

    
68
/**
69
 * \brief decodes polynomial coefficients from LSP
70
 * \param f [out] decoded polynomial coefficients (-0x20000000 <= (3.22) <= 0x1fffffff)
71
 * \param lsp LSP coefficients (-0x8000 <= (0.15) <= 0x7fff)
72
 */
73
static void lsp2poly(int* f, const int16_t* lsp, int lp_half_order)
74
{
75
    int i, j;
76

    
77
    f[0] = 0x400000;          // 1.0 in (3.22)
78
    f[1] = -lsp[0] << 8;      // *2 and (0.15) -> (3.22)
79

    
80
    for(i=2; i<=lp_half_order; i++)
81
    {
82
        f[i] = f[i-2];
83
        for(j=i; j>1; j--)
84
            f[j] -= MULL(f[j-1], lsp[2*i-2], FRAC_BITS) - f[j-2];
85

    
86
        f[1] -= lsp[2*i-2] << 8;
87
    }
88
}
89

    
90
void ff_acelp_lsp2lpc(int16_t* lp, const int16_t* lsp, int lp_half_order)
91
{
92
    int i;
93
    int f1[lp_half_order+1]; // (3.22)
94
    int f2[lp_half_order+1]; // (3.22)
95

    
96
    lsp2poly(f1, lsp  , lp_half_order);
97
    lsp2poly(f2, lsp+1, lp_half_order);
98

    
99
    /* 3.2.6 of G.729, Equations 25 and  26*/
100
    lp[0] = 4096;
101
    for(i=1; i<lp_half_order+1; i++)
102
    {
103
        int ff1 = f1[i] + f1[i-1]; // (3.22)
104
        int ff2 = f2[i] - f2[i-1]; // (3.22)
105

    
106
        ff1 += 1 << 10; // for rounding
107
        lp[i]    = (ff1 + ff2) >> 11; // divide by 2 and (3.22) -> (3.12)
108
        lp[(lp_half_order << 1) + 1 - i] = (ff1 - ff2) >> 11; // divide by 2 and (3.22) -> (3.12)
109
    }
110
}
111

    
112
void ff_acelp_lp_decode(int16_t* lp_1st, int16_t* lp_2nd, const int16_t* lsp_2nd, const int16_t* lsp_prev, int lp_order)
113
{
114
    int16_t lsp_1st[lp_order]; // (0.15)
115
    int i;
116

    
117
    /* LSP values for first subframe (3.2.5 of G.729, Equation 24)*/
118
    for(i=0; i<lp_order; i++)
119
#ifdef G729_BITEXACT
120
        lsp_1st[i] = (lsp_2nd[i] >> 1) + (lsp_prev[i] >> 1);
121
#else
122
        lsp_1st[i] = (lsp_2nd[i] + lsp_prev[i]) >> 1;
123
#endif
124

    
125
    ff_acelp_lsp2lpc(lp_1st, lsp_1st, lp_order >> 1);
126

    
127
    /* LSP values for second subframe (3.2.5 of G.729)*/
128
    ff_acelp_lsp2lpc(lp_2nd, lsp_2nd, lp_order >> 1);
129
}
130

    
131
/**
132
 * Computes the Pa / (1 + z(-1)) or Qa / (1 - z(-1)) coefficients
133
 * needed for LSP to LPC conversion.
134
 * We only need to calculate the 6 first elements of the polynomial.
135
 *
136
 * @param lsp line spectral pairs in cosine domain
137
 * @param f [out] polynomial input/output as a vector
138
 *
139
 * TIA/EIA/IS-733 2.4.3.3.5-1/2
140
 */
141
static void lsp2polyf(const double *lsp, double *f, int lp_half_order)
142
{
143
    int i, j;
144

    
145
    f[0] = 1.0;
146
    f[1] = -2 * lsp[0];
147
    lsp -= 2;
148
    for(i=2; i<=lp_half_order; i++)
149
    {
150
        double val = -2 * lsp[2*i];
151
        f[i] = val * f[i-1] + 2*f[i-2];
152
        for(j=i-1; j>1; j--)
153
            f[j] += f[j-1] * val + f[j-2];
154
        f[1] += val;
155
    }
156
}
157

    
158
void ff_acelp_lspd2lpc(const double *lsp, float *lpc, int lp_half_order)
159
{
160
    double pa[MAX_LP_HALF_ORDER+1], qa[MAX_LP_HALF_ORDER+1];
161
    float *lpc2 = lpc + (lp_half_order << 1) - 1;
162

    
163
    assert(lp_half_order <= MAX_LP_HALF_ORDER);
164

    
165
    lsp2polyf(lsp,     pa, lp_half_order);
166
    lsp2polyf(lsp + 1, qa, lp_half_order);
167

    
168
    while (lp_half_order--) {
169
        double paf = pa[lp_half_order+1] + pa[lp_half_order];
170
        double qaf = qa[lp_half_order+1] - qa[lp_half_order];
171

    
172
        lpc [ lp_half_order] = 0.5*(paf+qaf);
173
        lpc2[-lp_half_order] = 0.5*(paf-qaf);
174
    }
175
}