ffmpeg / libavutil / pca.c @ f43ad0fe
History | View | Annotate | Download (6.13 KB)
1 | 7a0d00d4 | Michael Niedermayer | /*
|
---|---|---|---|
2 | * Principal component analysis
|
||
3 | * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
|
||
4 | *
|
||
5 | * This library is free software; you can redistribute it and/or
|
||
6 | * modify it under the terms of the GNU Lesser General Public
|
||
7 | * License as published by the Free Software Foundation; either
|
||
8 | * version 2 of the License, or (at your option) any later version.
|
||
9 | *
|
||
10 | * This library is distributed in the hope that it will be useful,
|
||
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
13 | * Lesser General Public License for more details.
|
||
14 | *
|
||
15 | * You should have received a copy of the GNU Lesser General Public
|
||
16 | * License along with this library; if not, write to the Free Software
|
||
17 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||
18 | *
|
||
19 | */
|
||
20 | |||
21 | /**
|
||
22 | * @file pca.c
|
||
23 | * Principal component analysis
|
||
24 | */
|
||
25 | |||
26 | a50bd69d | Michael Niedermayer | #include "common.h" |
27 | 7a0d00d4 | Michael Niedermayer | #include "pca.h" |
28 | |||
29 | 64417375 | Michael Niedermayer | PCA *ff_pca_init(int n){
|
30 | PCA *pca; |
||
31 | 7a0d00d4 | Michael Niedermayer | if(n<=0) |
32 | 64417375 | Michael Niedermayer | return NULL; |
33 | 7a0d00d4 | Michael Niedermayer | |
34 | 64417375 | Michael Niedermayer | pca= av_mallocz(sizeof(PCA));
|
35 | 7a0d00d4 | Michael Niedermayer | pca->n= n; |
36 | pca->count=0;
|
||
37 | pca->covariance= av_mallocz(sizeof(double)*n*n); |
||
38 | pca->mean= av_mallocz(sizeof(double)*n); |
||
39 | |||
40 | 64417375 | Michael Niedermayer | return pca;
|
41 | 7a0d00d4 | Michael Niedermayer | } |
42 | |||
43 | void ff_pca_free(PCA *pca){
|
||
44 | av_freep(&pca->covariance); |
||
45 | av_freep(&pca->mean); |
||
46 | 64417375 | Michael Niedermayer | av_free(pca); |
47 | 7a0d00d4 | Michael Niedermayer | } |
48 | |||
49 | void ff_pca_add(PCA *pca, double *v){ |
||
50 | int i, j;
|
||
51 | const int n= pca->n; |
||
52 | |||
53 | for(i=0; i<n; i++){ |
||
54 | pca->mean[i] += v[i]; |
||
55 | for(j=i; j<n; j++)
|
||
56 | pca->covariance[j + i*n] += v[i]*v[j]; |
||
57 | } |
||
58 | pca->count++; |
||
59 | } |
||
60 | |||
61 | int ff_pca(PCA *pca, double *eigenvector, double *eigenvalue){ |
||
62 | int i, j, k, pass;
|
||
63 | const int n= pca->n; |
||
64 | double z[n];
|
||
65 | |||
66 | memset(eigenvector, 0, sizeof(double)*n*n); |
||
67 | |||
68 | for(j=0; j<n; j++){ |
||
69 | pca->mean[j] /= pca->count; |
||
70 | eigenvector[j + j*n] = 1.0; |
||
71 | for(i=0; i<=j; i++){ |
||
72 | pca->covariance[j + i*n] /= pca->count; |
||
73 | pca->covariance[j + i*n] -= pca->mean[i] * pca->mean[j]; |
||
74 | pca->covariance[i + j*n] = pca->covariance[j + i*n]; |
||
75 | } |
||
76 | eigenvalue[j]= pca->covariance[j + j*n]; |
||
77 | z[j]= 0;
|
||
78 | } |
||
79 | |||
80 | for(pass=0; pass < 50; pass++){ |
||
81 | double sum=0; |
||
82 | |||
83 | for(i=0; i<n; i++) |
||
84 | for(j=i+1; j<n; j++) |
||
85 | sum += fabs(pca->covariance[j + i*n]); |
||
86 | |||
87 | if(sum == 0){ |
||
88 | for(i=0; i<n; i++){ |
||
89 | double maxvalue= -1; |
||
90 | for(j=i; j<n; j++){
|
||
91 | if(eigenvalue[j] > maxvalue){
|
||
92 | maxvalue= eigenvalue[j]; |
||
93 | k= j; |
||
94 | } |
||
95 | } |
||
96 | eigenvalue[k]= eigenvalue[i]; |
||
97 | eigenvalue[i]= maxvalue; |
||
98 | for(j=0; j<n; j++){ |
||
99 | double tmp= eigenvector[k + j*n];
|
||
100 | eigenvector[k + j*n]= eigenvector[i + j*n]; |
||
101 | eigenvector[i + j*n]= tmp; |
||
102 | } |
||
103 | } |
||
104 | return pass;
|
||
105 | } |
||
106 | |||
107 | for(i=0; i<n; i++){ |
||
108 | for(j=i+1; j<n; j++){ |
||
109 | double covar= pca->covariance[j + i*n];
|
||
110 | double t,c,s,tau,theta, h;
|
||
111 | |||
112 | if(pass < 3 && fabs(covar) < sum / (5*n*n)) //FIXME why pass < 3 |
||
113 | continue;
|
||
114 | if(fabs(covar) == 0.0) //FIXME shouldnt be needed |
||
115 | continue;
|
||
116 | if(pass >=3 && fabs((eigenvalue[j]+z[j])/covar) > (1LL<<32) && fabs((eigenvalue[i]+z[i])/covar) > (1LL<<32)){ |
||
117 | pca->covariance[j + i*n]=0.0; |
||
118 | continue;
|
||
119 | } |
||
120 | |||
121 | h= (eigenvalue[j]+z[j]) - (eigenvalue[i]+z[i]); |
||
122 | theta=0.5*h/covar; |
||
123 | t=1.0/(fabs(theta)+sqrt(1.0+theta*theta)); |
||
124 | if(theta < 0.0) t = -t; |
||
125 | |||
126 | c=1.0/sqrt(1+t*t); |
||
127 | s=t*c; |
||
128 | tau=s/(1.0+c); |
||
129 | z[i] -= t*covar; |
||
130 | z[j] += t*covar; |
||
131 | |||
132 | 7b0a6612 | Michael Niedermayer | #define ROTATE(a,i,j,k,l) {\
|
133 | 7a0d00d4 | Michael Niedermayer | double g=a[j + i*n];\
|
134 | double h=a[l + k*n];\
|
||
135 | a[j + i*n]=g-s*(h+g*tau);\ |
||
136 | 7b0a6612 | Michael Niedermayer | a[l + k*n]=h+s*(g-h*tau); } |
137 | 7a0d00d4 | Michael Niedermayer | for(k=0; k<n; k++) { |
138 | if(k!=i && k!=j){
|
||
139 | ROTATE(pca->covariance,FFMIN(k,i),FFMAX(k,i),FFMIN(k,j),FFMAX(k,j)) |
||
140 | } |
||
141 | ROTATE(eigenvector,k,i,k,j) |
||
142 | } |
||
143 | pca->covariance[j + i*n]=0.0; |
||
144 | } |
||
145 | } |
||
146 | for (i=0; i<n; i++) { |
||
147 | eigenvalue[i] += z[i]; |
||
148 | z[i]=0.0; |
||
149 | } |
||
150 | } |
||
151 | |||
152 | return -1; |
||
153 | } |
||
154 | |||
155 | 88ccaf6f | Michael Niedermayer | #ifdef TEST
|
156 | 7a0d00d4 | Michael Niedermayer | |
157 | #undef printf
|
||
158 | cd5cd377 | Michael Niedermayer | #undef random
|
159 | 7a0d00d4 | Michael Niedermayer | #include <stdio.h> |
160 | #include <stdlib.h> |
||
161 | |||
162 | int main(){
|
||
163 | 64417375 | Michael Niedermayer | PCA *pca; |
164 | 7a0d00d4 | Michael Niedermayer | int i, j, k;
|
165 | #define LEN 8 |
||
166 | double eigenvector[LEN*LEN];
|
||
167 | double eigenvalue[LEN];
|
||
168 | |||
169 | 64417375 | Michael Niedermayer | pca= ff_pca_init(LEN); |
170 | 7a0d00d4 | Michael Niedermayer | |
171 | for(i=0; i<9000000; i++){ |
||
172 | double v[2*LEN+100]; |
||
173 | double sum=0; |
||
174 | int pos= random()%LEN;
|
||
175 | int v2= (random()%101) - 50; |
||
176 | v[0]= (random()%101) - 50; |
||
177 | for(j=1; j<8; j++){ |
||
178 | if(j<=pos) v[j]= v[0]; |
||
179 | else v[j]= v2;
|
||
180 | sum += v[j]; |
||
181 | } |
||
182 | /* for(j=0; j<LEN; j++){
|
||
183 | v[j] -= v[pos];
|
||
184 | }*/
|
||
185 | // sum += random()%10;
|
||
186 | /* for(j=0; j<LEN; j++){
|
||
187 | v[j] -= sum/LEN;
|
||
188 | }*/
|
||
189 | // lbt1(v+100,v+100,LEN);
|
||
190 | 64417375 | Michael Niedermayer | ff_pca_add(pca, v); |
191 | 7a0d00d4 | Michael Niedermayer | } |
192 | |||
193 | |||
194 | 64417375 | Michael Niedermayer | ff_pca(pca, eigenvector, eigenvalue); |
195 | 7a0d00d4 | Michael Niedermayer | for(i=0; i<LEN; i++){ |
196 | 64417375 | Michael Niedermayer | pca->count= 1;
|
197 | pca->mean[i]= 0;
|
||
198 | 7a0d00d4 | Michael Niedermayer | |
199 | // (0.5^|x|)^2 = 0.5^2|x| = 0.25^|x|
|
||
200 | |||
201 | |||
202 | // pca.covariance[i + i*LEN]= pow(0.5, fabs
|
||
203 | for(j=i; j<LEN; j++){
|
||
204 | 64417375 | Michael Niedermayer | printf("%f ", pca->covariance[i + j*LEN]);
|
205 | 7a0d00d4 | Michael Niedermayer | } |
206 | printf("\n");
|
||
207 | } |
||
208 | |||
209 | #if 1 |
||
210 | for(i=0; i<LEN; i++){ |
||
211 | double v[LEN];
|
||
212 | double error=0; |
||
213 | memset(v, 0, sizeof(v)); |
||
214 | for(j=0; j<LEN; j++){ |
||
215 | for(k=0; k<LEN; k++){ |
||
216 | 64417375 | Michael Niedermayer | v[j] += pca->covariance[FFMIN(k,j) + FFMAX(k,j)*LEN] * eigenvector[i + k*LEN]; |
217 | 7a0d00d4 | Michael Niedermayer | } |
218 | v[j] /= eigenvalue[i]; |
||
219 | error += fabs(v[j] - eigenvector[i + j*LEN]); |
||
220 | } |
||
221 | printf("%f ", error);
|
||
222 | } |
||
223 | printf("\n");
|
||
224 | #endif
|
||
225 | for(i=0; i<LEN; i++){ |
||
226 | for(j=0; j<LEN; j++){ |
||
227 | printf("%9.6f ", eigenvector[i + j*LEN]);
|
||
228 | } |
||
229 | printf(" %9.1f %f\n", eigenvalue[i], eigenvalue[i]/eigenvalue[0]); |
||
230 | } |
||
231 | |||
232 | return 0; |
||
233 | } |
||
234 | #endif |